
�
EDGAR� A PLATFORM FOR

HARDWARE�SOFTWARE

CODESIGN

Ant�onio J� Esteves� Jo�ao M� Fernandes

and Alberto J� Proen�ca

Departamento de Inform�atica� Escola de Engenharia

Universidade do Minho

���� Braga codex� Portugal

Abstract

Codesign is a uni�ed methodology to develop complex systems with hardware
and software components� EDgAR� a platform for hardware�software codesign
is described� which is intended to prototype complex digital systems� It employs
programmable logic devices �MACHs and FPGAs� and a transputer�based par�
allel architecture� This platform and its associated methodology reduce the
systems production cost� decreasing the time for the design and the test of the
prototypes� The EDgAR supporting tools are introduced� which were conceived
to specify systems at an high�level of abstraction� with a standard language and
to allow a high degree of automation on the synthesis process� This platform
was used to emulate an integrated circuit for image processing purposes�

Keywords� codesign� rapid system prototyping� FPLDs� transputer�

� INTRODUCTION

All the platforms used in codesign are not universal� in the sense that not
all the systems can be implemented in a straightforward way� Additionally�
those platforms are generally too expensive� since they have a large number of
hardware resources� If these resources are not completely used for a signi�cant
number of systems� the ratio performance�cost is extremely low�

The EDgAR �Emulador Digital Altamente Reprogramvel� platform was de�
signed to achieve a high performance�cost ratio and to implement complex

	

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55605799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


� Chapter �

systems with critical time constraints� used in real�time applications �especially
computer vision systems�� However� the platform design was not signi�cantly
constrained by the particular aspects of these systems�

EDgAR is a FPGA�based platform that includes a transputer that can be linked
to a parallel architecture� With the EDgAR platform� prototypes of complex
digital systems can be obtained in a short period of time�

The recent development on the area of re�programmable components �FPLDs �
Field Programmable Logic Devices� made them attractive to fast and e
ciently
create prototypes� because their complexity can achieve tens of thousands of
equivalent logic gates� and the manufactures provide electronic CAD tools to
support those components� Since the time of design and the production cost
were reduced� and the FPLDs need no longer to be removed for programming�
they can be used with success in codesign platforms�

The transputer is a microprocessor with communication and processing power
and a simple interface� It allows the scale of parallelism� due to its capacity to
be interconnected with other identical microprocessors�

Codesign is closely related to the design of systems with unreachable perfor�
mance in software implementations� and systems with higher complexity than
those implemented in hardware �ASICs� �	� �
�

This article is organised as follows� In section �� the architecture of the EDgAR
platform is described� The synthesis of digital systems with EDgAR is analysed
in section �� with comments to the di�erent phases of the process� the system
speci�cation� the hardware�software partitioning� the allocation of platform re�
sources to partitions� and the validation of the prototype obtained� In section �
the emulation of a VLSI circuit� the GLiTCH� on EDgAR is presented�

� THE ARCHITECTURE OF THE EDGAR
PLATFORM

The structure of the EDgAR platform ��gure 	� is supported by two major
blocks�



EDgAR� a Platform for Hw�Sw Codesign �

i� a digital information processing unit �UPDI�� that implements a parallel
computation node� with communication and scalar processing power� and
where the digital signals processing speed is not crucial�

ii� a programmable logic unit �ULP�� containing a great amount of recon�
�gurable resources and whose operation speed is close to that of the cir�
cuits with fast technologies available on the market� allowing better per�
formances than those obtained with traditional simulators�

/cs

/rd

/rd /wr

/cs

data[32]

add[4]

data[32]

add[4]

MACH #0

/cs

DRAM (4 x 1Mbyte)

data[8]

add[2]

data[8]

add[2]
/wr

/wr /rd /wr

/rd

MACH #3

LCA #0

LCA #3

data[32]

add[32]

/wr/rd

(with T425)

add[22]

data[32]

Processing
D

at
a 

B
us

A
dd

re
ss

 B
us

links[4]

i/o[22]

i/o[22]

i/o[100]

i/o[29]

/cs

/cs

C
on

ne
ct

or
s

... ...

