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Abstract 

 

The work presented in this thesis has been developed at the Department of Civil 

Engineering of University of Minho, Portugal, and at the Department of Structural 

Engineering of Politecnico di Milano, Italy. 

Recent sudden collapses of famous historical buildings, as the Pavia Civic Tower in 

1989 or the Noto Cathedral in 1996, has drawn the attention of researchers to the 

compressive behaviour and time-dependent effects of heavily stressed masonry structures, 

with an emphasis in multiple-leaf pillars and walls, as this typology is frequently found in 

historical centres. The objective of this research is to contribute to the present state of 

knowledge in these fields. 

For masonry under compression, a validation of simple analytical methods and non-

linear continuum simulations based in plasticity and cracking has been performed. In fact, 

sophisticated non-linear models are now standard in several finite element based programs 

but the ability of such models to predict the compressive strength of masonry based on the 

properties of the constituents, units and mortar, is still an insufficiently debated issue. In 

the present study, the results obtained using non-linear continuum models and simple 

analytical methods, based on elastic considerations, have been compared with experimental 

results available in literature. A clear overestimation of the experimental strength by both 

numerical models and analytical methods was found, except by the empirical formulas 

provided by the European and North-American codes, which underestimated the 

experimental strength. 

Alternative modelling approaches that account for the discrete nature of masonry 

components are therefore of interest, in order to provide reliable estimations of masonry 

compressive strength. A detailed analysis of a particle model consisting in a 

phenomenological discontinuum approach to represent the micro-structure of units and 

mortar was therefore addressed. The micro-structure attributed to masonry components is 

composed by linear elastic particles of polygonal shape separated by non-linear interface 

elements. All the inelastic phenomena occur in the interfaces and the process of fracturing 

consists of progressive bond-breakage. Clear advantages have been shown by the particle 

model, when compared to continuum models. 
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In the referred collapses of the Pavia Civic Tower or the Noto Cathedral, the time-

dependent mechanical damage of heavily stressed walls and pillars was identified as a 

possible main cause of collapse. In this study, an experimental investigation has been 

conducted on a total of 25 ancient masonry prisms, which included standard compression 

tests, short-term creep tests and long-term creep tests. The results obtained and their 

careful interpretation are provided. 

Multiple-leaf masonry walls and pillars are a typology often found in historical 

buildings, namely in the Noto Cathedral. Nevertheless, predicting the compressive 

behaviour of multiple-leaf masonry is a challenging issue, given the influence of a wide 

range of factors as the mechanical properties of the leaves, the leaves dimensions and the 

way the leaves are connected to each other. In the present study, an integrated 

experimental-numerical research program on the behaviour of large three-leaf masonry 

wallets subjected to shear and compression has been setup and novel experimental results 

are introduced, together with a careful numerical interpretation. A discussion on simplified 

calculations for practical assessment of existing walls is also addressed. 
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Resumo 

 

O trabalho apresentado nesta tese foi desenvolvido no Departamento de Engenharia Civil 

da Universidade do Minho e no Departamento de Engenharia Estrutural do Politecnico di 

Milano, Itália. 

O colapso súbito de algumas construções históricas famosas ocorrido recentemente, 

como por exemplo a Torre Cívica de Pavia em 1989 e a Catedral de Noto em 1996, 

despertou o interesse da comunidade científica sobre o comportamento à compressão e 

efeitos diferidos em estruturas de alvenaria sob estados de compressão muito elevados, 

nomeadamente em paredes e pilares de alvenaria composta, dada a importante presença 

deste tipo de elementos em centros históricos. Este trabalho tem como objectivo contribuir 

para o presente estado de conhecimento nestas áreas. 

No caso da alvenaria submetida a esforços de compressão, procedeu-se à validação 

de métodos analíticos simplificados e de modelos não lineares contínuos, baseados em 

plasticidade e fendilhação. De facto, modelos não-lineares sofisticados são hoje correntes 

em diversos programas de elementos finitos. No entanto, a capacidade desses modelos em 

estimar correctamente a resistência à compressão da alvenaria, com base nas propriedades 

dos componentes, não se encontra ainda devidamente analisada. Neste trabalho, os 

resultados obtidos utilizando métodos numéricos do contínuo não-linear e métodos 

analíticos simplificados, baseados em hipóteses do domínio da elasticidade, foram 

comparados com resultados experimentais disponíveis na bibliografia. Constatou-se que os 

resultados numéricos sobrestimavam claramente os resultados experimentais, exceptuando 

os resultados obtidos de acordo com os regulamentos europeu e norte-americano, que os 

subestimavam. 

Desta forma, abordagens numéricas alternativas que considerem a natureza discreta 

dos componentes da alvenaria revestem-se de grande importância para uma correcta 

previsão da resistência à compressão da alvenaria. Realizou-se, assim, uma análise 

detalhada de um modelo de partículas consistindo numa abordagem fenomenológica e 

discreta para representar a micro-estrutura das unidades e da argamassa. A micro-estrutura 

atribuída aos componentes da alvenaria é constituída por partículas de forma poligonal e 

comportamento elástico linear, separadas por interfaces com comportamento não-linear. 

Todos os fenómenos inelásticos ocorrem nas interfaces e o processo de fractura consiste na 
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progressiva rotura da ligação entre partículas. Claras vantagens foram observadas pelo 

modelo de partículas quando comparado com o modelo contínuo. 

Nos referidos casos de colapso da Torre Cívica de Pavia e da Catedral de Noto, o 

comportamento diferido de paredes e pilares de alvenaria sob elevadas cargas verticais foi 

apontado como uma possível principal causa de colapso. Neste estudo, foi realizada uma 

investigação experimental em 25 provetes de alvenaria antiga, que inclui ensaios 

monotónicos, ensaios de fluência de curto-prazo e ensaios de fluência de longo-prazo. Os 

resultados obtidos e a sua interpretação cuidada são apresentados neste trabalho. 

Paredes e pilares de alvenaria composta são uma tipologia frequentemente 

observada em construções históricas, nomeadamente na Catedral de Noto. No entanto, 

prever o comportamento à compressão de paredes compostas de alvenaria representa um 

importante desafio, dada a influência de um elevado número de factores como as 

propriedades mecânicas dos panos, a dimensão relativa dos panos e a forma como os panos 

estão ligados entre si. Neste estudo, novos resultados experimentais em provetes de três 

panos de grandes dimensões, ensaiados ao corte e à compressão, são apresentados em 

conjunto com uma interpretação numérica dos resultados. É apresentada, ainda, uma 

discussão sobre cálculos simplificados para avaliação expedita de paredes existentes. 
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1 Introduction 

On 17th March 1989 the Civic Tower of Pavia suddenly collapsed without showing any 

apparent warning signs. Dramatically, four people were killed and severe damage was 

inflicted to surrounding buildings. The 60 m height tower was topped by a 16th century 

belfry while the main body had been built in successive phases during the 11th and 13th 

centuries. Nevertheless, the tower of Pavia is not an isolated case and several other famous 

examples can be referred, such as the collapse of the St. Magdalena bell-tower in Goch, 

Germany, in 1993, the partial collapse of the Noto Cathedral, Italy, in 1996, Binda et 

al. (2003a), and the severe damage exhibited by the bell-tower of the Monza Cathedral, 

Italy, see Modena et al. (2002). These events were a motive of great concern for the public 

authorities and have drawn the attention of researchers to the compressive behaviour and 

time-dependent effects of heavily stressed masonry structures. 

Nevertheless, the compressive failure mechanism of quasi-brittle materials is rather 

complex, especially when compared with tensile failure. Compressive failure is 

characterized by the coalescence and growth of diffuse micro-cracks, accompanied by 

progressive localization of deformations and development of traction free macro-cracks. At 

ultimate stage, a distributed continuous pattern of splitting and shear cracks is formed, 

being responsible for failure, see Vonk (1993). 

The most relevant material property when dealing with compression is clearly the 

compressive strength. Experimentally, this property can be obtained according to the 

European norm EN 1052-1, CEN (1998a), which specifies a complex testing specimen 

similar to the RILEM specimen, see Figure 2.1a. Mann and Betzler (1994) observed that, 

initially, vertical cracks appear in the units along the middle line of the specimen, i.e., 

continuing the vertical joint. Upon increasing deformation, additional cracks appear, 

normally vertical cracks at the smaller side of the specimen that lead to failure by splitting 

of the prism. Experimental tests on representative masonry specimens are, however, 

relatively costly and not practical for design purposes. This fact persuaded researchers to 

investigate semi-empirical and analytical relations to predict masonry strength based on the 

components characteristics and on the type of masonry. Several semi-empirical relations 

can be gathered from the literature and the reader is referred to Rostampour (1973), 

Kirtschigg (1985), Haseltine (1987) and Vermeltfoort (1994) for details. Both European 
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and North-American masonry codes / specifications, CEN (2003) and ACI (2004), use 

empirical relations to estimate the compressive strength of masonry from the compressive 

strength of units and mortar. This empirical approach is obviously conservative and results 

from the envelope of a large set of experimental tests, meaning that the experimental 

strength of masonry can be severely underestimated. 

Although empirical relations provide a safe basis for establishing design code 

provisions, little insight on the physical behaviour is obtained when compared to analytical 

methods. Today, it is well accepted by the research community that masonry compressive 

failure is mainly governed by the interaction between units and mortar. Assuming 

compatibility of strains between the components, the difference in stiffness leads, under 

uniaxial compressive loading, to a state of stress characterized by compression/biaxial 

tension of units and triaxial compression of mortar. This holds true, of course, when mortar 

is more deformable than units, which is generally the case of ancient masonry. In the 

pioneer work of Hilsdsdorf (1969), this phenomenon was firstly described and equilibrium 

based methods were derived to predict the masonry strength. Following this original work, 

several other theories have been developed and the reader is referred to Khoo and 

Hendry (1973), Francis et al. (1971), Atkinson et al. (1985) and Ohler (1986). 

The new developments in computational mechanics witnessed in the last few 

decades have lead to the application of sophisticated numerical methods in the analysis of 

masonry structures. In particular, detailed modelling approaches where the masonry 

constituents (units and mortar) are individually represented have shown to be of great 

interest, see Lourenço and Rots (1997). In this way, the basic phenomena involved in 

masonry loading, such as load transfer mechanisms between the constituents, can be 

analysed. 

Continuum and discontinuum (or discrete) approaches to model the masonry 

components can be used with the aim of reproducing the experimental behaviour of 

masonry. In the case of masonry under uniaxial compression, some authors indicate that 

continuum finite element micro-models are capable of obtaining an adequate response of 

the masonry composite, introducing the behaviour of masonry components, e.g. Brencich 

and Gambarotta (2005) and Roman and Gomes (2004). 

Several advanced computational approaches are currently available for structural 

analysis developed in discontinuum frameworks, including the finite element method with 



 1. Introduction 3

 

 

interface elements, discrete element methods and lattice models. The finite element method 

with interface elements widely used for structural analyses purposes and different 

approaches can be found in literature. For simple geometries under symmetric loading or 

when the crack path is known in advance from experiments, interface elements can be 

embedded in the finite element mesh along expected crack paths, see Rots (1988), 

Lourenço and Rots (1997) and Lofti and Shing (1994). If the crack pattern is not known in 

advance, expensive remeshing techniques, Ingraffea and Saouma (1985), or approaches 

where a sufficient number of interface elements are included in the mesh to account for 

potential crack paths, Carol et al. (2001), may be adopted. 

Since the original work of Cundall (1971), discrete element methods have been 

receiving a growing interest from the scientific community due to the capabilities of such 

methods to deal with discrete media. As can be gathered from the literature, discrete 

element methods have been widely used to analyse the response of blocky assemblages, 

especially in the field of rock mechanics although references can also be found for blocky 

masonry structures, see Lemos (2001). In the field of concrete, discrete element methods 

were used to carry out meso- and micro-level analyses, see Lorig and Cundall (1987) and 

Vonk (1993). 

Lattice models have been also receiving vivid attention. Its main concept is the 

discretization of the continuum into a framework of beam or truss elements. The 

simulations consist in a set of linear elastic analyses, each one corresponding to a load step. 

At the end of each load step, the adopted failure law is evaluated and the elements falling 

in its range are removed from the lattice. Lattice models have been extensively utilized in 

the study of tensile fracture propagation and references can be found in Schlangen (1993), 

Van Mier et al. (1995), Bazant and Planas (1998) and Van Vliet (2000). Recently, a lattice-

type model has been proposed by Cusatis et al. (2003) aiming at a correct simulation of 

both tensile and compressive fracture processes. 

Another important aspect in the analysis of the compressive behaviour of masonry 

are long-term effects. In fact, time-dependent mechanical damage under high sustained 

loading was identified as a main possible cause of collapse of the Pavia Civic Tower and of 

the Noto Cathedral. 

Masonry creep depends mainly on factors such as the stress level and the 

temperature / humidity conditions but cyclic actions, such as wind, temperature variations 
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or vibrations induced by traffic or ringing bells, in the case of bell towers, have a 

synergetic effect, increasing material damage. For these reasons, high towers and heavily 

stressed pillars are the structural elements where time-dependent damage can severely 

occur, see Anzani et al. (1995) and Anzani et al. (2000). A comprehensive description of 

the phenomena involved in the time deformation of masonry can be found in Van 

Zijl (2000). 

For low stress levels, below 40 to 50% of the compressive strength, creep 

deformation can be assumed proportional to the stress level. References on masonry creep 

within the elastic range are rather abundant in literature, see e.g. Ameny et al. (1984), 

Lenczner (1986) and Brooks (1990). On the contrary, creep under high stresses, even in the 

case of concrete, is not a sufficiently debated issue, see Bazant (1993), Papa et al. (1998) 

and Mazzotti and Savoia (2003). The fact that standard design methods for new structures 

are based on linear elastic material hypothesis has contributed to diminish the interest of 

researchers on this topic. However, ancient masonry structures are often working under 

low safety margins according to modern safety regulations. This can be due to inadequate 

knowledge of mechanics or structural modifications that occurred along centuries, 

resulting in overweighting of the structure and rendering importance to non-linear creep. 

Multiple-leaf masonry walls and pillars are a typology often found in historical city 

centres worldwide, see e.g. Binda et al. (1999). Therefore, this typology is of major 

importance when analysing the compressive behaviour of masonry structures. The last 

decades have witnessed the severe damage, or even collapse, exhibited by several famous 

monumental buildings due to high compressive loading in multiple-leaf pillars and walls, 

as the referred collapse of the Noto Cathedral or the severe damage found in the churches 

of the Santissimo Crocefisso and Santissima Annunziata in Italy, Binda et al. (2001). 

Most structural problems exhibited by three-leaf walls and pillars result from the 

poor or absent connection between the leaves, the weakness of the inner core or the 

deterioration of the mortar in the external joints. Several techniques such as grout injection 

or bed-joint reinforcement are today available for structural retrofitting, see Vintzileou and 

Tassios (1995), Toumbakari (2002) and Valluzzi et al. (2004). Nevertheless, reliable safety 

assessment and retrofitting with minimum intervention requires proper insight on the 

structural behaviour and failure mechanisms. 
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References in literature are rather scarce on this topic. Simple analytical models 

were proposed by Binda et al. (1991) to analyse the behaviour of multiple-leaf walls under 

compression. Later on, a first experimental assessment of the shear behaviour was carried 

by Binda et al. (1994) using two-leaf small scale specimens. The compressive behaviour 

has been also experimentally assessed by Egermann and Neuwald-Burg (1994) on three-

leaf wallets. It is therefore believed that further insight on load-transfer and compressive 

failure mechanisms are needed. 

1.1 Scope and objective of the research 

This research focuses on the behaviour under compression of unreinforced masonry 

structures. Although mainly devoted to the study of historical structures, some of the 

conclusions are also relevant in the scope of new masonry. From the above text, it becomes 

clear that ancient structures can not be assumed to last forever and that knowledge on the 

phenomena involved in compressive failure is required. In particular, reliable strength 

estimation, long-term effects in heavily stressed structures and load transfer mechanisms in 

multiple-leaf walls and piers are issues where further investigation is needed. The 

objectives of this study are: 

a) to validate analytical methods and continuum non-linear models in the collapse 

prediction of masonry subjected to short-term static loads; 

b) to seek for alternative numerical models that can adequately estimate the 

compressive strength of masonry under short-term static-loads; 

c) to obtain an adequate experimental characterization of creep behaviour of 

ancient masonry under high sustained stresses; 

d) to obtain an experimental description of the compressive and shear behaviour of 

multiple-leaf masonry walls and, to interpret and numerically reproduce the 

experimental results. 

1.2 Outline of the thesis 

Chapter 2 addresses the ability of continuum numerical methods, based in plasticity and 

cracking, as well as analytical methods, to provide reliable estimations of masonry 

compressive strength. The analysis is carried out using a detailed modelling strategy where 
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units and mortar are modelled separately. A discussion on the load transfer between 

masonry components is presented and special attention is given to numerical failure 

patterns, which is an issue often disregarded. Validation of the numerical results is 

performed by means of a comparison with experimental results available in literature. 

Chapter 3 introduces an alternative modelling approach to analyse the behaviour 

under compression of masonry assemblages. A meso-level approach is followed using a 

particle model, which consists in a phenomenological discontinuum approach to represent 

the micro-structure of units and mortar. This micro-structure is composed by linear elastic 

particles of polygonal shape separated by non-linear interface elements. All the inelastic 

phenomena occur in the interfaces and the process of fracturing consists of progressive 

bond-breakage. 

Chapter 4 deals with an experimental investigation on the creep behaviour of ancient 

masonry under high sustained stresses. Standard compression tests, short-term creep tests 

and long-term creep tests were considered and a comparative discussion is given. The 

experimental investigation focuses on three different types of ancient masonry specimens: 

(a) rubble prisms from the crypt of the Monza Cathedral (16th century), (b) rubble prisms 

recovered from the wall ruins of the Pavia Civic Tower (11th to 13th century) and 

(c) regular prisms recovered from the belfry ruins of the Pavia Civic Tower (16th century). 

Chapter 5 presents an integrated experimental-numerical approach to provide 

understanding into the load-transfer and compressive failure mechanisms of three-leaf 

stone masonry walls. Novel experimental results from shear and compression results in 

large three-leaf specimens are provided, which can contribute to the derivation of rational 

design rules and validation of numerical models. A careful numerical interpretation of the 

experimental results is given and a discussion on simplified calculations for practical 

assessment of existing walls is addressed. 

Chapter 6 presents an extended summary and final conclusions that can be derived 

from this study. Moreover, suggestions for future work are presented. 
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2 Validation of analytical and continuum numerical 
methods for estimating the compressive strength of 
masonry 

Masonry compressive behaviour is of crucial importance for design and safety assessment 

purposes, since masonry structures are primarily stressed in compression. However, the 

compressive failure mechanism of quasi-brittle materials is rather complex, especially 

when compared with tensile failure. Compressive failure is characterized by the 

coalescence and growth of diffuse micro-cracks, accompanied by progressive localization 

of deformations and development of traction free macro-cracks. At ultimate stage, a 

distributed continuous pattern of splitting and shear cracks is formed, being responsible for 

failure, see Vonk (1993). 

The most relevant material property when dealing with compression is clearly the 

compressive strength. Experimentally, this property can be obtained according to the 

European norm EN 1052-1, CEN (1998a), which specifies a testing specimen similar to the 

RILEM specimen, see Figure 2.1a. Mann and Betzler (1994) observed that, initially, 

vertical cracks appear in the units along the middle line of the specimen, i.e., continuing 

the vertical joint. Upon increasing deformation, additional cracks appear, normally vertical 

cracks at the smaller side of the specimen that lead to failure by splitting of the prism. 

Experimental tests on representative masonry specimens are, however, relatively costly 

and not practical for design purposes. This fact persuaded researchers to investigate semi-

empirical and analytical relations to predict masonry strength based on the components 

characteristics and on the type of masonry. Several semi-empirical relations can be 

gathered from the literature and the reader is referred to Rostampour (1973), 

Kirtschigg (1985), Haseltine (1987) and Vermeltfoort (1994) for details. Both European 

and North-American masonry codes / specifications, CEN (2003) and ACI (2004), use 

empirical relations to estimate the compressive strength of masonry from the compressive 

strength of unit and mortar. 

Although empirical relations provide a safe basis for establishing design code 

provisions, little insight on the physical behaviour is obtained when compared to analytical 

methods. Today, it is well accepted by the research community that masonry compressive 
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failure is mainly governed by the interaction between units and mortar. Assuming 

compatibility of strains between the components, the difference in stiffness leads, under 

uniaxial compressive loading, to a state of stress characterized by compression/biaxial 

tension of units and triaxial compression of mortar, see Figure 2.1b. This holds true, of 

course, when mortar is more deformable than units, which is generally the case of ancient 

masonry. 

 

ls ≥ 2 lu

hs ≥ 5 hu

3 ts ≤ hs ≤ 15 ts

hs ≥ ls

hs 

hu 

lu 

ls 

tu 

ts 

 
(a) 

 

= +

(b) 

Figure 2.1 – Uniaxial behaviour of masonry: (a) test specimen according to the European standards 

(for units with lu ≤ 300 mm and hu ≤ 150 mm), CEN (2003), and (b) schematic plane 

representation of stresses in masonry components. The subscript u refers to the unit and the 

subscript s refers to the specimen. 

 

In the pioneer work of Hilsdsdorf (1969), this phenomenon was firstly described and 

an equilibrium approach was developed to predict the masonry strength. Yet, 

Hilsdorf (1969) assumed that failure of mortar coincides with failure of masonry, which is 

not necessarily true. In the theory proposed by Khoo and Hendry (1973) this problem is 

overcome by considering a limit strain criterion based on the lateral strain exhibited by 

brick units at failure. Another relevant contribution was given by Ohler (1986), who 
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proposed an expression that in general shows good agreement with experimental data. 

Failure theories that allow following stress and strain evolution upon increasing loading 

have been also developed. Examples can be found in Francis et al. (1971) and Atkinson et 

al. (1985). 

The present study focuses on the ability of analytical methods and continuum non-

linear finite element models, based on plasticity and cracking, to reproduce the 

experimental behaviour of masonry under compression. A micro-modelling strategy 

incorporating units and mortar is followed, which is a powerful tool in the analysis of the 

composite material, see Lourenço (1996a) and Brencich and Gambarotta (2005). In 

addition, a discussion on the load transfer between the components upon increasing 

loading is presented and special attention is given to the numerical failure patterns 

obtained, which is an issue often disregarded in literature. 

2.1 Brief description of adopted experimental testing 

Binda et al. (1988) carried out deformation controlled tests on masonry prisms with 

dimensions of 600 × 500 × 250 mm3, built up with nine courses of 250 × 120 ×55 mm3 

solid soft mud bricks and 10 mm thick mortar joints. Three different types of mortar, 

denoted as M1, M2 and M3, have been considered and testing aimed at the evaluation of 

the compressive properties of the prisms. For each type of mortar, a total of three prisms 

were tested. 

The tests were carried out in a uniaxial testing machine MTS® 311.01.00, with non-

rotating steel plates and a maximum capacity of 2500 kN. The applied load was measured 

by a load cell located between the upper plate and the testing machine, while 

displacements up to the peak load were measured with a removable strain gauge, see 

Figure 2.2. In addition, the average vertical displacement of each prism was also recorded 

with the machine in-built displacement transducer, permitting to capture the complete 

stress-strain diagram, including the softening regime. In this study, the prisms vertical 

strains and elastic moduli were calculated from the transducer measured displacements. 

Teflon sheets were placed between the prisms and the loading plates in order to minimize 

restraining frictional stresses. 
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The characteristics of the masonry components in terms of compressive strength fc, 

flexural tensile strength ff, elastic modulus E and coefficient of Poisson ν are given in 

Table 2.1. The results obtained for the prisms are given in Table 2.2. Prisms P1, P2 and P3 

were built with mortars M1, M2 and M3 of increasing strength, respectively. The 

experimental failure patterns found were rather similar despite the type of mortar used, 

Frigerio and Frigerio (1985). Figure 2.3 depicts the typical failure pattern. 

 

60
0

500

             

250

 
Figure 2.2 – Tested masonry wallets and location of strain gauge measurements, Binda et 

al. (1988). The dimensions are in mm. 

 

Table 2.1 – Mechanical properties of the masonry components, Binda et al. (1988). 

E ν fc ffComponent 
N/mm2 - N/mm2 N/mm2

Unit 4865 0.09 26.9 4.9 
Mortar M1  1180 0.06 3.2 0.9 
Mortar M2 5650 0.09 12.7 3.9 
Mortar M3 17760 0.12 95.0 15.7 

 

Table 2.2 – Mechanical properties of the masonry prisms, Binda et al. (1988). 

E fcPrism type Mortar type 
N/mm2 N/mm2

P1  M1 1110 11.0 
P2 M2 2210 14.5 
P3 M3 2920 17.8 
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Figure 2.3 – Typical experimental failure patterns, Frigerio and Frigerio (1985). The shaded areas 

indicate spalling of material. 

2.2 Outline of the numerical model 

The simulations were carried out resorting to a basic cell, i.e., a periodic pattern associated 

to a frame of reference, see Figure 2.4. For the application envisaged, units and mortar 

were represented by a structured continuum finite-element mesh. However, to reduce 

computational effort, only a quarter of the basic cell was modelled assuming adequate 

conditions for the in-plane boundaries, see Figure 2.5. In such way, symmetry boundary 

conditions were assumed for the two sides along the basic cell symmetry axes and 

periodicity conditions for the two sides defining the external boundary of the basic cell. 

                   

13
0

260  

 

                                    (a)                                                   (b) 

Figure 2.4 – Definition of basic cell: (a) running-bond masonry and (b) geometry. 

 

Unit

Mortar 

 
Figure 2.5 – Model used in the simulations (only the quarter indicated was simulated, assuming 

symmetry conditions). 
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It is known that the boundary conditions and the test setup affect the response of 

masonry under uniaxial compression. This is more significant in the post-peak regime but 

the peak load and pre-peak regime are also affected, see e.g. Mann and Betzler (1994). The 

choice of an appropriate test setup resulted in the CEN specimen, CEN (1998a), which 

leads to the usage of moderately large specimens. The author assumed that the 

experimental values from the actual testing program, Binda et al. (1988), aimed at 

obtaining the “true” compressive strength of masonry and, therefore, assumed the typical 

representative volume element (or basic cell) for such a material. Of course that this 

approach is only approximate of the real geometry and the obtained numerical response is 

phenomenological. This means that a comparison in terms of experimental and numerical 

failure patterns is not possible. In particular, splitting cracks usually observed in prisms 

tested under compression, Mann and Betzler (1994), boundary effects of the specimen and 

non-symmetric failure modes are not captured by the numerical analysis. Again, most of 

these combined effects control mainly the post-peak response, which is not the key issue in 

the present contribution. 

Regarding the out-of-plane boundaries, three different approaches were considered: 

(a) plane-stress PS, (b) plane-strain PE and (c) an intermediate state, here named 

enhanced-plane-strain EPE. This last approach consists of modelling a thin out-of-plane 

masonry layer with 3D elements, imposing equal displacements in the two faces of the 

layer. Full 3D analyses with refined meshes and softening behaviour are unwieldy, and 

were not considered. Moreover, recent research indicates that enhanced-plane-stress 

analysis and 3D analysis provides very similar results, see Berto et al. (2005). 

Each approach corresponds to a different level of out-of-plane confinement. In 

plane-stress, out-of-plane stresses are precluded and the specimen can freely deform in this 

direction. This condition holds generally true at the surface of a specimen. On the contrary, 

in plane-strain, out-of-plane deformations are precluded, which is the limiting condition at 

the centre of a thick specimen. An intermediate state between these extreme conditions is 

also of interest in the evaluation of the model and the enhanced-plane-strain state was 

considered. 

For PS and PE, the masonry components were represented by approximately 1200 

8-noded quadrilateral elements with 3700 nodes, totalling 7400 degrees of freedom. 3 × 3 

Gauss integration was adopted. The material behaviour was described by a composite 
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plasticity model with a Drucker-Prager yield criterion in compression and a Rankine yield 

criterion in tension, DIANA (1999) and Feenstra (1993). The inelastic behaviour exhibits a 

parabolic hardening/softening diagram in compression and an exponential-type softening 

diagram in tension. The material behaves elastically up to one-third of the compressive 

strength and up to the tensile strength. 

For EPE, modelling of the cell was carried out using approximately 900 20-noded 

brick elements with 6650 nodes, totalling 13300 degrees of freedom (note that the tying 

adopted for the out-of-plane degrees of freedom, mean that a basically 2D model is used). 

3 × 3 × 3 Gauss integration was adopted. The material model used in 2D simulations is not 

available for 3D models and a combined model with traditional smeared crack model in 

tension, Rots (1988), specified as a combination of tension cut-off (two orthogonal cracks), 

tension softening and shear retention, and Drucker-Prager plasticity in compression had to 

be used, DIANA (1999). The models in tension provide comparable results, Lourenço et 

al. (1995) but the plasticity based model is numerically more robust. 

The loading scheme adopted in the simulations consisted in applying a vertical 

compressive stress at the upper and lower boundaries of the basic cell. The DIANA® finite 

element code, DIANA (1999), was adopted to carry out the simulations, being the non-

linear equilibrium equations that arise from the finite element discretization solved using 

an incremental-iterative regular Newton-Raphson method, with arc-length control and line-

search technique. 

2.3 Definition of the model parameters 

The parameters were obtained, whenever possible, from the experimental tests. However, 

most of the inelastic parameters were unknown and had to be estimated from other tests. 

Despite the effort made in the last decades, micro-simulations are often hindered by the 

lack of experimental data on the non-linear properties of the components. 

The elastic material properties adopted were previously given in Table 2.1 and the 

inelastic properties are fully detailed in Table 2.3. Here, c is the cohesion, ft is the tensile 

strength, φ is the friction angle, ψ is the dilatancy angle, Gft is the tensile fracture energy 

and Gfc is the compressive fracture energy (cohesion related). The value adopted for the 

friction angle was 10º (a larger value in plane-stress would implicate an overestimation of 
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the biaxial strength for this specific yield criterion) and, for the dilatancy angle, a value of 

5º was assumed, Vermeer and de Borst (1984). The values assumed for the fracture energy 

have been based in recommendations supported in experimental evidence, 

Lourenço (1996b) and CEB-FIP (1993), and practical requirements to ensure numerical 

convergence. Severe convergence problems were found due to the strongly 

inhomogeneous stress and strain fields that result from the analysis, especially in the case 

of prism P1, which features very large differences between the properties of units and 

mortar. 

 

Table 2.3 – Inelastic properties given to masonry components. 

c ft sin φ sin ψ Gft GfcComponent 
N/mm2 N/mm2 - - N/mm N/mm 

Unit 11.3 3.7 0.17 0.09 0.190 12.5 
Mortar M1  1.3 0.7 0.17 0.09 0.350 2.7 
Mortar M2 5.3 3.0 0.17 0.09 0.150 10.0 
Mortar M3 39.9 12.0 0.17 0.09 0.600 23.0 

2.4 Numerical results and comparison with experimental data 

2.4.1 Stress-strain diagrams 

The boundary conditions imposed on the model lead to equal normal displacements along 

each boundary but non-uniform stress fields. In this way, the average stress applied on the 

cell results from the integral of stresses over the upper and bottom boundaries divided by 

their length. The strain is the measure of an equivalent homogenised basic cell. The 

comparison between the numerical and experimental stress-strain diagrams is given in 

Figure 2.6. Here it is shown that EPE response is always between the extreme responses 

obtained with PS and PE. For this reason, enhanced-plane-strain is accepted as the 

reference solution for the numerical analysis in the rest of this work. It is further noted that 

the difference between the strength values predicted in PS and PE conditions increase with 

larger compressive strength ratios fc,unit / fc,mortar. This can be explained by the fact that 

weak mortar joints fail at a very early stage if no out-of-plane confinement is present. 
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Figure 2.6 – Experimental and numerical stress-strain diagrams in PS, PE and EPE conditions for 

prisms: (a) P1, (b) P2 and (c) P3. 

 

Another important aspect is that the numerical strength largely overestimates the 

experimental strength for all the three prisms, even if the peak strain is well reproduced by 

the numerical analysis. Comparing the results in terms of stiffness, it is possible to observe 

that the numerical response is much stiffer than the experimental response. This can be 

explained by the fact that the stiffness of the mortar inside the composite is different from 

the stiffness of mortar specimens cast separately due to different laying and curing 

conditions, see e.g. Lourenço (1996a). The difficulty in evaluating the stiffness of mortar 

inside the composite represents a severe drawback of detailed micro-models. 

To reproduce correctly the experimental elastic stiffness of the masonry prisms, the 

elastic modulus of the mortar had to be adjusted by inverse fitting. An estimate of the value
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of the adjusted stiffness can be obtained, disregarding the interaction unit-mortar, from 

myuyMy ,,, ΔΔΔ +=  (2.1) 

where Δy,M is the vertical displacement of a masonry prism, Δy,u is the vertical displacement 

contribution of the units and Δy,m is the vertical displacement contribution of the mortar 

joints. This equation reads, after some manipulation, 

( ) uMumu

uMm
adj hEhhE

EEhE
−+

=  (2.2) 

here, Eadj is the adjusted elastic modulus of the mortar, Eu is the elastic modulus of the 

units, EM is the elastic modulus of the composite given in Table 2.2, hm is the joint 

thickness and hu is the height of the units. 

The adjusted elastic moduli assumed in the new simulations are given in Table 2.4. 

In addition, the ratios between the adjusted Eadj and experimental Eexp elastic moduli are 

also shown, indicating that the adjusted elastic modulus ranges between 6 and 30% of the 

values recorded experimentally in mortar prisms. Here, it is noted that the relation between 

adjusted and mortar prism elastic modulus decreases with the mortar strength. The 

obtained adjusted stress-strain diagrams are illustrated in Figure 2.7, together with the 

results obtained with the experimental stiffness for a better comparison. The strength 

values are similar using either the experimental mortar stiffness or the adjusted value but a 

dramatic difference in the peak strain was found. In fact, for the adjusted mortar stiffness, 

the numerical peak strain largely overestimates the experimental value and the difference 

increases with increasing mortar strength. 

The possibility of adjusting also the mortar strength was not considered because a 

direct relation between strength and stiffness cannot be established in such a complex case 

of mortar curing, compaction and moisture exchange. 

 

Table 2.4 – Adjusted elastic deformability parameters for mortar. 

 E [N/mm2] Eadj/Eexp

Mortar M1 355 0.30 
Mortar M2 735 0.13 
Mortar M3 1065 0.06 
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Figure 2.7 – Comparison between the stress-strain diagrams obtained with experimental (no 

superscript) and adjusted (´ superscript) mortar stiffness values for prisms: (a) P1, (b) P2 and 

(c) P3. 

2.4.2 Failure patterns 

Failure patterns are an important feature when assessing numerical models. Figure 2.8 to 

Figure 2.13 depict the deformed meshes at failure for the three types of prism in PS, PE 

and EPE conditions. In addition, the contour of the minimum principal plastic strains is 

also given in the case of EPE. 

The failure mechanisms obtained depend obviously on the modelling strategy 

adopted. This is numerically correct and physically non-realistic, even if it is an issue often 

disregarded. In PS conditions, prisms P1 and P2 fail due to crushing of the bed joints while 

prism P3 fails due to vertical cracks arising in the bed-joints, together with diagonal 
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“crushing” that crosses the units and connects the non-aligned vertical cracks (it is noted 

that crushing in the centre of the units is more profound), see Figure 2.8a, Figure 2.10a and 

Figure 2.12a. In PE conditions, failure of prisms P1 and P2 is mainly governed by vertical 

cracks developing close to the centre of the units and in the head-joints. Prism P3, on the 

other hand, fails due to diffuse vertical cracking crossing both units and joints, combined 

with crushing of the centre of the units, see Figure 2.8b, Figure 2.10b and Figure 2.12b. 

In EPE conditions, prism P1 fails mainly due to the development of vertical cracks 

in the centre of the units and along the head-joints, being the mortar in the bed-joints 

severely damaged, see Figure 2.9. In the case of prism P2, failure occurs due to crushing of 

both units and mortar in a rather uniform manner, see Figure 2.11. Prism P3 fails due to the 

development of several vertical cracks arising in the bed joints together with compressive 

damage of the units, especially at the centre, see Figure 2.13. 

 

 
(a) 

 
(b) 

Figure 2.8 – Deformed (incremental) meshes at failure for prism P1: (a) PS and (b) PE. 
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(a) 

   
(b) 

Figure 2.9 – Results obtained at failure for prism P1 in EPE: (a) deformed (incremental) mesh and 

(b) minimum principal plastic strains. 

 

 
(a) 

 
(b) 

Figure 2.10 – Deformed (incremental) meshes at failure for prism P2: (a) PS and (b) PE. 
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(a) 

   
(b) 

Figure 2.11 – Results obtained at failure for prism P2 in EPE: (a) deformed (incremental) mesh and 

(b) minimum principal plastic strains. 

 

 
(a) 

 
(b) 

Figure 2.12 – Deformed (incremental) meshes at failure for prism P3: (a) PS and (b) PE. 
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(a) 

   
(b) 

Figure 2.13 – Results obtained at failure for prism P3 in EPE: (a) deformed (incremental) mesh and 

(b) minimum principal plastic strains. 

2.4.3 Stress distribution 

Insight on the stress distribution upon increasing loading can be provided by stress 

diagrams along different sections of the cell, see Figure 2.14. Prism P1 was chosen as an 

example because it has a relatively strong unit and a rather weak mortar as often occurs in 

ancient masonry. Three different load levels were considered, each one corresponding to a 

different branch of the stress-strain diagram. 

Severe non-linear behaviour and stress redistribution has been found, with failure 

not occurring when the maximum stress is attained at a given point of the discretization. As 

expected, Figure 2.14a indicates that mortar is heavily triaxially compressed and the units 

are under combined compression-biaxial tension. A decrease of vertical compressive 

stresses in the bed-joints is observed near the head-joints due to the low stiffness of the 

mortar, see Figure 2.14b. This unloading effect increases closer to collapse, due to inelastic 

behaviour of the head joints. Moreover, in Figure 2.14c, it is possible to observe that 

increasing stress concentration develops at the unit edges as load increases and the 

neighbouring head-joint fails. Also due to increasing damage in the head-joint, the centre 
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of the units exhibit a decrease of compressive vertical stresses as the load increases, 

resulting in a failure of the unit with horizontal offset with respect to the head joints. 
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Figure 2.14 - Stress diagrams at increasing load levels for different sections of the cell (EPE): 

(a) S1, (b) S2 and (c) S3. 

2.5 Influence of masonry head-joints 

In the previous Section, the ability of plasticity and cracking based models to predict the 

compressive strength of running-bond masonry prisms was assessed. In this Section, the 

influence of vertical head-joints in the compressive strength of masonry prisms is 

numerically addressed by comparing the results for running-bond prisms with compression 
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simulations on stack-bond prisms. Running-bond specimens are wider than stack-bond 

prisms and thus a certain confinement effect is present that could possibly lead to an 

increase of strength. This despite the fact that the confinement effect is mainly controlled 

by the ratio between the height of the specimen and the smallest in-plane dimension, as 

accepted by the research community and reflected in codes, see e.g. EC6, CEN (2003). 

Nevertheless, the existence of vertical joints on running-bond prisms may have an opposite 

effect, contributing to a reduction of the prisms strength. 

Vermeltfoort (1994) carried out compression tests in RILEM running-bond prisms 

and in stack-bond prisms, built with different types of brick and mortar, and reported 

values for the ratio between running-bond and stack-bond strengths ranging between 1.0 

and 1.3. Mann and Betzler (1994) have also conducted similar tests and the values 

presented for the same ratio ranged between 0.9 and 1.2. 

The model considered is based on the same concepts, material properties and 

loading conditions of the model described in Section 2.2 and Section 2.3, in order to make 

possible a comparison between running-bond and stack-bond results. The simulations were 

carried out only for prisms P1 and P2 (in EPE) as they represent the most relevant cases. 

The stack-bond model used is depicted in Figure 2.15 and Figure 2.16. 

 

                     

13
0

 
                                 (a)                                                  (b) 

Figure 2.15 – Stack-bond basic cell: (a) stack-bond masonry prism and (b) geometry. 

 

Unit 

Mortar 

 
Figure 2.16 – Model used in the simulations (only the indicated quarter was simulated). 
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Symmetry conditions were adopted in the three continuity edges of the basic cell. 

With respect to the free edge, linear dependencies were established between the mesh 

nodes in order to obtain a deformed shape similar to the elastic shape if no restrictions 

were applied. To better account for non-linear effects, the imposed elastic shape was 

obtained for a mortar with one third of the stiffness adopted in the simulations. If such 

dependencies between the nodes were not applied, the numerical incremental-iterative 

procedure becomes unstable and, furthermore, non-realistic failure mechanisms are 

obtained. 

Figure 2.17 illustrates the stress-strain diagrams obtained. For prisms P1, a strength 

approximately 20% higher has been predicted for stack-bond configuration when 

compared with running-bond. With respect to prisms P2, built with a stronger mortar, only 

a slight strength increase of 2% was observed. It is noted that the numerical results provide 

a prediction of the expected behaviour in ideal conditions and that the differences 

encountered with the experimental results reported by Vermeltfoort (1994) can be related, 

among other factors, with the test setup utilized. 
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Figure 2.17 – Numerical stress-strain diagrams for stack-bond and running-bond simulations 

(EPE): (a) prisms P1 and (b) prisms P2. 

 

Figure 2.18 depicts the numerical failure patterns obtained. It can be observed that 

the prism P1 fails due to vertical cracks arising in the units near the edges and by localized 

crushing of the mortar joints, also near the faces of the prism. For prism P2, failure occurs 

due to crushing of the units and mortar in a rather uniform manner, although localized 

crushing of the mortar joints near the edges is also present. 
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(a) 

 
(b) 

Figure 2.18 – Deformed (incremental) meshes at failure for prisms: (a) P1 and (b) P2. 

2.6 Calculations using simplified models 

This Section contains an analytical interpretation of the experimental results, with simple 

calculations being used to predict the compressive strength fc of the prisms. The following 

equations have been utilized: 

a) equation proposed by Francis et al. (1971) 
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b) equation proposed by Khoo and Hendry (1973) 

023 =+++ DfCfBfA ccc  (2.5)

where the parameters A, B, C and D are given by 
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c) equation proposed by Ohler (1986) 
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where s and t are parameters defining the unit failure envelope and m is the slope of 

the mortar failure envelope. The values presented by Ohler (1986) for these 

parameters are given in Table 2.5 and Table 2.6, respectively. 

 

d) equation provided by Eurocode 6, CEN (2003) 

3.0
,

7.0
,, mcuckc ffKf =  (2.11)
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where fc,k is the masonry characteristic compressive strength and K is a parameter 

that depends of the type of unit and of the type of masonry. 

 

e) equation provided by ACI Specification for Masonry Structures, ACI (2004) 

( )ucm fBAf ,
' 400 +=   (in psi) (2.12)

where f’m is the specified compressive strength, in psi, A = 1 (inspected masonry) 

and B = 0.2 for Type N Portland cement-lime mortar or B = 0.25 for Type S or M 

Portland cement-lime mortar. 

 

Table 2.5 – Values for the parameters s and t of Ohler (1986) equation. 

 0 < fc/fc,u < 0.33 0.33 < fc/fc,u < 0.67 0.67 < fc/fc,u < 1.0 
s 0.662 0.811 1.000 
t 0.662 0.960 2.218 

 

Table 2.6 – Values for the parameter m of Ohler (1986) equation. 

fc,m [N/mm2] 31.6 21.4 15.4 6.4 
m [-] 5.3 3.6 2.4 2.1 

 

In the equations above, fc,u and fc,m are the compressive strength of units and mortar, 

ft,u is the tensile strength of units, Eu and Em are the elastic modulus of units and mortar, νu 

and νm are the coefficients of Poisson of units and mortar and hu and hm are the units height 

and mortar thickness. 

The first three equations, (2.3), (2.5) and (2.10), follow from equilibrium methods 

under the assumption that units are uniaxially compressed - biaxially tensioned while 

mortar is triaxially compressed, see Hendry (1990) for a comprehensive review on these 

methods. For this reason, these equations are only applicable when the unit stiffness 

exceeds the mortar stiffness, which is the case of all the three prisms considering the 

mortar adjusted elastic modulus. However, in the case of prism P3, the very large ratio 

between the mortar and unit strengths precludes the application of the equations proposed 

by Khoo and Hendry (1973) and Ohler (1986), since their formulation only considers 

explicitly the mortar strength rather than the mortar elastic properties. On the contrary, the 
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equation proposed by Francis et al. (1971) only considers the mortar elastic properties and, 

thus, was also applied to prism P3. 

Equation (2.11) is provided by Eurocode 6, CEN (2003), and has empirical nature. 

In this formula, the parameter K equals 0.8 × 0.55 = 0.44 for the application here 

envisaged. It is also noted that the mortar strength for prism P3 was assumed equal to 

20 N/mm2, which is the maximum strength permitted by the code. The mean value of the 

masonry compressive strength fc was calculated from the characteristic value fc,k assuming 

fc = fc,k + 1.64 σ, where σ is the standard deviation. A coefficient of variation CV equal to 

σ / fc = 10% was adopted. 

Equation (2.12) is part of the unit strength method provided by ACI for masonry 

structures, ACI (2004), and is also of empirical nature. The parameter B was assumed to 

equal 0.2 in the case of mortar M1 and 0.25 in the case of mortars M2 and M3. The mean 

value of the masonry compressive strength fc was calculated from the specified strength f’m 

assuming  fc = f’m + 1.34 σ. Also here, a CV equal to 10% was considered. 

The results obtained are given in Table 2.7. All the three equilibrium formulas 

overestimate the experimental strength, especially the equation proposed by Francis et 

al. (1971). On the contrary, EC 6 and ACI empirical formulas predict, as expected, a value 

lower than the experimental strength, with ACI formula providing a better estimate for the 

low strength mortar prisms P1 and EC6 formula predicting a more accurate value for the 

high strength mortar prisms P3. It is further noted that Francis et al. (1971) equation 

yielded decreasing masonry strength values for prisms built with increasing strength 

mortar. This is not realistic and can be explained by the high sensibility of Francis et 

al. (1971) equation to the values of the coefficient of Poisson, which can be considered a 

drawback of this method given the difficulties in determining objectively such values. If a 

coefficient of Poisson equal to 0.2 is assumed for the units and the three types of mortar, 

the decreasing trend is no longer observed and the masonry strength values obtained are 

22.1, 22.5 and 22.8 N/mm2 for prisms P1, P2 and P3, respectively. 

It is also noted that the numerical simulations always provide over-strength, when 

compared to analytical solutions based in equilibrium approaches. This conflict indicates 

that novel approaches are required. 
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Table 2.7 – Experimental and analytical strength values. In brackets, the ratio between the 

predicted and experimental strengths is given. 

Prism 
Exp. 

Binda et 
al. (1988) 

Francis et 
al. (1971) 

(1)

Khoo and 
Hendry 
(1973) 

Ohler 
(1986) 

EC 6, 
CEN 

(2003) 

ACI 
(2004) 

Numerical 
simulations 

EPE (1)

P1 11.0 
25.0 

(225%) 
15.2 

(140%) 
14.8 

(135%) 
7.5 

(70%) 
9.4 

(85%) 
18.2 

(165%) 

P2 14.5 
24.2 

(165%) 
20.2 

(140%) 
19.0 

(130%) 
11.3 

(80%) 
11.0 

(75%) 
24.1 

(165%) 

P3 17.8 
23.4 

(130%) 
- - 

13.0 
(75%) 

11.0 
(60%) 

30.0 
(170%) 

(1) The given results were obtained with adjusted mortar stiffness values. 

2.7 Summary 

The ability of analytical methods and continuum models based on plasticity and cracking 

to reproduce the experimental compressive behaviour of masonry has been addressed. The 

comparison between obtained numerical results and experimental results available in 

literature from compression tests on running-bond masonry prisms allow to conclude that: 

(a) continuum finite element modelling largely overestimates the strength and peak strain 

of the prisms; (b) plane-stress, plane-strain and “enhanced-plane-strain” lead to different 

strengths and different failure mechanisms, which is physically non-realistic but 

numerically correct. The usage of 3D models or enhanced-plane-strain models is therefore 

recommended; (c) simplified methods to predict the strength based on elastic 

considerations provide results different from advanced numerical analyses and 

experimental values. This last conclusion has also been confirmed by Brencich and 

Gambarotta (2005), indicating that experimental testing or rather conservative empirical 

formulae are the only possible solution at the present state of knowledge. 

In addition, a comparison between the numerical results obtained for running-bond 

prisms and simulations on stack-bond specimens was presented. A higher strength was 

found for the stack-bond configuration, which still requires experimental validation. 

Moreover, a larger difference was observed in prisms built with weaker mortars. 

Suggestions for further work are: (a) to seek for alternative models that represent the 

micro-structure of masonry components, so that reliable estimation of the masonry strength 
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can be made and (b) carry out an advanced experimental program to characterize the 

mechanical behaviour of mortars inside a masonry composite. 
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3 Masonry short-term compression: a numerical 
investigation at the meso-level 

The compressive behaviour of masonry is of crucial importance for design and safety 

assessment purposes, since masonry structures are primarily stressed in compression. The 

present approach in codes, e.g. CEN (2003) and ACI (2004), is to make the compressive 

strength of the masonry composite dependent of the compressive strength of the masonry 

components (unit and mortar). This empirical approach is obviously conservative and 

results from the envelope of a large set of experimental tests, meaning that the compressive 

strength of masonry can be severely underestimated. The solution today is to carry out a 

series of tests in expensive wallets, CEN (1998a), which is hardly feasible for all possible 

masonry materials. In addition, existing code formulas are clearly not applicable to 

irregular or rubble masonry, which is generally the case of historical masonry structures. 

Continuum and discontinuum approaches to model masonry components can be 

used with the aim of reproducing the experimental behaviour of the composite under 

compression. Micro-modelling strategies are indeed powerful tools for analysing the basic 

phenomena occurring in masonry assemblages upon increasing loading, see Lourenço and 

Rots (1997). For the case of masonry under uniaxial compression, some authors indicate 

that continuum finite element micro-models are capable of obtaining an adequate response 

of the masonry composite, introducing the behaviour of masonry components, 

e.g. Brencich and Gambarotta (2005) and Roman and Gomes (2004). But the detailed 

analyses shown in Chapter 2, using plasticity and cracking based finite element models, 

demonstrated otherwise. In fact, it was shown that continuum finite element micro-models 

largely overestimate the experimental strength and peak strain of masonry prisms tested in 

compression. Values of approximately 170% were found for the ratio between the 

predicted and the experimental strengths. As a result, alternative discontinuum modelling 

approaches that consider the micro-structure of quasi-brittle materials are therefore needed 

to study the uniaxial compressive behaviour of masonry. 

Several advanced computational approaches are currently available for structural 

analysis developed in discontinuum frameworks, including the finite element method with 

interface elements, discrete element methods and lattice models. For an exhaustive 

discussion on the numerical methods available the reader is referred to Jing (2003). The 
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finite element method with interface elements is well established and advanced solution 

procedures are available, see Gens et al. (1988) and Rots and Schellekens (1990). For 

simple geometries under symmetric loading or when the crack path is known in advance 

from experiments, interface elements can be embedded in the finite element mesh along 

expected crack paths, Rots (1988). If the crack pattern is not known in advance, expensive 

remeshing techniques, Ingraffea and Saouma (1985), or approaches where a sufficient 

number of interface elements are included in the mesh to account for potential crack paths, 

Carol et al. (2001), may be adopted. Typical applications of interface elements in finite 

element analysis of masonry structures are modelling of cracking, slipping or crushing 

planes, like unit-mortar interfaces or potential cracks in the units, see Lofti and 

Shing (1994) and Lourenço and Rots (1997). 

The last decades have witnessed a growing interest of the scientific community in 

the development of discrete element methods due to the capabilities of such methods to 

deal with discrete media. Within the most popular discrete element methods, the distinct 

element method pioneered by Cundall (1971) and the discontinuous deformation analysis 

originally developed by Shi (1988) may be distinguished. As can be gathered from the 

literature, discrete element methods have been widely used to analyse the response of 

blocky assemblages, especially in the field of rock mechanics although references can also 

be found for blocky masonry structures, see Lemos (2001). Discrete element methods have 

also been used to model the micro-structure of granular and brittle disordered materials 

such as concrete, and examples can be found in Lorig and Cundall (1987) and 

Vonk (1993). The rigid-body spring network model has common features with the referred 

approaches, subdividing the material into a collection of rigid bodies interconnected by 

zero-size springs, see Bolander et al. (2000). 

Another discontinuum approach that has been receiving vivid attention is lattice 

models. Its main concept is the discretization of the continuum into a framework of beam 

or truss elements. Generally, a regular or random triangular lattice of beam elements is 

adopted, being the size of the beams adjusted so that the elastic stiffness and Poisson’s 

ratio of the complete lattice resemble the values of the continuum. The simulation consists 

in a set of linear elastic analyses, each one corresponding to a load step. At the end of each 

load step, the adopted failure law is evaluated and the elements falling in its range are 

removed from the lattice. Lattice models have been extensively utilized in the study of 

tensile fracture propagation and references can be found in Schlangen (1993), Van Mier et 
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al. (1995), Bazant and Planas (1998) and Van Vliet (2000). Recently, a lattice-type model 

has been proposed by Cusatis et al. (2003) aiming at a correct simulation of both tensile 

and compressive fracture processes. 

 

  
                                          (a)                                                             (b) 

Figure 3.1 – Examples of applications using discrete element method based programs: 

(a) simulation of an aqueduct pillar, adapted from Lemos et al. (1998) and (b) meso-level 

discretization of concrete, adapted from Vonk (1993). 

 

In the present Chapter, a particle 2D model consisting in a phenomenological 

discontinuum approach based on the finite element method including interface elements is 

proposed to represent the micro-structure of units and mortar, attempting to reproduce 

adequately the compressive behaviour of masonry. Comparative analyses with 

experimental results and with numerical results using a continuum model are presented. 

3.1 Model concept 

3.1.1 Outline of the model 

The proposed particle model is developed on a finite element framework. The 

discontinuous nature of the masonry components is considered by giving a fictitious micro-

structure to units and mortar, which is composed by linear elastic continuum elements of 

polygonal shape (hereafter named particles) separated by non-linear interface elements. 

All the inelastic phenomena occur in the interfaces and the process of fracturing consists of 
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progressive bond-breakage. This is, of course, a phenomenological approach, able, 

nevertheless, to capture the typical failure mechanisms and global behaviour of quasi-

brittle materials. 

Three-noded plane stress triangular elements with one-point Gauss integration were 

utilized to model the particles. It is noted that the fracture process controls failure and the 

differences between plane stress and plane strain are, therefore, negligible. For the 

interfaces, four-noded line interface elements with zero thickness were adopted. A high 

dummy stiffness was given to the interface elements to avoid interpenetration of the 

particles, as it is clear that the amount of penetration is higher with decreasing interface 

stiffness. Stiffness values ranging from 1 × 104 to 1 × 105 N/mm3 were chosen so that 

overlapping of neighbouring particles would be negligible. Rots (1988) and 

Schellekens (1992) reported that beyond stiffness values of 1 × 103 N/mm3, the application 

of the Gauss integration scheme leads to numerical oscillations. To overcome such 

deficiency, a two-point Lobatto integration scheme was used. 

The constitutive model used for the interface elements was formulated by Lourenço 

and Rots (1997) and is implemented in the finite element code adopted for the analyses, 

DIANA (2003). The model includes a tension cut-off for tensile failure (mode I), a 

Coulomb friction envelope for shear failure (mode II) and a cap mode for compressive 

failure. Exponential softening is present in all three modes and is preceded by hardening in 

the case of the cap mode. In the proposed particle model, the compressive mode was not 

active. 

The dilatancy angle measures the uplift upon shearing. Dilatancy tends to zero with 

increasing plastic shear slipping or increasing normal confining pressure. These 

phenomena occur often combined because shear slip with dilatancy necessarily induces 

normal compressive stresses. The analyses here reported were performed in a non-

associated plasticity context, assuming a dilatancy equal to zero. In such way, a particle 

can slide over the other without producing any normal displacement. Non-zero dilatancy 

associated with the symmetry boundary conditions adopted in the simulations could induce 

high normal stresses and locking of the particles, resulting in increasing strength. Also for 

unit-mortar interfaces, Lourenço and Rots (1997) recommend a value of zero for the 

dilatancy angle. 
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3.1.2 Mesh construction 

A computer routine has been written to generate the particles, see Figure 3.2. As input 

data, the boundaries of the surface to mesh, the average size of the particles and a 

distortion factor DF, which controls the irregularity of the particles shape, must be given. 

In addition, the type and average size of the finite elements utilized must be specified. The 

discretization of the continuum into particles is based on the Voronoi diagram. The 

Voronoi diagram is a collection of regions that divide space according to a set of given 

points (nuclei). Each region has a polygonal convex shape and corresponds to one nucleus. 

All the points in one region are closer to the corresponding nucleus than to any other 

nucleus. To obtain the coordinates of the vertices of the Voronoi regions, the routine 

executes a call to an external freeware DOS program named QHULL (2001) and then 

processes the output data. 

 

                           
                               (a)                                                                  (b) 

Figure 3.2 – Finite element mesh: (a) particles mesh and (b) interfaces mesh. 

3.1.3 Material heterogeneity 

In heterogeneous materials the disorder of the material properties at the micro-level is a 

key issue in the fracture process. In the present model, material disorder is given by 

attributing to each particle and interface random material properties. For this purpose, 

values for the elastic modulus E of the particles and for the strength parameters of the 

interfaces (tensile strength ft, cohesion c and friction coefficient tanφ) were generated 

according to a Gaussian distribution. A lower threshold, equal to zero, and an upper 

threshold, equal to two times the average value have been imposed for each parameter. It is 

noted, as an example, that for a Gaussian distribution with a coefficient of variation of 

50%, the probability to generate a value beyond the referred thresholds is 5%. 
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3.2 Model response. Elementary tests 

3.2.1 Model utilized 

Elementary tests were carried out resorting to 2D simulations of 100 × 100 mm2 specimens 

in order to provide insight into the behaviour of the proposed model. Since cracks are 

constrained to follow particle boundaries, the influence of particle size and regularity in the 

mesh configuration must be investigated. For this purpose, three different values for the 

distortion factor DF were considered (0, 0.3 and 0.6) and, for each value, three different 

levels for the mesh refinement MR were assumed (denoted by n, 2n and 4n, and associated 

with an element size one-half and one-fourth of the original size n), see Figure 3.3. Given 

the random nature of the model, for each combination DF-MR, three analyses were 

performed using different randomly generated meshes. 

 
 MR = n MR = 2n MR = 4n 

DF = 0 

 

DF = 0.3 

 

DF = 0.6 

 
Figure 3.3 – Geometry of the 100 × 100 mm2 specimens used in the simulations. Three distortion 

factors DF and mesh refinement levels MR were considered. 
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In-plane symmetry conditions have been adopted, carrying out the simulations as if 

the specimen was part of a larger portion. Hence, specimen boundaries remain straight 

during the analysis, aiming at reproducing macro homogeneous boundary conditions. In all 

simulations, the nonlinear system of equations following from the finite element 

discretization was solved with an incremental-iterative globally convergent Newton-

Raphson method with arc-length control and line-search technique. 

The same material properties were given to all specimens, so that only the influence 

of the micro-structure geometry would be assessed. The elastic properties attributed to the 

particles (elastic modulus E and coefficient of Poisson ν) and to the interfaces (normal 

modulus kn and shear modulus ks) are given in Table 3.1, in terms of the average values 

and corresponding coefficients of variation CV. The inelastic properties of the interfaces 

are shown in Table 3.2. Here, ft is the tensile strength, GfI is the mode I fracture energy, c is 

the cohesion, GfII is the mode II fracture energy and tanφ is the friction coefficient. 

 

Table 3.1 – Elastic properties for the particles and interfaces. 

 Average values CV [%] 
E 5000 N/mm2 30 

Particles 
ν 0.15 0 
kn 104 N/mm3 0 

Interfaces 
ks 104 N/mm3 0 

 

Table 3.2 – Inelastic properties for the interfaces. 

 Average values CV [%] 
ft 1.0 N/mm2 50 

GfI 0.050 N/mm 50 
c 1.5 N/mm2 50 

GfII 0.75 N/mm 50 
tanφ 0.30 50 

 

A unitary value was assumed for the tensile strength and the cohesion was obtained 

according to c = 1.5 ft. This relation was proposed by Lourenço (1996b) for unit-mortar 

interfaces. For GfI, a value in agreement with the results obtained by Van der Pluijm (1999) 

was adopted and for GfII a value about five times higher the value proposed by 

Lourenço (1996b) for unit-mortar interfaces (0.1 c) was used. The friction coefficient was 
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chosen so that the ratio between the specimen compressive and tensile strengths was about 

ten, which is a ratio often found for masonry units, see Schubert (1988). Given that the 

approach followed is phenomenological and not physical, the values adopted for the 

coefficient of variation of the different material parameters are not related with their 

experimental variability but were chosen so that the overall response of the model 

resembles the experimental response. 

3.2.2 Tensile uniaxial behaviour 

The specimens described in the previous Section were numerically simulated in uniaxial 

tension. Figure 3.4 illustrates typical stress-strain diagrams obtained. Three types of tensile 

response can be clearly distinguished regardless of the particle size and mesh distortion. 

Each type of response is associated with a different failure pattern and, for each one, the 

specimen mode I fracture energy can range from a value similar to the mode I fracture 

energy given to the interface elements up to a very large value due to a residual plateau. 

Such residual plateau develops when diagonal cracks appear, originating friction between 

the particles due to the imposed boundary (symmetry) conditions. This is clearly a problem 

of the boundary conditions and not of the model approach. 
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Figure 3.4 – Tensile stress-strain diagrams and failure patterns obtained for specimens with 

MR = 2n and DF = 0.3. 
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The values obtained for the specimens tensile strength, according to the level of 

mesh refinement and the distortion factor, are given in Table 3.3. Slightly decreasing 

values for the tensile strength were found for increasing values of the distortion factor. 

However, the average values can be considered as mesh size and mesh distortion 

independent for practical purposes. Moreover, it is noted that increasing mesh refinement 

is accompanied by decreasing variability of the strength values and rather low values for 

the coefficient of variation are obtained for MR = 4n. 

 

Table 3.3 – Average values from three analyses obtained for the tensile strength ft [N/mm2] 

according to different levels of mesh refinement MR and distortion factors DF (values in 

brackets give the coefficient of variation). 

 MR = n MR = 2n MR = 4n 
DF = 0 1.1 (11.8%) 1.1 (9.8%) 1.1 (4.1%) 

DF = 0.3 0.9 (9.8%) 1.0 (7.6%) 1.1 (4.1%) 
DF = 0.6 0.9 (13.3%) 1.0 (1.1%) 1.0 (1.4%) 

 

Figure 3.5 illustrates typical tensile crack propagation under increasing load. Three 

loading stages have been considered: 80% of the peak load, peak load and ultimate load. 

Initially, several cracks start developing but at some point localization of deformation 

occur in one crack while, in the others, unloading occurs. Figure 3.6 depicts typical failure 

patterns obtained for different refinement and distortion levels. Rather irregular failure 

patterns were obtained despite the particle size and mesh distortion, influencing the model 

response as shown above in Figure 3.4. 

 

                   
                         (a)                                                 (b)                                               (c) 

Figure 3.5 – Typical progressive tensile failure of a specimen. Deformed meshes at: (a) 80% of the 

peak load, (b) peak load and (c) ultimate load. 
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 MR = n MR = 2n MR = 4n 

DF = 0 

   

DF = 0.3 

   

DF = 0.6 

   

Figure 3.6 – Typical deformed meshes obtained from the tension simulations. Three distortion 

factors DF and mesh refinement levels MR were considered. 

3.2.3 Compressive uniaxial behaviour 

Typical stress-strain diagrams obtained for each type of geometry are given in Figure 3.7. 

The behaviour observed shows that increasing distortion of the particles leads to 

decreasing brittleness. Moreover, a relation between brittleness and mesh refinement seems 

to be also present. In fact, specimens with a refinement level n show a more brittle 

behaviour, characterized by sudden load drops, than specimens with refinement levels 2n 

and 4n. However, it is noted that there is not much difference in the response beyond a 

level of refinement of 2n. 
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Table 3.4 illustrates the values for the compressive strength of the specimens fc, 

according to the mesh distortion and level of refinement. It is noted that there is increasing 

variability of the strength values with increasing distortion and size of the particles. The 

variation obtained (it is stressed that a different mesh was generated for each analysis) 

fairly reproduces experimental variability of results. It is further noted that the strength 

values show a slight decreasing trend with increasing distortion, especially for lower levels 

of mesh refinement. Nevertheless, the average values for 2n and 4n can be considered as 

mesh size and mesh distortion independent for practical purposes. For this reason, relations 

between structural and particle sizes lower than seven to ten should be avoided. 
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       (c) 

Figure 3.7 – Typical compressive stress-strain diagrams obtained for three different levels of mesh 

refinement (n, 2n and 4n) and three different distortion factors: (a) DF = 0, (b) DF = 0.3 and 

(c) DF = 0.6. 
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Table 3.4 – Average values from three analyses obtained for the compressive strength fc [N/mm2] 

according to different values of mesh refinement MR and distortion factor DF (values in 

brackets give the coefficient of variation). 

 MR = n MR = 2n MR = 4n 
DF = 0 12.0 (10.4%) 11.6 (0.6%) 12.0 (6.7%) 

DF = 0.3 10.9 (15.4%) 11.1 (10.4%) 11.6 (3.3%) 
DF = 0.6 9.9 (15.3%) 11.0 (13.8%) 11.4 (8.4%) 

 

Figure 3.8 illustrates typical compressive crack propagation under increasing load. 

Again, three loading stages have been considered: 80% of the peak load, peak load and 

ultimate load. Well-known phenomena such as crack bridging and branching can be 

observed. Typical failure patterns obtained for the different specimens are depicted in 

Figure 3.9. It is clear that under certain combinations of particle distortion and mesh 

refinement, the failure pattern becomes biased by the mesh configuration. For instance, for 

DF = 0 and MR = 4n, the crack pattern denotes a clear diagonal tendency while, for 

example, for DF = 0.6 and MR = 4n, the crack pattern resembles experienced compression 

crack patterns with predominant vertical cracks. Thus, mesh configuration has a larger 

influence in the crack pattern of meshes with low distortion factors and high refinement 

levels. Nevertheless, the value of the failure load is not affected by the mesh preferential 

orientation. 

 

           
                        (a)                                                  (b)                                                 (c) 

Figure 3.8 – Typical progressive compressive failure of a specimen. Deformed meshes at: (a) 80% 

of the peak load, (b) peak load and (c) ultimate load. 
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 MR = n MR = 2n MR = 4n 

DF = 0 

 

DF = 0.3 

 

DF = 0.6 

Figure 3.9 – Typical deformed meshes obtained from the compression simulations, using three 

distortion factors DF and mesh refinement levels MR. 

 

An assessment of the contribution of the interfaces tensile and shear parameters to 

the compressive strength of the specimens was also performed. To achieve this purpose, 

compression simulations assuming different values for the tensile parameters (strength and 

fracture energy) were considered firstly while the model shear parameters were kept 

constant, see Table 3.5. The same approach was repeated for the shear parameters and the 

results obtained are given in Table 3.6. As expected, a decreasing trend of the compressive 

strength with decreasing values of the tensile and shear parameters was found, even if the 

simulation reduces the variation in the input significantly. However, the influence of the 

tensile parameters is smaller than the influence of the shear parameters. Such results seem 

to indicate that the compressive failure of the model in discussion is mainly governed by 

the parameters describing the shear behaviour. 
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Table 3.5 – Average compressive strength fc from three analyses assuming different values for the 

interfaces tensile strength ft. In brackets, the ratio against the reference bold value is given. 

 c = 1.5 N/mm2

ft [N/mm2] 1.0 0.5 (-50%) 0.25 (-75%) 
fc [N/mm2] 11.1 9.9 (-11%) 9.2 (-17%) 

 

Table 3.6 – Average compressive strength fc from three analyses assuming different values for the 

interfaces cohesion c. In brackets, the ratio against the reference bold value is given. 

 ft = 1.0 N/mm2

c [N/mm2] 1.5 0.75 (-50%) 0.37 (-75%) 
fc [N/mm2] 11.1 8.1 (-27%) 6.5 (-41%) 

3.2.4 Size effect 

The effect of size is an important issue when estimating the strength or stress-strain 

relationship of quasibrittle materials. In the early 1980’s, it became clear that size effect of 

such materials is mainly related with the release of the structure stored energy into the 

front of the propagating fracture or cracking zone and can not be explained solely by 

Weibull-type statistics of random micro-defects, see Bazant and Planas (1998) and Kim 

and Yi (2002) for comprehensive reviews. In fact, the larger the structure, the greater is the 

volume from which the energy is released and since the fracture front dissipates the same 

amount of energy, regardless of the structure size, in a larger structure the failure load must 

be lower. Although size effect has been widely studied for tensile failure, cracking 

localization is also present under compressive loading and, thus, also compressed elements 

show size effect, e.g. Van Mier (1997). It is now well known that compressive strength and 

post-peak ductility tend to increase with decreasing size of the structural element. 

In the field of concrete, models where the material structure is represented have 

proved to be of great interest in understanding size effect phenomenon. In such 

simulations, the model parameters are set to a level below the level of observation (macro-

level) and do not depend on size. Insight on this type of approach can be found in 

Vonk (1993) and Van Vliet (2000). 

The ability of the proposed model to describe the influence of the specimen size has 

been assessed by simulations on square specimens with 100 × 100, 50 × 50 and 



 3. Masonry short-term compression: a numerical investigation at the meso-level 45

 

 

 
                          (b) 

Figure 3.10  with: (a) different size and 

(b) age compressive strength 

values fc [N/mm2] mulations are given for each shape (10 × 30, 

10 × 10 and 30 × 10 

 

 

10 × 10 mm2. In addition, the influence of the shape of the specimen has been investigated 

by considering rectangular specimens with different height over width ratios (10 × 30 mm2 

and 30 × 10 mm2). A distortion factor DF = 0.3 and a mesh refinement MR = 2n have been 

considered. In the case of square specimens, the mesh configuration and the material 

properties were kept constant, being the specimens only scaled. In this way, the results can 

be directly compared without the effect of randomness. In the case of the rectangular 

specimens, the same procedure could not be applied and three simulations were carried out 

for each shape considering the same average parameters adopted in the square specimens 

simulations. 

From the stress-strain diagrams illustrated in Figure 3.10a it can be observed that the 

size of the specimens has a remarkable influence in the response of the model. In fact, size 

dependency is one of the advantages of particle-type models when compared to softening 

continuum models, see e.g. Cusatis et al. (2003). Moreover, it is noted that the shape of the 

elements has a minor influence on the strength but an increase of brittleness was found for 

higher height over width ratios, see Figure 3.10b. 

 

    
       (a)                                                                          

 – Stress-strain diagrams obtained for specimens

different shape. In this last figure, typical diagrams and the aver

 obtained from three different si
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ned based on the 

where the first term is the volume integral of the maximum specific energy E (by volume) 

stored in the specimen and the second term is the integral of the total energy released in the 

interfaces during the fracture process. Gf is, then, the fracture energy given to the interface 

eleme

ring equal shape 2D elements only differing by a scale factor, it 

is reasonable to assume

cracks would be similar. In this way, the dissipation zone is increasing proportionally to 

The size dependent responses exhibited by the model can be explai

following energy balance 

∫∫ =
S fV

dsGdvE  (3.1) 

nts in the model. Moreover, specimens with equal strengths must store the same 

specific energy E. Conside

 that the crack patterns would resemble and that the number of 

the height of the specimen and, by energy balance, also is the stored energy. However, for 

the specimens to have the same strength, the maximum stored energy should be increasing 

proportionally to the area of the element. If the fracture energy given to the interface 

elements is modified to account for these aspects, see Equation (3.2), size independent 

responses are obtained. 

2

1
2,1, b

bGG ff =  (3.2) 

In the above, b is the width of the specimens and the subscript stands for the 

different size specimens under consideration. Figure 3.11 illustrates the stress-strain 

diagrams obtained regarding the 100 × 100 mm2 specimen as reference and by adapting the 

fracture energy (mode I and mode II) of the 50 × 50 mm2 and 10 × 10 mm2 specimens 

according to Equation (3.2). It can be observed that the response becomes totally 

independent from the

of the specimen, it was shown that the strength value predicted by the particle model is 

almos

 specimen size. When there is only an increase in the height or width 

t not affected, see Figure 3.10b. This can be explained by the fact that the increase of 

the stored energy is proportional to the increase of the dissipation zone. In fact, in the case 

of an increase in height, the cracks length can be assumed to increases roughly as much as 

the specimen height while in the case of an increase in width, the number of cracks can be 

considered to increase proportionally. 
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Figure 3.11 – Stress-strain diagram Gf given to 

interfaces as a function of 

3.3 Modelling 

In the previous Sections, the proposed partic

the m ity of the model to 

reproduce the behaviour of running-bond masonry prisms under uniaxial compression is 

and with the numerical results using a non-linear continuum finite element model as 

described in Section 2.4. 

ssible. In particular, splitting cracks usually observed in prisms 

tested under compression, Mann and Betzler (1994), boundary effects of the specimen and 

des are not captured by the numerical analysis. Nevertheless, 

most of these effects control mainly the post-peak response, which is not the key issue in 

 

s obtained by modifying the fracture energy 

the initial value Gf
*. 

masonry 

le model has been introduced and insight on 

odel behaviour has been provided. In this Section, the abil

assessed by means of a comparison with the experimental results reported in Section 2.1 

3.3.1 Model utilized 

The numerical simulations were carried out employing the basic cell introduced in 

Section 2.2, see Figure 3.12. Again, it is emphasised that the followed approach is only 

approximate of the real geometry and that the obtained numerical response is 

phenomenological, which means that a comparison in terms of experimental and numerical 

failure patterns is not po

non-symmetric failure mo

the present contribution. 
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Figure 3.12 – Particle model of the masonry cell (only the quarter indicated was simulated, 

assuming symmetry conditions). 

 

The material parameters were defined by comparing the experimental and numerical 

responses of units and mortar considered separately. Each material was modelled resorting 

to specimens with the same average particle size, mesh distortion and di ensions of the 

Given the stochastic nature of the model, five simulations were performed for each 

masonry component assuming equal average values for the model material parameters. The 

param

 kn and ks, to the overall 

deform

The particle model is composed by approximately 13000 linear triangular continuum 

elements, 6000 linear line interface elements and 15000 nodes. Macro homogeneous 

symmetry conditions and a distortion factor equal to 0.3 have been assumed. 

 

Unit 

Mortar 

m

masonry components used in the composite model (basic cell). 

eters were obtained, whenever possible, from the described experimental tests but 

most of the inelastic parameters were unknown and had to be estimated. It is noted that the 

particles average elastic modulus E is larger than the experimental value due to the 

contribution of the interfaces deformability, characterized by

ability of the specimen. This correction is necessary despite the high dummy 

stiffnesses assumed. 

On the contrary, the values adopted for the interfaces tensile strength ft are slightly 

lower than the specimens experimental tensile strength, given the contribution of the 

interfaces shear strength due to the irregular fracture plane. Again, the cohesion c was 

taken, in general, equal to 1.5 ft Lourenço (1996b). However, quite low experimental ratios 

between the compressive and tensile strengths were reported for the units and mortars 
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consid

e exception of the very 

high s

Table 3.7 – Values assumed for the material parameters (in brackets, the adopted coefficient of 

v

ered here, with values ranging between four and eight. Due to this reason, cohesion 

values lower than 1.5 ft had to be adopted for mortars M1 and M2. 

The values for the friction coefficient tanφ were adopted so that the numerical 

compressive strength showed a good agreement with the experimental strength. The values 

assumed for mode I fracture energy GfI have been based in recommendations supported in 

experimental evidence, see CEB-FIP (1993) and Van der Pluijm (1999). For mode II 

fracture energy GfII, a value equal to 0.5 c was assumed, with th

trength mortar M3, for which a lower value equal to 0.3 c was adopted. 

The complete material parameters adopted are given in Table 3.7 and, for such 

input, the response obtained is given in Table 3.8. In addition, typical numerical stress-

strain diagrams for both units and mortar specimens are illustrated in Figure 3.13. 

 

ariation is given). 

  Unit M1 M2 M3 
E [N/mm2] 6000 (30%) 1500 (30%) 7000 (30%) 22000 (30%) 

Particles 
ν [-] 0.09 (0%) 0.06 (0%) 0.09 (0%) 0.12 (0%) 

k  [N/mm3] 1×104 (0%) 1×104 (0%) 3×104 (0%) 8×104 (0%) n

ks [N/mm3] 1×104 (0%) 1×104 (0%) 3×104 (0%) 8×104 (0%) 
ft [N/mm2] 3.40 (45%) 0.75 (45%) 3.50 (45%) 10.50 (45%) 
GfI [N mm] 0.17 %) 0.03 %) 0.17 %) 0.52 %) 

2

GfII  

Interfaces / 0 (45 8 (45 5 (45 5 (45
c [N/mm ] 

]
5.10 (45%) 0.30 (45%) 0.70 (45%) 15.75 (45%) 

 [N/mm 2.55 (45%) 0.15 (45%) 0.35 (45%) 3.15 (45%) 
tanφ [-] 0.10 (45%) 0.00 (0%) 0.00 (0%) 0.10 (45%) 

 

Table 3.8 – Num onse the m

of variatio

 Unit M1  M3

erical resp obtained for asonry components (in brackets, the coefficient 

n is given). 

 M2  
fc [N/mm 7.2 (2.  (5.0 7 (5.4 .8 (4.2] 2 7%) 3.2 %) 12. %) 95 4%) 
ft [N/mm2] 3.61 (1.4%) 0.64 (4.7%) 2.70 (4.2%) 11.62 (6.6%) 
E [N/mm2] 4786 (1.9%) 1309 (1.4%) 5632 (3.0%) 17176 (3.1%) 
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Figure 3.13 – Typical numerical stress-strain diagrams obtained for the masonry components: 

(a) unit, (b) mortar M1, (c) mortar M2 and (d) mortar M3. 

In order to reproduce correctly the elastic stiffness of the masonry prisms, P1, P2 and P3, 

fact, the mortar experimental stiffness leads to a clear overstiff response of the numerical 

3.3.2 Numerical results and comparison with experimental data 

the experimental elastic modulus of the mortar E had to be adjusted by inverse fitting. In 

specimens. This can be explained by the fact that the mechanical properties of mortar 

inside the composite are different from mortar specimens cast separately. This is due to 

mortar laying and curing and represents a severe drawback of detailed micro-models. 

Table 3.9 gives the adjusted mortar stiffness values E* used in the simulations. 
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Table 3.9 – Adjusted stiffness values E* for the mortar. 

Particles Interfaces 
Mortar type 

E [N/mm2] k  [N/mm3] k  [N/mm3] n s

M1 355 104 104

M2 
M3 

750 104 104

1200 104 104

 

The numerical results obtained for the m ry prisms nsidering the mortar 

experimental Num_E and adjusted Num_E* stiffnesses are given in Table 3.10 for both 

particl

– Experimental results Exp and numerical results using experimental Num_E and 

adjusted Num_E* mortar stiffness values. 

ason  co

e and continuum models, where fc is the compressive strength and εp is the peak 

strain. In addition, the prisms experimental results are shown for a better comparison. It is 

noted, however, that the reference solution for the numerical simulations is the solution 

provided by Num_E*. Figure 3.14 depicts the experimental and numerical stress-strain 

diagrams. 

 

Table 3.10 

 Continuum model Particle model 
 P1 P2 P3 P1 P2 P3 

Exp 11.0 14.5 17.8 11.0 14.5 17.8 
Num_E 19.8 1.0 15.5 30.8 fc [N/mm2] 
Num_E* 30.0 15.4 17.3 24.6 

 24.2 3 19.3 
18.2 24.1 

Exp 10.5 7.9 6.6 10.5 7.9 6.6 
Num_E 10.6 9.7 8.4 5.4 4.6 6.2 εp [10-3] 
Num_E* 19.9 16.0 33.5 11.8 8.1 8.9 
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Figure 3.14 – Numerical and experimental stress-strain diagrams, using adjusted mortar stiffness 

values for prisms: (a) P1, (b) P2 and (c) P3. In the diagrams, PM stands for particle model, 

CM for continuum model, see Section 2.4, and Exp for experimental data, see Section 2.1. 

 

From the given results, it is clear that the experimental collapse load is 

overestimated by both particle and continuum models, and that the predicted strength is 

affected by the mortar stiffness, especially in the case of the particle model. However, a 

much better agreement with the experimental strength and peak strain has been achieved 

with the particle model. In fact, the numerical over experimental strength ratios ranged 

between 165 to 170% in the case of the continuum model while in the case of the particle 

model, strength ratios ranging between 120 and 140% were found. The results obtained 

also show that the peak strain values are well reproduced by the particle model but large 

overestimations are obtained with the continuum model. In fact, for this last model, 

experimental over numerical peak strain ratios ranging between 190 and 510% were found. 
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Failure patterns are an important feature when assessing numerical models. The 

(incremental) deformed meshes near failure are depicted in Figure 3.15. It is noted that 

despite the fact that only a quarter of the basic cell has been modelled, the results are 

shown in the entire basic cell to obtain more legible figures. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3.15 – Deformed (incremental) meshes near failure for prisms: (a) P1, (b) P2 and (c) P3. 
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The numerical failure patterns obtained are similar for both continuum, see 

Section 2.4.2, and particle models. In the case of prism P1, failure occurs mainly due to the 

development of vertical cracks in the centre of the units and along the head-joints, being 

the mortar in the bed-joints severely damaged. Prism P2 fails due to diffuse damage 

developing in units and mortar in a rather uniform manner. In the case of prism P3, diffuse 

damage is also present but localized crushing of the units can be clearly observed at one-

half and one-sixth of the units length. 

3.3.3 Influence of masonry head-joints 

A discussion on the influence of vertical head-joints in the response of masonry prisms 

subjected to compressive loading was introduced in Section 2.5, where a comparison 

between simulations on running-bond and stack-bond masonry specimens using a 

continuum-type model was presented. It has been observed that, for the same constituents, 

stack-bond prisms show a higher strength than running-bond prisms. In this Section, the 

simulations for the stack-bond configuration are repeated using the proposed particle 

model, see Figure 3.16, and a comparison with the results obtained in the previous Section 

is provided. As for continuum simulations, only prisms P1 and P2 were analysed, as they 

represent the most relevant cases. The boundary conditions adopted were identical to the 

ones used in continuum simulations and the reader is referred to Section 2.5. The material 

properties given to the masonry constituents have been already described in Section 3.3.1. 

 

Unit

Mortar 

 
Figure 3.16 – Model used in the simulations (only the indicated quarter was simulated). 

 

Figure 3.17 illustrates the results obtained. A higher strength was shown by stack-

bond prisms when compared to running-bond specimens, in agreement with continuum 
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results. In fact, a higher strength of approximately 15% was found for prisms P1 and of 

approximately 10% for prisms P2. Again, a smaller difference in the strength values was 

observed in the case of prisms P2, which were built with a stronger mortar, although the 

difference observed with the particle model is not as large as the one provided by the 

continuum model. The numerical failure patterns are shown in Figure 3.18 and Figure 3.19 

for prisms P1 and P2, respectively. Crushing of the bed-joints, especially in the case of 

prism P1, and cracks arising in the units near the specimen edges can be observed. As in 

running-bond simulations, a more diffuse failure pattern was observed for the higher 

strength mortar prism P2. 
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Figure 3.17 – Numerical stress-strain diagrams for stack-bond and running-bond simulations: 

(a) prisms P1 and (b) prisms P2. 

 

 

Figure 3.18 – Deformed (incremental) mesh at failure for prism P1. 
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Figure 3.19 – Deformed (incremental) mesh at failure for prism P2. 

3.4 Summary 

The analysis of masonry assemblages using detailed modelling strategies is a challenging 

task. A particle model consisting in a phenomenological discontinuum approach has been 

proposed to represent the microstructure of masonry components, attempting to adequately 

reproduce the experimental behaviour of masonry under compression. The model is 

discussed in detail, including proposals for selection of numerical data, sensitivity studies, 

fracture processes and failure mechanisms, and size effect studies. Finally, the particle 

model is compared with experimental results on masonry wallets under uniaxial 

compression and with numerical simulations using a continuum finite element model. 

It is possible to conclude that: (a) discontinuum models show clear advantages when 

compared to continuum models, based in plasticity and cracking, in predicting the 

compressive strength and peak strain of masonry prisms from the properties of the 

constituents; (b) compressive and tensile strength values provided by the particle model 

can be considered as particle size and particle distortion independent for practical 

purposes; (c) relations between structural and particle sizes lower than seven to ten should 

be avoided in simulations; (d) size dependent responses have been obtained with the 

proposed model; and (e) shear parameters rather than tensile parameters play a major role 

at the micro-level and greatly influence the overall response of compressed masonry, as 

also confirmed by Vonk (1993). 
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Suggestions for further work are extending the particle model to 3D configurations 

and seek for other models developed in discontinuum frameworks in order to provide 

reliable estimations of masonry compressive strength. 
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4 Masonry behaviour under high sustained stresses 

On 17th March 1989 the Civic Tower of Pavia suddenly collapsed without showing any 

apparent warning signs, see Figure 4.1. Dramatically, four people were killed and severe 

damage was inflicted to surrounding buildings. The 60 m height tower was topped by a 

16th century belfry while the main body had been built in successive phases during the 11th 

and 13th centuries. The tower walls were 2.8 m thick, made of irregular courses of brick 

fragments and small stones in a mortar matrix, and exhibited a thin external brick cladding 

with an average thickness of 0.150 m. On the contrary, the belfry was made of regular 

brick masonry.  

 

               
                        (a)                                                                    (b) 

Figure 4.1 – Pavia Civic Tower: (a) before collapse and (b) remaining ruins. 

 

The collapse of the tower was a motive of great concern for the public authorities 

and for the technical community. Thus, the collapse rapidly became a focus of interest 

among masonry researchers and several masonry blocks were recovered from the ruins for 

mechanical and physical/chemical laboratory testing, see Binda et al. (1992). Such tests 

permitted to identify the time-dependent mechanical damage of the tower walls due to high 

sustained loading as a possible main cause of collapse. 

The tower of Pavia is not an isolated case and several other famous examples can be 

referred, such as the collapse of the St. Magdalena bell-tower in Goch, Germany, in 1993, 
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the partial collapse of the Noto Cathedral, Italy, in 1996, see Binda et al. (2003a), and the 

severe damage exhibited by the bell-tower of the Monza Cathedral, Italy, see Modena et 

al. (2002). 

 

                   
                                       (a)                                                                     (b) 

Figure 4.2 – Famous examples of collapse or damage due to high sustained loading: (a) Noto 

Cathedral after partial collapse and (b) bell-tower of the Monza Cathedral exhibiting severe 

damage. 

 

Masonry creep depends mainly on factors such as the stress level and the 

temperature / humidity conditions but cyclic actions, such as wind, temperature variations 

or vibrations induced by traffic or ringing bells, in the case of bell towers, have a 

synergetic effect, increasing material damage. For these reasons, high towers and heavily 

stressed pillars are the structural elements where time-dependent damage can severely 

occur, see Anzani et al. (1995) and Anzani et al. (2000). 

Traditionally, three creep stages can be recognised. A primary stage were the creep 

rate decreases gradually, a secondary stage where the creep rate remains approximately 

constant and a tertiary stage where the creep rate increases rapidly towards failure. A 

sufficiently high stress level must be applied so that the two last stages are initiated. In the 

secondary stage, diffuse and thin vertical cracking propagates and coalesces into macro-

cracks that may lead, possibly, to creep failure of the material. Creep of cementitious 

materials is generally attributed to cracking growth and interpartical bond breakage due to 

moisture seepage. In fact, under sustained loading, forced moisture redistribution can occur 
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in the pore structure of the material causing debonding and rebonding of the micro-

structure particles, Bazant (1988). In the case of concrete or new masonry, if drying 

shrinkage is occurring simultaneously to creep, the time-dependent deformation is 

increased due to a coupled effect known as the Pickett effect, Pickett (1942). Time-

dependent deformation in a constant hygral and thermal environment, and in the absence of 

cracking, is denominated by basic creep, see e.g. Neville (1997). A comprehensive 

discussion on the viscous behaviour of masonry can be found in Van Zijl (2000). 

For low stress levels, below 40 to 50% of the compressive strength, only primary 

creep is present and creep deformation can be assumed proportional to the stress level. 

References on masonry creep within the elastic range are rather abundant in literature, see 

e.g. Ameny et al. (1984), Lenczner (1986) and Brooks (1990). On the contrary, creep 

under high stresses, even in the case of concrete, is not a sufficiently debated issue, 

Bazant (1993), Papa et al. (1998) and Mazzotti and Savoia (2003). The fact that standard 

design methods for new structures are based on linear elastic material hypothesis has 

contributed to diminish the interest of researchers on this topic. However, ancient masonry 

structures are often working under low safety margins according to modern safety 

regulations. This can be due to inadequate knowledge of mechanics or structural 

modifications that occurred along centuries, resulting in overweighting of the structure and 

rendering importance to non-linear creep. 

The present Chapter provides a contribution towards a description of the time-

dependent behaviour of masonry under high compressive stresses. Standard uniaxial 

compression tests, short-term creep tests and long-term creep tests were considered with 

the aim of presenting a comparative discussion. The experimental investigation focuses on 

three types of ancient masonry specimens: (a) rubble masonry prisms from the crypt of the 

Monza Cathedral (16th century), (b) rubble masonry prisms recovered from the wall ruins 

of the Pavia Civic Tower (11th to 13th century) and (c) regular masonry prisms recovered 

from the belfry ruins of the Pavia Civic Tower (16th century). The present study is part of 

an ongoing experimental research jointly carried out by University of Minho, Portugal, and 

by Politecnico di Milano, Italy. 
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4.1 Tested specimens 

The experimental investigation was carried out on ancient masonry prisms due to the 

difficulty of producing laboratory specimens that correctly represent the material typically 

found in historical masonry structures. A major obstacle to fabricate specimens is mortar 

maturation, which has a significant influence on the viscous behaviour of masonry and can 

not be adequately reproduced in new specimens. On the other hand, the high cost and very 

limited number of ancient masonry specimens available for destructive testing are obvious. 

Because the previous experience with similar materials in the scientific community is 

rather poor, the current testing program was fundamental but represents a learning process. 

In particular, recommendations for testing such specimens could only be given in the end 

of the testing program. 

When the purpose is the characterization of the creep behaviour of ancient masonry, 

it should be stressed that considerable differences exist within the general denomination of 

masonry. In fact, several types of masonry can be found, influenced by the age of 

construction and by the geographical, cultural and technical backgrounds. Even so, 

common characteristics exist as the arrangement and size of the units that can help 

researchers to group the diversity of masonry types. In this study, three types of masonry 

were addressed: (a) rubble masonry collected from a wall in the crypt of the Monza 

Cathedral, which is made of bricks and stones laid in irregular courses; (b) rubble masonry 

recovered from the ruins of the walls of the Pavia Civic Tower, made of pieces of brick 

and stone randomly distributed in the mortar matrix; and (c) regular coursed brick masonry 

recovered from the ruins of the belfry of the Pavia Civic Tower. Figure 4.3 and Figure 4.4 

illustrate the typical aspect of the specimens and the typical preparation of the specimens, 

respectively. Hereafter, the specimens coming from the Monza Cathedral are denoted by 

MRu, the rubble specimens from the walls of the Pavia Civic Tower are named by PRu and 

the regular specimens from the belfry of the Pavia Civic Tower are denominated by PRe. 

The dimensions of the MRu specimens were (200±5) × (200±5) × (320±10) mm3 

while the rubble and regular Pavia specimens were (200±5) × (200±5) × (330±20) mm3. 

Before subsequent testing under compression, the loaded faces of the prisms were 

regularized with a cement based mortar layer approximately 10 mm thick. In all tests, 

Teflon sheets were introduced between the prisms and the loading plates to minimize 

restraining frictional stresses. A summary of the tests performed is given in Table 4.1. 
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                            (a)                                              (b)                                             (c) 

Figure 4.3 – Tested prisms: (a) MRu specimens, (b) PRu specimens and (c) PRe specimens. 

 

             
                                       (a)                                                                        (b) 

Figure 4.4 – Preparation of the specimens recovered from the ruins of the Pavia Civic Tower: 

(a) PRu and (b) PRe. 

 

Table 4.1 – Quantity of specimens for each type of test. 

Type of prism 
Compression 

tests 
Short-term 
creep tests 

Long-term 
creep tests 

MRu - 6 - 
PRu 1 4 - 
PRe 4 4 6 

4.2 Standard compression tests 

Compression tests were conducted in one PRu specimen and four PRe specimens. The tests 

were partly carried out in University of Minho (specimens PRe_1 and PRe_2) and in 

Politecnico di Milano (specimens PRu_1, PRe_3 and PRe_4). The specimens had to be 
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tested with different test setups according to the conditions locally available at each 

laboratory. In this way, the tests performed in University of Minho were carried out in a 

uniaxial hydraulic testing machine with non-rotating steel plates and a maximum capacity 

of 2000 kN. The load was monotonically increased under displacement control at a rate of 

4 μm/s. The applied load was measured by a load cell located between the upper plate and 

the testing machine, and displacements in the specimens were recorded by two vertical 

inductive displacement transducers HBM (10 mm range), positioned at two different faces 

of the prisms and by two horizontal transducers positioned at the other two faces. 

The tests performed in Politecnico di Milano were carried out using a uniaxial 

servo-controlled MTS® 311.01.00 testing machine, with non-rotating steel plates and a 

maximum capacity of 2500 kN. Loading was applied under displacement control at a rate 

of 1 μm/s. The applied load was recorded by a load cell and displacements were measured 

resorting to a vertical and a horizontal displacement transducers GEFRAN PY2-10 (10 mm 

range) positioned at each face of the prisms. For all tested specimens, longitudinal 

displacements were measured over approximately 200 mm span and transversal 

displacements over about 150 mm span. 

The results obtained are illustrated in Figure 4.5. Here, the negative sign is adopted 

for contraction (longitudinal or vertical strains εv) and the positive sign is adopted for 

elongation (transversal or horizontal strains εh). It is noted that the fact that only two 

horizontal transducers per specimen were considered in the case of specimen PRe_1 

explains the null horizontal deformations exhibited up to the peak load. Table 4.2 and  

Table 4.3 gives a summary of the test results in terms of the elastic modulus E, 

compressive strength fc and peak strain εp. The elastic modulus was calculated as the 

average slope of the stress-strain diagram between 30 and 50% of fc. It is noted that the 

elastic modulus is the parameter showing the largest variability, approximately the double 

of the values found for the strength and peak strain. Even if only one specimen is available 

for the rubble masonry, the difference in strength is striking, as the strength of the rubble 

masonry seems to be around one third of the regular masonry value. No significant 

differences are found in terms of elastic modulus and peak strength. 
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                                         (a)                                                                             (b) 

Figure 4.5 – Stress-strain diagrams obtained from compression tests on: (a) PRu specimens and 

(b) PRe specimens. 

 

Table 4.2 – Results obtained from compression tests on PRu specimens. 

E fc εpSpecimen 
N/mm2 N/mm2 10-3

PRu_1 3430 2.3 2.9 

 

Table 4.3 – Results obtained from compression tests on PRe specimens. In brackets, the coefficient 

of variation is given. 

E fc εpSpecimen 
N/mm2 N/mm2 10-3

PRe_1 4980 8.0 2.7 
PRe_2 4515 6.3 2.9 
PRe_3 2510 5.7 2.2 
PRe_4 2720 6.2 3.0 

Average 3680 (34%) 6.6 (15%) 2.7 (13%) 

4.3 Short-term creep tests 

4.3.1 Experimental setup 

Short-term creep tests were carried out at Politecnico di Milano using, again, the uniaxial 

servo-controlled MTS® 311.01.00 testing machine, with non-rotating steel plates and a 

maximum capacity of 2500 kN, see Figure 4.6a. The displacements in the specimens were 

recorded by a vertical and a horizontal displacement transducer GEFRAN PY2-10 (10 mm 
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range) positioned in each face of the prisms, in a total of eight transducers per specimen, 

see Figure 4.6b. Vertical transducers measured the average longitudinal deformation over 

approximately 200 mm span and horizontal transducers measured the average transversal 

deformation over approximately 150 mm span. 

 

                            
                                           (a)                                                                     (b) 

Figure 4.6 – Test setup: (a) MTS® testing machine and (b) instrumented (PRe) specimen. 

4.3.2 Testing program 

A total of six MRu specimens, four PRu and four PRe specimens were tested for short-term 

creep. In standard creep tests, a specimen is subjected to a constant load and strain is 

recorded at subsequent times. Reproduction of the test with a series of different loads gives 

a family of creep curves, which characterize the creep behaviour of the material. However, 

in the case of ancient masonry, this procedure has severe drawbacks due to the high scatter 

of the material strength and the limited number of specimens available. To overcome these 

problems and to obtain as much information as possible from each specimen, a stepped 

load-time diagram has been applied to the specimens. 

The MRu specimens were tested by applying successive load steps of 0.25 N/mm2 at 

intervals of three hours. In this way, failure could occur either during the loading phase 

(short-term failure) or during sustained loading (tertiary creep). An attempt to obtain creep 

failure of the specimens was pursued by increasing the duration of the last steps whenever 

the strain rate was similar to the values observed in previously tested specimens. This issue 

will be further addressed in Section 4.5. 
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PRu and PRe specimens were tested with a slightly improved procedure where the 

load was kept constant for periods of eight hours. In this case, load steps of 0.30 N/mm2 

were applied. The period under sustained load was extended as an attempt to obtain a more 

accurate description of the viscous behaviour. 

4.3.3 Test results 

Figure 4.8 depicts the average vertical (longitudinal) and horizontal (transversal) strains 

obtained for MRu specimens, respectively εv and εh. In addition, for the same specimens, 

Table 4.4 gives a summary of the experimental results in terms of the elastic modulus E, 

peak stress fc’ and time to failure T, which corresponds to the duration of the creep test. 

The values for the elastic modulus E were calculated as an average from the second to 

forth load steps (0.25 to 1.0 N/mm2). Annex A.1 illustrates the time-stress-strain diagrams 

for each specimen, providing a detailed description of the test results. Accordingly, the 

experimental results obtained for PRu specimens are given in Figure 4.8a, Table 4.5 and 

Annex A.2 while the results for PRe specimens are illustrated in Figure 4.8b, Table 4.6 and 

Annex A.3. 
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Figure 4.7 – Strain-time diagrams obtained from short-term creep tests on MRu specimens. 
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Table 4.4 – Results obtained from short-term creep tests on MRu specimens. In brackets, the 

coefficient of variation is given. 

E fc’ T 
Specimen 

N/mm2 N/mm2 days 
MRu_1 3730 4.00 2.0 
MRu_2 3455 3.25 1.5 
MRu_3 1505 2.00 0.9 
MRu_4 5870 4.25 2.3 
MRu_5 2485 4.00 1.9 
MRu_6 6395 4.75 2.3 

Average 3905 (49%) 3.7 (26%) 1.8 
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                                         (a)                                                                          (b) 

Figure 4.8 – Strain-time diagrams obtained from short-term creep tests on specimens: (a) PRu and 

(b) PRe. 
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Table 4.5 – Results obtained from short-term creep tests on PRu specimens. In brackets, the 

coefficient of variation is given. 

E fc’ T 
Specimen 

N/mm2 N/mm2 days 
PRu_2 4480 3.60 4.0 
PRu_3 2005 2.40 2.7 
PRu_4 740 1.50 1.6 
PRu_5 1395 2.60 2.7 

Average 2155 (76%) 2.5 (34%) 2.8 

 

Table 4.6 – Results obtained from short-term creep tests on PRe specimens. In brackets, the 

coefficient of variation is given. 

E fc’ T 
Specimen 

N/mm2 N/mm2 days 
PRe_5 2700 4.50 4.7 
PRe_6 3185 5.70 7.0 
PRe_7 4075 5.40 6.1 
PRe_8 3815 3.90 4.1 

Average 3445 (18%) 4.9 (17%) 5.5 

 

The sample is too small to extract any conclusion and, in the case of PRe specimens, 

the difference in strength from the uniaxial standard compression tests (fc = 6.6 N/mm2) and 

the short-term tests (fc’ = 4.9 N/mm2) has no strong relevance. In terms of average elastic 

modulus, the difference is marginal. As expected, larger coefficients of variation were 

found for rubble specimens than for regular specimens. 

With respect to crack patterns, thin and diffuse vertical cracks developed in the 

specimens during testing but large cracks and spalling were only observed at failure. This 

failure mode is particularly dangerous as it can lead to erroneous conclusions about the 

safety level of existing structures. It is further noted that, in the case of rubble specimens, 

cracks mainly develop in the mortar matrix and, at failure, expulsion of the brick and stone 

fragments was observed. On the contrary, in the case of regular specimens, cracks 

propagated across both units and mortar. Figure 4.9 and Figure 4.10 illustrate, as examples, 

the crack pattern evolution of the rubble specimen PRu_3 and of the regular specimen 

PRe_7, respectively. 
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(b) 
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(c) 

 

Figure 4.9 – Crack pattern evolution for specimen PRu_3: (a) prior to testing, (b) at approximately 

80% of fc’ (corresponds to a test duration of 2.0 days) and (c) at failure. The oblique pattern 

indicates stone and the shaded areas indicate spalling/loss of material. 
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(b) 
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(c) 

Figure 4.10 – Crack pattern evolution for specimen PRe_7: (a) prior to testing, (b) at approximately 

80% of fc’ (corresponds to a test duration of 5.0 days) and (c) at failure. Shaded areas indicate 

spalling/loss of material. 

4.4 Long-term creep tests 

4.4.1 Experimental setup 

Long-term creep tests require specific testing machines able to keep the load constant for 

long periods. In this study, three steel frames were specially designed and built to perform 

the tests conducted at University of Minho, see Figure 4.11a,b. Each frame includes two 

loading steel plates, a hydraulic jack, a pressure gauge and a gas reservoir to stabilize the 

applied load. The lower steel plate was fixed while the upper plate was hinged. The 
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equipment was designed to test two prisms simultaneously, separated by a steel plate. 

Upon failure of one of the specimens, the equipment is unloaded to remove the failed 

specimen and re-loaded with the remaining specimen. 

 

                     
       (a)                                                       (b)                                                       (c) 

Figure 4.11 – Testing apparatus: (a) hydraulic frame, (b) specimens under testing and 

(c) removable strain gauge and contact seats glued to the specimen. 

 

Longitudinal and transversal deformations were measured on each face of the prisms 

with a removable strain-gauge LASER ELECTRONIQUE TP, see Figure 4.11c. 

Longitudinal deformations were measured over three mortar bed-joints with an 

approximate span of 250 mm while transversal deformations were measured over one 

head-joint with an approximate span of 145 mm. In addition, one inductive transducer 

HBM (10 mm range) per specimen was employed in the longitudinal direction to act as 

control of the strain-gauge measurements. It is noted that in the face of the specimen where 

the transducer was placed, the transversal displacement was not measured. In this way, the 

average longitudinal displacement of each specimen results from four strain-gauge 

measurements, while the transversal displacement results from three strain-gauge 

measurements. The tests were carried out under controlled conditions of temperature (22 ± 

2ºC) and humidity (55 ± 10%), which were recorded by a data logger TESTOSTOR 175-2. 
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4.4.2 Testing program 

The tests were conducted on six PRe specimens. As in short-term creep tests, the load was 

applied by successive steps and kept constant for a given period. Two different load 

histories have been considered in order to better define future testing programs in similar 

specimens. A total of two prisms were tested by applying an initial stress of 1.50 N/mm2 

and successive steps of 0.65 N/mm2. The initial load step corresponds, approximately, to 

25% of the compressive strength fc obtained from the standard compression tests described 

in Section 4.2, while further load steps correspond, approximately, to 10% of fc. The 

duration of each period under constant load was of three months. 

The other four specimens were initially loaded at 4.10 N/mm2 (approximately 60% 

of fc) with subsequent load increases of 0.65 N/mm2 (about 10% of fc), applied at intervals 

of six months. Both load histories adopted have been defined in order that the estimated 

duration of the tests would be of about two years. 

4.4.3 Test results 

Figure 4.12 illustrates the average vertical (longitudinal) and horizontal (transversal) 

strains obtained for PRe prisms tested with constant load periods of three months.       

Table 4.7 gives a summary of the experimental results obtained and Annex A.4 shows 

detailed time-stress-strain diagrams for each tested specimen. 

For specimens tested with constant load periods of six months, Figure 4.13 shows, 

as an example, the strain evolution at each face of specimen PRe_12 and, also, the average 

strain-time diagrams obtained for all tested prisms. In addition, Table 4.8 gives a summary 

of the results and Annex A.5 illustrates the time-stress-strain diagrams obtained. From 

Figure 4.13a it is possible to observe that the strain evolution is different in each face of the 

prisms. This behaviour is typical of compression tests in quasi-brittle materials but, in the 

present experiments, such feature is more salient due to the hinged upper loading plate. 

Another important aspect is that in some specimens cracks suddenly arise during constant 

load steps, resulting in a strain jump in the strain-time diagram, see e.g. the diagrams of 

specimen PRe_10 at 325 days or PRe_11 at 450 days shown in Figure 4.12 and          

Figure 4.13, respectively. 
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The values obtained for the compressive strength are within the range obtained for 

the standard compressive strength and short-term creep tests. Displacements recorded with 

the transducers employed (one per specimen) were found to be in agreement with the 

strain-gauge measurements. 
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Figure 4.12 – Strain-time diagrams obtained from long-term creep tests (constant load periods of 

three months) for PRe specimens. σ stands for applied stress in N/mm2. 

 

Table 4.7 – Results obtained from long-term creep tests on PRe specimens (constant load periods 

of three months). 

E fc’ T 
Specimen 

N/mm2 N/mm2 days 
PRe_9 5055 4.75 465 

PRe_10 4380 4.75 464 
Average 4718 4.8 465 
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                                        (a)                                                                            (b) 

Figure 4.13 – Strain-time diagrams obtained from long-term creep tests (constant load periods of 

six months) for PRe specimens: (a) strain evolution on each face of prism PRe_12 and 

(b) (average) strain evolution for all tested prisms. σ stands for applied stress in N/mm2. 

 

Table 4.8 – Results obtained from long-term creep tests on PRe specimens (constant load periods 

of six months). In brackets, the coefficient of variation is given. 

E fc’ T 
Specimen 

N/mm2 N/mm2 days 
PRe_11 3720 6.05 559 
PRe_12 5055 6.70 742 
PRe_13 4345 6.70 749 
PRe_14 3270 4.75 184 
Average 4100 (19%) 6.1 (15%) 559 

 

Figure 4.14 depicts the crack pattern evolution for specimen PRe_13 as an example. 

Again, diffuse vertical cracks developing during testing have been observed, with large 

cracks and spalling occurring near failure. It is noted that the specimens with lower values 

of fc’ presented the most diffused crack patterns. Severe non-uniform distribution of 

damage can be observed along the four faces of the specimens, confirming the results 

shown in Figure 4.13a. 
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(c) 

Figure 4.14 – Crack pattern evolution for specimen PRe_13: (a) prior to testing, (b) at 80% of fc’ 

(corresponds to a test duration of 550 days) and (c) at failure. Shaded areas indicate 

spalling/loss of material. 

4.5 Discussion of the results 

In this Section, attention is mainly given to the results obtained with PRe specimens 

because, in this case, both short-term and long-term creep tests were carried out. A more 

careful interpretation of the results obtained from the rubble specimens can only be made 

when further experimental data is available from the ongoing testing program. It is noted 

that the short-term compressive strength fc of each prism tested in creep is unknown and 

can only be estimated. In this Section, the peak stress values fc’ obtained from the creep 

tests are considered as a close estimate of the compressive strength fc. Even if, in reality, 

the compressive strength fc does not correspond to fc’, such values remain the closest 

estimate in a material as heterogeneous as the one addressed in this study. 
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Figure 4.15 illustrates the evolution of the creep coefficient, defined as the ratio 

between the creep strain and the elastic strain, calculated from the short-term and long-

term creep tests results. For each specimen, the creep coefficient was calculated 

considering all creep diagrams at low stress levels (below 45% of fc’). It is further noted 

that the creep coefficient obtained from short-term creep tests was calculated from the 

average of the four tested specimens while the values obtained from long-term creep tests 

result from the average of the two specimens tested with constant load periods of three 

months. In the remaining four specimens tested in long-term creep, a first load step of 

approximately 60% of fc was applied and, thus, such tests can not be used to calculate 

creep coefficients. 

Creep coefficients of approximately 0.10 and 0.15 were found at the end of 8 hours 

and 90 days of sustained loading, respectively, confirming that most creep strain occurs in 

an early stage. Another important aspect is that the creep coefficient found at the end of 

90 days is significantly lower than the values recommended by EC6, CEN (2003), for 

masonry made with clay units, which range from 0.5 to 1.0. This can be explained by the 

fact that EC6 values refer to new masonry, where maturation of mortar is in an initial stage 

and, also, because the specimens tested had already been under service loads for 

approximately five centuries prior to testing. 
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                                          (a)                                                                           (b) 

Figure 4.15 – Variation of the creep coefficient with time obtained for PRe specimens: (a) short-

term creep results and (b) long-term creep results (constant load periods of three months). 
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Figure 4.16 shows the strain rate evolution, vertical vε&  and horizontal hε& , versus the 

applied stress over strength ratio σ / fc’ for PRe specimens under short-term creep tests. 

Strain-rate values were calculated between the sixth and eighth hours of each constant load 

step. It is expected that vertical strain rate values would be negative and horizontal strain 

rate values positive but some exceptions were found. This can be explained by minor 

variations in the applied load or changes in the environmental conditions. Such values have 

been considered equal to zero in the strain-rate diagrams shown in the rest of this Section. 

In Figure 4.16a three phases can be distinguished: for low stress levels (up to 50% 

of fc’), the vertical strain rate is approximately constant and rather low; for medium stress 

levels (between 50% and 80% of fc’), the vertical strain rate increases at a moderate pace; 

and, for high stress levels (over 80% of fc’), a remarkable growth of the strain rate stress 

can be observed. The existence of three distinct phases had also been reported by Mazzotti 

and Savoia (2002) on short-term creep tests performed on concrete specimens. Figure 

4.16b shows that beyond 50% of fc’, crack growth initiates, influencing the creep 

behaviour of the material. 

The results obtained for PRu specimens under short-term creep are illustrated in 

Figure 4.17. In this case, the scattered nature of the material is more evident and the three 

phases identified above cannot be so clearly observed. Even so, the results show that 

significant growth of the strain rate, either vertical or horizontal, occurs at an earlier stage 

than in the case of PRe specimens, approximately beyond 70% of fc’. 

 

  
                                              (a)                                                                            (b) 

Figure 4.16 – Strain rate evolution versus applied stress over strength ratio for short-term creep 

tests on PRe prisms: (a) vertical strain rate and (b) horizontal strain rate. 
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                                            (b) 

Figure 4.17 – Strain rate ngth ratio for short-term creep 

tests on PRu prism

 

Figure 4.18 and evolution versus stress over 

strength ratio for long-term onths and six 

months, respectively, carried out on m the 

average results over th tant load periods of 

six m

It is noted that the number of results is rather short and further testing is needed to 

better fundament the observations made. Nevertheless, the difference between the strain 

rate values obtained from short-term creep tests and long-term creep tests is striking. In 

fact, strain rates ranging from zero to -5.0 × 10-1 year-1 were observed in short-term creep 

tests while in long-term creep tests, values ranging from zero to -1.0 × 10-3 year-1 were 

found. Such difference precludes any possibility of extrapolation between the results 

obtained from the two types of test. Furthermore, this indicates that primary creep is not 

extinguished at the end of 8 h under sustained loading and, thus, secondary creep can not 

be measured from short-term creep tests. Such results must, therefore, be interpreted 

carefully. 

Another important aspect is that secondary creep was observed to initiate between 

60 and 70% of fc. It is further noted that larger strain rate values were obtained for the 

prisms tested with constant load periods of three months, stressing the scattered nature of 

the masonry tested. 

    (a)                                                                         

evolution versus applied stress over stre

s: (a) vertical strain rate and (b) horizontal strain rate. 

Figure 4.19 illustrate the strain rate 

 creep tests with constant load periods of three m

PRe specimens. Strain rates were calculated fro

e last 30 days in the case of the tests with cons

three months and over the last 90 days in the case of the tests with constant load periods of 

onths. 
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 the long-term 

creep tests with cons puted, which can be quite 

useful in calibrating non-linear creep m . The hyperbolic curve adopted is in the 

following form 

An hyperbolic least squares fit of the experimental data obtained from

tant load periods of six months was com

odels

a
f

a

c

+
−

=
σ

ε
1

4.0
&  (4.1) 

which yields zero for σ / fc = 0.6 and has a vertical asymptote for σ / fc = 1.0. From the 

least squares method, a  = 1.19 × 10-4 for the 

horizontal strain rate. 

 

  
                                              (a)                                                                            (b) 

Figure

long-term creep tests (six months steps): (a) vertical strain rate and (b) horizontal strain rate. 

 = -6.76 × 10-5 for the vertical strain rate and a

 4.18 – Average strain rate in the last 30 days versus applied stress over strength ratio for 

long-term creep tests (three months steps): (a) vertical strain rate and (b) horizontal strain rate. 

 

  
                                               (a)                                                                           (b) 

Figure 4.19 – Average strain rate in the last 90 days versus applied stress over strength ratio for 
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ucting creep tests at high stress levels. A reasonable criterion is believed to be 

keepin

ed that only results corresponding to load levels larger than 60% of fc’ 

were considered. The results obtained indicate that the strain rate gets approximately 

constant after 70-80 days in 

 
                                             (a)                                                                           (b) 

Figure 4.20 – Strain-rate evolution in time for applied stresses larger than 60% fc’: (a) vertical 

strain rate and (b) horizontal strain rate. 

4.6 Summary 

The creep behaviour under high stresses of three different types of ancient masonry 

specimens has been analysed. Short-term creep tests have been conducted on regular and 

rubble masonry prisms recovered from the ruins of the collapsed Pavia Civic Tower and, 

also, on rubble prisms collected in the crypt of the Monza Cathedral. In addition, long-term 

creep tests were also carried out on regular prisms coming from the Pavia Civic Tower. 

From experimental practice, it is possible to conclude that creep tests on ancient 

masonry prisms should be carried out by applying the load in successive steps, at a given 

time interval, starting from a low stress level. In this way, a throughout description of the 

The striking difference between strain rate values in short-term and long-term creep 

tests draws attention over what should be the minimum duration of constant load periods 

when cond

g the load constant until only secondary creep is present, i.e. until a fairly constant 

strain rate is attained. For this purpose, the vertical and horizontal strain rates where 

calculated for each 15 days period of the total 180 days constant load steps, as illustrated in 

Figure 4.20. It is not

the case of longitudinal strains and after 30-40 days in the case 

of transversal strains. 
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viscous behaviour of the material can be obtained. Creep tests in which the load is applied 

in a single step are unwieldy in the case of ancient masonry due to the high scatter in the 

mechanical properties and to the small number of specimens usually available. 

The time period between successive load steps should be sufficiently long to 

extinguish primary creep. In fact, the evolution for different stress levels of the strain rate 

associated to secondary creep can only in such way be evaluated. From the results obtained 

on the regular masonry prisms tested, a minimum time period under sustained loading of 

70 to 80 days should be adopted. For this reason, remarkable differences were observed 

between secondary creep rates calculated from short-term or long-term creep tests. Short-

term creep results should, therefore, be interpreted carefully. 

Finally, it should be stressed that secondary creep was found to initiate at 60 to 70% 

of the compressive strength. A hyperbolic fit to describe the evolution of secondary creep 

rate with the applied stress-level has been suggested in the present study. 
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5 Multiple-leaf masonry walls: load transfer and 
compressive failure 

Multiple-leaf masonry walls are a typology often found in historical city centres worldwide 

and usually consist of two or three leaves made up of different materials such as stone, 

brick or rubble masonry, see e.g. Binda et al. (1999). In the case of three-leaf walls, two 

outer shells and a thick inner core of rubble material are generally present. The last decades 

have witnessed the severe damage, or even collapse, exhibited by several famous 

monumental buildings due to high compressive loading in multiple-leaf pillars and walls. 

Recent examples are the collapse of the Cathedral of Noto, Italy, in 1996, see Binda et 

al. (2003a), and the severe damage found in the churches of the Santissimo Crocefisso and 

Santissima Annunziata, see Binda et al. (2001), also in Italy. 

Most structural problems exhibited by three-leaf walls and pillars result from the 

poor or absent connection between the leaves, the weakness of the inner core or the 

t injection 

Tass  

assessm

structura

 collar joints. Later on, a first experimental assessment of the shear 

behaviour of two-leaf walls was reported by Binda et al. (1994) using small scale 

specimens. 

Egermann and Neuwald-Burg (1994) carried out an extensive compression testing 

program on three-leaf wallets. The experimental results showed that the outer-leaves 

exhibit a lower strength inside the composite system than when individually loaded and 

deterioration of the mortar in the external joints. Several techniques such as grou

or bed-joint reinforcement are today available for structural retrofitting, see Vintzileou and 

ios (1995), Toumbakari (2002) and Valluzzi et al. (2004). Nevertheless, reliable safety

ent and retrofitting with minimum intervention requires proper insight on the 

l behaviour and failure mechanisms, which is an especially complex issue in the 

case of three-leaf walls. In fact, the stress distribution is largely dependent of the 

mechanical properties of the leaves, of the leaves dimensions and of the way the leaves are 

connected to each other. 

References in literature are rather scarce on this topic. Binda et al. (1991) proposed 

some simple analytical models regarding two extreme situations: presence of stiff 

horizontal elements capable of distributing the load to the leaves proportionally to their 

axial stiffness and absence of such elements, making the load transfer dependent on the 

bond properties of the
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e opposite behaviour. The different responses were attributed 

not only compressed but are also under bending 

) carried out a numerical study to assess the 

eometries in the response of multiple-leaf 

lts obtained indicate that large shear stress 

 joints, which have a decisive effect on the 

ncentrations are dependent on the leaves 

relative thicknesses and on the geometry of the shear keys. 

The present work illustrates an integrated experimental-numerical approach to 

provide understanding into the behaviour and failure mechanisms of three-leaf stone 

masonry walls. Experimental data on shear and compression tests on large scale specimens 

is provided, which can contribute to the derivation of rational design rules and validation 

of numerical models. Firstly, the testing program and obtained experimental data are 

addressed and, afterwards, the experimental results are analysed making use of simplified 

5.1 Experimental work 

A set of twelve three-leaf stone wallets with dimensions of 310 × 510 × 790 mm3, 

nd 

inner-

 

that the inner-leaves have th

to the fact that the outer shells are 

moments, and that the infill is confined. 

Recently, Drei and Fontana (2001

influence of different material properties and g

walls subjected to transversal loads. The resu

concentrations are likely to occur in keyed collar

global safety of the structure. Such stress co

calculations and, also, to sophisticated numerical tools. 

composed by two outer-leaves of ashlar masonry and an inner core of rubble masonry were 

built and tested at the Politecnico di Milano, see Figure 5.1. Two types of collar joints 

(with and without shear keys) and two types of stones (a limestone named Noto, frequently 

used locally, and a sandstone named Serena, frequently used in central and southern Italy) 

have been considered. It is noted that the same type of stone was used for both outer a

leaves. The construction process is illustrated in Figure 5.2 and the wallets are shown 

in Figure 5.3 and Figure 5.4. The loading faces of the specimens were regularized with a 

cement based mortar approximately 15 mm thick. The wallets were denoted by their 

geometrical and material properties according to Table 5.1. 
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d was applied to the complete 

The wallets were tested according to three different procedures: 

a) Shear tests. A monotonic load was applied to the inner-leaf while the outer-

leaves were supported (triplet test). This test is similar to the EN 1052-3, 

CEN (2002). 

b) Compression tests on single leaves. Outer and inner-leaves were tested 

individually under uniaxial compression. 

c) Compression tests on full wallets. A monotonic loa

transversal section of the wallets. 

 

             
(a)                                                                (b) 

Figure 5.1 – Wallets dimensions in mm: (a) straight collar joints and (b) keyed collar joints. 

 

                
 

 
Figure 5.2 – Construction of the wallets. 
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                                 (a)                                              (b)                                        (c) 

Figure 5.3 – Noto wallets: (a) front view of a specimen with straight collar joints, (b) front view 

of a specimen with keyed collar joints and (c) lateral view. 

 

                         
                                  (a)                                             (b)                                     (c) 

Figure 5.4 – Serena wallets: (a) front view of a specimen with straight collar joints, (b) front view 

of a specimen with keyed collar joints and (c) lateral view. 

 

Table 5.1 – Denomination of the tested wallets. The first letter corresponds to the type of stone (N 

for Noto and S for Serena) while the second letter stands for the type of connection (S for 

straight and K for keyed). 

 
Straight collar 

joints 
Keyed collar 

joints 

Noto limestone NS1, NS2, NS3 NK1, NK2, NK3 

Serena sandstone SS1, SS2, SS3 SK1, SK2, SK3 
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Physical and

 5.5. Six cylindrical specimens 

with a

5.1.1 Description of masonry components 

Units 

 mechanical tests were carried out on cylindrical samples cored from the stone 

units used to build the wallets. The units were cored considering two different orientations: 

along the loading direction A and along the bedding direction B of the units in the wallets, 

so that the anisotropy of the material could be characterized. 

The physical tests consisted on the determination of the bulk density and open 

porosity, according to EN 772-4, CEN (1998b), see Figure

 diameter of 80 mm and a height of 145 mm were considered for each type of stone. 

The average results obtained in terms of the bulk density ρb,s and of the open porosity Po 

are given in Table 5.2. The values found illustrate the significantly different physical 

properties of the two stones. The Noto limestone exhibits high open porosity and low 

weight while the Serena sandstone exhibits a 1.5 times larger weight and seven times less 

porosity. 

 

                   
                                       (a)                                                                          (b)  

 

 
(c) 

Figure 5.5 – Bulk density and open porosity tests: (a) drying of the specimens to constant mass, 

(b) weighting of the specimens and (c) saturating with deionised water. 
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Table es. The coefficient of 

v

5.2 – Average results for the bulk density and open porosity of the ston

ariation CV is also given. 

ρb,s CV Po CV Type of 
stone kg/m3 % % % 
Noto 1760 1.5 15.4 4.5 

Serena 2570 0.3 2.1 5.7 
 

cylindrica , CEN (2000). Conditioning of the specimens 

was performed according to the air-dry cond  stated in the normative. The height of 

the specimens was limited to the 150 mm height of the stone units from which the 

specimens were extracted and, for this reason, a height over diameter ratio less than 2.0 

was utilized. The ASTM standard C39, ASTM (2004), accounts for the effect of ratios less 

than 2.0 in concrete specimens by introducing a correction factor. For the ratio adopted in 

the experiments, 1.75, the reduction factor equals 0.98, which is quite small when 

compared with the data variability and, thus, was not considered. Three specimens for each 

combination type of stone/orientation were tested. 

The test setup adopted is illustrat ure 5.6. For the Noto specimens, a non-

standard uniaxial testing m a maximum capacity of 

 UB-A 

while the vertical deformations were measured using three strain transducers HBM DD1. 

In addition, two displacement transducers HBM W5TK measured the displacement 

between the loading plates. The post-peak behaviour of the specimens can only be 

followed resorting to the displacement transducers, as the strain transducers fixed to the 

samples are normally perturbed by developing cracks. The tests were carried out under 

displacement control at a displacement rate of 10 μm/s, permitting to trace the softening 

path. The loading capacity of the actuator was insufficient to reach failure of the Serena 

specimens and, thus, the specimens were loaded only up to 250 kN (about 50 to 60% of the 

strength) using the above test setup in order to determine the elastic parameters. 

Afterwards, the specimens strength was determined under loading control in a ALFRED J. 

AMSLER 4122 press with a maximum capacity of 2000 kN. Yet, in this testing machine, 

only the peak load could be recorded. 

 

Uniaxial compressive tests were carried out after the physical tests, on the same 

l samples, according to EN 772-1

itions

ed in Fig

achine with a hydraulic actuator with 

300 kN was used. The lateral deformations were measured with a clip gauge TML
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Figur  the mechanical properties of the 

Noto specimens and the elastic properties of the Serena specimens and (b) test setup used to 

determine the strength of the Serena specimens. 

 

The average values for the compressive strength fc, peak strain εp, modulus of 

elasticity E and coefficient of Poisson ν are given in Table 5.3. The complete results 

obtained as well as the stress-strain diagrams are given in Annex B.1. It is noted that E and 

ν were calculated, in general, between 30 and 60% of fc. According to the results obtained, 

the Serena stone exhibits, in the loading direction, a strength about five times larger than 

the Noto stone and about the double of the stiffness. It is further noted that both stones 

g direction than 

coinc  Failure patterns are illustrated 

in Figure 5.7. 

Table

εp ν 

12 

                                    (a)                                                                                           (b) 

e 5.6 – Compression tests: (a) test setup used to determine

exhibit a larger strength and a smaller coefficient of variation in the loadin

in the bedding direction. Such behaviour is due to the fact that the units bedding plane 

ides with the natural bedding plane of the stone (rift).

 

 5.3 – Average results obtained from the compression tests on stone specimens (values in 

brackets give the CV). 

fc E Type of 
stone 

Orientation 
(1) 10-3 - 

N 2 0 

N/mm2 N/mm2

oto A 20.6 (7%) .4 9475 0.1
Noto 2.3 

Se (2) 19 
Serena B 89.0 (15%) (2) 23293 0.21 

 B 
rena A 

17.6 (22%) 
104.2 (1%) 

8525 0.09 
18218 0.

(1) A stands for coring of the specimens along the loading direction of 
the units in the wallets and B for the bedding direction. 
(2) The Serena specimens had to be tested in a machine with a higher 
capacity, which did not allow recording displacement values. 

1 - Displacement 
transducer 

2 - Strain 
transducers 

3 - Clip gauge 3 

1 
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(a)                                                             (b) 

            
(c)                                                            (d) 

Figure 5.7 – Failure patterns for the compression tests: (a) Noto specimens oriented along direction 

A and (b) along direction B, (c) Serena specimens oriented along direction A and (d) along 

direction B. 

The tensile strength was obtained by the splitting test, also known as Brazilian test. 

This test is not yet specified by any European standard and the RILEM recommendation 

for concrete CPC6, RILEM (1994), was adopted. According to the recommendation, the 

splitting tensile strength ft,s is determined by 

 

Ast π,
Pf 2

=  (5.1) 

In the above, P is the maximum load and A is the area of the theoretic failure 

surface. The tests were carried out on six cylindrical specimens for each type of stone with 

a diameter and height of 80 mm. The specimens were obtained by sawing in half three 

cylinders cored along the bedding direction B of the units. This direction is the most 

relevant with respect to the tensile strength as it is the direction where principal tensile 

stresses occur when units are vertically loaded. A non-standard uniaxial testing machine 

with a maximum capacity of 250 kN was used, see Figure 5.8a. Two packing strips in 

cardboard were placed between the loading plates and the specimens, so that punctual 

loading could be avoided, see Figure 5.8b. 
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                          (a)                                                                           (b) 

Figure 5.8 – Splitting tests: (a) test apparatus and (b) detail of the setup. 

 

The average results obtained are given in Table 5.4 while the complete set of results 

is given in Annex B.1. In the case of concrete, the splitting tensile strength ft,s is about 5 to 

12% higher than the direct tensile strength ft, see Neville (1997). Here, ft has been 

considered equal to 0.9 ft,s. According to the results obtained, the Noto stone exhibits an 

average tensile strength three times smaller than the Serena stone. Concerning the ratio 

between the compressive and tensile strengths, a value of ten times was found for the Noto 

stone and a value of seventeen times was found fo

packing 
strip 

r the Serena stone. Figure 5.9 illustrates 

the failure patterns. 

 
Table 5.4 – Average results obtained from the tension tests on the stone specimens (values in 

brackets give the CV). 

ft,s ftType of 
stone 

Orientation N/mm2 N/mm2

Noto B 2.05 (13%) 1.8 
Serena B 6.00 (12%) 5.4 

 

               
                          (a)                                                                            (b) 

Figure 5.9 – Failure patterns for the tension tests: (a) Noto specimens and (b) Serena specimens. 
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Mortar 

 mortar denominated Albaria Allettamento, Italy, 

e tests were carried out according 

to EN 1015-11, CEN (1999). The flexural tests were carried out on 40 × 40 × 160 mm3 

prisms casted in steel molds, see Figure 5.10 rthy, with this procedure the water 

absorption effect of the units is ignored and thus these specimens are not fully 

representative of the mortar inside the masonry composite  Lourenço (1996a). 

ve humidity 

flexu

ages: 28 days, 75 days (corres sts on the wallets), 90 days 

and 172 days (corresponding to the end of the testing program). For each curing stage a 

total of six prism s

 

A commercial premixed hydraulic lime

was adopted to build the wallets. Flexural and compressiv

. Notewo

, see e.g.

The specimens were cured and stored at constant temperature and relati

conditions of 20ºC and 90%, respectively. Compressive tests were carried out after the 

ral tests on the two resulting halves of the prisms. The tests were performed at four 

ponding to the beginning of the te

s were tested, each three coming from two different batche . 

 

 
Figure 5.10 – Mortar prisms. 

f  (in N/mm2) was determined from standard three point The flexural tensile strength f

bending tests using the following expression, CEN (1999) 

2d
lF  5.1

b
f f ⋅= (5.2) 

Here, F is t ximum l  appli is ist et  the axes of the 

support rollers (i nd b an d are the width and depth o e n (in mm). The 

flexural tensi t failure, as 

yielded by the -linear 

and is signific  the fracture energy 

he ma oad ed (in N), l the d ance b ween

n mm) a d f the sp cime

le strength is obtained assuming a linear stress distribution a

 linear elastic beam theory. However, such distribution is clearly non

antly influenced by the fracture energy of the material. If
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is zero, failure occurs once the extreme fibre reaches the tensile strength and the ultimate 

moment is the moment obtained assuming a linear stress distribution. But for very high 

fracture energy values, the ultimate moment can be magnified by a factor of three due to 

stress redistribution, see Lourenço (1997) for a numerical assessment. An experimental 

comparison between the tensile and flexural strengths of masonry prisms was carried out 

by Van der Pluijm (1999). Values of 1.5 and 1.2 were found for the ratio betw n the 

flexural strength and the tensile strength for clay units with a general purpose mortar and 

for calcium silicate blocks with thin mortar joints, respectively. In general, a factor of 1.5 

can be assumed. Another important aspect is the height of the specimen. In fact, the 

influence of the post-peak behaviour of the material in the flexural response of the 

specimen diminishes with increasing height. 

A testing machine METRO COM PFI th a maximum capacity of 25  was 

used for the flexural tests an  25 with a maximum 

avera

addition, the number of specimens tested n and the coefficient of variation CV are also 

indicated. The complete results are given in Annex B.2. The results found yield average 

values

 

ee

 0.25 wi kN

d a testing machine METRO COM PMP

capacity of 250 kN was used for the compression tests, see Figure 5.11. Table 5.5 gives the 

ge results obtained for the flexural strength ff  and for the compressive strength fc. In 

 for the flexural and compressive strengths during the testing period (75 to 172 days) 

of 2.2 N/mm2 and 10.3 N/mm2, respectively. An increase of 15% for the flexural strength 

and of 20% for the compressive strength was found since the beginning of the tests until its 

completion. 

             
                          (a)                                             (b)                                              (c) 

Figure 5.11 – Test setup for the compressive and flexural tests on mortar specimens: (a) testing 

machine, (b) detail of the compressive test setup and (c) detail of the flexural test setup. 



94 J. Pina-Henriques 

 

 

Table 5.5 – Average results obtained from the flexural and compression tests on mortar specimens 

(values in brackets give the CV). 

Curing time n ff fc

days flexion compression N/mm2 N/mm2

28 6 12 1.5 (6%) 7.4 (3%) 
75 6 12 1.9 (13%) 9.2 (6%) 
90 6 12 2.3 (10%) 9.7 (7%) 

172 6 2.2 (9%) 11.2 (5%) 12 

5.1.2 Son

Sonic 

h can be made. In general, a higher velocity corresponds to a better 

quality and homogeneous material. Further insight on this subject can be found in Binda et 

t the tests was a transmitter (hammer) DYTRAN 

5801A5, a receiver (accelerom L & KJAER 4370 and an oscilloscope 

PANASONIC VP7510A average nic ve d co ient of variation CV are 

given in Table 5.6 for w ith st ht co d i ble 5.7 for wallets with 

keyed collar joints. The results are grouped according to the testing locations, see      

Figure 5.12. 

 

Table 5.6 – Average sonic velocities for wallets with straight collar joints. 

Noto wallets Serena wallets 

ic characterization of the wallets 

tests have been carried out on the wallets aiming at an overall characterization of the 

composite material. Sonic tests refer to the transmission and reflection of mechanical stress 

waves through a medium at sonic frequencies. The method is based on the generation of an 

elastic wave resorting to a force hammer and on its reception with an accelerometer. In the 

present tests, the direct transmission procedure was adopted, which consists in placing the 

transmitter and the receiver in directly opposite positions. From the resulting wave 

velocity, an evaluation in terms of material uniformity, presence of voids and cracks, and 

compressive strengt

al. (2003b) and McCann and Forde (2001). 

The equipment used to carry ou

eter) BRUE

. The  so locity Vs an effic

allets w raig llar joints an n Ta

Direction 
Propagation 

medium 
Testing 

locations Vs [m/s] CV [%] Vs [m/s] CV [%] 

A – C 
outer-inner-
outer-leaves 

1 to 8 2305.7 8.9 2269.3 22.7 

B – D outer-leaf 9,11,15,1 1.0 14.4 2730.7 8.7 
7.5 12.3 

B – D inner-leaf 10,13,16,19 2248.6 15.8 1835.0 14.7 

7 227
B – D outer-leaf 12,14,18,20 2301.0 14.0 230
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Noto wallets Serena wallets 

Table 5.7 – Average sonic velocities for wallets with keyed collar joints. 

Propagation 
medium 

Testing 
locations Vs [m/s] CV [%] Vs [m/s] CV [%] 

Direction 

A – C 
outer-inner-
outer-leaves 

1,2,5,6 2219.0 11.6 2235.2 9.9 

A – C 
outer-inner-
outer-leaves 

3,4,7,8 2168.4 8.7 2390.2 5.6 

B – D outer-leaf 9,11,15,17 2302.1 12.8 3082.1 8.3 
B – D outer-leaf 12,14,18,20 2078.9 13.0 2527.0 14.6 
B – D inner-leaf 10,13,16,19 2415.9 25.0 1968.5 21.4 
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(b) 

Figure 5.12 – Testing locations fo t collar joints and (b) with keyed 

c

Some relevant remarks are as follows: 

a) The sonic 

b) The sonic velocities in the outer-leaves of the Serena wallets are much larger 

r the wallets: (a) with straigh

ollar joints. 

 

velocities between the outer and inner Noto leaves are very similar. 

than in the inner-leaves. The sonic velocity across the three leaves is in between 

the velocity in the outer and inner-leaves. 

c) In the Noto wallets with keyed collar joints, the velocities in the courses with 

indentations are similar to the ones without. 
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ates and a maximum capacity of 2500 kN. All 

the tests have been carried out under displacement control so that the softening behaviour 

fter the shear tests, the resulting separated leaves from the wallets with straight 

collar joints remained practically undamaged and were tested in compression. The outer-

leaves from the Noto wallets were tested simultaneously and the upper loading plates had 

simply to be displaced from the centre of the wallet to the edges. Afterwards, the outer-

leaves were removed and the inner-leaf was tested individually, see Figure 5.14a. On the 

contrary, the outer-leaves of the Serena wallets had to be tested individually due to the 

much higher strength. In this case, after the shear tests, the leaves had to be removed from 

the testing machine and then, individually, placed again on the machine, see Figure 5.14b. 

The test setup for the compression tests on full walle shown in Figure 5.15. 

Deformations in the wallets were recorded with up to 14 displacement transducers 

GEFRAN PY2-10 (10 mm range). The bases of the transducers were fixed in the 

d) In the case of the Serena wallets with keyed collar joints the velocities in the 

courses with indentations are slightly larger than in the ones without. 

e) Confronting the velocities across the external leaves between courses with and 

without the vertical joints, it is possible to verify that the Serena wallets exhibit a 

much larger difference than the Noto wallets, meaning that the adhesion stone-

mortar is much weaker. Here, it is noted that the high porosity of the Noto stone 

increases the penetration of the mortar in the stone. 

5.1.3 Experimental setup 

The tests on the wallets have been performed in a uniaxial testing machine 

MTS® 311.01.00 with non-rotating loading pl

of the wallets could be followed. A displacement rate of 1 μm/s was adopted. Teflon sheets 

have been placed between the wallets and the loading plates to minimize restraining 

frictional stresses. For a discussion on the influence of different loading plates in 

compression tests the reader is referred to Vonk (1993). 

A different test-setup was adopted according to the type of test: shear, compression 

of single leaves and compression of full wallets. The shear tests were performed using the 

setup illustrated in Figure 5.13. The adopted configuration is similar to the one described in 

EN 1052-3 (CEN, 2002). The tests were carried out in the absence of normal confining 

load. 

A

ts is 
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inter

         
                                   (c) 

specimens by metallic bolts. In addition, displacements were also measured with the 

nal displacement transducer of the actuator. 

 

Lower metal plates 

                 (a)                                                 (b)                

Figure 5.13 – Test setup for the shear tests: (a) wallets with straight collar joints, (b) wallets with 

keyed collar joints and (c) metal frame used to fix the lower metal plates. 

 

             
                                   (a)                                                                               (b) 

Figure 5.14 – Test setup for the compression tests on single leaves: (a) Noto wallets and (b) Serena 

wallets. 

           
             (a)              

Figure 5.15 – Test setup for the co

(b  co

                                                       

mpression tests 

                   (b)

on full wallets: (a) straight collar joints and 

) keyed llar joints. 

Metal frame 

Two 10 mm thick 
metal 

Metal fram

plates 

e 

Two 10 mm k, 
welded me  

plates 

thic
tal
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nsp es en he t  p  wa  were 

previo nfin wo tes metal frame, ure

woode paper. 

Once on top of the testing plate, the wallets were grasped and m

machine using a laboratory crane re 5

For tra ort purpos and placem t on t esting late, the llets

usly co ed using t  wooden pla  and a  see Fig  5.16a. The 

n plates we  by  ru e m l an et ofre covered  a layer of a bber-typ ateria d a she  sand

oved to the testing 

, see Figu .16b,c. 

 

             
                                        (a)                                                                      (b) 

 

 
(c) 

Figure 5.16 – Transportation of the wallets: (a) positioning on top of the testing plate, 

(b) transportation and (c) placement on the testing machine. 

Two wallets for each combination type of stone - type of connection were tested in a total 

of eig iagrams obtained with the internal actuator 

transd r lar 

joints,

simultane

5.1.4 Results of shear tests 

ht specimens. The load-displacement d

uce  are illustrated in Figure 5.17. In the case of the wallets with straight col

 a non-symmetric response of the connections was found, with failure occurring non-

ously. Such behaviour had also been found by Binda et al. (1993), Mirabella 
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Rober

the triplet

       
                                        (a)                                                                           (b) 

e applied load. From that point on 

the tes

g is neglected, the second peak provides the shear strength of the strongest joint τr’, 

for a s

     

ti et al. (1998) and Lourenço et al. (2004), and must be considered characteristic of 

 test. 

 

Figure 5.17 – Load-displacement diagrams obtained for the shear tests with the internal actuator 

transducer: (a) straight collar joints and (b) keyed collar joints. 

 

The first peak in the diagrams of Figure 5.17a corresponds to the failure of the 

weakest connection and provides the shear strength τr for a shear area of 

2 × 310 × 790 mm2. After failure of the first connection a minor rotation of the two leaves 

still connected was observed due to the eccentricity of th

t cannot be intended as a triplet test due to the change in the loading scheme and, 

therefore, the values related to the second connection to fail should be considered 

carefully. Namely, the second peak represents the combination of a higher shear strength 

for the second joint and some minor friction in the first joint due to bending. If the effect of 

bendin

hear area of 310 × 790 mm2. This holds true only because no confining pressure is 

present. 

For the wallets with keyed collar joints, the shear strength was calculated assuming 

straight connections and, thus, the value represents an “equivalent” shear strength. 

Table 5.8, Table 5.9 and Table 5.10 give the results obtained. In the case of straight collar 

joints wallets, the average shear strengths (τr and τr’) and displacements (δ and δ‘) 

corresponding to the first and second load peaks are presented. For keyed collar joints 

wallets, the average values of the shear strength and the corresponding displacements are 

given. 

0.0 1.5 3.0 4.5 6.0
Displacement [mm]

0

100

200

300

400

Lo

500

ad
 [k

N
]

NK1
NK2
SK1
SK2

0.0 0.5 1.0 1.5 2.0 2.5
Displacement [mm]

0

20

40

60

80

10

120

Lo
ad

 [k

0

N
]

NS1
NS2
SS1
SS2



100 J. Pina-Henriques 

 

 

Table 5.8 – Results of the shear tests for wallets with straight collar joints. 

First load 
peak  

τr δ 
Second load 

peak  
τr’ δ’ 

Wallet 
Type of 

stone 
kN N/mm2 m 2

NS1 Noto 61.9 0.13 0.57 
m kN N/mm mm 

43.4 0.18 0.97 
NS2 Noto 97.4 0.20 1.05 61.0 0.25 2.13 
SS1 Serena 50.4 0.10 0.72 29.4 0.12 0.77 
SS2 Serena 31.7 0.07 0.55 24.7 0.10 0.79 

 

Table 5.9 – Results of the shear tests for wallets with keyed collar joints. 

Peak load τr δ 
Wallet 

Type of 
stone kN N/mm2 mm 

NK1 Noto 277.7 0.57 2.24 
NK2 Noto 291.1 0.59 1.40 
SK1 Serena 383.3 0.78 3.33 
SK2 Serena 407.6 0.83 3.91 

 

Table 5.10 – Average results obtained from the shear tests. 

τr δ τr’ δ’ 
Wallet 

Type of 
stone 

Type of 
connection N/mm2 mm N/mm2 mm 

NS1, NS2 Noto Straight 0.17 0.81 0.22 1.55 
SS1, SS2 Serena Straight 0.09 0.64 0.11 0.78 

NK1, NK2 Noto Keyed 0.58 1.82 - - 
SK1, SK2 Serena Keyed 0.81 3.62 - - 

 

From the results obtained it is possible to observe that while the shear strength of 

straight collar joints wallets is mainly influ  by the physical pro rties of the stone, as

joints w th of the stone is of major significance. 

In terms of ductility, the specimens with straight collar joints show a similar 

behaviour for both types of stones. The failure is quite brittle and without showing any 

residual strength, given that the test setup allows the wallets to move freely outwards. 

Regarding the wallets with keyed collar joints, the Serena specimens exhibit a less brittle 

behaviour than the Noto specimens. 

Further insight on the wallets behaviour can be obtained from the diagrams of the 

transducers fixed in the faces of the spec An appreciation of o ly the most salient 

rams are illustrated in 

enced pe  

the porosity that is closely related to the stone-mortar adhesion, in the case of keyed collar 

allets, the streng

imens. n

features is given in here but the complete load-displacement diag
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nature of the tests conducted, improvements in the transducers position were made during 

the tes

hort” transducers, which show zero 

values until near the peak load, see T10 and T11 in Figure 5.19a. However, it can still be 

observed that the connection does not fail all at once but that the crack rapidly develops 

from the top (T11) to the bottom (T10). 

The “long” transducers behave in a quite different manner, showing increasing 

shortening until initiation of the shear cracks, with subsequent inversion of the trend and 

sudden elongation, see T4 in Figure 5.19a. Such behaviour can be explained by the fact 

that “long” transducers are not only measuring shear slippage at the connection but are also 

On the contrary, Serena wallets with straight collar joints show a progressive 

development of the shear cracks since an early stage, yielding a less brittle failure than the 

Noto wallets. This behaviour is confirmed by the diagrams of the “short” transducers T3 

and T5 shown in Figure 5.19b. This different behaviour can be explained by the weak 

adhesion between the Serena stone and the mortar. 

 

Annex B.3. Transducers lengths are given in Annex B.8. It is noted that given the novel 

ts and, thus, the position of the transducers is not the same for all wallets. Relative 

shear displacements at the connections have been evaluated by positioning “short” 

transducers (T3, T5, T10 and T11) and “long” transducers (T4 and T12) as illustrated in 

Figure 5.18. Failure of the connections in the Noto wallets occurred in a quite brittle 

manner as can be verified by the behaviour of the “s

influenced by the deformation of the leaves. 
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Figure 5.18 – Position of the transducers for wallets NS2 and SS2. 
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Figure 5.19 – Load-displacement diagrams for wallet en 

(NS2) and (b) Serena specimen (SS2

contraction. 

posit 10 and T12 in Figure 5.20) 

exhibit, initially, an increasing shortening as expected. However, after a determined load 

level the transducers start to show an elongation, see 

attributed to the fact that the two upper courses of the wallets are being pushed outwards 

by the applied load. It can also be observed that the transducers positioned in the inner-leaf 

30

40

80

100

120

                                      (a)                                                                             (b) 

s with straight collar joints: (a) Noto specim

). Positive sign is adopted for elongation and negative for 

 
Regarding the wallets with keyed collar joints it can be observed that the transducers 

ioned in the outer-leaves above the central indentation (T

Figure 5.21. Such behaviour can be 

above the central indentation (T11) show larger deformations than the correspondent 

transducers below them (T14). This can be observed in a rather clear manner up to a 

certain load level, before transducers become disturbed by the appearance of cracks. Such 

behaviour results from the load transfer between inner and outer-leaves. This process 

cannot be observed so clearly in the outer-leaves, partly due to the complex behaviour of 

transducers T10 and T12, as explained above. 

 

                                       

10 11 12

13 14 15

 
Figure 5.20 – Position of the transducers for wallets NK1, NK2, SK1 and SK2. 
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               a)                           

Figure 5.21 – Load-displacement diagrams for wallets with keyed collar joints: (a) Noto specimen 

(N ngation and 

negative for ion

 

Typical ultima k pa are i ted in re 5. he crack patterns for 

all the specimens and g th ren s: fir eare ks, at peak load and 

the final crack pattern are show nex alle 1 and  were showing some 

thin cracks prior to testing and, in th s at the beginning 

of the test are shown in Annex B.4. 

S collar joints w  d he de ment  ver shear 

cracks conn s. N isibl age was observed at the end of the test. 

In the e sp  w  col ints, t cking pattern was different 

accord type . Fo oto specimens, d  was ob rved in b h outer 

and inner-leaves. In the inner-leaves, more severely damaged, diagonal cracks were 

observ

he inner-leaf. However, in 

this ca

500

300

350

                        (                                                   (b) 

K1) and (b) Serena specimen (SK1). Positive sign is adopted for elo

 contract . 

te crac tterns llustra  Figu 22. T

 alon ree diffe t stage st app d crac

n in An  B.4. W ts NK  NK2

ese two cases, also the crack pattern

traight allets failed ue to t velop  of two tical 

 along the ection o other v e dam

case of th ecimens ith keyed lar jo he cra

ing to the  of stone r the N amage se ot

ed, developing from the shear keys and passing through the inner-leaf stones. 

Concerning the outer-leaves, diagonal cracks near the base appeared. At ultimate stage, full 

separation in three irregular leaves could be observed. 

In the Serena specimens, the cracks developed only in t

se, cracks usually went around the stones instead of breaking them, due to the larger 

strength and smaller stone-mortar adhesion. At ultimate stage, it is clearer to observe that 

only the inner-leaf collapsed. 
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                                  (a)                                        (b)                                       (c) 
Figure 5.22 – Typical ultimate crack patterns for (a) straight collar joints wallets (NS1) and keyed 

collar joints wallets: (b) Noto (NK1) and (c) Serena (SK2). 

5.1.5 Results of compression tests on single leaves 

Compression tests were performed on the single leaves of the wallets with straight collar 

joints, previously tested in shear, see Section 5.1.4. In the case of the Noto specimens, both 

outer-

opted due to the limited capacity of the testing 

machi

efficient ν are given in Table 5.11 and 

Table 5.12. From the given results it is observed that the Noto outer-leaves exhibit a 

strength of about 45% the stone strength and the inner-leaf about 20%. In the case of the 

Serena leaves, the same ratios are about 40% for the outer-leaves and only 4% for the 

inner-leaf, which stresses the major influence of the mortar in the inner-leaf failure. 

Another interesting aspect is that the ratio between the strength of the Serena and Noto 

stones, which is approximately equal to five, is similar to the ratio between the strength of 

the outer-leaves but the same is not true for the inner-leaves, which exhibit practically 

equal strengths. It is further noted that the Serena inner-leaves exhibit a less brittle 

behaviour than t ens, again

cracks to go aro

leaves were tested simultaneously, trying to reproduce what may happen in real 

composite walls: shear failure of the connections followed by transfer of almost all the load 

to the external stiffer elements. This can explain the type of damage found in massive 

pillars, see Binda et al. (2003a). In the case of the Serena leaves, which were much more 

resistant, the same procedure could not be ad

ne and, thus, the leaves had to be tested separately. The specimens were unloaded 

after reaching approximately 70% of fc in the post-peak regime. 

A comparison between the stress-strain diagrams obtained for the outer and inner-

leaves is shown in Figure 5.23. The results obtained, including the strength fc, the peak 

strain εp, the elastic modulus E and the Poisson co

he Noto specim  due to the higher strength of the stones, forcing 

und them instead of passing through. 



 5. Multiple-leaf masonry walls: load-transfer and compressive failure 105

 

 

 

stem prevented fully capturing the NS1_E diagram and, thus, it is not shown. It 

is also noted that failure of specimen SS2_E2 could not be attained within the capacity of the 

t

       
                                        (a)                                                                             (b)

Figure 5.23 – Stress-strain diagrams obtained from compression tests on single leaves using the 

internal actuator transducer: (a) outer-leaves and (b) inner-leaves. A problem in the 

acquisition sy

esting machine. 

 

Table 5.11 – Results obtained from the compression tests on single leaves. 

Peak load fc Peak disp. εp E ν 
Specimen 

kN N/mm2 mm 10-3 N/mm2 - 
NS1_E (both) 950.6 9.0 - - 3680 - 
NS2_E (both) 874.1 8.3 2.71 3.3 2615 - 

SS1_E1 1925.7 36.5 7.22 8.8 5145 - 
SS1_E2 2011.1 38.2 7.71 9.4 4965 - 
SS2_E1 2061.4 39.1 7.71 9.4 4825 - 
SS2_E2 > 2380.0 > 45.2 > 8.53 > 10.4 4540 - 
NS1_I 222.1 4.2 2.01 2.5 1805 0.10 
NS2_I 206.3 3.9 2.13 2.6 1850 0.20 
SS1_I 211.0 4.0 3.69 4.5 1515 0.17 
SS2_I 206.5 3.9 3.36 4.1 1295 0.18 

 

Table 5.12 – Average results. 

Peak load  fc εp E ν 
Specimen Type of stone Type of leaf

kN N/mm2 10-3 N/mm2 - 
NS_E Noto outer (both) 912 8.7 3.3 (1) 3150 - 
SS_E Serena outer (each) 2095 39.8 9.5 4870 - 
NS_I Noto inner 214 4.1 2.6 1830 0.15 
SS_I inner 209 4.0 1405 0.18 Serena 4.3 

(1) Results from a single value. 
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te selec  

the displacement transducers fixed to the spec  

set of stress-strain diagrams is given in 

Annex B.8. As can be observed, the diagrams  

by the development of cracks than the diagram  

be hardly drawn from the collected data. 

 

btained from compression tests on outer-leaves using the 

displacement transducers attached to the specimens: (a) NS2_E and (b) SS2_E1. Positive sign 

i

Figure 5.25 to Figure 5.27 illustra ted stress-strain diagrams obtained from

imens as well as their position. The complete

Annex B.5. Transducers lengths are given in 

of the outer-leaves are much more disturbed

s of the inner-leaves and a conclusion can

      
                                        (a)                                                                            (b) 

Figure 5.24 – Stress-strain diagrams o

s adopted for elongation and negative for contraction. 
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                                (a)                                                                                 (b) 

Figure 5.25 – Position of the transducers for (a) NS2_E and (b) SS2_E1. 
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                            (b)  

Figure 5.26 – Stress-strain diagrams obtained from compression tests on inner-leaves using the 

SS2_I. Positive sign is 

      
                            (a)                                                             

      
                            (a)                                                             

displacement transducers attached to the specimens: (a) NS2_I and (b) displacement transducers attached to the specimens: (a) NS2_I and (b) 

adopted for elongation and negative for contraction. 
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                            (b)  

Figure 5.26 – Stress-strain diagrams obtained from compression tests on inner-leaves using the 

SS2_I. Positive sign is 
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Figure 5.27 – Position of the transducers for (a) NS2_I and (b) SS2_I. 

 

The volume change of a specimen under increasing compressive loading is usually 

measured in terms of its volumetric strain εvol, defined as εvol = ε1 + ε2 + ε3. Here, ε1 is the 

longitudinal strain and ε2 and ε3 are the transversal strains. At low load levels, the volume 

of quasi-brittle specimens decreases and, at high stresses, the volume starts to increase due 

to progressive crack growth. The volumetric strain is illustrated in Figure 5.28 for the 

inner-leaf specimens NS2_I and SS2_I. The minimum volume was found for values of 

approximately 70 to 80% of the peak load with a fast volume increase (dilatancy) after the 

peak. A similar behaviour is exhibited by concrete and the reader is referred e.g. to Van 

Mier (1997). 
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2_I and SS2_I. 

for t

crack

load and the final crack pattern are shown in Annex B.6. It can be observed that the outer-

leaves fail due to the development of several vertical cracks and spalling mainly near the 

base and to rt to occur 

random s in  with vertical joints cracks art to a ar follo ing the 

vertical joints. Concerning the leaves, s note that f  

develo tica s that he cas he Not ecime oss th ugh the 

stones w he ca  Ser ecime ainly go around the stones due to the 

higher s d low sion morta

 

Figure 5.28 – Stress-volumetric strain diagrams for inner-leaf specimens NS

 

Typical failure patterns are depicted in Figure 5.29 and Figure 5.30 for the outer and 

he inner-leaves, respectively. The shaded areas indicate spalling of the stone. The 

 patterns for all specimens along three different stages: first cracks to appear, at peak 

p of the specimens. In the faces without vertical joints, the cracks sta

ly, wherea  the faces  st ppe w

inner-  it i d ailure is due to the

pment of ver l crack , in t e of t o sp ns, cr ro

hile, in t se of the ena sp ns, m

trength an er adhe stone- r. 

                                       
                      (a)                 b) 

Figure 5. – Typical ulti  stone and (b)  

                                                                           (

29 mate failure patterns for the outer-leaves: (a) Noto Serena

stone. 
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                                            (a)                                                               (b) 

Figure 5.30 – Typical ultimate failure patterns for the inner-leaves: (a) Noto stone and (b) Serena 

stone. 

5.1.6 Results of compression tests on full wallets 

One wallet of each type (stone/connection combination) was tested in compression, in a 

total of four specimens. However, the peak load for the Serena wallets was beyond the 

Noto 

regim

in Fi

The following observations can be made from the results, even if the limited number 

of tests precludes any conclusive statement: 

a) The strength of the Noto wallet with keyed collar joints is about 10% higher than 

the wallet with straight collar joints. 

b) The Noto wallet with keyed collar joints exhibits a less brittle behaviour than the 

wallet with straight collar joints. 

c) he peak load  any of t  two Noto wa ted is not muc higher th n th

ross-sectional 

ar

 

capacity of the testing machine and a maximum load of 2380 kN was applied. The 

wallets have been unloaded after achieving approximately 60% of fc in the post-peak 

e. The stress-strain diagrams obtained with the internal actuator transducer are shown 

gure 5.31. Table 5.13 gives the results found. 

