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ABSTRACT 
 

This paper is devoted to the tuning problem of the "observer-based kinetics estimator" in stirred tank 
bioreactors. This algorithm estimates the reaction kinetics from the on-line knowledge of the state variables 
(either from measurement or by means of state observer), when the yield coefficients are known. The relation 
between the dynamics of convergence and the tuning procedure is explored. The method proposed imposes a 
second-order dynamics to the convergence of the estimator. This approach will be shown to compare 
favourably with a pole placement based technique, in an application to a baker's yeast fed-batch fermentation. 
 
 
 
 

INTRODUCTION 
 

 

                                                      

* Author to whom all correspondence should be addressed 

Two of the major problems limiting the use of modern 
control techniques to bioprocesses are the difficulty of 
modelling the growth kinetics of microorganisms and the 
lack of cheap and reliable sensors of biological variables. 
Model-based state observers and observer-based parameter 
estimation represent recent developments which may 
overcome such difficulties. Bastin and Dochain (1990) 
proposed a methodology for state and parameter estimation 
based upon the concept of a “general dynamical model for 
bioreactors”: 

 
d
dt

K D F Qξ
ϕ ξ ξ ξ= − + −( ) ( ) (1) 

 
For the on-line estimation of reaction rates when the 

yield coefficients are known and constant, the proposed 
observer-based estimator is expressed by 

 
d
dt

KH D F Q( ) ( )ξ ξ ρ ξ ξ ξ= − + − − −Ω  (2a) 

d
dt

KH T( ) ( )ρ ξ ξ ξ= −Γ  (2b) 

 
The reaction rates are defined as ϕ(ξ)=H(ξ)ρ(t) to take 

advantage on any possible knowledge of the kinetics model, 
where H(ξ) is an m×r known matrix (function of the state) 

while ρ(t) is a vector of r unknown functions of the state 
which are considered as completely unknown time varying 
parameters. 

A difficulty related with the application of this 
methodology is the tuning of the gain matrices Ω and Γ 
which are design parameters at the disposal of the user for 
the control of the stability and the tracking properties of the 
algorithm. This problem is discussed by Pomerleau and 
Perrier (1990) which proposed a pole placement based 
tuning for the estimation of the three specific growth rates 
involved in a Baker's yeast fed-batch fermentation. 

This paper is devoted to the tuning problem of this 
estimator. An alternative approach is presented which is 
based on the concept of imposing that the estimated kinetics 
follow a second order dynamic response to the true reaction 
kinetics changes, leaving free to the user the setting of the 
natural period of oscillation and of the damping coefficient. 
The matrices of gains are presented as functions of those 
settings and of the system state. Hence, they are time variant 
but automatically adapted. 

 
SECOND-ORDER DYNAMICS BASED TUNING 
 
It is assumed that it is sufficient to base the kinetics 

estimator on a subset of r equations of the full state space 
model, provided that they involve all the r parameters that 
need to be estimated (this subset of equations is denoted by 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55605784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


- 684 - 

the index s). In this case the gain matrices are square with 
dimension r. In what follows, a reformulated dynamical 
model is adopted by considering the transformation 

1
s sK−ψ = ξ , which gives: 

 
d
dt

D K F Qs
ψ

ϕ ξ ψ ξ= − + −−( ) ( ( ))1  (3) 

 
The estimator can then be rewritten as: 
 

1
s s s

ˆd ˆ ˆH D K (F Q ) ( )
dt

−ψ
= ρ − ψ + − − Ω ψ − ψ  (4a) 

d
dt

HT ( )ρ ψ ψ= −Γ  (4b) 

 
The dynamics of the observation error is obtained by 

subtracting eqn (4a) from eqn (2): 
 
d

dt
H( ) ( ) ( )ψ ψ ρ ρ ψ ψ−

= − + −Ω  (5) 

 
If the matrix Γ is such that [H(ξ)]TΓ is a constant matrix, 

then differentiating equation (4b) gives 
 
d
dt

H d
dt

T
2

2

( )ρ ψ ψ
=

−
Γ  (6) 

 
Moreover, if H(ξ) is a diagonal matrix, then combining 

equations (4b), (5), and (6), and setting Ω=diag{-ωi} and  
Γ=H(ξ)-1diag{γj} (where γj, ωi ∈ ℜ+) the following result is 
obtained: 

 

τ ρ ζ τ ρ ρ ρi
i

i i
i

i i
d
dt

d
dt

2
2

2 2+ + =     i=1,...r (7) 

τ γi i ih= −( ) .0 5  (8) 

ζ ω γi i i ih= −0 5 0 5. ( ) .  (9) 
 

where hi refers to the diagonal elements of matrix H(ξ). 
Eqns. (7), (8) and (9) show that each parameter follows a 

second order dynamic response to the true parameter 
changes with a natural period of oscillation of τi and a 
damping coefficient of ζi. Nevertheless they are functions of 
the system state, and hence, they are time variant. 