C
on

ne
ct

or

Unit

Address
Decoder

C
on

ne
ct

or
s

V
M

E
 C

on
ne

ct
or

Figure � The architecture of the EDgAR platform�

To carry out the UPDI� the transputer �a microprocessor with communication
and processing power� was selected� It allows the scale of parallelism� due to its
capacity to be interconnected with other identical microprocessors� building up
a network with a variable topology� This processor is also responsible for the in�
terface with the prototype development system and for the initial con�guration
of the ULP components ��
� On the debugging phase� the user�s interface with
the platform was developed on a unit containing several TRAMs �TRAnsputer
Modules� installed on a PC and using a C compiler� The connection between



� Chapter �

the unit of TRAMs and EDgAR is done by one �or more� transputer link�s��
which are asynchronous� The tools available to work with the TRAMs allow to
monitor the transputers of the TRAMs and EDgAR� to compile the programs
and to load them to the transputers�

The ULP provides a large quantity of resources� without signi�cantly compro�
mising the speed of the systems being implemented� The ULP structure is
based on two types of PLDs� one appropriated to implement circuits contain�
ing logic at two levels �MACHs � Macro Array CMOS High�density�� while the
other owning a structure organised like a matrix� suitable to implement circuits
containing multi�level logic �FPGAs � Field Programmable Gate Arrays��

The present EDgAR platform version ��gure 	� is implemented with a T���
transputer �a T��� could also be used�� � Mbytes of DRAM� � MACHs and
� FPGAs� The MACHs belong to the �x� AMD family� containing �� pins�
�� macrocells and �� I�O cells� The FPGAs are Xilinx LCAs that belong to
the ����A family� two FPGAs have �� pins and the others have 	�� pins� All
FPGAs have ��� macrocells and 	�� I�O cells�

All components are connected to common buses� using di�erent addresses for
the transputer internal and external memories� and for each of the FPGAs
and MACHs� To emulate distinct digital systems on the platform� and to
keep the possibility of recon�guration by software� each MACH is connected to
the buses by � address lines and � data lines� while each LCA uses � lines to
connect to the address bus and �� lines to the data bus� The remaining I�O
pins of the MACHs and LCAs are available in connectors� allowing to emulate
systems with di�erent number of I�O signals and di�erent size of hardware
components� To scale the processing power� the transputer communication
lines �links� are available outside the board� To scale the hardware resources�
the VME connector can be used to link the FPGAs on EDgAR with other
platforms that also have a VME bus�

	 DIGITAL SYSTEMS SYNTHESIS WITH
EDGAR

The development process with the present platform runs through several phases�
from the speci�cation to the implementation� going through the simulation and
test ��gure ��� Next� it is explained how these phases are being incorporated
on the development environment that will support EDgAR�



EDgAR� a Platform for Hw�Sw Codesign �

� � � �

�

�
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�
�
�
�
�
�
�
�
�

	



�
�
�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �

�

� � � �

�
�

�

�

��

�

�

�

�

�

�

��
�

�
�

�

� �

� �

� �

� �

�
�

�
�

Evaluation

Simulation

S�W
Module

S�W
Module

H�W
Module

H�W
Module

Information for
partitions interface

Conversion

Connectors
con�guration

Conversion to C H�W allocation

Compilation

Executable
�les

Module
for

MACHs

Module
for

LCAs

Conversion
to PALASM

JEDEC

Partitioning

XACTCompilation

�les
con�guration

LCA

MACHs
�les for

�les
Netlist

�les
PALASM

C �les

Conversion
to netlist

tool

High Level Speci�cation

��� ���

Figure � Methodology used for system development on the EDgAR platform�



� Chapter �

	�� Speci
cation

On the codesign context� the selection of a high�level environment for system
speci�cation is being considered� which will be the basis of the speci�cation
model to be followed� The hypothesis under consideration include an FSM�
based representation� the Occam language� a representation using Petri Nets
�PNs� or the VHDL language� A high level formal representation is used to
prove the speci�cation correctness and to guarantee that this correctness is
preserved in the next design phases�

The modelling of systems with FSMs has two disadvantages� �i� as a high�
level notation� FSMs are not so abstract as desired� and �ii� FSMs are not
appropriate to represent systems with high algorithmic complexity ��
�

TheOccam language presents the advantages of being simple� suitable for real�
time representation� having potential for parallelism� a well de�ned semantics
�based on CSP ��
� and the adequacy to represent components to be imple�
mented on the transputer �	
� Occam is not a good solution� because it is
not a widely used language �this is re�ected in the reduced number of available
synthesis tools� and it has a strong binding to the transputer processors� family�
which means that it is not an implementation independent language�

PNs are a mathematical formalism used to model systems that include con�
current activities and its graphical representation can be used to animate the
modelled systems� The formalism associated with PNs allows the systems vali�
dation in relation to a set of properties� determinism� deadlock freedom� con�ict
freedom� liveness and boundedness ��
�

VHDL is a standard hardware description language used to design digital sys�
tems� allowing the model to be clearly speci�ed� simulated and synthesised�
The speci�cations of the systems designed with VHDL can be hierarchically
structured and properly represented ��
�

The joining between VHDL and PNs is considered to be an acceptable solu�
tion� This was studied and applied with success in the speci�cation of parallel
controllers ��
� An identical evaluation is being carried out on the EDgAR plat�
form� to implement systems that are more complex than those already tested�

The speci�cation model is in�uenced by the fact that the EDgAR platform im�
plements systems asynchronously� since a completely synchronous speci�cation
model is less suitable to represent the aspects related to implementations in



EDgAR� a Platform for Hw�Sw Codesign �

hardware and software� which are asynchronous by nature� Although an inde�
pendent implementation speci�cation is a goal� this is not commonly achieved�

	�� Hardware�Software Partitioning

The hardware�software partitioning� considered to be the most complex phase
on the codesign context� is a hard task to be fully accomplished by an automatic
process� Usually the partitioning algorithm is fed with inputs �supplied by the
designer� to assist the process� The partitioning task comprises the phases
of assignment and scheduling� although some approaches use assignment only
��� 	�
�

The partitioning applied in EDgAR is behavioural� since it is done on the
system speci�cation� The behavioural partitioning has several advantages over
the structural partitioning� but the most relevant is the fact that the impact of
changes on the system�s speci�cation is smaller on the �rst one �		
�

The approach used for partitioning belongs to the software�oriented solutions�
This means that the starting point is a complete software implementation� and
after parts of the system are moved to hardware based on time criteria�

The software and hardware partitions are intended to have di�erent granular�
ities� task level on software partitions and block level on hardware partitions�
Hardware partitions are implemented with the ULP in EDgAR and the software
partitions with the UPDI� Among the hardware partitions� those implemented
with MACHs must be distinguished from those implemented with FPGAs�

The partitioning comprises the isolation of the parts with critical time con�
straints� which will result on hardware partitions� the remaining parts may
result on software partitions� The de�nition and implementation of the com�
munication strategies and interface between partitions is an important aspect
to be considered on the partitioning phase� On EDgAR� the interface between
two software partitions is implemented with memory positions and transputer
channels� Virtual channels are used if the partitions are on the same processor�
while physical channels are used if the partitions are on di�erent processors�
The interface between two hardware partitions uses registers and connectors�
and the interface between a hardware and a software partition is implemented
with the resources used in the two previously mentioned types of interface�



� Chapter �

	�	 Synthesis of Components

The synthesis of components is divided in three main parts� the synthesis
of software partitions �left block of �gure ��� the synthesis of hardware parti�
tions �central block� and the synthesis of the interface between partitions �right
block�� Each part can be seen as an allocation of resources that results on a
con�guration�

The allocation of UPDI resources to software partitions is accomplished in two
phases� In the �rst� the high�level speci�cation of these partitions is converted
into modules on an intermediate language �C�� This task requires the existence
of a converter to C language� and the generated C modules are compiled to the
transputer machine code�

The allocation of ULP resources to hardware partitions results in allocating to
these partitions resources available in two types of PLDs� MACHs and FPGAs�
The decision about which type of PLD to allocate to each module is based on
the need of storage elements and the existence of critical time constraints�
Partitions that need a number of storage elements higher than a critical value
are allocated to FPGAs� while partitions that require a response faster than
a critical value are allocated to MACHs� If both conditions arise in the same
partition and it can not be partitioned again� several components are allocated
to this partition�

To con�gure the MACH devices� the compilation and the later mapping of
their resources are completed with the agreement of the hardware allocation�
The result is a JEDEC �le for each allocated device� The hardware allocated
to the FPGAs determines their con�guration� The �rst step to obtain this
con�guration is to create an intermediate format �le �netlist� that will be used
as input to the Xilinx Automatic CAE Tools �XACT�� These tools generate the
binary con�guration �le for each allocated FPGA� de�ning the device operation�
but before they map� place� and route the speci�cation�

When the system is powered on� the transputers download the con�guration
�les to the FPGAs and establish their operation� Among the available ways
to send the con�guration �le to the FPGA� the peripheral mode was selected�
which sends the con�guration on a byte basis� After the start�up� the FPGA
can be reprogrammed without a physical reset of the system�



EDgAR� a Platform for Hw�Sw Codesign �

	�� Components Veri
cation

XACT allows for two types of simulation� in order to verify the parts of the
system implemented with FPGAs� functional and timing simulations� The
functional simulation detects logical errors� while the time simulation tests
the functionality under di�erent conditions� like a higher temperature� a lower
power or a slower process�

The obtained prototype can be validated at a higher level of abstraction in a
process called co�simulation� The co�simulation is a time consuming task that
demands a huge computation power� For these reasons� it was intended to use a
simulation model adapted to parallel architectures �	�
� This advantage results
because the co�simulation process runs on part of the same architecture that is
used to implement the simulated prototypes�

� THE EMULATION OF A VLSI CIRCUIT
WITH EDGAR

The emulation of the GLiTCH chip �	�
� an associative processor array designed
for a VLSI circuit to apply on image processing� was used as a case study�
to validate the physical structure of the EDgAR platform and to explore the
capabilities of the platform for codesign ��gure ���

The GLiTCH is structured on � blocks� an array of �� 	�bit processing elements
�PEs�� each one with �� bits of associative memory �CAM�� a pattern router
�PBL�� a video shift register �VSR� with ��x� bits� and an instruction decoder
�	�
�

The speci�cation of this case study was not carried out at an high�level of
abstraction� the modules to be implemented with the hardware components
�MACHs and FPGAs� were speci�ed using VIEWlogic schematics� while those
to be implemented in software �transputer� were speci�ed in C� To specify
PLDs� using the ViewPLD tool from VIEWlogic� the JEDEC format and� tex�
tual descriptions in ABEL or VHDL could also be used�

Although manually done� the partitioning process used the performance of
the system as the main criterium for partition de�nition� but it also used the
particular characteristics of each block� Using a large granularity �block level��
two candidates emerged to be implemented in hardware� the CAM and the



	
 Chapter �

VSR� Since the VSR operates in two directions �columns rotation and rows
shift�� one of these operations would have a low performance if implemented
in software� This leads to implementing the VSR in hardware� As a �rst
approach� the CAM did not result on a hardware partition� due to its large
dimensions ���x�� bits�� but the software implementation did not signi�cantly
degrade the overall performance of the system� Further hardware partitions
were not created as the PBL and the PEs are strongly tied to the CAM� Since
the CAM resulted on a software partition� these two blocks are implemented
in software too� reducing the communication cost between two partitions�

GLiTCH Software Components

(PEs, CAM, PBL and Instruction decoder)

...

...
...

...

Register

Register

Video Out

Control

Video In

Connector

/wr /rd /cs0

Data Bus

/wr /rd /cs1

...
...

...

