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On the algebraic approximation of
Lusternik-Schnirelmann category

Thomas Kahl

Abstract

Algebraic approximations have proved to be very useful in the investigation of Lusternik-Schnirelmann
category. In this paper the L.-S. category and its approximations are studied from the point of view
of abstract homotopy theory. We introduce three notions of L.-S. category for monoidal cofibration
categories, i.e., cofibration categories with a suitably incorporated tensor product. We study the fun-
damental properties of the abstract invariants and discuss, in particular, their behaviour with respect
to cone attachments and products. Besides the topological L.-S. category the abstract concepts cover
classical algebraic approximations of the L.-S. category such as the Toomer invariant, rational category,
and the A- and M-categories of Halperin and Lemaire. We also use the abstract theory to introduce a
new algebraic approximation of L.-S. category. This invariant which we denote by ¢ is the first algebraic
approximation of the L.-S. category which is not necessarily < 1 for spaces having the same Adams-Hilton
model as a wedge of spheres. For a space X the number ¢(X) can be determined from an Anick model
of X. Thanks to the general theory one knows a priori that £ is a lower bound of the L.-S. category
which satisfies the usual product inequality and increases by at most 1 when a cone is attached to a space.
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Introduction

The Lusternik-Schnirelmann category of a continuous map f : X — Y, denoted by cat f, is the least integer
n such that X can be covered by n 4+ 1 open sets on each of which f is homotopically trivial; the L.-S.
category of a space X, cat X, is defined to be the L.-S. category of the identity of X. A standard technique
in the investigation of this homotopy invariant is to work with approximations of cat. We say that such an
approximation is an algebraic approximation of L.-S. category if it can be determined from algebraic models
of spaces and maps. Examples are the Toomer invariant [33], the rational category [8], and the M- and
A-categories [15]. These invariants play, for instance, a central role in Hess’ and Jessup’s proof of the Ganea
conjecture for rational spaces [16], [23] and in the work of Félix, Halperin, Lemaire, and Thomas on the
structure of m.(X) ® Q and H,(X;F,) [8], [9].

An algebraic approximation of Lusternik-Schnirelmann category comes in general from a notion of L.-S.
category which is defined in some category of algebraic objects. The idea therefore naturally suggests itself
to study L.-S. category from a general, category theoretical point of view. In [5] Doeraene defines a notion
of Lusternik-Schnirelmann category for J-categories (these are essentially Quillen model categories satisfying
a certain cube axiom) and establishes some of the fundamental properties of cat for the abstract invariant.
Hess and Lemaire [17] introduce another abstract concept of L.-S. category and show that it coincides in
J-categories with the one of Doeraene. Besides the topological L.-S. category rational category fits well in
Doeraene’s framework of J-categories. It was hoped that the other algebraic approximations, in particular
the A-category, would also be covered by the abstract concepts. Unfortunately, this turned out to be far
from evident, and today nothing is known in this direction.

In this paper a new abstract approach to Lusternik-Schnirelmann category is presented. The theory
has been developed along the following guiding lines: 1. The topological L.-S. category and the classical
algebraic approximations of cat should be covered by the theory. 2. It should be possible to establish the
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fundamental properties of the L.-S. category and its approximations in the abstract setting. 3. The theory
should open the possibility to define new algebraic approximations of cat.

The abstract framework in which we shall work is that of monoidal cofibration categories. A monoidal
cofibration category is a cofibration category in the sense of Baues [2] with a nicely incorporated tensor
product. The precise definition is given in section 1. Examples of monoidal cofibration categories are suitable
categories of pointed spaces, differential modules, differential coalgebras, and cocommutative differential
coalgebras. The monoidal structure in a monoidal cofibration category permits us to consider monoids and
modules over monoids. In section 2 we define three notions of L.-S. category for a module M over a monoid G:
the B-category Becatg M, the E-category Ecatg M, and the triviality category trivcatg M. In the topological
category these invariants coincide with ordinary L.-S. category in the following way: The Moore loop space
QY of a space Y is a topological monoid, and the homotopy fibre Fy of a continuous map f: X — Y isa
QY -space, in other words a module over Y. For any map f : X — Y where X is connected and Y is simply
connected we have cat f = Beatqy Fy = Ecatqy Fy = trivcatqy Fy (cf. 2.7). In general the invariants do not
coincide but we still have the inequalities trivcatgM > EcatgM > BeatgM (cf. 2.6). Examples are given
in the text which show that these inequalities can be strict. Having established the inequalities and the fact
that they are equalities in the category of spaces we study how the invariants behave under a model functor,
i.e., a functor which is compatible with the structure of monoidal cofibration categories. For example, the
normalized chain functor from spaces to differential modules or coalgebras is a model functor. Given a model
functor F': C — D between monoidal cofibration categories we show that trivcat pgF'M < trivcate M and
that the corresponding inequalities hold for Ecat and Bcat. This is done in section 3. In sections 4 and 5 we
then discuss the behaviour of the invariants with respect to cone attachments and products. We also include
a section (section 6) where we compare the invariants Beat, Ecat, and trivcat with the invariants introduced
by Doeraene and Hess-Lemaire.

In the category CDGC of 1-connected cocommutative differential graded coalgebras over QQ the invariants
Beat, Ecat, and trivcat model rational category. By definition, the rational category of a map f is the
ordinary L.-S. category of a rationalization of f. Recall that rational homotopy theory is modeled in the
category CDGC and in the category DGL of connected differential graded Lie algebras (over Q). Consider
amap f: X — Y between simply connected rational spaces and let ¢ : E — L be a Quillen model of f,
i.e., a DGL morphism representing f. Under the hypothesis that Y is 2-connected and L is 1-connected we
then have the equalities cat f = BeatyC.(UL; E) = EcatyC«(UL; E) = triveaty . Cx (UL; E). Here, UL
is the universal enveloping algebra of L and C,(UL; E) is a certain twisted tensor product UL ® C,E where
C.FE is the chain coalgebra on E. The example of rational category is treated in section 9. The A- and
M-categories and the Toomer invariant fit as follows in the abstract setting: If we consider the normalized
chain functor C, as arriving in the category of differential graded coalgebras (over an arbitrary field k), we
have Beatc, (y)Cx«(Fy) = Acat f for any continuous map f : X — Y between simply connected spaces of
finite type (see section 8). If we regard C, as arriving in the category of differential modules over k, we have
this relation for Ecat and Mcat (section 8), and the Toomer invariant corresponds to Beat (cf. 4.3).

In the last section we present a new algebraic approximation of cat. For a simply connected space X
this invariant, which we denote by ¢, can be determined from an Anick model of X. The invariant ¢ lies
between Mcat and cat, and we show that its value is 2 for the space S2 Up2 e® where 1 : S — S? is the
Hopf map and n? = n¥n. This exhibits ¢ as the first algebraic lower bound of cat which is not necessarily
< 1 for spaces having the same Adams-Hilton model as a wedge of spheres. The fact that £(S? U2 eS) =2
shows furthermore that there is some relation between the L.-S. category of a space X and the diagonal of
the Hopf algebra H,(QX;k) and suggests to use the invariant ¢ to study this relation. Foramap f: X —» Y
the number ¢(f) is defined by means of the triviality category in the category WDGC of weak coalgebras.
A weak coalgebra is a connected differential vector space with a diagonal which is not required to satisfy any
associativity or commutativity conditions. The category WDGC is a monoidal cofibration category, and the
first Eilenberg subcomplex C} of the normalized chain functor is a model functor from path-connected spaces
to weak coalgebras. We can thus consider the homotopy invariant ¢(f) = triVCatCi(Qy)Ci(Ff). Thanks to
the general theory we know a priori that this is a lower bound of cat which, moreover, satisfies the usual
product inequality and increases by at most one when a cone is attached to a space. This illustrates the
usefulness of the abstract theory. The reason for considering weak coalgebras rather than associative coal-
gebras is that Anick models are monoids in WDGC and that the Anick model of a space X is as a WDGC
monoid weakly equivalent to C}(Q2X). This enables one to calculate with the Anick model instead of the



DG Hopf algebra C1(2X).

In the algebraic part of this text we work over an arbitrary field k. All chain complexes and homology
groups are to be taken with coefficients in k.

1 Monoidal cofibration categories

A monoidal cofibration category is a category in which the structure of a Baues cofibration category and
the structure of a symmetric monoidal category are joined in a compatible way. Before we give the precise
definition, we fix the following terminology. Let C be a category, M be a class of morphisms of C, and v > 0
be an ordinal number. A v-sequence of morphisms in M is a telescopic diagram

Xo—X1— X\ — - (A<v)

such that each morphism X, — Xx41 is in M and X,, = colimy«, X, for each limit ordinal ¢ < v. We
will often not mention the ordinal v and simply talk of sequences of morphisms in M. If the colimit of a
sequence Xg — X1 — --- X, — --- of morphisms in M exists, the canonical morphism Xy — colim X is
called the transfinite composition of the morphisms X — X 1.

Definition 1.1. A symmetric monoidal category C with weak equivalences (which we denote by =) and
cofibrations () is a monoidal cofibration category if the following axioms are satisfied:

CO0 The unital object e is a zero object. All objects are cofibrant, i.e., for any object X the initial morphism
e — X is a cofibration.

C1 An isomorphism is an acyclic cofibration, i.e., a morphism which is both a cofibration and a weak
equivalence. The composition of two cofibrations is a cofibration. If two of the morphisms f: X — Y,
g:Y = Z and go f: X — Z are weak equivalences, so is the third.

C2 The pushout of two morphisms one of which is a cofibration exists. The cofibrations are stable under
cobase change. The cobase extension of a weak equivalence along a cofibration is a weak equivalence.

C3 There is a functorial factorization f = r o4 of a morphism f in a cofibration ¢ and a weak equivalence
T.

C4 For each object X there exists an acyclic cofibration X Y such that Y is fibrant, i.e., each acyclic
cofibration Y — Z admits a retraction.

DL The direct limit of a sequence of cofibrations Xg — X7 — --- X\ »— --- exists and the transfinite
composition Xy — colim X is a cofibration. For a commutative diagram

Xog >—>X; >——>--- Xy >
fol" N\Lfl lex
Yy )Y, >—— - Y, >——---

where the lines are sequences of cofibrations the induced morphism between the direct limits
colim fy : colim X, — colim Y) is a weak equivalence. The transfinite composition of a sequence
of acyclic cofibrations is an acyclic cofibration. There exists a limit ordinal x such that the direct limit
of any k-sequence of acyclic cofibrations with fibrant targets is fibrant.

P1 The functors Z ® — : C — C preserve sequences of cofibrations and pushouts of two morphisms one
of which is a cofibration.

P2 For two cofibrations i : A — X and j: B — Y the morphism
(I ®idy,idx ®j): (A®Y)Upep (X ®B) = X QY

is a cofibration. If one of the cofibrations i and j is a weak equivalence, so is (i ® idy,idx ® j).



Proposition 1.2. In a monoidal cofibration category the functors Z ® — preserve weak equivalences.

Proof: Use P2 to show that Z ® — preserves acyclic cofibrations. The assertion then follows from Brown’s
factorization lemma (cf. [4]). O

Up to the naturality condition in C3 the axioms C1-C4 are Baues’ axioms for a cofibration category (cf.
[2]). The direct limit axiom DL is a variant of Baues’ continuity aziom (cf. [2]). Recently, Schwede and
Shipley [31] and Hovey [18], [19] have introduced monoidal model categories. These are Quillen closed model
categories which are endowed with a closed symmetric monoidal structure such that the pushout product
axiom P2 is satisfied. The structures of monoidal model categories and monoidal cofibration categories are
incompatible since in a monoidally closed category, in which the unital object is a zero object, all objects
are zero objects. Here are some examples of monoidal cofibration categories:

Example 1.3. The category Top of well-pointed compactly generated Hausdorftf spaces of the homotopy
type of a CW-complex is a monoidal cofibration category. By a space we shall always mean an object of Top.
The tensor product in Top is the categorical product, the weak equivalences are the homotopy equivalences,
and the cofibrations are the closed cofibrations (NDR pairs). The axioms are a set of well-known facts
about spaces. We remark that all objects are fibrant and that the usual mapping cylinder factorization is a
factorization as required in C3.

Example 1.4. The category DGM of supplemented differential graded vector spaces (i.e., DG vector
spaces of the form X = k @ X where d1 = 0 and X is d-stable) is a monoidal cofibration category. The
weak equivalences are the quasi-isomorphisms and the cofibrations are the injective maps. One checks easily
that all objects are fibrant. A functorial factorization for C3 is constructed as follows: Given a morphism
f: C — B form the DG vector space Z = (C ® B @ sC,dz) where s means suspension and the differential
is defined by dzc = dcc (c € C), dzb=dpb (b € B), and dzsc = ¢ — fc — sdcc (c € C). We have f =701
where i : C — Z is the canonical inclusion and r : Z — B is given by r(c) = f(c), r(b) = b and r(sc) = 0. It
is clear that 7 is a cofibration and easy to see that r is a weak equivalence. The verification of the remaining
axioms is straightforward.

Example 1.5. The category DGC of coaugmented differential graded coalgebras is a monoidal cofibration
category. The weak equivalences are the quasi-isomorphisms and the cofibrations are the injective maps.
Most of the statements are proved in Getzler-Goerss [14]. Those statements which are not contained in [14]
hold because they hold in DGM. The factorization f = r¢ considered in 1.4 is also valid in DGC: Given a
morphism f : C' — B, one can put a natural diagonal on the DG vector space Z of 1.4 such that it becomes
a DGC and the maps i and r commute with the diagonals. The diagonal Ay is defined by Azc = Agc,

Azb = Apb, and Agsc =1®@sc+sc®@ 1+ (f ® s+ s ®id)Acc. Here, Ac is the reduced diagonal of C,
i.e, the composite C' — C A0 @CPET 00, A straightforward calculation shows that the diagonal is

coassociative and that it commutes with the differential of Z.

Example 1.6. The category CDGC of 1-connected cocommutative differential graded coalgebras over
k = Q is a monoidal cofibration category. We say that a DGC C is 1-connected if Cy = k and C; = 0. Once
again the weak equivalences are the quasi-isomorphisms and the cofibrations are the injective maps. It is
well known that CDGC is a cofibration category [30]. A functorial factorization of a morphism f:C — B
in a cofibration and a weak equivalence is constructed as follows. Consider the acyclic DG vector space
C @ sC where dsc = ¢ — sdc. Then there is a canonical cofibration j : C = S(C @ sC) where S denotes
the cofree cocommutative coalgebra functor. The factorization is then given by C' (19 B®S(CosC) % B.
The statement concerning fibrant objects in DL is proved as in 10.1 using the fact that Lemma 2.6 of [14]

holds in CDGC. The remaining statements hold because they hold in DGM.

Throughout this paper C is a monoidal cofibration category.

A monoid in C is an object G with an associative, unitary multiplication 4 : G @ G — G. A left
G-module is an object M with an associative, unitary action a: G ® M — M. Right G-modules are defined
analogously. In the whole text the letters p and « will denote multiplications and actions. A morphism



between two left (or right) G-modules which commutes with the actions is said to be G-equivariant. The
left G-modules and the G-equivariant morphisms form a category which we denote by G-C. The category of
right G-modules is denoted by C-G. We remark that the forgetful functors from G-C and C-G to C create
colimits for any diagram of G-modules which, seen as a diagram in C, has the property that the functors
Z ® — : C — C preserve its colimits. We next study the fundamental homotopy theory of G-modules. We
concentrate on left G-modules; right G-modules are treated analogously.

Definition 1.7. A G-equivariant morphism is a weak equivalence in G-C if it is a weak equivalence in C. A
G-equivariant morphism f : P — @ is called an elementary cofibration if there is a cofibration i : X »— Y in
C such that f is a cobase extension of the G-equivariant cofibration G ®i: G X — GRY. A cofibration
in G-C is a transfinite composition of elementary cofibrations.

We shall show that the category G-C is a cofibration category. The proof of C3 is based on the concept of a
filtered resolution which is central in this work. In the case of spaces filtered resolutions have been considered
by Stasheff. They are part of “the basic construction” in [32]. Before we can define filtered resolutions, we
have to fix some terminology and notations. A filtered object in a category D with cofibrations is a couple
X.=(X,Xo— X1 — -+ X, — ---) consisting of an object X and a w-sequence Xy — X7 — - X, — -
of cofibrations such that X = colim X,, (w is the first infinite ordinal). With the obvious morphisms the
filtered objects form a category. If D has weak equivalences, there are canonical weak equivalences in the
category of filtered objects. For any object X the filtered object (X, X =X =-.- X =---) will be denoted
without star simply by X. We shall furthermore use the following notation: If f : X — N is a morphism of

an object X into a G-module N, then we denote by f° the adjoint of f. This is the “equivariant extension”

of f to G ® X, i.e., the composite G ® X ““l q ® N % N. The adjoint of a G-equivariant morphism

g:G® X — N, ie., the composite X — G ® X % N, will be denoted by ¢f. Clearly, f*% = f and ¢** = ¢.
Definition 1.8. Let G be a monoid and f : M — N be a G-equivariant morphism. A morphism
¢« : Ex — N of filtered G-modules is called a filtered resolution of f if ¢9 = f and there is a sequence

of factorizations ¢, : E, - Zn, —— N in C such that

e Fhi1 =E,U, (G® Z,) and E,, — FE, 11 is the canonical elementary cofibration,
¢ ppi1 = (6p,): Eny1 = E, Uy (G® Z,) — N.

If ¢ : E, — N is a filtered resolution of f, then any sequence of factorizations with the above properties is
called a determining sequence of factorizations for ¢.. For a G-module M a filtered resolution of the action
a:G® M — M is called a filtered model of M.

Proposition 1.9. Let G be a monoid, f : M — N be a G-equivariant morphism, and ¢, : Ex, — N be a
filtered resolution of f. Then the morphism ¢ : E — N of underlying objects is a weak equivalence.

Proof: We have a determining sequence of factorizations ¢, : B, > Z, %> N . Consider the commu-

In

tative diagram

E, Zo e E, Zn Eni1
N N e N N N

where the morphisms Z,, — F, 1 are the compositions Z, — G ® Z,, — Fpy1. All the morphisms in the
upper line of the diagram are cofibrations. This is true by definition for the morphisms j, : E, — Z,. For
the morphisms Z,, — E, 11 consider the following commutative diagram:

E,——>GFE,———— > F,

| |

Zy —> ZyUg, (G E,) —— Z,

>~

G 0 Zn En+1~




A composition argument shows that the three squares are pushouts. By axiom P2, the morphism
Z, Ug, (G® E,) - G® Z, is a cofibration. It follows that Z, — E,; is a cofibration. By the di-
rect limit axiom, we finally have that ¢ = colim r, : E = colim Z,, — N is a weak equivalence. O

Proposition 1.10. Let G be a monoid and M be a left G-module. Then M is fibrant in C if and only if
M is fibrant in G-C.

Proof: Suppose first that M is fibrant in G-C. Let u : M = U be an acyclic cofibration in C. Then
Geu: G®M — G®U is an acyclic cofibration. Therefore the (obvious) elementary cofibration
u:M— MU, (GU) is a weak equivalence. As M is fibrant, 4 has a retraction v : M U, (G®U) — M.
The composition U — G@U — MU, (G®U) % M is a retraction of u. This shows that M is fibrant in C.

Suppose now that M is fibrant in C. Let ¢ : M ~ P be an acyclic cofibration in G-C. Then ¢ is the
transfinite composition of a sequence of elementary cofibrations

]\4-:P0>—>P1>—)~~~P>\>—>...7

in particular, P = colim Py. We first construct a commutative diagram of G-modules

M=P P, >—>--- Py, =
id_fbi lfl lfk
M=Qy Q1 > Qr ——
L_goiw ngl ngx

p p P o— ..

such that the acyclic cofibrations in the middle row are elementary cofibrations and the compositions gy o f
are the canonical morphisms ¥, : Py — P. We proceed by induction. As required we set Qo = M,
fo = idpy, and go = ¢. Let A > 0 be an ordinal such that @,, f., and g, have been defined for each
ordinal ¢ < A. Suppose first that A is a limit ordinal. Set Q) = colim,< \Qu, fn = colim,yf,, and
gx = colim,xg,. It is clear that g\ o fx = ¥x. By DL, g, is a weak equivalence. Suppose now that X is a
successor ordinal, say A = 3+ 1. Factor the morphism (gg,vg41) : Q3 Uy, Pg41 — P (in C) in a cofibration
J:Qp Uy, Pgi1— Z and a weak equivalence r : Z % P. Denote the composition Qp— QsUy, Pgr1— Z
by ¢. Set Qpi1 = Qp Ua (G ® Z) and ggy1 = (95,7°) : Qpr1 = Qs Uqs (G® Z) — P. Since r o ¢ = g,
the cofibration ( is a weak equivalence. It follows that G ® ( is a weak equivalence. This implies that
the elementary cofibration Qg — Qg1 is a weak equivalence. Since the “restriction” of ggi1 to Qg is a
weak equivalence, it follows that gg+1 is a weak equivalence. As Pg — Ppjy; is an elementary cofibration,
there exists a cofibration ¢ : X »— Y in C and a G-equivariant morphism ¢ : G ® X — Pj3 such that
Pgi1 = PgUy (G®Y). Denote the canonical morphism G ® Y — Pgi1 by x and the canonical morphism
Psy1 — QpUp, Pgy1 by 7. We have the following commutative diagram:

¢* fs

X Py Qp
1] I\
Y ; Pgyq i QpUp, Pgi1 Syt
X (98,%5+1) ~
Va1 r

P

We can hence define

fa1 = f3 Usa(sset) (G ® (j7x") : Pop1 = Ps Ugex (G®Y) = Qa1 = Qs Ucsq, (G ® Z).



We calculate ggy1 © forr = (98,77) © (fs Uss(ssen (G ® (7xH) = (95fs,7" o G ® (j7x¥)

= (Yg,ap oG (rjvx*)) = (Yg,ap 0 G @ (Yar1x*)) = (¥, ¥a11X) = ¥p+1. This terminates the inductive
construction of the diagram. We next construct a commutative diagram

M:QO ~ Ql ~ Q)\ - . ...
id—pol ipl ipx

Again we proceed by induction. Let A > 0 be an ordinal such that p, has been defined for each ordinal
< A. If Xis a limit ordinal, set py = colim,<xp,. Suppose that A is a successor ordinal, say A = 3 + 1.

By construction, there is an acyclic cofibration ¢ : Qg = Z in C such that Qpr1 = Qs Uy (G ® Z).
As M is fibrant in C, there exists a morphism n : Z — M such that n o { = pg. We can then define
ppi1 = (p3:1m") : Qpr1 = Qp Ua (G ® Z) — M. This terminates the inductive construction of the dia-
gram. Set @Q = colim @y and p = colim py. The upper half of the diagram we constructed first yields a
G-equivariant morphism f : P — ). By construction, p o f ot is the identity on M. This shows that ¢« has
a retraction and thus that M is fibrant in G-C. a

Theorem 1.11. For any monoid G the axioms C1, C2, C3, C4, and DL hold in the category G-C.

Proof: The axioms C1 and C2 are clearly satisfied. For C3 let f : M — N be a G-equivariant morphism.
Consider the filtered resolution ¢, : E, — N of f for which the functorial factorizations of the morphisms
¢n : B — N form a determining sequence of factorizations. By Proposition 1.9, we obtain the factorization
f: M — E = N. It is clear that this factorization is functorial. It remains to show C4 and DL. We
begin with DL. Only the statements that concern acyclic cofibrations need a proof. Since C satisfies DL,
the transfinite composition of a sequence of acyclic cofibrations in G-C is a weak equivalence in C. Since
it is a cofibration in G-C, it is an acyclic cofibration in G-C. Let x be a limit ordinal such that, in C, the
direct limit of any k-sequence of acyclic cofibrations with fibrant targets is fibrant. We show that s has this
property also with respect to G-C. A k-sequence of acyclic cofibrations with fibrant targets in G-C is also
a k-sequence of acyclic cofibrations with fibrant targets in C. As C satisfies DL, the direct limit of such a
k-sequence is fibrant in C. By the preceding proposition, it is fibrant in G-C.

We now prove C4. Let M be a G-module. We define a k-sequence Ry = Ry N - Ry e acyclic
elementary cofibrations inductively as follows: Set Ry = M. Let A < s be an ordinal such that R, has been
defined for g < A. If A is a limit ordinal, set Ry = colim, < R,. If A is a successor ordinal, say A = 8+ 1,

choose an acyclic cofibration with fibrant target Rg = Up41 in C and set Rgy1 = Rg Uy (G ® Ugy1). The
canonical morphism Rg — Rgy; is an acyclic elementary cofibration. Having constructed the k-sequence,
we set R = colim Ry). Thanks to DL the transfinite composition M — R is an acyclic cofibration. We
claim that R is fibrant. By the preceding proposition, we only have to show that R is fibrant in C. Use
the argument with which we showed in the proof of 1.9 that Z,, — FE,, ;1 is a cofibration to show that the

canonical morphism Uyy; — Ry41 is an acyclic cofibration. The acyclic cofibration Ry s Ry, is thus
the composition of the acyclic cofibrations Ry . Uxy1 and Uyyq . Ry4+1. On the other hand we have an
acyclic cofibration Uy . Ry s Uyio. Setting Uy = Ry and Uy = Ry if A is a limit ordinal and letting,
for a non successor ordinal A, Uy — Ux41 be the acyclic cofibration Ry U A+1 We obtain a k-sequence of

acyclic cofibrations with fibrant targets U S U o U by ~ ... whose direct limit is R. As C satisfies
DL, R is fibrant in C and hence in G-C. This terminates the proof of C4. a

As the construction of a filtered resolution depends on choices, a G-equivariant morphism may have differ-
ent filtered resolutions. The next proposition assures, however, that they all have the same weak homotopy
type. Two objects X and Y in a category D with weak equivalences are said to be weakly equivalent or of the
same weak homotopy type if they are connected by a finite sequence of weak equivalences: X = - & ... 3 Y.
There are canonical weak equivalences in the category D g of morphisms with target B. Morphisms with the
target B which are weakly equivalent in D g are said to be weakly equivalent as objects over B. Let G be a



monoid and f9: M? — N and f': M' — N be two G-equivariant morphisms which are weakly equivalent
over N. Thanks to the following proposition any filtered resolution of f° is weakly equivalent as a filtered
G-module over N to any filtered resolution of f!. The proof of the proposition is routine and is left to the
reader.

Proposition 1.12. Consider two G-equivariant morphisms f° : M° — N, f' : M' — N and a G-
equivariant weak equivalence h : M° = MV satisfying f' oh = f9. Fori = 0, 1 suppose we are given a
filtered resolution ¢ : EX — N of f' with determining factorizations ¢! : E} > Z? L>N Then

-7
n n

there are a filtered resolution ¢2 : E?2 — N of f! and weak equivalences of filtered G-modules ' : B! — E?
verifying ¢2 o et = ¢i. The filtered resolution ¢p? : E? — N and the weak equivalences i : Ei — E? can be
constructed in such a way that they are functors of the given data. O

Definition 1.13. Let G be a monoid, M be a right G-module, and N be a left G-module. If it exists, the
coequalizer of the morphisms id®a: M ®GON — M@ N and a®id: M @ G® N — M ® N is called the
tensor product of M and N over G and is denoted M ®¢ IN. Alternatively, the tensor product can be defined
to be the pushout of the morphisms id@a: M RQGRN - M QN and a®id: M Q@GN — M ® N.

The proofs of the following two propositions are straightforward and are omitted.

Proposition 1.14. Let M be a right G-module. Then the tensor product M Qg N exists for any cofibrant
left G-module N. Moreover, the functor M ®q — from cofibrant left G-modules to C preserves sequences of
cofibrations and pushouts of two morphisms one of which is a cofibration. a

Proposition 1.15. If P is a cofibrant H-module and either M or N is a cofibrant G-module, then
M ®¢ (N ®p P) exists and we have M @¢ (N @y P) = (M ®¢ N) @y P. O

The main result on the tensor product is the following proposition:

Proposition 1.16. Let 0 : G — H be a homomorphism of monoids which is a weak equivalence. Consider
a cofibrant left G-module P, a cofibrant left H-module Q, a right G-module M, and a right H-module N.
Suppose we are given weak equivalences f: M = N and g : P = Q which commute with the actions. Then
the morphism f ®, g: M @ P — N ®y Q is a weak equivalence.

Proof: (a) We first treat the special case G = H, P = Q, 0 = idg, and g = idp. We have to show that
f ®g P is a weak equivalence. As P is cofibrant, it suffices to fix a sequence of elementary cofibrations
Ph=G— P, — --- Py, — --- and to show that each morphism f ®qg Py : M g P» — N ®¢ P is a weak
equivalence. We proceed by induction. As Py = G and f ®c G = f, f ®a Py is a weak equivalence. Let
A > 0 be an ordinal such that f ®g P, is a weak equivalence for each 0 < p < A. If A is a limit ordinal,
f®a Pr: M ®c P\ — N ®¢ P is a weak equivalence by 1.14, the inductive hypothesis, and DL. Suppose
that X is a successor ordinal, say A = 3+ 1. As Pg — P, is an elementary cofibration, there is a cofibration
i: X —Y in C and a G-equivariant morphism ¢ : G ® X — Pg such that Py = P3 Uy (G ®Y). By 1.14,
f ®¢ Py coincides with the morphism

(f ®c Pg) Ugex (f®Y) 1 (M ®¢ Pg) Ungx (M ®@Y) — (N ®c Pg) Ungx (N®Y).

By the inductive hypothesis, the fact that the functor M ® — preserves weak equivalences, and the gluing
lemma [2, I1.1.2], this morphism is a weak equivalence. It follows that f ®¢ P) is a weak equivalence.

(b) We next treat the special case G = H, M = N, 0 = idg, and f = idp;. Choose a cofibrant model
¢ : R > M in C-G and form the following commutative diagram :

R®
Roc P —22 RecQ

<p®cPl \Lq’@c@



By (a), the morphisms ¢ ®¢ P, ¢ ®¢ @ are weak equivalences. As in (a) one sees that R ®¢ ¢ is a weak
equivalence. It follows that M ®¢ g is a weak equivalence.
(¢c) We now come to the general case. Factor the morphism f ®, ¢ as the composite

f®qP N®sg
=

M &g P N@aP =7 NogQ.

By (a), f ®¢ P is a weak equivalence. It thus remains to show that N ®, g is a weak equivalence. By
associativity of the tensor product, the morphism N ®, g = (N @y H) ®, g coincides with the morphism

Ney (H®s9): Ny (H®c P)— Ny (H®p Q).

We have g = 0 ®, 9 = (H®, g)o (0 ®¢ P). By (a), 0 ®¢ P is a weak equivalence. As g is a weak equivalence,
it follows that H ®, g is a weak equivalence. One easily sees that H ®¢ P is a cofibrant H-module. By (b),
it follows that the morphism N ®, g = N @y (H ®, g) is a weak equivalence. O

2 The L.-S. category of a module

Let G be a monoid and M be a G-module. We shall write ¢ M : ESM — M for the filtered model of
M the determining factorizations of which are the functorial factorizations of C3. We define B¢ M and
BYM to be the “orbit objects” e ®¢ EYM and e @ ES M, and we denote by p“M : EYM — B¢M and
pSM : ESM — BSM the obvious projections. It is clear that these constructions are functorial. When
M = e, we write E,G, B,G, EG, BG etc. instead of ECe, BSe, ECe, and BCe etc. If G is a topological
monoid, BG is the classifying space of G. In the topological case the constructions are due to Dold and
Lashof [6] and Stasheff [32].

Definition 2.1. Let G be a monoid and M be a G-module.

(a) The B-category of M, denoted BcatgM, is the least integer n for which the morphism
BYM — ¢) : BYM — BG factors in the homotopy category Ho C through the cofibration
B, G — BG. If no such n exists we set BcatgM = cc.

(b) The E-category of M, denoted EcatgM, is the least integer n for which there exists a morphism
M — E,G in the homotopy category Ho G-C. If no such n exists we set EcatgM = cc.

(¢) The triviality category of M, denoted trivcate M, is the least integer n for which there exists a sequence
Py — Py — -+ — P, of elementary cofibrations such that P, is a free G-module G ® X and P, ~ M
in G-C. If no such n exists we set trivcatgM = co.

The definition of trivcat is inspired by the notion of triviality category for G-bundles (cf. [22]). For the
Moore loop space QX of a simply connected space X and the Q2X-space * the definition of Bcat is a well
known characterization of cat X. The topological situation will be studied in more detail at the end of this
section.

Our first point is to show that the numbers Becata M, Ecatg M, and trivcatgM are invariants of both
the weak homotopy type of the monoid G and the weak homotopy type of the G-module M. We begin by
noting that the filtered model construction preserves weak equivalences:

Proposition 2.2. Let 0 : G — H be a homomorphism of monoids which is a weak equivalence. Consider
a left G-module M, a left H-module N, and a weak equivalence f : M = N which commutes with the
actions. Then the morphisms of filtered objects ECf : ESM — EHN and BSf : BEM — BYN are weak
equivalences.

Proof: By the direct limit axiom and Proposition 1.16, it suffices to show that for any n € N
E°f: ESM — EXN is a weak equivalence. This is easily established inductively using the gluing lemma
[2, I1.1.2]. O

For the proof of the invariance result and many other situations later we need the following characteri-
zation of the triviality category:



Lemma 2.3. Let G be a monoid, M be a G-module, and n > 0 be an integer. Then trivcatcM < n if and
only if there exists an elementary cofibration P — @ such that trivcatgP <n—1 and Q ~ M in G-C.

Proof: Suppose first that trivcatgM < mn. Then there exists a sequence of elementary cofibrations
Py — P — .-+ — P, such that F, is a free G-module and P, ~ M. Let P — (@ be the elementary
cofibration P, 1 — P,. Then trivcatoP <n—1and Q ~ M.

Suppose now that there exists an elementary cofibration P — @ such that trivcatgP <n—1and Q ~ M.
Since P — (@ is an elementary cofibration, there exists a cofibration ¢ : X - Y in C and a G-equivariant
morphism ¢ : G® X — P such that Q = PUs (G®Y'). Choose a fibrant model u : P > R in G-C and form
the pushout Z = RU,s: Y in C. Let f denote the canonical morphism Y — Z and j denote the cofibration
R—Z. Set S=RU, (G® Z) and let 0 : Q — S be the G-equivariant morphism making commutative the
diagram

GR(ust
Gox—22) _aer

é «
GR®j
GR1 P : l R

A composition argument shows that the front side of the cube is a pushout. It follows that ¢ is an acyclic
cofibration and thus that M ~ S. Since trivcato P < n — 1, also trivcatgR < n — 1. There hence exists
a sequence Py — P; — --- — P, 1 of elementary cofibrations such that P, is a free G-module and
P,_1 ~ R. Since P,,_1 is a cofibrant G-module and R is fibrant, there exists a G-equivariant weak equivalence
g: P,_1 = R. Factor jg in C in a cofibration ¢ : P,_; » U and a weak equivalence p : U = Z. Set
P, =P,_1U, (G®U). Thanks to the gluing lemma [2, 11.1.2] the G-equivariant morphism

gUcryg (G®p): P, =P, 1Us (GRU) = S=RU, (G® 2)
is a weak equivalence. Since M ~ S, this implies that trivcatgM < n. O
Proposition 2.4. Let 0 : G — H be a homomorphism of monoids which is a weak equivalence. Consider a

left G-module M, o left H-module N, and a weak equivalence f : M = N which commutes with the actions.
Then BcatgM = Beatg N, EcataM = FEcatg N, and trivcata M = trivcaty N .

Proof: By 2.2, for each n € N, we have the following commutative diagram:

BEM BdG B, G

BHN — BH <— B, H.

This shows that Bcaty N = Beatg M.

Suppose Ecaty N < n. Then there is a diagram of H- and hence of G-modules EAN - U & E,H.
Adding the G-equivariant weak equivalence E°f : ESM = EHN on the left and the G-equivariant weak
equivalence E,o : E,G = E,H on the right we obtain EcatgM = Ecatc ECM < n. Suppose now that
EcateM < n. Let E,G = R be a fibrant model. Then there exists a G-equivariant morphism E¢M — R.
By 1.16, applying the functor H ®¢ — yields the diagram of H-modules H®¢EM — H®cR <~ H®qE,G.
Adding on the left the weak equivalence of H-modules H @, E°f : H ¢ E°M = H @y EYN = EUN
and on the right the H-equivariant morphism H ®, En,o : H ®q E,G — H @y E,H = E, H we obtain a
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morphism EfN — E,H in Ho H-C and hence Ecaty N = Ecatgy E'N < n. It follows that EcatqgM =
Ecaty N.

Suppose that trivcatg M < n. Then there exists a sequence Py — P; --- — P,, of elementary cofibrations
such that Py is a free G-module and P, ~ M ~ EM in G-C. Applying the functor H ®¢ — yields the
sequence of elementary cofibrations H @ Py — H®g Py -+ — H®g P,. Since H ®¢ Py is a free H-module
and H Qg P, ~ HRqg ECM ~ HQy EMN = EEN ~ N in H-C, we obtain trivcatgy N < n. We finally
show by induction that trivcaty N < n implies trivcatgM < n. If n =0, N ~ H® X in H-C and hence
in G-C. It follows that M ~ G ® X in G-C so that trivcatqM = 0. Suppose that the assertion holds
for n € N and that trivcaty N < n 4+ 1. By 2.3, there exists an elementary cofibration P — @ in H-C
such that trivcaty P < n and Q ~ N. Since P — () is an elementary cofibration there exists a cofibration
1: X —Y in C and a H-equivariant morphism ¢ : H ® X — P such that Q = PU; (H ® Y'). We have the
weak equivalence of G-modules P Us(,x) (G®Y) = Q. Since P — P Usoppx (G ®Y) is an elementary
cofibration in G-C, M ~ Q ~ P Us,gx) (G®Y) in G-C, and, by the inductive hypothesis, trivcatgP < n,
we obtain, by Lemma 2.3, trivcatg M < n + 1. O

We next wish to compare the invariants Bcat, Ecat, and trivcat. We begin with a lemma which will also
be useful later. Let G be a monoid, N be a G-module, and P, be a filtered G-module. We suppose that
Py = G®Yy and that P, is constructed from a cofibration £,11 : X;+1 — Yn4+1 in C and a G-equivariant
morphism d,,41 : G ® X, 11 — P, by means of the pushout P, 41 = P, Us, ., (G®Y,11). We then consider
a morphism v, : P, — N of filtered G-modules.

Lemma 2.5. There exists a filtered model g, : Q. — N and a morphism of filtered G-modules fi : Py — Q.
such that g, o fx = .. The filtered model g., its determining sequence of factorizations, and the morphism
f+ can be constructed such that they depend functorially on the given data.

Proof: Proceed as in the proof of 1.10 to construct a commutative diagram of G-modules

GRYy=PF, P P, =
G®¢g=fol \Lfl ifn
G® N = Qo o} Qn =
S
N N N & —.

such that the morphism of filtered G-modules g, : Q. — N determined by the lower half of the diagram is
a filtered model of N and g, o f,, = ¥, for each n € N. The upper half of the diagram yields a morphism of
filtered G-modules f, : P, — Q. such that g, o f, = 1,.

The only choices which we encounter during the construction of the above diagram are factorizations of
morphisms in cofibrations and weak equivalences. As, by C3, there are functorial such factorizations, we
can arrange that the filtered model g, its determining sequence of factorizations, and the morphism f, are
functors of the given data. a

Theorem 2.6. For any G-module M we have trivcataM > EcatgM > BeatgM.

Proof: Suppose first that trivcatg M < n. Then there exists a sequence Py — P, — --- — P, of elementary
cofibrations such that Py is a free G-module and M ~ P,,. Consider the filtered G-module Py, where P,, = P,
for m > n, and the morphism of filtered G-modules P, — e. By 2.5, there exists a filtered model E, — e
and a morphism of filtered G-modules P, — FE,. Since, by 1.12, the filtered G-modules F, and E.G are
weakly equivalent, we obtain a morphism M — E,,G in Ho G-C and hence that EcatgM < n. This proves
the first inequality.

It suffices to show the second inequality for a cofibrant G-module M. Suppose that EcatcM < n. Let

E,.G = R be a fibrant model. Then there exists a G-equivariant morphism M — R. As e is a final object
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in G-C, we have a commutative diagram of G-modules

M*>R<—N<EHG

L7

€.

Applying the functor BY we obtain that the morphism B M — BG factors in Ho C through the morphism
B¢E,G — BG. We show that B¢E,G — BG factors in Ho C over B,G — BG. This will imply
that BcatgM < n. By 2.5, we may choose a filtered model ¢, : F, — FE,G and a G-equivariant section
o: E,G — F, of p,. We obtain the following commutative diagram:

F,——F

=

E,G =——=E,G.

Applying the functor e ® ¢ — yields the following commutative diagram in C in which the morphism e ®¢ ¢
is a weak equivalence by 1.16:
e®q F, —e®g F

eQGPn
e®Rao ~ | eQap

B, G =——— B,.G.

This shows that the morphism e ®¢g F,, — ¢ ®¢ F has a section in the homotopy category. Thanks to 1.12
and 1.16 the morphisms e ®g F,, — ¢ ®¢ F and BgEnG — BYE,G are weakly equivalent. It follows that
the morphism B¢ E, G — BYFE, G has a section in Ho C. Since we have the commutative diagram

BSE,G — B,G

|

BSE,G — BG,

we obtain that the morphism B®E, G — BG factors in Ho C through the cofibration B, G ~— BG. This
establishes the second inequality. |

We shall see later that both inequalities in 2.6 can be strict. Our last point in this section is to make
precise the link between the topological L.-S. category and the invariants Bcat, Ecat, and trivcat. For a
space Y we denote by PY the Moore path space and by QY the Moore loop space. Path multiplication
turns Y into a topological monoid and the homotopy fibre £y = X xy PY of a continuous map f: X — Y
into a QY -space.

Theorem 2.7. Let f : X — Y be a continuous map such that X is path-connected andY is simply connected.
Then cat f = trivcatqy Fy = Ecatqy Fy = Beatqy Fy.

Proof: Thanks to Theorem 2.6 we only have to show that cat f > trivcatgy F¢ and that Beatqoy Fy > cat f.
We show first that Beatoy Fy > cat f. As B, QY is an n-cone and the L.-S. category of a map that factors
through an n-cone is at most n, the L.-S. category of the map BQYFf — BRQY is less than or equal to
Beatqy Fy. It suffices thus to show that the maps f: X — Y and BQYFf — BQY are weakly equivalent.
Consider the following commutative diagram in which the maps B*Y F 't — X and B®Y PY — Y exist by
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the universal property of coequalizers:

EQY Ff

N

Fy l PY
BYFy —‘» BY py N—‘» BQY
X Y.

f

EXYpy — > EQY

~

We show that the maps BSY F t — X and BYYPY — Y are homotopy equivalences. It follows from
Stasheff [32] that the projections EQYFf — BQYFf and EYY PY — B®Y PY are quasi-fibrations in the
sense of Dold and Thom [7]. Comparing the long exact sequences of homotopy groups of the quasi-fibrations
EYF; — B Fyp and Fy — X we see that m;(BYY Fy) — m;(X) is an isomorphism for i > 0. As X is path-
connected and Y is simply connected, Fy is path-connected. It follows that BQYFf is path-connected and
hence that BQYFf — X is a homotopy equivalence. A similar but easier argument shows that B*Y PY — Y
is a homotopy equivalence. It follows that the maps f: X — Y and BQYFf — BQY are weakly equivalent
and hence that Beatoy Fy > cat f.

In order to show that cat f > trivcatoy Fy, we show by induction on n that for any map g : Z — Y
(where Z is not necessarily path-connected) cat g < n implies trivcatoy Fy < n. If cat ¢ = 0 then g is
homotopically trivial and Fj, is weakly equivalent to the free QY -space QY x Z. Hence trivcatqy F; = 0.
Suppose that the assertion holds for n € N and that cat g < n + 1. By a theorem of Hess and Lemaire [17],
there exists a homotopy pushout (in the sense of Baues [2])

5

U——=W
V—"7yZ

such that gv is homotopically trivial and cat gw < n. Choose a contraction i : V' — PY of gv and form the
following commutative cube:

hi,5)°
QY xU ( ) Fgw

(hv)’

QY xV F,

U \ w
Vv Z.
All vertical faces of this cube are homotopy pullbacks. This implies that the top face is a homotopy pushout.
We may suppose that i is a cofibration. Then the QY -spaces Iy and Fyy, Uy, 5)» (Y x V) are weakly equiv-

alent. By the inductive hypothesis, trivcatqy Fyw < n. By Lemma 2.3, it follows that trivcatoy Fy < n + 1.
This establishes the result. g
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3 Model functors

Consider a second monoidal cofibration category D and a functor F': C — D. We study how the invariants
Beat, Ecat, and trivcat behave under the functor F'.

Definition 3.1. The functor F': C — D is a model functor if the following conditions hold:
(a) F preserves homotopy pushouts (in the sense of [2]) and sequences of cofibrations.

(b) F preserves the unital object. There is an associative and commutative natural weak equivalence
h=hxy:F(X)®F(Y) > F(X®Y) such that the composites FX ® Fe ™% F(X @¢) "5 FX and

Fe@ FX " Fle® X) F&) FX are the canonical isomorphisms.

Thanks to condition (a) a model functor preserves weak equivalences and filtered objects.

Examples 3.2. The normalized chain functors C, : Top — DGC and C, : Top — DGM, the forgetful
functor DGC — DGM, and (over Q) the embedding CDGC — DGC are model functors.

If F' is a model functor, then the image under F' of a monoid in C is canonically a monoid in D. Similarly, if
M is a G-module in C, then F'M is canonically a F'G-module in D. If we consider the projection P — e®¢g P
of a cofibrant G-module onto its orbit object, it will unfortunately in general not be true that the morphism
FP — F(e®¢ P) is the projection of a cofibrant FG-module onto its orbit object. What we can say at least
about the morphism FP — F(e ®q P) is that it is a FG-projection in the following sense:

Definition 3.3. Let H be a monoid in a monoidal cofibration category M. A (left) H-projection is a
morphism p : E — B where E is a (left) H-module and poa = poprg: HQFE — B. Hereprg : HQE — E
is the canonical projection. With the obvious morphisms, the H-projections form a category. A morphism of
H-projections is a cofibration (resp. a weak equivalence) if its source and target components are cofibrations
(resp. weak equivalences) in M.

Proposition 3.4. Let F : C — D be a model functor, G be a monoid in C and M be a G-module. Then
the filtered FG-projections FpSM : FESM — FBSM and pP“FM : EFG¢FM — BFSFM are naturally
weakly equivalent.

Proof: We write E,, B,, ¢,, ... instead of E,CL’VM7 BSM, gi)gM, ... . We denote by j, : £, — Z, the
cofibration and by r, : Z, — M the weak equivalence in the n'” determining factorization of the filtered
model of M. Define

e a sequence of F'G-modules U,,,
e a sequence of F'G-equivariant morphisms ¢, : U,, — F'E,,

e a sequence of factorizations in D,

F¢noan:Un>L—n>WnTNn>FM,

inductively as follows:
e Set Uy= FGRFM and eg = h: FG® FM = F(G® M).

e If U, and ¢, have been constructed, define the cofibration ¢,, of the nth factorization to be the cofi-
bration in the functorial factorization

Fj,oe,: U, >L—n>WnTNn>FZn.

Then define weak equivalence p,, of the nth factorization to be the composite F'r,, ow,,. As F preserves
weak equivalences, p,, is a weak equivalence.
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e When this is done set U, 11 = U, U, (FG ® W,,) and define €,,41 such that the following diagram is

commutative :

FGoU, — %% | pG o E,)

U, L FE,

FG&W, 1 ~ . F(G® Zy)

\ o \

FE, 1.
Four things can be observed about these constructions:

Un+1 En+1

(a) As F preserves homotopy pushouts, the right hand square in the above cube is a homotopy pushout.
It follows that €,,41 is a weak equivalence when ¢, is a weak equivalence. As ¢, is a weak equivalence,
this implies that all the ¢,, are weak equivalences.

(b) The FG-modules U, and the canonical elementary cofibrations U, — U,y1 determine a filtered
FG-module U,. Thanks to the direct limit axiom the weak equivalences €,, determine a weak equiva-
lence of filtered objects €, : U, — FFE,.

(¢) The composition F¢,oe, : U, — FM is a filtered model of FM for which the factorizations F¢, oe,, =
Pn © Ly form a determining sequence of factorizations. Indeed, we have F¢g oeg = Fayr o h = apy,
Uni1 = U, Uy (FG®W,), and, as is showing an easy calculation, F¢,11 0 epe1 = (Fy, 0 €y, PZ)

(d) The weak equivalence of filtered objects ¢, : U, — FE,, the filtered model F¢, o, : U, — FM, and
the factorizations F'¢,, o €, = p, o 1, depend functorially on G and M.

By Proposition 1.12, there exists a functorial commutative diagram of filtered F'G-modules

EFGFM = >R, <>,
FM FM FM

in which the morphism R, — FM is a filtered model of FFM. Let S, and V. be the filtered objects defined
by S, = e®pg R, and V,, = e ® pg U,. We then have the following functorial commutative diagram of
filtered F'G-projections:

EFGRM R, U, FE,
BFGFRM S, v, FB,.

We are done if we can show that the three squares are weak equivalences of filtered F'G-projections. For the
left hand and the middle square this follows from Proposition 1.16. We know already that
e+ : U, — FE, is a weak equivalence. It remains to show that the morphism of filtered objects V, — F' B, is
a weak equivalence. By the direct limit axiom, it suffices to show that the morphisms V,, — F'B,, are weak
equivalences. We proceed by induction. The morphism Vy — F By is idpjs and thus a weak equivalence.
Suppose that V,, — F B, is a weak equivalence for some n € N. Consider the following pushouts of G- resp.
FG-modules:

G®E, > >F, FGe U, >2—1U,
G®jnI I FG®L7LI I
G@ZnHEn+17 FG@WTLHU'”JFI
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Passing to the “orbit objects” we obtain the following commutative squares which are pushouts by 1.14:

E, —— B, Uy, —V,
jnI I LnI I
Zn > Bn+1a Wn —— Vn+1.

These diagrams are related in the following commutative cube:

N\

En

Uy

FE,

tn Va FB,,
LFJTL
Wy ——- L FZ,
Vn+1 FBn+1.

As F preserves homotopy pushouts, the right hand square is a homotopy pushout. It follows that the mor-
phism V, 41 — F' B, is a weak equivalence. This closes the induction, and the result is established. O

Theorem 3.5. Let F : C — D be a model functor, G be a monoid in C, and M be a G-module. Then
BeatpgFM < BeataM, EcatpaFM < FEcataM, and triveatpgF M < triveata M .

Proof: Suppose that BeatgM < n. By definition, the morphism BM — BG factors in Ho C through
the cofibration B,,G — BG. Since F preserves weak equivalences, it follows that FBYM — FBG factors
in Ho D through FB,G — FBG. By Proposition 3.4, the diagrams FB¢M — FBG «— FB,G and
BFYSFM — BFG « B,FG are weakly equivalent. It follows that BF“FM — BFG factors in Ho D
through B, FG — BFG, i.e., Bcatpag FM < n.

By 3.4, the FG-modules F'E,G and E,FG are weakly equivalent. Since F preserves weak equivalences,
this implies Ecatpg FF'M < Ecatg M.

We finally show by induction on n that trivcateM < n implies trivcatpgFM < n. Suppose that
trivcatg M = 0. Then M is weakly equivalent to a free G-module G® X . Since F preserves weak equivalences,
we have FM ~ F(G® X) ~ FG® FX in FG-D and hence trivcatpg F'M = 0. Suppose that the statement
holds for n € N and that trivcatgM < m 4+ 1. Then there exists an elementary cofibration P — @ such
that trivcatgP < n and Q ~ M. As P — (@ is an elementary cofibration, there exists a cofibration
i: X — Y in C and a G-equivariant morphism § : G ® X — P such that @ = PUs G ® Y. Since F
preserves homotopy pushouts, the right hand square in the following commutative diagram of F'G-modules
is a homotopy pushout:

FG®FX —>F(G&X) " —~Fp

FG®F1¢ lF(G@i) l

FG®FY ——=F(GaY) — FQ.

As I preserves cofibrations, F'i is a cofibration. We obtain thus a F'G-equivariant weak equivalence
FPUpson (FGRFY) 5 FQ. As F preserves weak equivalences, this implies that the FG-modules F M and
FPUpson (FG® FY) are weakly equivalent. By the inductive hypothesis, we have trivcatpg F'P < n. Since
FP — FPUpson (FG® FY) is an elementary cofibration, it follows that trivcatpg FM < n + 1. |
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4 Cone attachments

One of the fundamental properties of the L.-S. category is that it increases by at most one when a cone
is attached to a space. It is natural to ask whether a given algebraic approximation of cat also has this
property. The purpose of this section is to establish the following result:

Theorem 4.1. Consider a model functor F : Top — C and a continuous map f : S — X such that S is path-
connected and X is simply connected. Then trivcatpoxu,cs)e < trivcatroxe + 1 and Ecatpoxu,;cs)e <
Fcatpaoxe +1

For Bcat there is no such theorem as is showing the example of the Toomer invariant:

Definition 4.2. [33] The Toomer invariant of a simply connected space X, denoted by ex(X), is the
least integer n for which the morphism H,(B,QX) — H,(BQX) is surjective. If no such n exists we set
ek(X) = Q.

Proposition 4.3. For a simply connected space X the Toomer invariant ex(X) equals Beato, oxk calculated
in DGM.

Proof: It follows from 3.4 that the chain maps B,C.QX — BC,QX and C,B,QX — C,BQX are weakly
equivalent. Since we are working over a field, these morphisms are also weakly equivalent to the map
H.B,QX — H,BQX. The result follows as this map has a section (exact or in the homotopy category) if
and only if it is surjective. O

In [26] a space is constructed to which a cell can be attached such that the rational Toomer invariant
increases by 2. It is thus impossible to show Theorem 4.1 for Bcat.

Proposition 4.4. Let 0 : G — H be a homomorphism of monoids such that there exists an elementary
cofibration H @ EG — Q with Q ~ e. Then trivcatge < trivcatge + 1 and Ecatge < Fcatge + 1.

Proof: We begin with trivcat. Suppose that trivcatge < n. Then there exists a sequence Py — Py --- — P,
of elementary cofibrations such that Py is a free G-module and P, ~ e ~ EG. Applying the functor H ®¢ —
yields the sequence of elementary cofibrations H ¢ Py — H ®¢ P, --- — H ®g P,. Clearly, H g P, is a
free H-module and H ®¢ P, ~ H ®¢ EG. It follows that trivcaty H ® ¢ EG < n. We have an elementary
cofibration H ¢ EG — @Q with @Q ~ e. It follows that trivcatgze < n + 1. This shows that trivcatge <
trivcatge + 1.

Suppose now that Ecatge < n. Then Ecatg EG < n. Choose a fibrant model E,G ~ R. Then there
exists a G-equivariant morphism EG — R. We have an elementary cofibration H ®¢ FG — @ with Q ~ e.
Form the following pushout of H-modules:

H®q EG H®gR

| |

Q — (H ®¢ R) Unssec Q-

Since the cobase extension of an elementary cofibration is an elementary cofibration, the H-equivariant mor-
phism H®¢ R — (H®¢ R)Ung.rc @ is an elementary cofibration. Since R ~ E,,G, H®g R ~ H®¢ E,G.
We hence have trivcatg H ® ¢ R = trivcaty H @ E,, G < n. Tt follows that triveaty ((H ®¢ R)Ungorc Q) <
n+ 1. We obtain Ecatye = EcatyQ < Ecaty ((H ®¢ R) Ungere Q) <n+ 1. a

Proposition 4.5. Consider a second monoidal cofibration category D and a model functor F' : C — D.
Then for any homomorphism o : G — H of monoids in C the FH-modules FH @pg EFG and F(H ¢ EG)
are weakly equivalent.

Proof: We use the notations and constructions of the proof of 3.4 and consider the case M = e. We have
a filtered model U, — FM = e and a weak equivalence of filtered FG-modules U, = FE, where E,
is short for E,G. By the universal property of coequalizers, given a cofibrant G-module @), a cofibrant
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FG-module P, and a FG-equivariant morphism P — F'Q), there is a canonical morphism of F'H-modules
FH ®prc P — F(H ®¢ Q). Consider the following commutative diagram in which W,, and Z,, are defined
as in the proof of 3.4:

FH®pqg FG®U, FH ®pc U,
F(H®cG® E,) [ F(H ®¢ E,)
FH ®pg FGQ W, 1 FH ®pg Unpt1

F(H®cG® Zy,) F(H®g Epni1).

The morphisms FHQ®pq FGRU,, - F(HRcGRE,) and FHRQprg FGW,, — F(H®cG®Z,) are identical
with the weak equivalences FH®U, — FHRFE, = F(H®E,)and FHoW, = FHRFZ, = F(H®Z,).
Since Uy = FG, Ey = G, and Uy — FEj is the identity of F'G, the morphism FH Qpg Uy — F(H Q¢ Ey)
is the identity of FFH and hence a weak equivalence. Since the back face of the above cube is a pushout
and the front face is a homotopy pushout, we may inductively apply the gluing lemma [2, 11.1.2] to show
that each morphism FH ®@pg U, — F(H ®¢ E,) is a weak equivalence. Passing to the direct limit we ob-
tain the weak equivalence of F H-modules FH®pcU = F(H®¢ EG). The result follows since U ~ EFG. O

The proof of the following lemma is standard and is omitted.

Lemma 4.6. Let G be a monoid and P and @ be weakly equivalent G-modules. Then any elementary cofi-
bration with source P is weakly equivalent to an elementary cofibration with source Q. O

Proof of Theorem 4.1: Write Y = X Uy CS. Since BS)Z and Z are naturally weakly equivalent for
connected spaces Z, we have a homotopy pushout

BQS —— BOX

]

BQCS —— BQY.

Set U = BfS and factor the map B1S — BQCS in a cofibration U — V and a weak equivalence
V 5 BQCS. Choose a QY -equivariant weak equivalence ¢ : EQY = PY. Since Y is connected, 1 induces
a weak equivalence BQY = Y. Denote by w the composition BQX — BQY = Y. We obtain the homotopy
pushout

[I]*)BQX
v Y.

As in the proof of 2.7 we obtain a homotopy pushout of QY -spaces

QY x U —— Fy

L

QY x V. —— PY.

There thus exists an elementary cofibration F,, — R with contractible target. Consider the following
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commutative diagram:

QY ®ax FOQX EQY
\ \
F, L PY
BOQX BQY
S e
BOQX Y.

w

The back face is a morphism between two QY -projections each of which is the projection of a cofibrant
QY -space to its orbit space. Since X and (by the van Kampen theorem) Y are simply connected, QY
and QY ®qx FQX are path-connected. Since also EQY is path-connected, the back face is a homotopy
pullback. It follows that the QY -equivariant map QY ®qgx EQX — F, is a weak equivalence. By the
preceding lemma, there exists an elementary cofibration QY ®qx FQX — P with contractible target. Let
j + A »— C be a cofibration and ¢ : QY x A — QY ®qx EFQX be a QY-equivariant map such that
P = (Y ®qx FQX) Us (2Y x C). Consider the following commutative diagram:

FQY @ FA—"> F(QY x A) — = F(QY ®qx EQX)

| |

FQY @ FC —> F(QY x C) FP.

Since F' preserves homotopy pushouts, this diagram is a homotopy pushout. There hence exists an ele-
mentary cofibration F(QY ®qx FQX) — @ such that @ ~ FP ~ e. Thanks to Proposition 4.5 and the
preceding lemma there exists an elementary cofibration FQY ®pqx FFQX — R with R ~ e. The result
now follows from Proposition 4.4. |

5 Products

The topological L.-S. category satisfies the product inequality cat X x Y < cat X+ cat Y. In this section
we prove:

Theorem 5.1. Consider two monoids G and H, a G-module M, and an H-module N. Then
trivecatceaM @ N < trivcatgM + trivecatgN, FEcatgouM ® N < FEcatgM + EcatgN, and
BeatgeggM ® N < BeatgM + Bceatg N.

This implies that an approximation of cat defined by means of a model functor F' : Top — C and one of
the invariants trivcat, Ecat, and Bcat satisfies the product inequality.

Definition 5.2. The tensor product of two filtered objects X, and Y is the filtered object X, ®Y, = (X®Y).
defined by (X X Y)n = (Xo [ Yn) Uxo@Y,_1 (X1 X Ynfl) - Ux, oY (Xn X Y())

Let G and H be monoids in C. Consider a filtered G-module P, and a filtered H-module @, such that
Py is a free G-module and @) is a free H-module and such that P; — P;;1 and @; — Q;+1 are elementary
cofibrations for each ¢ € N. It is clear that (P ® @), is a G ® H-module for each n € N and that the
cofibrations (P® @), — (P ®Q),+1 are G ® H-equivariant. It follows from the next proposition they are in
fact elementary cofibrations. For the statement of the proposition we have to detail the construction of P, and
Q.. We suppose that Py = G®Y) and @y = G®W, and that P, 1 and Q,,41 are constructed from cofibrations
&1t Xny1 — Yoq1 and vpqq : Vg1 — Wiy in C and equivariant morphisms 0,41 : G® X, 41 — P, and
Ynt1 : H ® V1 — @Qp by means of the pushouts
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G Xpr 2 p, H® Vi 2> Q,
G®§n+1I I H®Vn+II I

We also fix the following notations: For n € N we set

Y(J ® Vn+17 k = 0
J',k;_l,-l == Xk: ® W’I’L+17}€ UXk®Vn+1_k Y}C ® Vn+17k:a 0 < k S n
Xny1 ® W, k=n+1.

We denote by ¢ | the canonical cofibration J¥,, ~ Y}, ® Wy, 11_x. For n € Nand 0 < k < n we denote by
ok 11 the G ® H-equivariant morphism

GOH®J; =G X ®H®Wni1t Usex,0H8V,_x GO Y ® H® Vi

Ok®Pn41-kUs) @y y 1 Xk®Vnt1—k

Py 1 ®Qny1-kUp,_ 100, P ® Qn_-

We denote by o9, the composition G ® H ® J0+1 - GeYy® H® V, 8T+ Py ® @, and by

o on d
ontl the composite G @ H @ Jifl = G ® X1 ® H® W e P, ® Q. We then define the

n+1
G ® H-equivariant morphism o,41 : G ® H ® (\ J¥,,) — (P ® Q), to be the composition
k=0

n+tl ntl (o 1 )o<k<nt1

GeH®(V Ji,) =11G®H®J:, =77 (P®Q)y. FormeNand 0 < k <n+1we
k=0 k=0

denote by 7 11 the G ® H-equivariant morphism

Xk ®pn+1 k

G®H®Yk®Wn+1_kiG®Yk®H®Wn+1—k P ® Qni1—k-

n+1
We finally define the G ® H-equivariant morphism 7,11 : G HQ (\/ Y @ Wyi1-k) — (P ® Q)pny1 as the
k=0

(T'r]f+1)0§k§n+l
—

n+1 n+1
composite GRHQ(V Y ®@Wipit1-4)= [ GRHQY, @ Wiy1-k

P® Q)n+1-
k=0 k=0
Proposition 5.3. For each n € N the commutative diagram
GeH®( v ) ——— (P®Q)n
n41
GRH®(V LZH)I
k=0
n+1
GoH&(V Ye®Wnii-k) — (P®Q)n+1
k=0
is a pushout. O

The proof is by standard colimit arguments and is omitted. We also omit the straightforward proof of
the following lemma.

Lemma 5.4. Consider four morphisms f : X — B, p: E — B, f: X — B, andp: E — B. If f
factors in Ho C over p and f factors in Ho C over p, then f @ f : X ® X — B ® B factors in Ho C over
pRp:E®E — B®B. O

20



Proof of Theorem 5.1. Let trivcatg M < m and trivcaty N < n. Then there exist sequences of elementary
cofibrations Py — Py --- — P, and Qg — Q1 -+ — @, in G-C resp. H-C such that P, is a free G-module,
Qo is a free H-module, P, ~ M in G-C, and @),, ~ N in H-C. Consider the filtered G- resp. H-modules
P, and Q. where P; = P, for ¢ > m and Q; = @, for j > n. By Proposition 5.3, the G ® H-equivariant
morphisms (P® Q); — (P ®Q);+1 are elementary cofibrations. Since P® Q = P, ® @, = (P ® Q)m+trn and
M ® N ~ P® Q, we obtain trivcatgegM @ N < m + n.

Suppose next that Ecat¢M < m and EcatgyN < n. Let K = M and L = N be cofibrant models and
E,G = R and E.H 5 S be fibrant models. Then there exist morphisms of G- resp. H-modules K — R
and L — S. We obtain a morphism of G® H-modules K ® L — R®S. Since trivcatg R = trivcatg E,,G < m
and trivcaty S = triveat gy E,, H < n, we have trivcatggg R ® S < m + n. It follows that EcatgegM @ N =
Ecatgogup K ® L < m + n.

We finally prove the product inequality for Bcat. Consider the following commutative diagram of
G ® H-modules:

ECM @ EEN ——=M®N

| l

EGRFEH ———=e®e=ce.

By 5.3, EM ® Ef N and EG ® EH are the underlying objects of filtered G ® H-modules (E%M @ EIN),
and (EG ® EH),. Thanks to the obvious naturality of the pushout in 5.3 Lemma 2.5 yields a commutative
diagram of filtered G ® H-modules

(E°M ® EEN), E,
M®N
(EG ® EH), F,

.

where the morphisms F, — M ® N and F, — e are filtered models. Passing to the “orbit objects” we obtain
for any m,n € N the following commutative diagram:

B°M ® BIN — BG ® BH <~——=B,,G ® B, H
eQoon E—eQcou F'<——<e Qg Fr+n-

Thanks to the preceding lemma this shows that if BcatgM < m and Bcaty N < n, then the morphism
eQoea E — e®agu F factors in Ho C over e g n Fintn — € ®ceu F. Since, by 1.12 and 1.16, the lower
line of the last diagram is weakly equivalent to the diagram

BE®*H(M @ N) — B(G® H) « By 1n(G® H),

this implies that Becatggg M @ N < m + n. O

6 The definitions by Doeraene and by Hess and Lemaire
In [5] Doeraene generalizes Ganea’s definition of L.-S. category (cf. [13]) to categories which are simul-

taneously equipped with the structure of a cofibration category and the structure of a fibration category.
Doeraene’s definition is based on the following notion of Ganea fibrations:
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Definition 6.1. [5] Let D be a pointed category which is both a cofibration and a fibration category. For
an object X define a sequence of fibrations, called Ganea fibrations, inductively as follows: Start with a

fibration GoX — X where Gy X is weakly equivalent to the zero object % as Oth Ganea fibration of X. In

1 X
order to construct an nth Ganea fibration of X pick an (n— 1)st Ganea fibration F,,_1 X — G, 1 X 3t x

of X and replace the morphism (g,—1X, %) : Go—1 X Up, ,x CF,_1X — X by a (over X) weakly equivalent
fibration.

Definition 6.2. [5] Let D be a pointed category which is both a cofibration and a fibration category. The
Doeraene category of a morphism f : Y — X, denoted Dcat f, is the least integer n such that f factors in
Ho C over an nth Ganea fibration of X. If no such n exists one sets Dcat f = occ.

The Doeraene category of a morphism f is an invariant of the weak homotopy type of f. Doeraene also
introduces a second abstract definition of L.-S. category. This definition corresponds to a characterization
of the L.-S. category by G. Whitehead (cf. for ex. [22]). Doeraene shows that the two notions coincide in
“J-categories”. These categories are defined as follows:

Definition 6.3. [5] A pointed category with cofibrations, fibrations, and weak equivalences is a J-category
if it is both a cofibration and a fibration category and if in every downwards directed cubical commutative
diagram in which the vertical faces are homotopy pullbacks and the bottom face is a homotopy pushout, the
top face is a homotopy pushout.

The category Top, for example, is a J-category. It is not difficult to construct examples showing that
the category DGC is not a J-category. In [17] Hess and Lemaire introduce another abstract notion of
L.-S. category and show that it coincides in J-categories with the Doeraene category. The concept of Hess
and Lemaire is an abstract version of the “open set definition” and is defined as follows:

Definition 6.4. [17] Let D be a pointed cofibration category. For a morphism f : X — Y of D one sets
HLcat f = 0 if f is trivial in the homotopy category and for n > 0 HLcat f < n if there exists a homotopy
pushout

U——W

T

VT>X

such that f owv is trivial in Ho D and HLcat f ow < n — 1. The least n for which HLcat f < n is called the
Hess-Lemaire category of f and is denoted by HLcat f. If no such n exists, one sets HLcat f = co.

The Hess-Lemaire category of a morphism f is an invariant of the weak homotopy type of f.

Theorem 6.5. [17] Let D be a pointed category which is both a cofibration and a fibration category. Then
HLcat f > Dcat f for each morphism f: X — Y. If D is a J-category, HLcat f = Dcat f. a

We have the following result to compare the invariants Bcat, Ecat, and trivcat with Dcat and H/Lcat. In
the category DGM both inequalities are almost always strict.

Theorem 6.6. Let G be a monoid and F be a G-module. Then trivcatc F > HLcat (BYF — BG). If C is
also a fibration category, BeatgF > Dcat (BYF — BG).

Proof: We show by induction that trivcatgF < n implies HLcat (BGF — BG) < n. If n =0, then F
is weakly equivalent to a G-module of the form G ® X. Factor the morphism G ® X — e in G-C in a
cofibration i : G ® X » E and a weak equivalence r : E = e. As the morphism e ®¢ i: X — e ®¢ F is the
composition X - GRX — E — e®¢ F, it is trivial in the homotopy category. Since, by Lemma 6.7 below,
the morphism B¢ (G ® X) — BG is weakly equivalent to e ®¢ i, it is trivial in Ho C, too. As the G-modules
F and G ® X are weakly equivalent, the morphism BYF — BG is weakly equivalent to B¢(G ® X) — BG
and thus trivial in Ho C. Therefore HLcat (BYF — BG) = 0.

Let n > 0 and trivcatg F' < n. Then there exists an elementary cofibration P — @ such that @ ~ F
and such that trivcatgP < n — 1. We may suppose that P is a cofibrant G-module. Since the cofibration
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P — @ is elementary, there exists a cofibration S — D in C and a G-equivariant morphism G ® S — P
such that Q = P Uggs (G ® D). Applying the functor e ® — yields the following pushout:

S——e®qgP

|

D——eR®¢gQ.

Factor the morphism @ — e in G-C in a cofibration Q ~— U and a weak equivalence U = e. Following
Lemma 6.7 below the compositions e ¢ P — e Q¢ Q — e®c U and D — e ®Rac Q — e ®g U are
respectively weakly equivalent to the morphisms B¢P — BG and BY(G ® D) — BG. By the inductive
hypothesis, we have HLcat (e ®¢ P — e ®¢ U) < n — 1 and HLcat (D — e ®c U) = 0. This shows
that HLcat (e ®¢ Q — e ®¢ U) < n. As (by 6.7) the morphism e ®¢c Q — e ®¢ U is weakly equivalent
to BEF — BG, we have HLcat (BGF — BG) < n. This terminates the induction and the proof of the
inequality trivecatgF > HLcat (BF — BG).

Suppose now that C is also a fibration category. A simple induction shows that HLcat (B,G — BG) < n.
By the Hess-Lemaire theorem (Theorem 6.5), this implies that each morphism X — BG, which factors in
Ho C through the morphism B,,G — BG, factors in Ho C also through an nth Ganea fibration of BG. This
shows that BeatgF' > Dcat (BYF — BG). O

Lemma 6.7. Let G be a monoid, P and E be cofibrant G-modules, and P — E be a G-equivariant morphism.
If the final morphism E — e is a weak equivalence, then the morphisms B¢P — BG and e g P — e ®g E
are weakly equivalent.

Proof: Consider the following commutative diagram of G-modules:

EGP:EGPN;>P

L

FEG<——[EGE ——>E.

Thanks to Proposition 1.16, by applying the functor e ®g —, one obtains that the morphisms B P — BG
and e g P — e ®¢ E are weakly equivalent. O

7 The bar construction as a filtered model

Let A be an augmented differential graded algebra, M be a left differential A-module, and N be a right
differential A-module. The bar construction on A with coefficients in N and M is the differential module
B(N;A; M) = (N ® T(sA) ® M,d; + d2) where A is the augmentation ideal of A (i.e., A = ker (A — k)), s
means suspension, T(sA) is the tensor coalgebra on sA, and d; and dy are given by the following formulae

in which one writes, as customary, [sa1]|...|sax] instead of sa; ® - -+ ® say:
d(n®lem) = do@lom+(—1)"ne1edn,
di(n®[say |- |sax] @m) = dn®[sa1|-~-|sak]®m
72 DIM+On @ [say | - | sda; | - | sax] @ m
+(_ )\7z|+a(k+1)n® [sa1 | | sak] ® dm,
da(n®@1l®m) = 0,
do(n®[sa)@m) = (~D)"na®1om—(-1)"ne1an,
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do(n @ [sar |-+ | sa]@m) = (=1)"lnay @ [saz |- | sax] @ m
k
+Z DIy @ [say | - | sai_1ai | - | sar] @ m
=2
—(=)"* Ry @ [say | - | sap—1] © axm (k> 1).

i—1

Here, (1) = 0 and €(i) =i — 1+ ) |a;| for ¢ > 1. One writes B(A; M) instead of B(k; A; M) and BA
j=1

instead of B(k; A; k). The differential module BA is the (reduced) bar construction on A, and B(A; M) is

the bar construction on A with coefficients in M. The reduced bar construction BA is a differential graded

coalgebra with respect to the diagonal of the tensor coalgebra T'(sA). The diagonal of BA induces a coaction

of BA on B(A; M) with respect to which B(A; M) is a differential BA-comodule. For further properties of

the bar construction we refer to [20] and [10].

The monoids in the monoidal cofibration category DGM are the (augmented) differential graded alge-
bras. The modules over a DGA A are the supplemented differential A-modules. We show that the bar
construction provides a filtered model in DGM.

Let A be an augmented DGA and M be a left supplemented differential A-module. For k € N
we denote by By(A4; A; M) the differential submodule A ® T<F(sA) @ M of B(A;A; M). We denote by
¢ : B(A; A; M) — M the morphism of supplemented differential A-modules defined by ¢p(a® 1 @ m) =a-m
and ¢(a ® [say | -+ | sax] @ m) = 0. We denote by ¢,, the restriction of ¢ to B, (A; A; M). Notice that ¢
coincides with the action oo : A ® M — M. Consider the sequence of factorizations

¢n : Bn(A; A; M) — B,(A;AM) ok (sA)P"H o M M
where 7, is the restriction of ¢ to B, (4; A; M) @k ® (sA)®"*! @ M and j, is the inclusion. It is clear that

jn is a cofibration and well known that 7, is a chain homotopy equivalence. For each n € N the diagram of
differential A-modules

A®By(A4;4; M) = B, (4; A; M)

| |

A® (B4 A4 M) o k® (sA)®" T @ M) —> By (4; 4, M),

in which B,(4;A;M) — Bpi1(4;4; M) is the inclusion and x is the restriction of the action
A®Bpi1(A4; A, M) — B, y1(A; A; M), is a pushout. It follows that B.(A4; A; M) is a filtered A-module. As
Gni1 = (én,7) and ¢pg = a: A® M — M, we have the following result:

Proposition 7.1. The morphism ¢, : B.(A; A; M) — M of filtered supplemented differential A-modules is
a filtered model of M. O

The monoids in the monoidal cofibration category DGC are the differential graded Hopf algebras. A
module over a differential graded Hopf algebra A is called an A-DGC. We show that the bar construction is
also a filtered model in DGC. Let A be a differential graded Hopf algebra, N be a right A-DGC, and M be
a left A-DGC.

Theorem 7.2. [28] The supplemented differential module B(N; A; M) is naturally a DGC. The diagonal is
given by

A(n ® [sa1| |SCLk ® m Z Z <’ ’I’LS sal,il |..\saj,ij] @ Q41,4541 ~ak,ikmt)
®(ngah 4, - 'a;‘,iv ® [5a9+1,z‘j+1 HSa;mk] ® my)

J
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k p—1 k j=1 k
where G = 32 lap, (Il + 32 lag., [) +mal (sl + 22 lag, ) +ilngl+ 2 G=plleg, [+ 2 (= d)laps, |+
p= q= q= p=

= = = p=j+1
(k=j)lmul , An(n) = Yons@n, Ay (m) =3 me@my and Aa(a;) = 3 aj,®a’; and where we set s1 =0,
Akt lyipsy *Okyiy = 01,4, © 00,y = 1, and [sa1]...|sao] = [sa1,|...[500,4,] = [SQrt1,ip,0] - - [SQR:] = 1. O

For N = k this theorem can be found in [11]. In the case N = k and M = k the diagonal of
7.2 coincides with the usual diagonal on BA. We suppose now that N = A. Notice that the action
a: ARB(A; A; M) — B(A; A; M) is compatible with the diagonal of Theorem 7.2. Tt follows that B(A; A; M)
isan A-DGC. As B,,(A4; A; M) is A-stable, B,,(A4; A; M) is a sub A-DGC of B(A4; A; M). Notice that we have
Bo(A;A; M) = A® M as A-DGC’s. The morphism ¢ : B(A; A; M) — M is compatible with the diagonal
and hence a morphism A-DGC’s. As B,,(4; 4; M) @ k ® (sA)®" ! @ M is A-stable, the morphisms j, and
ry in the factorization ¢,, = r, o j,, which we have considered above, are a DGC cofibration and a DGC
weak equivalence. As the morphisms in the pushout of differential A-modules

A®By(A; A M) = B, (4; A; M)

- |

AR (B,(A4;A4M)0k® (sA)P" L @ M) —— B, 11(A; A; M)

are compatible with the diagonal, the diagram is a pushout in A-DGC. It follows that B.(A4;A; M) is a
filtered A-DGC and that ¢, : B.(A; A; M) — M is a morphism of filtered A-DGC’s. As ¢pi1 = (¢n,77)
and ¢g = a: A® M — M, we have the following proposition:

Proposition 7.3. The morphism ¢, : B.(A; A; M) — M of filtered A-DGC’s is a filtered model of M. O

Remark 7.4. By 1.12, the filtered model B.(A; A; M) — M is naturally weakly equivalent over M to the
standard filtered model EAM — M. The two filtered models are not identical, neither in DGM nor in
DGC. Indeed, the nth determining factorization of the filtered model ¢, : B.(A4; A; M) — M is not the
standard functorial factorization of ¢, : B, (A; A; M) — M. Notice also that the bar construction is not a
filtered model in CDGC because the DGC BA is nearly never cocommutative.

8 A- and M-category

As we have seen in 4.3, the Toomer invariant is an instance of B-category. In this section we show that another
example is the invariant Acat introduced by Halperin and Lemaire [15]. We also show that the M-category
of Halperin and Lemaire [15] is an E-category. The A-and M-categories are defined by means of cochain
algebra models. Munkholm [29] has shown that the category DGA{ of connected cochain algebras and the
category DGA., of augmented chain algebras are closed model categories. The weak equivalences are the
quasi-isomorphisms, surjections are (particular) fibrations, and free extensions are (particular) cofibrations.

Definition 8.1. [15], [21] Let f : X — Y be continuous map between l-connected spaces and
¢ : (TV,d) — A be a morphism of 1-connected cochain algebras which is weakly equivalent to C*(f).
The A-category of f, denoted by Acat f, is the least integer n such that ¢ factors in Ho DGAJ through the
projection (TV,d) — (TV/T>"V,d). If no such n exists, one sets Acat f = co. The M-category of f, denoted
by Mcat f, is the least integer n such that ¢ factors in Ho (T'V,d)-DGM through (T'V,d) — (TV/T>"V,d).
If no such n exists, one sets Mcat f = oo. For a 1-connected space X, one sets Acat X = Acat idx and
Mecat X = Mcat idx.

The numbers Acat f and Mcat f do not depend on the choice of the model ¢ of C*(f). In the proof of the
next theorem, which gives a geometrical interpretation of the projection (T'V,d) — (TV/T>"V,d), and in
the remainder of the paper we use the following notation: Given a (differential) vector space C, CV denotes
the (differential) vector space Homy (C, k). A space X is said to have finite type if H,(X) has finite type.
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Theorem 8.2. Let X be a I-connected space of finite type and (TV,d) be a 1-connected cochain algebra
which is weakly equivalent to C*(X). Then the projection (TV,d) — (TV/T>"V,d) is weakly equivalent to
the cochain algebra morphism C*BQX — C*B,QX.

Proof: By 3.4 and 7.4, the DGC morphisms C,B,QX — C,BQX and B, C.QX — BC.QX are weakly
equivalent. As X is l-connected of finite type, there exists (cf. [3], [15]) a cofibrant model A = C,QX in
DGA., such that A is connected and of finite type. An obvious spectral sequence argument shows that the
DGC morphisms B, A — BA and B,,C.QX — BC,.QX are weakly equivalent. It follows that the morphism
of cochain algebras (BA)Y — (B, A)" is weakly equivalent to C*BQX — C*B,QX. As BQX has the same
homotopy type as X, (BA)V is a cochain algebra model of C*(X) and hence of (TV,d). As A is a connected
chain algebra of finite type, (BA)V is a 1-connected cochain algebra which is free as an algebra; forgetting the
differential, (BA)Y = T'((sA)Y). It follows that there exists a homotopy equivalence g : (BA)Y = (T'V,d).
Then the restriction (T>"((sA)Y),d) — (T>"V,d) of g is a (co)chain homotopy equivalence and therefore
a quasi-isomorphism. By the five lemma, it follows that the projections (TV,d) — (TV/T>"V,d) and
(BA)Y = (T((sA)Y),d) — (B,A)Y = (T((sA)V)/T>"((sA)V),d) are weakly equivalent. This establishes the
result. a

For the proof of the next theorem we have to recall some facts about the cobar construction. For details the
reader is referred to [10] or [20]. Let C be a (coaugmented, as always) differential graded coalgebra. The (re-
duced) cobar construction on C'is the (augmented) differential graded algebra QC = (T'(s71C'), d) where the
differential is given by ds~'c = —s ldc+(s7'®s 1) Ac. Let N be a left supplemented differential C-comodule
with coaction 8. The cobar construction on C with coefficients in N is the left supplemented differential
QC-module Q(C; N) = (T(s~1C)® N, d) where the differential is given by d(1®n) = 1®@dn+ (s~ ®idy)n.
Here, (3 is the reduced coaction which is defined by n = fn — 1 ® n. The cobar construction is a functor
in the obvious way. It preserves quasi-isomorphisms when the involved coalgebras are 1-connected and the
involved comodules are non-negatively graded.

The reduced bar and cobar constructions are adjoint functors between the category of cocomplete dif-
ferential graded coalgebras and the category of differential graded algebras. The adjunction morphisms
OBA — A and C — BQC, which are the evident projection and inclusion, are quasi-isomorphisms. The
cobar-bar adjunction extends to an adjunction between the category whose objects are couples (A, M) where
Ais a DGA and M is supplemented differential A-module and the category whose objects are couples (C, N)
where C' is a cocomplete DGC and N is supplemented differential C'-comodule. For a DGA A and a supple-
mented differential A-module M, the adjunction morphism is the composite

QBABA; M) =QBABA M7 Aok M =AM % A.

For a cocomplete DGC C' and a supplemented differential C-comodule N with coaction (8 the adjunction
morphism is the composite

N2 CoN=CgkeN < BQC®QC®N =B(QC;QC; N)).
Again the adjunction morphisms are quasi-isomorphisms.

Theorem 8.3. Let f: X — Y be a continuous map between 1-connected spaces of finite type. Then Acat f
equals Beatc, oy Cy«Fy, calculated in the category DGC, and Mcat f equals Ecatc,ovCyFy, calculated in the
category DGM.

Proof: Since X and Y are 1-connected spaces of finite type, there exists (cf. [3], [15]) a model U — A of
the chain algebra morphism C,Qf : C.QX — C.QY such that U and A are connected chain algebras of
finite type. It follows from 7.4, 3.4, and the fact that BQf and f are weakly equivalent that the morphism
(BA)Y — (BU)V of 1-connected cochain algebras is a model of C*(f).

We first prove the statement concerning Acat. Since (BA)V is free as an algebra, Acat f is the least
integer n for which there exists a commutative diagram of cochain algebras

T(sAY) =——— (BA)" — > (BU)"
T(sAY)/T>"(sAV) —— <BnA>> P
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where the left hand triangle is the minimal model of the projection (BA)Y — (B,A)Y (cf. [15]). Since
P is a cochain algebra of finite type, it follows that Acat f < n if and only if the morphism of dif-
ferential coalgebras BU — BA factors in the homotopy category through the cofibration B, A — BA.
Since (for each n € N) the diagrams of differential coalgebras BC,.QX — BC.QY « B,C.QY and
BU — BA «— B, A are weakly equivalent, this is the case if and only if the morphism of differential coalgebras
BC.QX — BC.QY factors in the homotopy category through B, C.QY — BC,.QY and thus, by 7.4 and 3.4,
if and only if C, BQX — C,BQY factors in Ho DGC through C, B,QY — C,BQY. It is not difficult to see
that the continuous maps BYY F; — BQY and BQX — BQY are weakly equivalent over BQY. Therefore
Acat f < n if and only if the morphism of differential graded coalgebras C,. BSYY Fy — C,.BQY factors in the
homotopy category through C,B,QY — C,.BQY. Thanks to 3.4 this implies that Beatc, oy C«Fr = Acat f.

We now prove the statement concerning Mcat. Since the cochain algebra morphism (BA)Y — (BU)Y
is a model of C*(f), Mcat f < n if and only if there exists a commutative diagram as above, this time of
supplemented differential (BA)Y-modules. We show that Ecatc, oy CwFy < n if and only if Mcat f < n.
Suppose first that Mcat f < n. Then there exists a commutative diagram as above. We may suppose that P
is non-negatively graded and of finite type. Applying the functor A ®apa Q(BA;(—)Y) yields the following
chain of supplemented differential A-modules:

A®apa QBA;BU) — A®apa Q(BA; PY) & ARapa Q(BA; B, A).

Since A ®apa Q(BA;B,A) = B, (4; A;k) ~ E, A, this shows that Ecat4 A ®apa 2(BA; BU) < n. Since
A®apa Q(BA;BU) = Ay B(U;U; k) ~ A®y EU, we have Ecat4 A ®y EU < n and hence (by 2.4 and
4.5) Ecatc, (oy)Cx(Y) ®c, (ax) EC+(QX) = Ecatc, (oy)Cx(QY ®ax EQX) < n. As shown in the proof of
4.1 the QY-spaces QY ®qx EQX and Fy are weakly equivalent. We hence obtain Ecatc, (oy)Ci(Fy) < n.

If conversely Ecatc, oy CioFy = Ecat 4 A®qpa Q(BA; BU) < n, there exists a morphism of supplemented
differential A-modules A®qpa Q(BA; BU) — A®qpa 2(BA; B, A). Applying the functor B(A; —)V yields
a morphism of supplemented differential (BA)Y-modules

B(A; A®apa 2(BA;BL,A))Y — B(A; A®apa Q(BA;BU))Y.

For N = B,A,BU consider the composite B(4; A ®apa 2(BA;N))V — B(QBA; Q(BA;N))Y — NV.
This is a quasi-isomorphism of supplemented differential (BA)Y-modules. We have the following diagram of
differential (BA)Y-modules:

~

(BA)Y (BU)Y B(A; A®apa Q(BA; BU))Y

(BrA)Y <—— B(4; A®qsa 2(BA; B, A4))".

This shows that Mcat f < n. |

Remarks 8.4. (i) As mentioned in section 4 the Toomer invariant is a Bcat type approximation of cat
that does not increase by at most one when a cell is attached to a space. In [25] it is shown that
Acat X Uy CS < Acat X +11if f: S — X is a map between 1-connected spaces of finite type and S
has the homotopy type of a suspension.

(ii) Lemaire and Sigrist [27] construct a 1-connected rational space of finite type for which eg(X) = 2 and
cat X = 3. In [16], Hess shows that cat and Mcat (for k = Q) coincide for 1-connected rational spaces. Since
(by 4.3) eg(X) = Beatc, ox)Q, the Lemaire-Sigrist space is an example where the inequality Beate, (ox)Q <
Ecatc, (ox)Q is strict.

9 Rational category

In this section we work over Q and prove the following theorem:

Theorem 9.1. Let f : X — Y be a map between simply connected rational spaces. Suppose that Y is
2-connected and consider a Quillen model ¢ : E — L of f where L is 1-connected. Calculating in CDGC
we have cat f = Dcat Crp = HLcat Cugp = trivcaty,Cx(UL; E) = Ecaty,C«(UL; E) = Beaty,Co(UL; E).
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We begin by explaining the statement. In [30] Quillen establishes that the homotopy category of simply
connected rational spaces is equivalent to the homotopy category of connected differential graded Lie algebras.
The category DGL of these Lie algebras is a closed model category where weak equivalences are quasi-
isomorphisms and fibrations are morphisms which are surjective in degrees > 1. By a Quillen model of
a simply connected rational space X (resp. a map f between simply connected rational spaces) we mean
a differential graded Lie algebra L (resp. a DGL morphism ¢) which corresponds to X (resp. [f]) in Ho
DGL. Quillen shows, in particular, that if L is a Quillen model of a simply connected rational space X,
then H.L = m,.(X). Using the minimal Lie algebra model of Baues and Lemaire (cf. [3]) one sees that a
(n + 1)-connected rational space has a n-connected Quillen model.

In Quillen [30] it is also shown that the categories Ho DGL and Ho CDGC are equivalent and thus that
the homotopy category of simply connected rational spaces is equivalent to Ho CDGC. The equivalence
between Ho DGL and Ho CDGC is induced by a functor C, : DGL — CDGC and its left adjoint £ which
both preserve weak equivalences. The functor C, and the construction C,(UL; E) are defined as follows.
For a DGL L let UL be its universal enveloping algebra. This is a cocommutative differential graded Hopf
algebra. Given a DGL morphism E — L, C.(UL; E) is the cocommutative UL-DGC (UL ® S(sE),d)
where S is the cofree cocommutative coalgebra functor, s means suspension, and the differential is defined in
[30, App. B] or [12, 22(b)]. The CDGC C\ L is the “orbit coalgebra” Q ®yy, C«(UL;L). Thus, forgetting
the differential, C.L = S(sL).

As is shown in [30] CDGC is a closed model category. We shall need the following lemmas concerning
the fibrations in CDGC.

Lemma 9.2. Let f : B — C be a morphism in CDGC. If Hyf is surjective then f can be factored in a
weak equivalence B = E and a fibration p : E — C such that, forgetting the differentials, p is a projection
of the form C ® S(V) — C.

Proof: This is proved in Quillen [30, II.5]. O

Lemma 9.3. In the closed model category CDGC the base extension of a homotopy pushout by a fibration
p:CRS(V)— C is a homotopy pushout.

Proof: It is clear that the base extension of a cofibration by p is a cofibration and it follows from [30, 7.1]
that the base extension of a weak equivalence by p is a weak equivalence. The result is easily deduced from
these facts. O

Lemma 9.4. Consider a morphism p : B — C in CDGC such that, forgetting the differentials, there exists
an isomorphism B = C ® S(V) identifying p with the canomnical projection. Then p is a fibration.

Proof: It is well known that an inclusion A <— A ® A(V) of 1-connected commutative differential graded
algebras is a relative Sullivan model (or KS-extension). With patience the argument for algebras (cf. for ex.
[12, 23.1]) can be dualized to give a proof of the lemma. The details are left to the reader. O

Proof of Theorem 9.1. We begin with the first equality. Let S be the closed model category of 2-reduced
simplicial sets where cofibrations are injections and weak equivalences are rational homotopy equivalences
(cf. [30]). For a simply connected space Z, let FE5Sing(Z) be the second Eilenberg subcomplex of the

singular simplicial set of Z. Consider a nth Ganea fibration F,Y — G,Y 7Y Y of Y. Since Y is a
2-connected rational space, this is a fibration of simply connected rational spaces. It follows from this that
E5SingF,Y — EsSingG,Y — E,SingY is a fibration in S (see [30, p. 260]). Using this and the fact
that F5Sing preserves homotopy pushouts of simply connected spaces, a simple induction argument shows
that E2Sing(g,Y) is a nth Ganea fibration of E»Sing(Y). It follows that cat f > Dcat E,Sing(f). Using
the fact that for simply connected spaces Z the adjunction morphisms |E5Sing(Z)| — |Z]| are homotopy
equivalences, one proves the other inequality and thus that cat f = Dcat FE,Sing(f). It has been shown in
[30] that the closed model categories S and CDGC are connected by a sequence of pairs of adjoint functors
satisfying certain conditions. These conditions permit us to establish that Dcat EsSing(f) = Dcat Ci¢
(cf. [24, 5.6]). This implies that cat f = Dcat C,¢.
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For the second equality it suffices, by 6.5, to show the inequality >. We show by induction that for any
morphism of cocommutative differential graded coalgebras 6 : B — C.L Dcat § < n implies HLcat 8 < n.
For n = 0 this is clear. Suppose that the assertion holds for some n € N and that Dcat 3 < n + 1. Denote
by gn+1 : Gny1 — C.L a (n+ 1)st Ganea fibration for Ci L. Since Dcat 8 < n + 1, there exists a morphism
A : B — Gpyq such that g,11 0 A = 8. A simple induction argument involving the long exact homology
sequence shows that HyG,,11 = 0. By 9.2, we can factor \ in a weak equivalence £ : B = G,11 ® S(V) and
a fibration p : G411 ® S(V) — Gp41. We may suppose that there is a homotopy pushout

Fn4>Gn

b

Dn HX Gn+1

such that g,41 0 j is a nth Ganea fibration for C,L and D,, is a cone. By 9.3, the base extension of this
homotopy pushout by p,
F,58(V)——G,28(V)

| oz

D, ®SV) W/)G"“ ® S(V),
is a homotopy pushout. By construction, the composite g,4+1 0 po (x ® S(V)) is trivial in the homotopy
category and Dcat gp110po (j ®S(V)) < n. By the inductive hypothesis, HLcat g1 0po (j @ S(V)) < n.
It follows that HLcat gn+10p < n+1. Since the morphisms g,1 op and 3 are weakly equivalent, we obtain
that HLcat 8 < mn + 1. This closes the induction and the proof of the second equality.

To conclude it suffices, by 2.6, to show the inequalities BeatyCi(UL;E) > Dcat C.¢ and
HLcat Cy¢p > triveaty,Cx(UL; E). For the first inequality recall from [30, App. B] or [12, 22.3] that
Cy(UL; L) ~ Q and consider the following commutative diagram of UL-CDGC’s:

EYLC,(UL;E) — EYLC,(UL; L) ——= EUL

| -k

C.(UL; E) C.(UL; L) — Q.

Up to Q all objects in the diagram are cofibrant differential U L-modules. Killing the U L-action we thus
obtain that the CDGC morphisms C,¢ and BUYC,(UL;E) — BUL are weakly equivalent. The in-
equality Beaty,Cx(UL; E) > Dcat Ci¢ now follows from 6.6. It remains to show the second inequality.
The left adjoint £ of the functor C, preserves cofibrations and weak equivalences and thus homotopy
pushouts. Using this, a trivial induction shows that HLcat C.¢ > HLcat LC.¢. Since the Lie alge-
bra morphisms ¢ and LC.¢ are weakly equivalent, we obtain that HLcat C,¢ > HLcat ¢. In order
to establish the second inequality we show by induction that for any Lie algebra morphism ¢ : K — L
HLcat ¢ < n implies trivcatyCo(UL; K) < n. Suppose that HLcat ¢ = 0. Then Cit is homo-
topically trivial. Since C.(UL;L) ~ Q and, by 9.4, the projection C,(UL;L) — C\L is a fibration in

the model category CDGC, there exists a morphism h : C.K — C.(UL;L) such that the composite

C.K LA C.(UL;L) — C.L is Cy¢p. The morphism h induces a section ¢ of the base extension of

C.(UL; L) — C.L by Cyp. This is the projection C,(UL; K) — C,K. The section o determines a morphism
in UL-CDGC, ¢’ : UL ® C,K — C,(UL; K). By [12, 6.12], since Q ®p 1, ¢° is the identity on C, K, o’ is a
weak equivalence. It follows that trivcatyCy.(UL; K) = 0. Suppose now that the assertion holds for some
n € N and that HLcat ¥ < n + 1. Then there exists a homotopy pushout of Lie algebras

A—">M

N—K

v
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such that HLcat ypv = 0 and HLcat Yw < n. As before there is a section o of the projection
C.(UL; N) — C,N and the induced UL-CDGC map ¢’ : UL® C,N — C,(UL; N) is a quasi-isomorphism.
The section ¢ induces a section 7 of the projection Ci(UL; A) — C. A such that C,(UL;v) o7 = 0o C,r and
the induced UL-CDGC map 7° : UL ® C,A — C,(UL; A) is a quasi-isomorphism. Consider the following
commutative diagram in UL-CDGC:

Cx(UL;w)

UL®C.A—2 C.(UL; A) C.(UL; M)

UL®C*V\L \LC*(UL;V) J(C*(UL;U))

Since, by 9.3, the right hand square is a homotopy pushout, so is the whole diagram. By the inductive hy-
pothesis, trivcatyC.(UL; M) < n. It follows that trivcatyC(UL; K) < n + 1. This closes the induction
and the proof. O

10 The invariant ¢/ and Anick models

All known algebraic approximations of cat are necessarily < 1 for spaces with vanishing Adams-Hilton model
differential. In this section we introduce a new approximation ¢ of cat for which this is not the case and
which permits us to affirm that there exists a link between the L.-S. category of a space and the diagonal of
its loop space homology Hopf algebra. The invariant ¢ will be defined by means of the triviality category in
the category of weak coalgebras. A weak coalgebra is a connected supplemented DG vector space C' with a
diagonal morphism A : C — C'®C which is in the obvious way compatible with the augmentation. With the
obvious morphisms the weak coalgebras form a category which we denote by WDGC. The tensor product
of two weak coalgebras is canonically a weak coalgebra and the category WDGC is a symmetric monoidal
category. A morphism of weak coalgebras is a weak equivalence (resp. cofibration) if it is a weak equivalence
(resp. cofibration) in DGM.

Proposition 10.1. The category WDGC is a monoidal cofibration category.

Proof: C0, C1, and C2 are clearly satisfied. The functorial factorization of a morphism in a cofibration and a
weak equivalence is constructed as in DGC, see 1.5. C4 follows from the following lemma and Lemmas 2.5,
2.6, and 2.7 of [14] which apply in the context of weak coalgebras. The only statement in DL which needs a
proof is the one concerning fibrant objects. According to Lemma 2.6 of [14], a weak coalgebra C is fibrant if
and only if the final morphism C' — k has the right lifting property with respect to all acyclic cofibrations
A5 B so that B (and hence A) has a countable basis. Let € be the least non countable ordinal. This is a
limit ordinal. Consider a Q-sequence Xg . X3 o of acyclic cofibrations with fibrant targets. We must
show that X = colim X is fibrant. Let ¢ : A > B be an acyclic cofibration such that B has a countable
basis and f : A — X be a morphism. Let A be a countable basis of A. For a € A choose an ordinal A\, such
that f(a) € X,,. Since A is countable, there exists a successor ordinal v < € such that A\, < v for each
a € A. Tt follows that f(a) € X, for each a € A and thus that f(A) C X,. Since 7 is a successor ordinal,
X, is fibrant. There thus exists a morphism g : B — X, such that gia = fa for all @ € A. This shows that
f extends to B and hence that X is fibrant. P1 and P2 hold since they hold in DGM. O

Lemma 10.2. Let C be a weak coalgebra. Then any element x € C is contained in a finite dimensional sub

WDGC of C.

Proof: We proceed by induction on the degree of x. If |z| = 0, then z is an element of k which is a finite
dimensional sub WDGC of C'. Suppose that the assertion holds for elements of degree < |z|. There is a finite
number of elements x;,y; in Cc|, such that Az =2 ® 14+ 1®x + > x; ® y;. By the inductive hypothesis,
there exist finite dimensional sub WDGC’s B, U;, and V; of C such that dx € B, z; € U;, and y; € V;. Then
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kx + B+ > U;+ >V, is a finite dimensional sub WDGC of C' containing z. O

Of course, weak coalgebras are weaker than associative coalgebras because they need not be associative.
They are also considerably weaker than associative coalgebras from the point of view of homotopy theory
as is showing the following proposition which is false for DGC’s. It is clear that the homology of a weak
coalgebra is a weak coalgebra.

Proposition 10.3. Let C' be a weak coalgebra. Then C' is weakly equivalent to HC.

Proof: Write H = HC and choose a splitting C = H @ B ® sB where db = 0 and dsb = b. Let ¢ denote
the inclusion H — H @& B ® sB and p denote the projection H & B ® sB — H. We have p¢ = idg
and dh + hd = idc — ¢p where h is defined by hx = 0 (x € H @ sB) and hx = sz (x € B). Set
W= (pp@h+h®idc)Ace. Then dh/ +h'd=Acp— (¢ R ¢)(p® p)Acp. We have Ay = (p® p)Ace and
hence dh' + h'd = Ac¢ — (¢ @ ¢)Apy. Notice that for x € H

We=(pp@h+hide)1@x+201+ Acz) e C®C.

Define a second diagonal on C' by Az = Agz (z € H) and Az = Acx (v € B @ sB). By construction,
¢ becomes a WDGC weak equivalence when we equip C with the diagonal Aj,. It remains to show that
the weak coalgebras (C, A¢) and (C, Ay) are weakly equivalent. A homotopy k with dk 4+ kd = Ac — A
is given by kz = h'z (z € H) and kz = 0 (x € B @ sB). Notice that k(C) C C ® C. Consider the
cylinder C @ €’ @ sC where (' is a copy of C and the differential is given by dc = dge, d¢’ = (dcc),
and dsc = ¢ — ¢ — sdcc. Denote by i and ¢’ the obvious inclusions C — C & C’ @ sC. Both i and i’ are
quasi-isomorphisms. Define a diagonal A on the cylinder by Ac = (i ® i)Ace, A = (i’ ® i')ALe, and
Asc=1®sc+sc@1+ (s®@i+1i' @s)ALc+ (i®1i)ke. One easily sees that A commutes with the differentials.
Since k(C) ¢ C ® C, A is compatible with the augmentation. We obtain the WDGC weak equivalences
i:(C,Ac) = (C®C' &sC,A) and i’ : (C,AL) — (C & C" @ sC,A). This accomplishes the proof. O

In order to model spaces in WDGC we restrict ourselves to the category Top, of path-connected spaces.
We obviously have

Proposition 10.4. The category Top, is a monoidal cofibration category. a

We denote by C}(X) the first Eilenberg subcomplex of C,(X) (generated by the non-degenerate simplices
having the O-skeleton at the base point). It is well known that C}(X) is a sub DGC of C«(X) and that the
inclusion C}(X) < C.(X) is a quasi-isomorphism for path-connected spaces X. Moreover, we have

Proposition 10.5. The functor C! : Top, — WDGC is a model functor. O

Definition 10.6. For a map f : X — Y where X is path-connected and Y is simply connected we define
£(f) to be the number trivcatCi(gzy)Ci (F), calculated in WDGC. For a simply connected space X we set
U(X) =L(idx).

Remarks 10.7. The triviality category of a module is the minimal length of a decomposition of the module
in trivial pieces. The letter ¢ stands for length. By Theorem 3.5, we know that £(f) < trivcatoy Fy where the
last number is calculated in Top,. Since this is sufficiently clear we leave it to the reader to show that for any
map f: X — Y where X is path-connected and Y is simply connected trivcatoy F'y = cat f in Top,. Notice,
however, that this does not formally follow from 2.7. It is clear that the forgetful functor WDGC — DGM
is a model functor. By 3.5 and 2.6, we therefore have EcatCi(Qy)Ci (Fy) < trivcatCi(Qy)Ci (Fr) < L(f)
where the first two numbers are calculated in DGM. Thanks to Proposition 2.4 EcatCi(Qy)C& (Fy) =
Ecate, (y)C«(Fy) (in DGM). By Theorem 8.3, it follows that for a map f : X — Y between simply
connected spaces of finite type Mcat f < £(f) < cat f. As is showing its proof Theorem 4.1 holds for model
functors F' : Top, — C. Therefore ¢ increases by at most 1 when a cone is attached to a simply connected
space. By Theorem 5.1, £(X xY) < 4(X) + ¢(Y) for simply connected spaces X and Y.
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The main reason to consider weak coalgebras rather than DGC'’s is that at the monoid level of WDGC
the DG Hopf algebra C!(£2X) may be replaced by an Anick model of X. By an Anick model of a simply
connected space X we mean a connected DGA (T'V, d) with a diagonal morphism A : TV — TV @ TV such
that there exists a DGA quasi-isomorphism ¢ : TV — C}(QX) and a ((¢ ® ¢)Apy, Aciox)¢)-derivation h
of degree 1 such that dh +hd = (¢ ® ¢)Ary — Acix)p. We require that the diagonal of TV is compatible

with the augmentation and that the derivation homotopy satisfies h(T'V) C C1(Q2X) ® CLH(QX). Clearly, an
Anick model is a monoid in WDGC. The following lemma shows that any Adams-Hilton model of a simply
connected space X can be equipped with a diagonal in such a way that it becomes an Anick model of X.

Lemma 10.8. Consider a WDGC monoid A and a quasi-isomorphism of connected chain algebras
¢ : TV = A. Then there exists a diagonal morphism Apy : TV — TV ® TV which is compatible with
the augmentation and a ((¢ ® ¢)Ary, Aad)-derivation of degree 1 such that dh + hd = (¢ @ @)Ary — A
and (TV) C A® A. If ¢ is surjective one may choose h = 0 so that (¢ @ ¢)Ary = Aa.

Proof: Set Ary1l =1® 1 and A1 = 0 and suppose that A7y and h have been constructed in degrees < n.
Let v € V,, be a basis element. We have hdv € A® A and Apydv = 1 @ dv + dv ® 1 + Apydv where
Arydv € TV®TV. One easily calculates that dhdv = (¢ ® ¢)Arydv — A g¢pdv. Therefore d(hdv+ A s¢v) =
(¢ ® @)Arydv. Since ¢ ® ¢ restricts to a quasi-isomorphism TV @ TV = A® A, there exists x € TV @ TV
such that dz = Apydv. Then hdv+Aa¢v — (¢ @ ¢)z is a cycle in A® A. Since pR¢: TVRTV — AR A is
a quasi-isomorphism, there exists a cycle z € TV @ TV such that (¢ ® ¢)z — (hdv + Aadv — (¢ @ ¢)x) = db
for some b € AR A. Set Apyv = 1@v+v®1+ax+ 2 and hv = b. Then dAryv = Apydo and
dhv+hdv = (¢ ¢)(x+2) — Aadv = (R ) Aryv — Aadv = (¢ @ ) Apyv — Ag¢pv. We can thus construct
A7y and h with the requisite properties.

If ¢ is surjective we may choose h = 0 since then z exists such that (¢ ® @)z = Asdv — (¢ ® ¢)x. a

Proposition 10.9. Let X be a simply connected space and TV be an Anick model of X. Then TV and
CL(QX) are weakly equivalent as monoids in WDGC.

Proof: Let ¢ : TV — CL(Q2X) be a DGA quasi-isomorphism and h be a ((¢ ® ¢)Ary, Aci(ax)¢)-derivation
of degree 1 such that dh + hd = (¢ ® ¢)Ary — Aciax)¢ and W(TV) C CHQX) ® CH(Q2X). Since
¢ is a quasi-isomorphism of connected chain algebras, it may be factored in an acyclic free extension
j TV = T(V & W) and a surjective weak equivalence p : T(V & W) = CLQX) where T(V & W) is
a connected DGA (cf. for ex. [1, 2.1]). By the preceding lemma, there exists a diagonal Ag on T'(V @ W)
which is compatible with the augmentation and satisfies (p ® p)Ag = Ac1ax)p. The diagonal Ay turns
T(V & W) into a monoid in WDGC and p: T(V & W) — CL(2X) into a weak equivalence of monoids.

Construct a ((j ® j)Ary, Agj)-derivation b’ such that dh' + h'd = (j ® j)Ary — Aoj, (p ® p)h' = h,
and W(TV) Cc T(Vae W) T(V & W) inductively as follows: Set h'l = 0 and suppose &' is constructed in
degrees < n. Let v € V,, be a basis element. Since

dh'dv = dh/dv + h'ddv = (j @ j)Arydv — Agjdv = d((j ® §)Arvv — Agjv),

the element ¢ = (j®7)Aryv—Agjv—h'dv = (j@5)Aryv—Agjv—hdvisacyclein T(V & W)RT(V & W).
Since
(p@p)C=(¢®@¢)Aryv — Aciax)pv — hdv = dhv

and pp: TVeW)T(VaeW) - CLHOX)® CLH(QX) is a quasi-isomorphism, there exists an element
xeT(VaeW)T(V e W) such that de = (. Since pp: TVoW)T(VaoW) - CLOX)® CHOX)
is a surjective quasi-isomorphism, there exists a cycle z € T(V e W) @ T(V @ W) such that (p ® p)z =
hv — (p ® p)x. Set h'v = x + 2. Then dh'v + Wdv = (j ® j)Aryv — Agjv, (p @ p)h'v = hv, and
MveT(VaeW)oT(VaeW). This terminates the inductive construction of A’'.

We define a second diagonal A; on T(V & W) and a (A1, Ag)-derivation k satisfying dk + kd = A — Ag
inductively by setting Ajv = Apyv, Ajw = Agw + kdw, kv = h'v, and kw = 0. It is clear that
EKT(VeW)) cT(VeW)T(V @ W) and that A is compatible with the augmentation. By construction,
the monoid (T(V @ W), A1) is weakly equivalent to TV.
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It remains to show that the monoids (T(V & W), Ag) and (T(V & W), A;) are weakly equivalent. We
abbreviate U = V @ W and consider the Baues-Lemaire cylinder on the DGA T'(U). This is (cf. [1, 2.4])
the DGA T(Uy ® Uy @ sU) where Uy and U; are copies of U; the differential is defined by dug = ipdu,
duy = i1du, and dsu = u; — ug — Sdu where ig and iy are the obvious inclusions T(U) — T'(Uy ® Uy & sU)
and S is the (i1,14¢)-derivation induced by s. Denote by r the projection T(Uy @ Uy @ sU) — T(U) defined by
r(up) = u, r(u1) = u, and r(su) = 0. The maps i, i1, and r are quasi-isomorphisms. Consider the following
commutative diagram of chain algebras where K is defined by Kug = Agu, Ku; = Aju, and Ksu = ku:

((10®i0)A0,(i1®i1)A1)

TUNOTU TUyoUr&sU)@T Uy Uy & sU)
(io,il)i N\LT(@T
T(Up® U, @sU) e TU @ TU

We construct a diagonal A on T'(Up & Uy @ sU) that is compatible with the augmentation and that is a
lifting in the above square. Suppose A is defined in degrees < n. In order to define A in degree n we only
have to define Asu where u € U, _1 is a basis element. Consider the element

2= (1o ®10)Aou — (11 ®i1)A1u+ ASdu+ d(1®@ su+su®1) € T(Uy e Uy & sU) @ T(Uy & Uy & sU).
Then
2z = (i0®ig)(1@u+u®l+Aju)— (i1 ®i1)(1@ut+u®l+Au)+1® Sdu+ Sdu® 1+ ASdu
+1® (ug —ug — Sdu) + (ug — ug — Sdu) ® 1
= (ip ®ig)Aou — (i1 ®141)Ayu + ASdu
€ TWdU @sU)T(Uy®U, @ sU).

It is easily checked that z is a cycle and that (r ® r)z = —dku. Since the morphism
rr:TUpoU1asU)T(UsaUrasU) - TU)TU)

is a quasi-isomorphism, there exists an element & € T'(Uy @ U; @ sU) @ T(Up @ Uy @ sU) such that d§ = z.
Since it is a surjective quasi-isomorphism, there exists a cycle { € T(Uy @ Uy @ sU) @ T(Up @ Uy @ sU) such
that (r®r)¢ = ku+ (r®@mr)§. Set Asu =1® su+su® 1 — &+ (. A straightforward calculation shows
that dAsu — Adsu = 0. Since =+ ¢ € T(Uy @ U; @ sU) @ T(Uy ® Uy @ sU), A is compatible with the
augmentation. Since (r®@r)Asu = (r®r)(—£+¢) = ku = Ksu, A is a lifting for the above square. Equipped
with the diagonal A the cylinder T(Uy ® Uy @ sU) becomes a monoid in WDGC. Since ¢ and i1 are quasi-
isomorphisms, this monoid is weakly equivalent to T'(U) = T(V & W) for each of the diagonals Ag and A;. O

In the remainder of this section we suppose that k = F.

Let 1 : S3 — 52 be the Hopf map. As is customary we denote by 12 the composite o X5 : §* — §2.
It is well known that cat S* U,2 €® = 2. Since S? U,2 e® has the same Adams-Hilton model as 52 v 5%, all
known algebraic approximations of cat are 1 for S2 Up2 5. We will show that £(S5? Up?2 e) = 2.

Proposition 10.10. An Anick model of S? Up2 e5 is given by the DG Hopf algebra T (z,y) where the degree
of x is 1, the degree of y is 4, the differential is 0, and the diagonal is given by Ax = 1@z + 2z ® 1 and
Ay=10y+y®1+2?®r?

Proof: We first calculate an Anick model of XCP? = 53 Uy, ¢®. An Adams-Hilton model of XCP? is the
DGA (T'(a,b),0) where the degree of a is 2 and the degree of b is 4. Equip T'(a, b) with a diagonal A such that
it becomes an Anick model of YCP?. Then T(a,b) is isomorphic to the Hopf algebra H,QXCP?. Clearly,
Aa=1®a+a®1. We show that Ab=1®b+b® 1+ a® a. Consider the following commutative diagram:

H3SCP? —> H3v.05CP?2 — > H2QNCP?