The application of this methodology to the estimation 
problems of completely unknown reaction rates, specific 
reaction rates and specific growth rates is as follows: 

 
i) completely unknown reaction rates 
 
In this case we have: 
 
r=M 
ρ(ξ)=ϕ(ξ) 
H(ξ)=IM 
 
Which gives: 
 
τi = γj

-0.5 

ζi.= 0.5ωjγj
-0.5 

 
ii) specific reaction rates 
 
In this case we have: 
 
r=M 
ρ(ξ)=α(ξ) 
H(ξ)=G(ξ)=diag{gj} 
 

where 
j n

n~ j

g = ξ∏  means multiplication over the 

components with index n which are reactants in the reaction 
j. 

The result is: 
 
τi = (γigi)-0.5 

ζi = 0.5ωi(γigi)-0.5 
 
iii) specific growth rates 
 
In this case we have: 
 
r=M 
ρ(ξ)=µ(ξ) 
H(ξ)=XIM 
 

where X means biomass concentration. 
The result is: 
 
τi = (γiX)-0.5 

ζi.= 0.5ωi(γiX)-0.5 
 
 

CASE STUDY - BAKERS YEAST FED-BATCH 
FERMENTATION 

 
The process model 
 
Yeast growth is characterised by three metabolic 

pathways: 

S
s
o

+ C  X + G
 

→
µ

 (10a) 

S
s
r

  X + E + G
 

→
µ

 (10b) 

E
e
o

+ C  X + G→
µ

 (10c) 
 

with S: glucose; C: oxygen; X: biomass; E: ethanol; G: 

carbon dioxide and µ
o
s , µ

r
s, µ

o
e: specific growth rates for the 

three pathways. 
Pathways (10a), (10b), and (10c) refer respectively to the 

respiratory growth on glucose (oxydative pathway), 
fermentative growth on glucose (redutive pathway) and the 
respiratory growth on ethanol (oxydative pathway). 

The dynamic model for the fed-batch fermentor is 
obtained from a mass balance on the components, 
considering that the reactor is well mixed, the yield 
coefficients are constant and the dynamics of the gas phase 
can be neglected. The mass balances, in terms of 
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concentration, take the matrix form of the general dynamical 
model (eqn. 1): 

 

o
1 2 s in

r
3 4 s

o
5 6 e

7 8 9

1 1 1X X 0 0
k k 0S S DS 0

d 0 k k X DE E 0 0
dt

k 0 kC C OTR 0
k k kG G 0 CTR

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤− − µ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − µ − + −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− − µ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (11) 

 
where D is the dilution rate and the ki are yield coefficients; 
Sin is the substrate concentration in the feed; OTR is the 
oxygen transfer rate and CTR is the carbon dioxide transfer 
rate. 

This dynamic model and the kinetic model proposed by 
Sonnleitner and Käppeli (1986) with modifications made by 
Pomerleau and Perrier (1990) were used for simulation 
purpose. It is assumed that the baker's yeast fed-batch 
process can only be in an ethanol production state or in an 
ethanol consumption state, meaning that the yeast can only 
grow by two pathways simultaneously: pathways 10a and 
10b corresponding to ethanol production, and pathways 10a 
and 10c corresponding to ethanol consumption.

 

 
 
The kinetics estimator 
 
The "observer-based kinetics estimator" (eqns. 4) is 

applied to two partial models reflecting the two process 
states mentioned above, taking the form:  

1
s s s

ˆd ˆˆX D K (F Q ) ( )
dt

−ψ
= µ − ψ + − − Ω ψ − ψ  (12a) 

ˆd ˆX ( )
dt
µ

= Γ ψ − ψ  (12b) 

with: 
 
ψ ξ= −Ks s

1 , ξ s
TC G= , ( )F Q OTR CTRs s

T− = −  
 

and with the estimated specific growth rates µ̂  switching 

between ([µ
o
s  µ

r
s]T and [µ

o
s  µ

o
e]T).  

The use of eqns 12 requires the on-line knowledge of 
biomass concentration. This is achieved by means of a 
"Luenberger-type asymptotic observer" (Luenberger, 1971) 
which enables the on-line estimation of X, S and E from 
measurement of C and G: 

 

1
2 2 2 1 1 1

ˆdZ ˆDZ (F Q ) K K (F Q )
dt

−= − + − − −  (13a) 

1
2 2 1 1

ˆ Ẑ K K−ξ = + ξ  (13b) 
 

with  
 

ξ1 = C G T
 [ ]T

2
ˆ X S Eξ =  

[ ]T
1 1(F Q ) OTR CTR− = −  ( )F Q DSin

T
2 2 0 0− =  

 
As such, the estimation procedure consists of two steps, 

viz.- i) state estimation from available process 
measurements and ii) specific growth rates estimation. 

The process model and the kinetic model adopted were 
implemented in a process simulator (Feyo de Azevedo et al., 
1992; Pimenta and Feyo de Azevedo, 1993) which supplied 
this two-step estimation algorithm with the simulated 
measured variables - C, G, CTR, OTR, Sin and F – at 
sampling times of 6 minutes. 

 
 
Second-order-dynamics based tuning 
 
The gain matrices for the case of specific growth rates 

are given by: 
 

γ
τi

i mX
=

1
2

        ω
ζ
τi

i

i

=
2  (14) 

 
where τi and ζi are the desired natural period of oscillation 
and damping coefficient, and Xm is a mean value of 
biomass estimates over the time interval. As given by eqns. 
14, the γi parameters are piecewise functions of biomass, 
i.e., γi remains constant between measurements, being 
adjusted at each sampling period. 

The kinetics estimator equations (eqns. 12 and 13) were 
integrated with a robust variable-step numerical integration 
algorithm (4th/5th order Runge-Kutta type embedded 
scheme due to Butcher) employing along the integration 
linear estimates of the relevant sampled variables. 

 
 
Pole placement based tuning 
 
The overall estimation procedure was also carried out, 

employing the Euler’s discretization approach and tuning 
method proposed by Pomerleau and Perrier (1990). 
Basically, this method consists on defining time trajectories 
for the gain parameters in order to maintain constant the 
position of poles (on the discrete complex plan) of the 
discrete error system throughout the fermentation. The gain 
parameters are given by: 

 
2

i
i 2 2

(p 1)
X
−

γ =
τ

      ω
τi
ip

=
−2 1( )  (15) 

 
where pi is the desired double pole of the error system 
(0<pi<1), X is biomass estimate, and τ the sampling period 
(and also the integration step). 
 
 

Results and Discussion 
 

Figures 1, 2 and 3 illustrate the tuning procedure 
proposed in this work. The results in fig. 1 are obtained with 
similar natural periods of oscillation (τi=0.01) and damping 
coefficients (ζi=0.5) for the three components. The 
influence of τi and ζi on the dynamics of convergence can 
be assessed from the plots in Figs. 2 and 3. This influence is 
in agreement with the characteristics of a typical second-
order dynamics response: decreasing τi the response 
becomes faster and decreasing ζi the response becomes 
more oscillatory. 
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Figure 1-Specific growth rates (full lines-true; doted lines-

estimates) using the 2nd order dynamics based 
tuning (τ=0.01, ζ=0.5) 
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Figure 2 -µ
o
e estimates for different damping coefficients (ζ) 
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Figure 3 -µ
o
e estimates for different for different 

natural periods of oscillation (τ) 
 

Figs. 4 and 5 illustrate the same application with the pole 
placement technique. 
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Figure 4 -Specific growth rates estimates (full lines-true; 

doted lines-estimated) using the pole placement 
based tuning 
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Figure 5 -µ
o
e estimates for different poles (p) 

 
The best results are obtained when the double poles are 

close to zero (no significant improvement is obtained when 
p<0.01). In fig. 4 the three specific growth rates (estimated 
vs. 'true') are represented for p=0.01. 

The information from Figs. 1 and 4 suggest that the 
‘second order dynamics’ approach produces better results 
than the pole placement method. This is confirmed by the 
error indexes employed (ITAE – integral of time-weighted 
absolute errors) which are, for the former, an order of 
magnitude lower than those observed for the latter. The 
other possible advantage of the second order tuning is that 
the choice of parameters has an intuitive basis since this 
type of response is widely observed in natural phenomena 
and its theoretical study well disseminated. 

Further theoretical analysis is out of scope of this paper. 
Work is in progress which aims in particular at establishing 
the domains of validity of the procedure proposed. 
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NOMENCLATURE 

 
C dissolved oxygen concentration 
CTR carbon dioxide transfer rate 
D dilution rate 
E dissolved ethanol concentration 
F feed rate vector 
G dissolved carbon dioxide concentration 
gi product of reactants concentration in reaction i 

H(ξ) (m×r) matrix of functions of the state 
ki yield coefficients 
K yield coefficients matrix  
m number of reaction rates 
n number of state space variables 
OTR oxygen transfer rate 
pi double pole of the discrete error system 
Q gas removal rate vector 
r number of parameters to estimate 
S glucose concentration 
Sin glucose feed concentration 
T sampling period 
X biomass concentration 
Xm average value of biomass concentration over the 

sampling period 
 
 
 
α specific reaction rates vector 
ϕ reaction rates vector 
µ specific growth rates vector 

µ
^

 vector of estimated specific growth rates 
µs

r  specific growth rate for the fermentative growth 
on glucose pathway 

µe
o  specific growth rate for the respiratory growth 

on ethanol pathway 
µs

o  specific growth rate for the respiratory growth 
on glucose pathway 

ρ(t) vector of unknown time-varying parameters 

ρ
^
 vector of estimated parameters 

τi natural period of oscillation 
ωi, γi diagonal elements of Ω and Γ 
Ω, Γ gain matrices 

ξ
^
 predicted state vector of concentrations 

ξ1 vector of measured concentrations 
ξ2 vector of non-measured concentrations 

ξ
^

2 estimated state vector of nonmeasured 
concentrations 

ζi damping coefficient 