Address Bus

be executed

Link

Transputer

32 8

(row)

(row)

(1/2 column)

Microcode to

on GLiTCH

LCA#0 LCA#1

GLiTCH Hardware Component Hardware/Software Interface

(1/2 column)

Register

VSR

Figure � Hardware�software implementation of the GLiTCH on the EDgAR
platform�

The VSR is a bi�dimensional shift register organised as a matrix� The GLiTCH
uses an ��bit video bus and includes �� PEs� resulting on a VSR with ��x� bits�
The VSR functionality is represented by the operations performed on the data
it stores� These operations are called SHIFT and SWAP� and correspond to
row shift and column rotation� respectively� The SHIFT operation is regulated
by the frequency of an external clock� This operation registers the � bits of



EDgAR� a Platform for Hw�Sw Codesign 		

the video input on VSR�s row ��� it shifts all rows one position down� and row
� is sent to the video output� The SWAP operation handles ���bit columns�
but the present implementation of this operation is done in two steps� because
the data bus that connects the LCAs with the transputer is ���bit wide� The
SWAP operation reads column � to the data bus �parallel read�� it registers the
content of data bus on column �� and it simultaneously rotates all the columns
one position to the right �parallel write�column rotate�� The SWAP operation
is used to implement some GLiTCH instructions� rotate image� extract image
and all others that use IMAGE as a parameter�

The hardware components of the GLiTCH emulator �VSR� was implemented in
a 	���pin LCA� Two issues made the VSR implementation di
cult� �i� the large
percentage of the available storage elements allocated to the VSR �������	���
and �ii� the constraints imposed by the �xed position� on the PCB� of some
signals �data� address and control�� These two aspects result in problems�
incomplete automatic routing of the LCA� long accumulated delays and fan�
out problems� Some of these problems should be reduced� or even eliminated�
if the VSR is implemented with � LCAs� However� this option would increase
the cost associated with communication between the two VSR halves� and the
chosen approach has the advantage of testing the utilisation of the LCAs on
the limits �more than ��� of logic used��

To implement the software components of the GLiTCH emulator �PEs� CAM�
PBL and instructions decoder blocks�� the starting point was their functionality�
The functionality of these blocks was described in ANSI C� but the emulator
has some minor aspects especially developed for transputers �	�
� The software
components� running on a single transputer� fully implement the GLiTCH mi�
croinstructions� except those microinstructions using the VSR� If better perfor�
mance is required� the parallel architecture connected to the platform should
be used� Each microinstruction has one sub�operation executed by the PBL
and one sub�operation executed by the PEs� The PBL sub�operation is exe�
cuted before the PEs sub�operation �except in microinstructions that write to
the CAM��

The interface between the hardware and the software components was imple�
mented with � types of EDgAR resources� an 	���pin LCA� the data�address
buses and the connectors� The FPGA is used to implement the VSR SHIFT
operation� which is not synchronised by the same clock as the other GLiTCH
components� The connectors establish the communication between the FPGA
used in interface and the FPGA that implements the hardware partition�



	� Chapter �

The input to the GLiTCH emulator is the microcode of the several microinstruc�
tions to execute� For better interface with user� an assembler was developed�


 CONCLUSIONS AND FUTURE WORK

The GLiTCH emulation led to the conclusion that the performance of the
implemented systems strongly depends on the ULP resources allocated� The
performance also depends on the hardware�software partitioning procedure� It
is not expected that the level of abstraction used to specify the systems will
signi�cantly in�uence the �nal performance� The case study also demonstrates
that EDgAR implements complex systems without scaling the platform� using
connections to other platforms or computing nodes� The platform architecture
was simpli�ed because the transputer requires a simple interface and it supports
the debugging of the architecture where it is included�

With the emulation of the GLiTCH processor using hardware and software
components� signi�cant improvements were obtained on the execution time of
the instructions that use the VSR� Since the design time was not increased in the
same proportion� it is demonstrated that the platform can be used successfully
for hardware�software codesign�

The case study results in a hardware implementation without using any MACH�
because the MACHs are devoted to implement fast combinational logic blocks�
which are not present in the VSR� The validation of the MACHs was veri�ed
through other smaller sized systems�

When identical modules were implemented with both types of FPLDs� the de�
lays achieved with FPGAs were bigger than the delays obtained with MACHs�
This guarantees that� when both types of FPLDs are included on the platform�
better performance is possible� since each device type is adequate to implement
distinct parts of the system� This idea is represented by the two criteria used
on the hardware partitions generation�

After the promising results obtained with EDgAR� the future work will be
directed towards the integration on a more ambitious platform� which will
include copies of an updated version of EDgAR� a microprogrammable unit
based on a 	��bit sequencer and the MIMD transputer�based architecture� The
VHDL language will be used as the uni�ed speci�cation notation� to improve



EDgAR� a Platform for Hw�Sw Codesign 	�

the communication between the di�erent phases of the codesign process� hard�
ware�software partitioning� parallel co�simulation and synthesis�

While several tools for automatic synthesis are available� there is much work to
be done for automatic partitioning and co�simulation� Future work includes�
�i� the de�nition of a more complete partitioning strategy that automatically
generates representations of the modules being implemented in FPLDs� the
microprogrammable unit or the di�erent transputer of the parallel architecture�
and �ii� the development of a co�simulator that runs on the parallel architecture�
whose main goal is to speed up the simulation� a generally time�consuming
process�

REFERENCES

�	
 Mike Spivey and Ian Page� How to Design Hardware with Handel� Oxford
University Computing Laboratory� December 	����

��
 Rajesh K� Gupta and Giovanni De Micheli� System�level Synthesis using
Re�programmable Components� In Proceedings of the European Conference
on Design Automation� pages ���� Brussels� Belgium� February 	����

��
 Ant�onio Joaquim Esteves� Rapid Prototyping of Digital Systems� Tech�
nical report� Dep� Inform�atica� Universidade do Minho� Braga� Portugal�
July 	����

��
 M� Chiodo� P� Giusto� H� Hsieh� A� Jurecska� L� Lavagno� and
A� Sangiovanni�Vincentelli� A Formal Speci	cation Model for Hard�
ware
Software Codesign� Technical Report ERL������� University of Cal�
ifornia � Berkeley� June 	����

��
 C� A� R� Hoare� Communicating Sequential Processes� Prentice�Hall In�
ternational� 	����

��
 Manuel Silva and Robert Valette� Petri Nets and Flexible Manufacturing�
In G� Rozenberg� editor� Advances in Petri Nets ��� volume ��� of Lec�
ture Notes in Computer Science� pages �����	�� Springer�Verlag� Berlin�
Germany� 	����

��
 Douglas L� Perry� VHDL� McGraw�Hill� 	��	�

��
 Jo ao Miguel Fernandes� Petri Nets and VHDL on the Speci�cation of
Parallel Controllers� Master�s thesis� Dep� Inform�atica� Universidade do
Minho� Braga� Portugal� July 	����



	� Chapter �

��
 Rolf Ernst� Jorg Henkel� and Thomas Benner� Hardware�Software Cosyn�
thesis for Microcontrollers� IEEE Design � Test of Computers� December
	����

�	�
 Asawaree Kalavade and Edward Lee� A Global Criticality
Local Phase
Driven Algorithm for the Hardware
Software Partitioning Problem� In
Proceedings of the 
rd International Workshop on Hardware
Software
Codesign� pages ������ Grenoble� France� IEEE Computer Society Press�
September 	����

�		
 Frank Vahid� A Survey of Behavioral�Level Partitioning Systems� Techni�
cal Report �	��	� Dept� of Information and Computer Science� University
Of California� Irvine� October 	��	�

�	�
 W� Billowitch� Simulation Models for Support Hardware�Software Inte�
gration� Computer Design� 	����

�	�
 Henrique D� Santos� Jos�e C� Ramalho� Jo ao M� Fernandes� and Alberto J�
Proen!ca� A heterogeneous computer vision architecture� implementation
issues� Computing System in Enginneering� ���������	��� 	����

�	�
 A� W� G� Duller� R� H� Storer� A� R� Thomson� E� L� Dagless� M� R�
Pout� and A� P� Marriot� Design of an Associative Processor Array� IEE
Proceedings� 	��� 	����

�	�
 Ant�onio Esteves� Emulation of an Associative Processor Array with
EDgaR Platform� Technical Report UMDITR����� Dep� Inform�atica� Uni�
versidade do Minho� Braga� Portugal� May 	����


