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Abstract 
This work deals with the development of model-based 
adaptive control algorithms for bioprocess operation. 
Non-linear adaptive control laws are proposed for single 
input single output regulation. Parameters are 
continuously adapted following a new adaptive scheme 
which ensures second-order dynamics of the parameter 
error system. A computational study is presented of the 
application of this theory to baker’s yeast fermentation. 
Results put in evidence the efficient performance both of 
the adaptive scheme and of the related control laws. 
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1. Introduction 
Biological processes, namely fermentation processes, are 
generally characterised as exhibiting non-linear 
behaviour, with a strong variability of their characteristic 
parameters. The efficient, let alone the optimal, control 
of bioreactors is by no means a simple task and still 
today represents a major challenge to theoreticians and 
practitioners alike. 

The exploitation of the basic knowledge of the non-linear 
structure of bioprocesses, in conjunction with adaptive 
schemes for process parameters, represents a recent 
methodology, more and more adopted for the 
development of efficient bioprocess control algorithms 
[2, 6, 7].  

Recently, so called advanced techniques of differential 
geometry [5] have been proposed for the control of non-
linear systems. Essentially, the idea is to find and apply 
non-linear transformations of the state and/or the input 
variables, such that when applied to non-linear systems, a 
closed-loop feedback system results which exhibits a 
linear dynamic behaviour.  

In the present work the methodology for the synthesis of 
the non-linear control law follows the work of Bastin and 
Dochain [2] who employ linearizing control with state 
feedback for the control of biological reactors. This 
method leads to a feedback control law which lato sensu 
results in a linear behaviour of the input-output closed 
loop system. 

The structure of fermentation processes 
A general dynamic model of biological reactors is 
accepted as representing the dynamics of bioprocesses:  

( )d
dt

K t D F Q
ξ

ϕ ξ ξ= − + −,  (1) 

where ξ∈ Rn represents the n state components; Kϕ ∈ Rn 
represents the kinetic structure, assumed unknown; the 
vectors F and Q represent respectively the process inputs 
and outputs, known from on-line measurements; and, 
finally, D represents the dilution rate (ratio feed rate / 
volume) which will be the manipulated variable in the 
theoretical development. 
In the single output problem, the objective will be to 
control a scalar y which will be taken as a linear 
combination of the state variables, of the form: 

y L Li i
i

n
T= =

=
∑ ξ ξ

1
 (2) 

where LT = [L1, L2, ..., Ln] is a vector of known constants. 
Combining model equations (1) with the transformation 
(2), the following input-output model is readily obtained:  

dy
dt

Dy K F Qy y y= − + + −ϕ  (3) 

where the index y in K, F and Q is employed to represent 
the transformed matrix and vectors. 
Given that the kinetic structure is unknown, a procedure 
of on-line parameter estimation will have to be 
employed, which however will have to be based on a 
reformulated model free of the kinetic terms. In those 
cases where a number of fast dynamic state components 
are recognised, this number being equal to or larger than 
the number of unknown kinetic terms, it is possible to 
assume that such components are in pseudo steady-state 
and, through the single perturbation method, to 
reformulate the problem in terms of a reduced model of 
the general form:  

( ) ( ) ( ) ( )dy
dt

F Q D tT= + +Φ Ψξ θ φ ξ,  (4) 
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where Φ, Ψ and φ are known functions of ξ, F and Q, 
and θ represents the matrix of unknown parameters 
which characterise the kinetics. The kinetics has been 
taken as unknown, but even if this were not the case, the 
fact that model (4) is the result of some simplifying 
hypotheses means that θ is in all cases a vector of 
unknown parameters, which necessarily will have to be 
adapted on-line. From this point of view, φ represents the 
corresponding regression vector associated to θ. 

2. Adaptive control 
The feedback control objective is that the control 
variable follows a reference value represented by y*(t). 
The linearizing control problem consists of deducing and 
implementing a non-linear law D(ξ, Q, y*) such that the 

controller convergence error y~ = (y* – y) be governed by 
a pre-specified stable linear differential equation, known 
as reference model. In the single output problem, the 
control objective will consist of imposing a stable first 
order closed-loop dynamics of the form: 

( ) ( )d
dt

y y y y∗ ∗− + − =λ 0 ,     λ>0 (5) 

Combining the input-output reduced model (4) with the 
reference model (5), will easily lead to the following 
linearizing control law: 

( ) ( ) ( ) ( )D t y y
dy
dt

T( ) !*
*

= − + − −








−
Ψ Φξ λ ξ θ φ ξ

1  (6) 

Employing the reduced model, will lead to concentrate 
all the unknowns in the parameter matrix θ, which will 

be estimated on-line. Hence, in eqn. (6) the estimates θ̂ 
will be employed rather than the true values θ. 

The dynamics of the control error y~ = (y* – y), for the 

situation where estimated θ̂ are employed, is modelled by 
substituting eqn. (6) in eqn. (4), giving: 

dy
dt

dy
dt

dy
dt

y T
~

~ ~*

≡ − = − −λ θ φ  (7) 

where θ
~

 represents the error in the parameters θ, defined 

by θ
~

 ≡ θ – θ̂. 

3. Estimation laws 
The basis for the method adopted is the so-called 
Lyaponov design as applied by Bastin and Dochain [2]. 
For the single output problem, it is assumed that each 
parameter θi is estimated by the following adaptive law: 

( )( )d
dt

F Q y yi
i i

!
, *θ

φ= − −Γ  (8) 

where φi(F,Q) is the regressor associated to θi, function 
of F and Q, and Γi the positive definite estimator gain. 

The dynamic model for the error system, composed by 

the control error y~ and by the parameter error θ
~

i, can be 
deduced from eqns. (6) and (7) and written as 

d
dt

y y d
dti

i

i i i

i
~
~

~
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 (9) 

whose characteristic equation presents the roots 

05 0 25 2 2. .λ λ φ± − Γi i  (10) 

The criterion chosen for the error dynamics determines 
the parameter convergence and as such the quality and 
even the feasibility of the proposed adaptive scheme. 

Choice of a real double pole 
Perrier and Dochain [8] proposed to fixing the closed 
loop dynamics by choosing a real double pole, which 
leads to the following relationship between controller and 
estimator parameters: 

Γi i= −0 25 2 2. λ φ  (11) 

Substituting eqn. (11) in (8), gives: 

( )d
dt

y yi

!
*θ

γφ= − −−1  (12) 

with γ ≡ 0.25λ
2
. 

Generalising for 2nd order convergence 
Regression equation (12) will be employed, with a 
constant but undefined γ. Differentiating, leads to:  

d
dt

dy
dt

d
dt

yi

i i

i
2

2 2

! ~
~θ γ

φ
γ
φ

φ
= − +  (13) 

Combining with eqn. (9), leads to the following 2nd 
order equation: 

1 1 12

2γ
θ

γ
λ

φ
φ θ

θ θ
d
dt

d
dt

d
dt

i

i

i i
i i

! !
!+ +







 + =  (14) 

Defining the characteristic adaptive and control 
parameters as: 

λ
ζ
τ φ

φ
≡ −

2 1

i

id
dt

 and γ
τ

≡
1
2   (15), (16) 

equation (13) can be rewritten as - 

τ
θ

ζτ
θ

θ θ2
2

2 2
d
dt

d
dt

i i
i i

! !
!+ + =  (17) 

which has the meaning that each θ̂i converges for the true 
θi through a 2nd order dynamic trajectory, with a natural 
period of oscillation τ and a damping coefficient ζ . 
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In the specific case of the choice of a double pole (i.e. γ
 ≡ 0.25λ2) the controller gain is inversely proportional to 
the corresponding periods of oscillation, as follows: 

λ = 2/τ (18) 

and, in fact, parameters ζ  and τ will not be independent, 
rather being related by: 

ζ
τ
φ

φ
= +1

2 i

id
dt

 (19) 

This problem formulation based on the 2nd order 
convergence dynamics has the advantages of linking the 
controller tuning to the estimator tuning through two 
parameters (or one in the case of the real double pole 
criterion) which have a simple and well established 
physical meaning. In the case where the choice is the 
tuning of both 2nd order convergence parameters, the 
controller gain will be a function of the regressor φi(t), 
hence being time varying. 

4. Control of baker’s yeast production 
Baker’s yeast production is generally accepted [10] as 
occurring through three main metabolic pathways, being 
described by the following verbal scheme - 

Respiratory growth in glucose (oxidative pathway) 

k S k O X k C1 5
1

7+  → +
ϕ

 (20) 

Fermentative growth in glucose (reductive pathway) 

k S X k C k E2
2

8 3
ϕ

 → + +  (21) 

Respirative growth in ethanol (oxidative pathway) 

k E k O X k C4 6
3

9+  → +
ϕ

 (22) 

where S, O, X, C and E represent respectively glucose, 
oxygen, biomass, carbon dioxide and ethanol; ϕ1, ϕ2 and 
ϕ3 represent growth rates and the ki are yield coefficients. 
By reasons of productivity, the fermentation is carried 
out in semi-batch (fed-batch, in bioengineering 
terminology) with the controlled addition of substrate 
(glucose). Theoretical and experimental studies [3, 1, 9] 
show that the regulation of ethanol concentration 
corresponds to a good compromise between yield and 
productivity. The accumulation of ethanol affects 
negatively both yield and productivity. It is however 
known that a low level of ethanol will have the desirable 
effect of inducing the enzymatic system of the 
fermentative catabolic pathway, in this way avoiding a 
long adaptation period when using the yeast [9]. 

In the present work the control problem of concern is that 
of regulating the ethanol concentration by manipulation 
of the glucose feed rate (substituted here by the 
equivalent problem of manipulating the dilution rate). 
The state model adopted is represented by eqn. (23): 

d
dt
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where OTR (oxygen transfer rate) and CTR (carbon 
dioxide transfer rate) are known functions of O and C 
respectively. Assuming that S and O exhibit fast 
dynamics relatively to the slow limiting dynamics of X, 
E, and C, and adopting the single perturbation procedure, 
it is possible to obtain, a reduced model representation of 
the process: i) recurring to the algebraic equations in S 
and O, growth rates (ϕ1, ϕ2 and ϕ3) are obtained as 
functions of the input and output vectors F and Q and of 
the dilution rate D; ii) substituting in the dynamic 
equations for X, E and C leads to reduced representation 
of such dynamics. For the relevant component in this 
study, ethanol, the following can be obtained: 

E
•
 = –DE – θ1CTR – θ2OTR + θ3DSin (24) 

In [4] it is shown that the term θ1CTR is null, 
consequently it will not appear in the sequel. Selecting a 
first order reference model for the convergence error: 

( ) ( )d
dt

E E E E∗ ∗− + − =λ 0  (25) 

the linearizing adaptive control law is readily obtained, 
by substituting (24) in (25): 

( )
D

E E OTR
S Ein

=
− +

−

∗λ θ
θ

!
!

2

3

 (26) 

In this law the following should be noted:  

• except for ethanol, the regulated variable, the on-
line measurement of the state variables is not 
required;  

• it is not required to know the micro-organisms 
growth rate; 

• only the oxygen transfer rate, available on-line, 
is required; 

• the law includes a feedforward compensation for 
variation in the inlet concentration of glucose in 
the feed (Sin). 

The adaptive law is based on the on-line estimation of 
the unknown parameters θ2 and θ3, employing 
respectively (–OTR) and (DSe) as regressors. Three 
alternative methods are considered for the identification 
of θ2 and θ3: i) the second-order dynamic estimator 
(SODE) method proposed here (eqns. 12, 15 and 16); ii) 
recursive least squares (RLS); and (iii) the pole 
placement design (eqns. 12 and 18). In discretized form 
the SODE can be written as:  

θ̂2,k+1 = θ̂2,k + T(E* – Ek)/(OTRkτ
2) (27) 

θ̂3,k+1 = θ̂3,k – T(E* – Ek)/(DkSinτ
2) (28) 



 

156 

and the controller gain computed by: 

λk = 2ζ/τ – (OTRk – OTRk-1)/(TOTRk) (29) 

For the pole placement method the controller gain is 
constant, given by eqn. (17). 

5. Results 
The initial conditions for the case-study are presented in 
Table 1. Fermentation is stopped when the fermentor 
limiting volume is attained (5 L) or alternatively for a 
limiting time of 25 hours. The initial non-zero 
concentration of ethanol is explained by the fact that 
normally a fed-batch fermentation (whose start is the 
time zero for the control study) is preceded by a period 
of batch production, which leads to some ethanol 
production. 

Table 1 - Initial values for the case-study 
X(0) S(0) E(0) O(0) C(0) V(0) Sin(0) 

g.L
-1

 g.L
-1

 g.L
-1

 g.L
-1

 g.L
-1

 L g.L
-1

 
0.30 0.020 0.50 0.0027 0.017 2.0 20 

At a sampling rate of 0.1 hours, the simulator supplies 
the controller with the relevant variables, viz. - ethanol, 
oxygen and inlet glucose concentrations. 

The objective is to keep ethanol concentration at a 
reference value E* = 0.5 g.L-1, by manipulation of the 
feed volumetric flowrate. 

In the cases where no theoretical relationships are 
available, controller tuning is performed by trial and 
error. Controller performance is assessed through the 
ITAE criterion (integral of the absolute error times the 
operation time). Table 2 presents the control results for 
the three methods employed: SODE, RLS and Pole 
Placement. Slightly better results were obtained with the 
SODE approach.  

Table 2. Comparison of adaptive laws: ITAE and mean 
error criteria 

Adaptive laws Parameters ITAE mean error 
(%) 

SODE τ = 0.10 h, ζ  = 2.0 0.021 0.017 

RLS Γ2(o) = Γ3(o)  =100 

γ2 = γ3 = 0.95 

 λ = 10.0 h
-1

 

 
0.041 

 
0.038 

SODE with 
double pole 
(LYAPONOV) 

τ = 0.13 h,  

(λ = 15.0 h
-1

) 

 

0.037 

 

0.028 

Figure 1 shows the profile of ethanol concentration. It is 
visible that the controller with the SODE tuning performs 
well. The slight initial oscillation is due to the known 
intrinsic switching of the metabolisms which occur at the 
beginning of the fed-batch (and which have been 
programmed in the simulator) which leads to some 
oscillation in the beginning of the identification 
procedure. As theoretically expected the control action 
(b) shows two distinct phases: a first phase, during the 

first 8 hours where there is a periodic switching of 
metabolic pathways, and a second phase with a typical 
exponential profile, corresponding to the maintenance 
required by the respiro-fermentative regime.  

Figure 2 shows the feedforward effect embedded in the 
control law, for changes in the feedrate glucose 
concentration (20 ± 10 g.L-1) after 4 hours of operation. 
For both cases the control action is visibly adequate.  

Further discussion is out of the scope of this work. A 
detailed assessment of the performance of the proposed 
controller can be found elsewhere [4], the study 
including in particular the analysis of performance when 
facing further changes in set-point and in loads (inlet 
concentration of glucose and aeration rates) and also 
under corrupted noisy measurements. 

6. Conclusions 
Algorithms were presented for the adaptive control of 
fermentation processes. The synthesis of the non-linear 
control laws was performed by applying a model-based 
procedure which ensures linear behaviour of the closed 
loop feedback system. A new scheme was proposed for 
the required on-line parameter identification, which 
guarantees second-order convergence for the dynamics 
of the error system.  

A case-study consisting of the regulation of ethanol 
concentration in fed-batch of baker’s yeast production 
was employed for tests by simulation. Two alternative 
identification methods were also employed for 
comparison purposes. 

The control and adaptive laws based on the reduced 
model representation of the key component dynamics 
proved to be adequate for process operation. The scheme 
based on the second order estimation procedure (SODE) 
showed better performance, albeit small, as assessed by 
the ITAE and by the mean error criteria. 
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Figure 1 Control of ethanol at E* = 0.5 (a); control action (b) 
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Figure 2 Feedforward effect. 