Sq? i = i Sq? i Sq?

H5Y.CP? B H5YQXCP? — H*QXCP2.
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Since the Toomer invariant of SCP? is 1, ev* : H*XCP? — H*YQXCP? is injective. Since for dimension
reasons the upper line of the diagram is an isomorphism, Sq¢? : H2QXCP? — H*QXCP? is injective. For
the element a" € Hom(T(a,b),Fy) = H*QXCP? dual to a, we thus have a¥ Ua" = Sq?a" # 0. Since a? is
primitive, we have (a* Ua")a? = 0 and hence (a¥ U a¥)b = 1. It follows that the coefficient of a ® a in Ab
is 1 and thus that Ab=1®b0+bR 1+ a® a.

It is well known that an Adams-Hilton model of the Hopf map 1 : S* — S? is given by T(a) — T(x),
a — 2. Tt follows that an Adams-Hilton model of the induced map ©CP? — S2 U, €° is given by
¢ : T(a,b) — T(z,y),a — x2,b — y. Choose a diagonal A on T(z,y) such that T(z,y) is an Anick
model of 5% U,2 €°. Then there exists a homotopy h such that dh + hd = A¢ — (¢ ® ¢)A. We obtain
Ay=A¢pb= (0@ P)Ab+dhb+hdb= (¢ @) (1@ b+bR14+a®a) =1®0y+y®1+2>® x> Since one
must have Az = 1® z + z ® 1, the result follows. ]

Lemma 10.11. Let TU be a WDGC monoid with zero differential such that trivcatryk < 1. Then there
exists a TU-WDGC (TU @ (k' V @ sV @ sU),d, A) such that

e d1®v)=0 forallveV,

e dl®sv)—1@veUVeT> U (kaV) foralveV,

e dl®su)—u®leclUVoT U (kdV) foraluel,

e AkaV)CkVekaV,

e Ak (sVasl) Cka(sVasU)oTU (kaV)oTU® (ko V)k (sV @ sU).

Proof: We do not use the general hypothesis that k = Fa, and the lemma holds over an arbitrary field k. Since
trivcatrpk < 1, there exists a cofibration j : C' — D and an TU-equivariant morphism ¢ : TU ® C — P
such that trivcatyy P = 0 and P Us (TU ® D) ~ k. We may suppose that C is fibrant and that ¢ is a
cofibration. Since, by 10.3, C and H = HC are weakly equivalent, we may choose a (necessarily injective)
weak equivalence ¢ : H — C. Set K = HD and choose a quasi-isomorphism o : D — K such that Ago and
(0 ® 0)Ap are chain homotopic. Since the differentials in H and K are zero, oj¢ : H — K is a morphism
in WDGC. Since 6(TU ® ¢) is a cofibration, we have P Urygn (TU ® K) ~ PUrygn (TU ® D) ~ k in
TU-DGM and hence PUrygn (TU @ K) ~ k in TU-WDGC. Consider the functorial factorization of oj¢
in the cofibration i : H — (H I K) @ sH and the weak equivalence r : (HI1 K) @ sH = D. We remark that
the cofibration ¢ factors through the coproduct H II K and that we have TUQ (HIIK) =TUQH|[[TUR K.

Choose a fibrant model P[[(TU ® K) . @ and form the following diagram where all squares are pushouts:

s(TU
TU @ H (TU®¢) ]ID
TU @ (HIK) PII(TU ® K) = Q

| |

TU® (HUK)®sH)>— (P][[TU®K))®TU @ sH>—>Q & TU @ sH.

By construction, Q ® TU @ sH ~ (P[[(TU @ K)) ® TU ® sH ~ P Urpen (TU ® K) ~ k. It is clear
that triveatry @ = triveatyy (P][(TU ® K)) = 0. Thanks to 10.3 we may choose a weak equivalence
B:TU @ (k@dV) > Q where k © V is a WDGC with zero differential. Choose a weak equivalence
7:Q 5 TU® (k@ V) in TU-DGM such that 73 ~ id and 7y ~ id. Then there exists a chain homotopy
h:Q—TU®keV)TU® (ko V) such that dh+hd = (y®7)Aq — Arvgxev)7- Since the differentials
of TU® (HIK) and TU ® (k@ V) are zero, the composition of v and the middle line of the above diagram
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is a morphism in TU-WDGC. We can thus form the following pushout in TU-WDGC:

TU®HIK)—— = TU® ko V)

| |

TU® (HUK)®sH) —TU ® (k

m |

)
Clearly, TU ® (k ® V @ sH) ~ k. By construction, dk® V) = 0, AkoV) CkeVeokaV,
dk®@sH) CTU® (k@ V), and Ak®sH) CkesHTU® ko V)aTU® (ke V)®k® sH.
Consider the differential TU-module TU ® (k & sU) where d(1 ® su) = u® 1. Then TU ® (k & sU) ~ k.
Pick a weak equivalence of differential TU-modules ¢ : TU ®@ (k ® sU) = TU ®@ (k ® V @ sH). Killing
the action of TU, we obtain a quasi-isomorphism 1 : (k @ sU,0) = (k @V @ sH,d). For u € U, write
Ysu = v, + shy,. Then (1 ® su) = 1 @ vy, +1® shy + &, where &, € TU @ (k@ V @ sH). We
hence have d(1 ® shy,) = di)(1 ® su) — d&, = u® 1 — df,. Denote by 7 the map H — U defined by
h — pryd(1 @ sh). Since d§, € U@V ® T>'U @ (k ® V), we have wh, = u. This shows that the map
U — H, u v h, is a section of 7. We may thus identify h, and v and bpht H = ker 7 ® U. The projection
p:k@V@s(ker 1)@ sU — k@ sU commutes with the differentials. Since p = id, p is a quasi-isomorphism.
It follows that ker p = (V @ s(ker 7),d) is acyclic and thus that d : s(ker ) — V is an isomorphism.
Using this isomorphism to identify ker 7 = V| we obtain the TU-WDGC TU ® (k® V @ sV @ sU). For
u€U wehave d1®su) —u®1l=—-dé, eURV OT>'U® (kd V). For v € V we have dsv = v and
pryd(1 ® sv) = 7w =0 and hence d(1® sv) —1®v e UV & T>U ® (k® V). The lemma follows. O

Proposition 10.12. ((S%U,2 €°) = 2.

Proof: It is clear that £(S? U,2 €®) < 2. Since £(5? U2 €®) = trivcaty(, ) F2, we only have to show that
trivcatp(,,,)F2 > 2. Suppose that trivcaty(g,,)Fo < 1. Then there exists a T'(x,y)-WDGC

P=T(z,9)® (F2 @V @ sV @ Fo{sz, sy})

such that the differential and the diagonal satisfy the conditions of 10.11. Choose a basis B of V and form
the “tensor basis”
M = {17 :177 y’ ‘/1;27 xy7 y:r7 y27 A } ® (B U SB U {1’ SSE, sy})

of P. Denote by <, > the associated symmetric bilinear form. We may suppose that there is a an element
v € B such that 1 ® v and 1 ® sv are primitive and d(1 ® sv) = 1 ® v + 22 ® 1 (if no such element exists,
adjoin one). If necessary change B such that for b € B < d(1 ® sb), 2> ® 1 > 0 implies b = v. On P® P we
work with the basis M ® M the associated bilinear form of which we also denote by <,>. For £ € P and
m, m’ € M we have the following two formulas which are easily verified:

o <Ad,mem >= > <déu><Au,m@m’ >,
ueM

o <dA{,memM >= Y <Afuem ><duym >+ Y ()" <AEm U >< du,m >.
ueM ueM

Using these formulas, the fact that < d(1 ® sb),2?> ® 1 > 0 implies b = v, and, of course, what we know by
10.11 about d and A we calculate

1 = <dl®sy),y®1l>

= <Adl®sy),2°@1e2°1 >
<A(l®sy),lesver’0l>+<A(l®sy),7°21010sv >
<A(1l®sy),losvR’01>+<A(l®sy),leveless>+<Al®sy), 7?1211 sv >
+<A(l®sy),l®sv10v>4+<A(1l®sy),leveledsv>+<A(1l®sy),l@sv®l®v >
<dA(1®sy), 1202’01 >+<dA(1®sy),7’@110v>+<dA(1®sy),l@vel®v >
<d(1®sy), 2> @v >+ <d(1®sy),2>@v > +0
0.
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This is a contradiction. It follows that triveaty(, ,\Fo = 2. |

The fact that £(S?U,;2 €°) = 2 shows that the diagonal of H,(Q(S? U, €°)) is an obstruction for S U,z €°
to be a co-H-space. The fact that £(S* U,2 €°) = 2 suggests furthermore that the invariant ¢ could be an
appropriate means to study the relation between the L.-S. category of a space X and the diagonal of the
Hopf algebra H,(2X).

In 8.4 we have seen that the inequality BecateM < EcatgM can be strict. The following proposition
shows that this is also the case for the inequality EcatqM < trivcatg M.

Proposition 10.13. EcatCi(Q(SQUn2e5))F2 = Eca?‘/]“(m’y)]Fg =1.

Proof: Since Ecatci(Q(SQUnQES))FQ > Mcat S? Up2 e® = 1, we only have to show that Ecatp(,,,)F2 < 1. Let
E be the T(z,y)-WDGC T(z,y) ® Fo{1,wq, w3, wy, ws} where the indices give the degrees and

e d(lRwy) =201, A(lQw:) =10w®1®1+1R01®1& ws,,

e d1@ws) =201, A(1Qw;) =10w;®1®1+101010w;+201Q01Qw+1Qw, ¥z ® 1,
e dl@ws) =2Qws+1Qws, All@uwy) =1ws, ®1R1+1®1®1® wy,

e d1@ws)=y®1, Alew;) =10w;®101+1101Qws+10uw;®z?® 1.

Then E ~ Fy. Let P be the T'(z,y)-WDGC T'(z,y) ® Fo{1, wa, w3, wh, wy, ws, wh, we } where the differential
and the diagonal extend the differential and the diagonal of E and where

e dl@uwy) =201, Allow;)=1uw,®1lel+181® 1w},
e dlouwl)=y®1, Al®uw,)=10uw,®101+10101Quw;,+1Quw;®a?®1,
o d(1Qws) = 1Qws+1Qwi, A(l®ws) =10we®1®1I+180101Q0ws+1Qws®rQws + 1@ WSz @ws.

Then the inclusion E — P is a T'(x, y)-equivariant morphism. In order to conclude it suffices to show that
trivcatyp(g,,) P < 1. Let F' be the sub T'(z,y)-WDGC of P generated by 1,ws,ws,ws. Then the inclusion
F — P is a weak equivalence. Consider the sub WDGC T'(z,y) ® Fo & Fo ® Fo{ws,w),wi} of F. The
pushout

123

T(z,y) @ T(z,y) T(z,y)

|

T(x,y) o2 (T(I,y) ®IF2 SY ]FQ ®F2{w23wévwg}) I F»

shows that trivcaty(, )P = trivcaty(, ) F' < 1. This accomplishes the proof. O

Remark 10.14. The invariant £ is closer to cat than M-category. If one wishes to define an invariant that is
closer to cat than A-category one can consider the invariant trivcatCi(Qy)Ci(F r), calculated in the category
DGC, of connected DGC’s. This is a monoidal cofibration category and the functor C} : Top, — DGCy
is a model functor. As the embedding DGCy — DGC is a model functor, Acat f < trivcatCi(Qy)Ci(Ff)
for amap f: X — Y between 1-connected spaces of finite type. As the forgetful functor DGCy — WDGC
is a model functor, trivcatcs a(seu, . e5))F2 2 0(S? U2 ) =2 > 1= Acat S? U, €.

References

[1] D. J. Anick: Hopf algebras up to homotopy, J. Amer. Math. Soc. 2 (1989), 417-453.

[2] H. J. Baues: Algebraic Homotopy, Cambridge Univ. Press, Cambridge (1989).

[3] H. J. Baues and J.-M. Lemaire : Minimal models in homotopy theory, Math. Ann. 225 (1977), 219-242.

[4] K. S. Brown: Abstract homotopy theory and generalized sheaf cohomology, Trans. AMS 186 (1973), 419-458.
[5] J.-P. Doeraene: LS-category in a model category, J. Pure Appl. Alg., vol 84 (1993), 215-261.

36



[6] A.Dold and R. Lashof: Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math. Vol. 3 (1959),
285-305.

[7] A. Dold and R. Thom: Quasifaserungen und unendliche symmetrische Produkte, Ann. Math. (2) 67 (1958), 239-281.
[8] Y. Félix and S. Halperin: Rational LS category and its applications, Trans. Amer. Math. Soc., vol 273 (1982), 1-37.
[9] Y. Félix, S. Halperin, J.-M. Lemaire, and J.-C. Thomas: Mod p loop space homology, Invent. Math. 59 (1989), 247-262.
[10] Y. Félix, S. Halperin, and J.-C. Thomas: Adams’ cobar equivalence, Trans. Amer. Math. Soc., vol 329 (1992), 531-549.

[11] Y. Félix, S. Halperin, and J.-C. Thomas: Differential graded algebras in topology, Handbook of Algebraic Topology, Elsevier
(1995), 829-865.

[12] Y. Félix, S. Halperin, and J.-C. Thomas: Rational homotopy theory, Graduate Texts in Mathematics 205, Springer-Verlag
(2000).

[13] T. Ganea: Lusternik-Schnirelmann category and strong category, Illinois J. Math., vol 11 (1967), 417-427.
[14] E. Getzler and P. Goerss: A Model Category Structure for Differential Graded Coalgebras, preprint (1999).

[15] S. Halperin and J.-M. Lemaire: Notions of category in differential algebra, Algebraic Topology - Rational Homotopy LNM,
vol 1318, Springer Verlag, 1988, 138-154.

[16] K. Hess: A proof of Ganea’s conjecture for rational spaces, Topology 30 (1991), 205-214.

[17] K. Hess and J.-M. Lemaire: Generalizing a definition of Lusternik and Schnirelmann to model categories, J. Pure Appl.
Alg. 91 (1994), 165-182.

[18] M. Hovey: Model categories, Mathematical Surveys and Monographs. 63. Providence, RI: AMS (1999).
[19] M. Hovey: Monoidal model categories, preprint (1998).

[20] D. Husemoller, J. Moore, and J. Stasheff: Differential homological algebra and homogeneous spaces, J. Pure Appl. Alg. 5
(1974), 113-185

[21] E. Idrissi: Quelques contre-exemples pour la LS-catégorie d’une algebre de cochaines Ann. Inst. Fourier 41, 4 (1991),
989-1003.

[22] I. M. James: Lusternik-Schnirelmann category, Handbook of Algebraic Topology, Elsevier (1995), 1293-1310.

[23] B. Jessup: Rational L-S category and a conjecture of Ganea, J. Pure Appl. Algebra 65 (1990), 57-67.

[24] T. Kahl: Lusternik-Schnirelmann-Kategorie und axiomatische Homotopietheorie, Diplomarbeit, FU Berlin (1994).
[25] T. Kahl: LS-catégorie algébrique et attachement de cellules, Canad. Math. Bull. Vol. 44 (4) (2001), 459-468.

[26] T. Kahl and L. Vandembroucq: Gaps in the Milnor-Moore spectral sequence, Bull. Belg. Math. Soc., to appear.

[27] J.-M. Lemaire and F. Sigrist: Sur les invariants d’homotopie rationnelle liés & la L.S. catégorie, Comment. Math. Helv. 56
(1981), 103-122.

[28] L. Menichi: Sur ’algebre de cohomologie d’une fibre, These, Lille (1997).
[29] H. Munkholm: DGA algebras as a Quillen model category, J. Pure Appl. Alg. 13 (1978), 221-232.
[30] D. Quillen: Rational homotopy theory, Ann. Math. 90 (1969), 205-295.

[31] S. Schwede and B. Shipley: Algebras and modules in monoidal model categories, Proc. Lond. Math. Soc., I11. Ser. 80, No.
2 (2000), 491-511.

[32] J. Stasheff: Associated fiber spaces, Michigan Math. J. 15 (1968), 457-470.
[33] G. H. Toomer: Lusternik-Schnirelmann category and the Moore spectral sequence, Math. Z. 138 (1974), 123-143.

Universidade do Minho
Departamento de Matematica
Campus de Gualtar

4710 Braga

Portugal

e-mail: kahl@math.uminho.pt

37