T of he llets tes h a e 

peak load of the single outer-leaves (912.3 kN), although the c

eas are different and, hence, the strength. 
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 wallets, using the 

Peak load  fc εp E 

Figure 5.31 – Stress-strain diagrams obtained from compression tests on full

internal actuator transducer. 

 

Table 5.13 – Results obtained from the compression tests on full wallets. 

Wallet 
Type of 

stone 
Type of 

connection  kN N/mm2 10-3 N/mm2

NS3 Noto straight 913 5.8 3.5 1770 
SS3 Serena straight > 2380 > 15.1 > 5.2 2940 
NK3 Noto keyed 1013 6.4 4.1 2085 
SK3 Serena keyed > 2380 > 15.1 > 5.9 2725 

 

The stress-strain diagrams obtained with the transducers fixed to the specimens as 

well as the transducers positi how ure 5.32 a re 5. 3 for wallets with 

straight colla keyed collar 

joints. Transducers lengths are given in Annex B.8. Larger vertical strains were found in 

the outer-leaves than in the inner-leaves for wallets with straight collar joints, see           

Figure 5.32

r joints wallets and T9 and T14 for keyed collar joints wallets), which 

shows that only in the case of keyed wallets the inner-leaf is deforming since the beginning 

of the test. Finally, it should be referred that transducers T8 and T15 on Figure 5.32b 

on are s n in Fig nd Figu 3

r joints, and in Figure 5.34 and Figure 5.35 for wallets with 

. Such behaviour is not completely clear but can be attributed to bedding of the 

inner-leaf prior to testing, which prevented mobilization of the inner-leaf bearing capacity. 

On the contrary, in the case of wallets with keyed collar joints, vertical strains in the 

different leaves are rather similar, emphasising the role of shear keys in obtaining a 

uniform distribution of strains, see Figure 5.33. 

Such behaviour can also be confirmed by comparing the horizontal deformation of 

the wallets (given by T8 and T15) with the horizontal strain of the inner-leaves (T5 and T12 

for straight colla
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 [10-3]Strain

0

4

8

12

16

St
re

ss
 [N

/m
m

2 ]
NS3

SS3

NK3

SK3



 5. Multiple-leaf masonry walls: load-transfer and compressive failure 111

 

 

exhibit an unexpected behaviour. This is probably due to a minor inclination of the outer-

leaves prior to testing. 

 

 
(b) 

Figure 5.32 – Stress-strain diagrams for wallets with straight collar joints: (a) Noto (NS3) and 

(b) Serena (SS3). Positive sign is adopted for elongation and negative for contraction. 
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Figure 5.33 – Position of the transducers for wallets NS3 and SS3. 
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elongation and negative for contraction. 

      
(a) 

        
(b) 

Figure 5.34 – Stress-strain diagrams for wallets with keyed collar joints: (a) Noto (NK3) and 

(b) Serena (SK3). Positive sign is adopted for 
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Figure 5.35 – Position of the transducers for wallets NK3 and SK3. 

Typical failure patterns are illustrated in Figure 5.36. The complete crack patterns 

for three different stages: first cracks to appear, at peak load and the final crack pattern are 

shown in Annex B.7. Shaded areas indicate spalling of the stone. The Noto wallet with 

straight connections failed due to the development of several vertical cracks in the outer-
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leaves while the inner-leaf was prac Noto wallet with 

keyed connections, the outer-leav iffuse cracking pattern 

with several vertical cr  load. Regarding the 

Serena eak load was not 

attained, the developm e inner-leaf could be observed. Moreover, it 

is noted that cracks usu  the wallets, in courses 

with single stones (no 

 

tically undamaged. In the case of the 

es exhibited a more severe and d

acks developing in the inner-leaf near the peak

 wallet with keyed connections and despite the fact that the p

ent of some cracks in th

ally star to develop in the lateral faces of

vertical joints). 

                           
               (a)             (                     (d) 

Figure 5.36 – e p or w ith str llar (a)  (N d (b) Serena 

( 3); and for wallets with keyed collar joints: (c) Noto (NK3) and (b) Serena (SK3). 

a) the external load is completely supported by the stiffer elements, i.e., the outer-

                       b)                            (c)                            

Failur a ftterns allets w aight co j : oints  Noto S3) an

SS

5.2 Simplified calculations 

This Section contains a first analytical interpretation of the experimental results, with 

simple calculations being used to predict the compressive strength of the wallets. It is 

noted that the experimental results found should be considered as indicative and 

conclusions should be taken carefully due to the small number of specimens. 

The compressive strength of composite sections fc can be estimated making use of 

the following equations, each one assuming different hypotheses: 

leaves: 

e
ie

e
c f

tt
tf ⋅
+

=
2

2  (5.3) 
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b) the external load is supported by each leaf according to its cross-sectional area 

ratio: 

i
ie

i
e

ie

e
c f

tt
tf

tt
tf ⋅

+
+⋅

+
=

22
2

 (5.4) 

 each leaf according to its area ratio and

germann and Neuwald-Burg (1994): 

c) the external load is supported by  

adjusted by a correction factor, see E

ii
ie

i
ee

ie

e
c f

tt
tf

tt
tf ⋅⋅

+
+⋅⋅

+
= θθ

22
2  (5.5) 

In the above, te and ti are the thickn ner-leaves and fe and  

are the uniaxial compressive strengths of the outer and inner-leaves. The parameters θe and 

r-leaves, assuming that the outer-leaves are 

moments and, thus, their uniaxial strength 

under a multi-axial compressive state of stress 

llets with and without shear keys are given in      

d collar joints, the thickness assumed for 

 keys. With respect to the application of 

n parameters were θe = 0.7 and θi = 1.3, 

Egermann and Neuwald-Burg (1994). It is further noted that Eq. (5.3) was not used to 

the in

Table 5.14 – Predicted compressive strength values for the tested wallets. 

Experimental fc Predicted fc [N/mm2] 

esses of the outer and in fi

θi are correction factors for the outer and inne

under biaxial compressive stresses and bending 

should be reduced and that the inner-leaf is 

and, therefore, its uniaxial strength should be increased. 

The results obtained for the wa

Table 5.14. In the case of the wallets with keye

the inner-leaf includes the length of the shear

Eq. (5.5), the values adopted for the correctio

estimate the strength of the wallets with keyed joints because, in this case, it is clear that 

ner-leaf is collaborating in the composite response. 

 

Wallet 
Type of 

stone 
Type of 

connection N/mm2 Eq. (5.3) Eq. (5.4) Eq. (5.5) 
NS3 Noto straight 5.8 5.8 7.2 5.8 
SS3 Serena straight > 15.1 25.3 26.6 19.4 
NK3 Noto keyed 6.4 - 6.4 5.7 

keyed > 21.3 16.1 SK3 Serena 15.1 - 
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The value predicted for the compressive stre r 

joints using Eq. (5.3) and Eq. (5.5) show an  

results. Note that, however, the fact that th

exactly the same should be considered as just s 

illustrated in Figure 5.37a show that the inner-leaf verti

the vertical deformations of the outer-leaves  

significantly smaller than its peak strain when in

a consequence, the bearing capacity of the inne

hypothesis of Eq. (5.3) holds fairly true. The causes for the different deformations in the 

reason may be attributed to settling of the 

 that the stress values shown in Figure 5.37 represent 

ad. Moreover, the deformation values were 

Figure 5.33 for straight collar joints wallets (outer-

; inner-leaf: T4 and T11) and in Figure 5.35 for 

, T3 and T12; outer-leaf 2: T4, T10 and T11; 

Figure 5.38, deformations were obtained from the 

the full wallets using the actuator in-built 

displacement transducer. 

while the strength predicted by Eq. (5.5) is less than the experimental value for the Noto 

wallets. This indicates that the inner-leaf is collaborating in the wallets response, as 

confirmed by Figure 5.37b and Figure 5.38b, but the assumptions of a strength reduction of 

the outer-leaves due to bending and a strength increase of the inner-leaf due to confinement 

do not apply. This can be explained by the test boundary conditions, which allow 

horizontal displacements to occur at the top and bottom of the wallets. In such way, the 

effects of outer-leaves bending and inner-leaf confinement are diminished. 

Finally, it should be noted that each on consid ependently pre cts a 

larger strength ts with keyed 

collar joints. This is due to the reduction of the cross-sectional area of the outer-leaves in 

the ca

the case of wallets with straight collar joints. 

ngth of the wallets with straight colla

 excellent agreement with the experimental

e experimental and the predicted values are 

 a coincidence. The stress-strain diagram

cal deformations do not accompany 

and that, at failure, the inner-leaf strain is

dividually tested, see also Figure 5.38a. As 

r-leaf is only partially mobilized and the 

leaves are not completely clear but a possible 

inner-leaf prior to testing. It is noted

average values obtained from the external lo

obtained from the transducers shown in 

leaf 1: T2 and T10; outer-leaf 2: T3 and T9

keyed collar joints wallets (outer-leaf 1: T2

inner-leaf: T5 and T13). Concerning 

compression tests on the single leaves and on 

In the case of the wallets with keyed collar joints, Eq. (5.4) yielded the best result 

 equati ered ind di

 for the wallets with straight collar joints than for the walle

se of the specimens with shear keys. However, the opposite behaviour was found in 

experiments. The reason of such behaviour can be attributed to the fact, as already 

mentioned, that the inner-leaf was almost not collaborating in the experimental response in 
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                                         (a)                                                                          (b) 

Figure 5.37 – Compression stress-strain diagrams of the leaves inside the composite Noto wallets: 

(a) straight collar joints (NS3) and (b)  keyed collar joints (NK3). 
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Figure 5.38 – Comparison between the compression stress-strain diagrams obtained from the single 

ntal tests, contributing to 

the re

continuum ts (8-noded) with 2 × 2 Gauss integration while line interface elements 

(6-noded) with 3 × 3 Lobatto integration have been adopted for the collar joints. The 

analyses were carried out wi

noted that the self-weight of the wallets was not considered. 

                                          (a)                             

inner and outer-leaves and from the full wallets, built with the Noto stone: (a) straight 

collar joints (NS3) and (b) keyed collar joints (NK3). 

5.3 Numerical simulations 

This Section deals with the numerical simulation of the experime

sults interpretation. The leaves of the wallets were represented using plane stress 

 elemen

th indirect displacement control with line search. It is further 
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yield criterion in compression and a Rankine yield criterion in tension was adopted. The 

inelastic behaviour exhibits a parabolic hardening/softening diagram in compression and 

an exponential-type diagram in tension. The material behaves elastically up to one-third of 

the compressive strength and up to the 

combi

adopted. T d only 

occur by shear or/and tensile yielding. Both shear and tensile modes exhibit exponential-

type softening. 

The elastic material properties adopted for the wallets leaves are given in Table 5.15 

and th

d

allets leaves. 

For the material behaviour, a composite plasticity model with a Drucker-Prager 

tensile strength. For the interface elements a 

ned cracking-shearing-crushing model developed by Lourenço and Rots (1997) was 

he compressive mode was, however, not active and interface failure coul

e inelastic properties in Table 5.16. Here, E is the elastic modulus, ν is the Poisson 

coefficient, c is the cohesion, ft is the tensile strength, φ is the friction angle, ψ is the 

ilatancy angle, Gfc is the (cohesion related) compressive fracture energy and GfI is the 

tensile fracture energy. 

 

Table 5.15 – Elastic properties for the w

E ν 
Material N/mm2 - 

Outer-leaves 3150 0.10 
Inner-leaf 2100 0.15 

 

Table 5.16 – Inelastic properties for the wallets leaves. 

c ft sin φ sin ψ Gfc
(a) GfI

(b)
Material N/mm2 N/mm2 - 

Outer-leaves 3.7 1.8 0.17 0.09 
- N/mm N/mm 

5.0 0.070 
Inner-leaf 1.7 0.3 0.17 0.09 5.0 0.035 

(a)

(b) shea ions allets, the
Gf  0.1 aves) and 0.070 N r- ha
nu l convergence could be achieved. 

 coh  was o  from Eq. (5.6), which derives from  Druck rager 

yield function applied to l compression. Here, fc is the comp ve stre  The 

tensile strength of the outer-leaves was considered equal to the tensile strength of the stone, 

assum  strength of the inner-leaf was obtained 

 The values given for the compressive fracture energy are cohesion 
related. 

 For the 
 were

r simulat
50 (outer-le

 of the keyed w  values adopted for 
I /mm (inne leaf), so t t 
merica

 

The esion btained  the er-P

uniaxia ressi ngth.

ing, thus, vertical cracking. The tensile
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according to ft = fc/15, which is a relation often found in masonry specimens. The value 

adopted for the friction angle φ was 10º (a larger value in plane-stress would implicate an 

overestimation of the biaxial strength for this specific yield criterion) and, for the dilatancy 

angle ψ, a value of 5º was assumed. For the tensile fracture energy, a value in agreement 

with the experimental results reported by Van der Pluijm (1999) for brick specimens was 

adopted. The values of the elastic modulus and of the compressive fracture energy were 

adopted so that the numerical response of the specimens best fitted the experimental 

response, see Figure 5.39. 

cfc
φ
φ

cos2
sin1−

=  (5.6) 
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Figure 5.39 – Compression stress-displacement diagrams for the leaves of the Noto wallets. 

 

The elastic material properties assumed for the collar joints are given in Table 5.17 

and the inelastic properties are given in Table 5.18. The parameters were obtained, 

whenever possible, from the shear test on wallet NS1 but most of the inelastic parameters 

were unknown and had to be estimated. The interfaces shear stiffness ks was adopted so 

that th

that the numerical response resembled the 

e numerical and experimental elastic responses showed a good agreement. Based on 

elastic assumptions, the normal stiffness kn can be obtained according to 

kn = ks × 2 (1 + ν) = 1.0 N/mm3, where ν = 0.2 is the coefficient of Poisson. However, 

higher values had to be adopted in order to avoid interpenetration of the two continuums 

separated by the interfaces. 

The cohesion c for the first connection to fail was given experimentally but for the 

second connection a value was adopted so 
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a t, 

friction coefficient tanφ, dilatancy coefficient 

fracture energy GfII) were adopted in agreem

Van der Pluijm (1999) and recomme

 

Table 5.17 – 

experimental response. The values of the rem ining inelastic parameters (tensile strength f

tanψ, mode I fracture energy GfI and mode II 

ent with the values experimentally found by 

nded by Lourenço (1996b) for unit-mortar interfaces. 

Elastic properties for the collar joints. 

kn ksCollar joint 3 N/mm3N/mm
1 (left) 150 0.4 

2 (right) 150 0.4 

 

Table 5.18 – Inelastic properties for the collar joints. 

c ft tan φ tan ψ GfI GfIICollar 
joint N/mm2 N/mm2 - - N/mm N/mm 

1 (left) 0.13 0.09 0.70 0.00 0.015 0.050 
2 (right) 0.21 0.14 0.70 0.00 0.015 0.060 

5.3.1 Shear simulations 

The shear tests for both types of wallets, either with or without shear keys, were 

numerically reproduced. As it will become clear later in the text, the testing boundary 

conditions are a key issue for the correct interpretation of the results. The experimental test 

outer-leaves, and a 

sheets of Teflon were placed between the steel erefore, the shear 

interaction between the plates and the wallets is not a clear issue and must be further 

investigated. 

For the wallets with straight collar joints, this aspect has been assessed by 

setup was composed by two steel plates at the bottom, supporting the 

third plate over the inner-leaf, through which a vertical load was applied. Additionally, 

plates and the wallets. Th

considering four different shear stiffnesses ks at the supports: 

a) ks = 0, the specimen is free to slide over the steel plates. 

b) ks = ∞, shear slip is precluded between the specimen and the plates. 

c) Constant ks = 0.01 N/mm3, an intermediate constant shear stiffness is applied 

and, thus, shear slip can occur but the horizontal reactions at the boundaries 

increase with increasing displacement. 
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NS1 and the numerical diagrams obtained according to the different 

boundary co

o connections fails. Another interesting point is that the collapse 

load is underestimated. Such difference is due to the absence of horizontal constraints at 

the bottom, which leads to a failure that 

accompanied also by flexural tensile stresses. 

For supports with ks = ∞ h load due t aterial softening follows the 

failure of the first connection. However, it is not as sudden or as deep as the experimental 

load drop. In terms of collapse loads, the first load peak shows a good agreement with the 

experimental results but the second load peak, corresponding to the failure of the second 

connection, is largel g behaviour of the 

first connection hich  c tin e en strength when the second 

connection fa

For a constant shear stiffness k N  

the value  0 and, thus, is also underestimated. After the failure of the first 

connection, suddenly 

dropping. H t of shear slip, the horizontal reactions 

at the supports become mobilized and a load increase is observed until failure of the 

second

d) Non-linear ks. At the level of the upper plate, shear slip is free to occur up to a 

certain relative displacement, beyond which, shear slip is completely restrained. 

A transition phase for ks was also considered. At the level of the bottom 

supports, shear slip is precluded. 
 

Regarding the normal stiffness kn given to the boundaries, the same behaviour was 

adopted for all cases. Zero stiffness in tension and infinite stiffness in compression were 

considered. Figure 5.40 illustrates the experimental load-displacement diagram obtained 

for the wallet 

nditions. It is noted that the two experimental load peaks correspond to the 

failure of each connection. 

Regarding the numerical diagrams, for boundaries with ks = 0, after failure of the 

first connection the specimen starts sliding until complete degradation of strength and, 

thus, only one of the tw

is not exclusively governed by shear but is 

, a smoot  drop o m

y overestimated. This is, again, due to the softenin

 to fail, w  is still ontribu g  thto sp imec

ils. 

s = 0.01 / the value of fir peak equals

for k

mm3,  the st load 

s =

 the specimen starts sliding over the boundaries with the load 

owever, in this case, after some amoun

 connection occurs. The comparison with the experimental response shows, 

nevertheless, that an understiff response was obtained for the second increasing branch. 

These results demonstrate that to capture correctly the experimental behaviour, the 

boundary conditions adopted must allow some amount of shear slip at the supports after 
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                                            (a)                                                                      (b) 

Figure 5.40 – Numerical and experimental (NS1) shear load-displacement diagrams for straight 

collar joints wallets. Different shear stiffnesses were considered at boundaries: (a) constant 

the failure of the first connection and, afterwards, restrain it completely. Therefore, a non-

linear ks was adopted for the upper boundary together with complete shear slip restriction 

at the bottom boundaries. Good agreement with the experimental response was found, 

see Figure 5.40b. Even so, the slope of the second increasing branch is slightly 

underestimated. This shows that the hypothesis assumed of equal shear stiffness for the 

two connections is, probably, not true for this specimen, with the second connection 

showing a stiffer behaviour than the first connection. Figure 5.41 depicts the progressive 

shear failure of the wallet. 

80

and (b) non-linear. 

 

                     
                              (a)                                            (b)                                           (c) 

Figure 5.41 – Progressive shear failure for non-linear ks boundary conditions: (a) mesh adopted, 

(b) deformed (incremental) mesh after failure of the first connection and (c) deformed (total) 

mesh after failure of the second connection. 
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he comparison between the numerical and the experimental load-displacement 

diagrams is given in  for each numerical 

diagram are depicted in Figure 5.43. The collapse load obtained for zero shear stiffness at 

the boundaries is significantly n th ime llapse load. In this situation, 

the specimen fails due to a v crack arises he weaker connection (left), 

developing along the shear keys ss at the boundaries, a much 

better agreement with the experimental collapse load is found. Here, failure is governed by 

crushing of the inner-leaf near the top. 

In the exp ntal  m ism, oth d rib e  to be present 

and, thus, an in ate s c ere rd  re e accurately the 

behaviour foun olla oad ne  a  th e as for ks = ∞ and is 

about 80% of the experimental collapse load. In this case, failure occurs due to combined 

-leaf near the top and due to the development of vertical 

In the case of keyed collar joints wallets, the influence of the boundary conditions in 

the response was assessed by a similar procedure. Here, three different shear stiffnesses at 

the boundaries were considered: (a) ks = 0, (b) ks = ∞ and (c) an intermediate constant 

ks = 2.0 N/mm3. 

T

 Figure 5.42. The deformed meshes at failure

 lower tha e exper ntal co

ertical that  in t

. For infinite shear stiffne

erime  failure echan  b esc ed mod s seem

termedi ks wa onsid d in o er to produc more 

d. The c pse l  obtai d was lmost e sam

shearing-crushing of the inner

cracks along the shear keys, see Figure 5.43c. 

For the intermediate ks at the supports, Figure 5.44 illustrates the contour of 

minimum principal stresses for the elastic regime and the principal plastic strains at failure. 

In Figure 5.44a, it is visible the transfer of compressive stresses from the inner-leaf to the 

outer-leaves, through the shear keys. In Figure 5.44b,c, the shearing-crushing of the inner-

leaf near the top and the tensile damage in the inner-leaf, along the shear keys, is 

confirmed as failure mechanism. 
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Figure 5.42 – Numerical and experimental (NK2) shear load-displacement diagrams for keyed 

collar joints wallets. Different shear stiffnesses ks were considered at the boundaries. 

                     
                                (a)                                           (b)                                          (c) 

Figure 5.43 – Deformed meshes at failure for different shear stiffnesses ks at the supports: 

(a) ks = 0, (b) ks = ∞  and (c) intermediate ks. 

 

                  
                (a)                                                  (b)                                                    (c) 

Figure 5.44 – Results obtained for the shear simulations on keyed wallets, adopting the 

intermediate ks: (a) principal minimum stresses for an applied load of 50 kN (elastic regime) 

and principal plastic strains at failure: (b) minimum and (c) maximum. 
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en numerical and experimental stress-strain diagrams is given in 

Figure 5.45. Good agreement is found in the case of the wallet with keyed collar joints. In 

than the experimental strength. As discussed in Section t 

collaborating in the experimental response,

found between the experimental and nume

 

Figure 5.45 – Compression stress-strain diagram on wallets with straight collar joints 

(NS3) and keyed collar joints (

 

Another point is that the nu  the wallet with keyed connections is 

lower than the strength of ht connections, as predicted also by the 

simple expressions discussed in Section . Such behaviour is explained by the smaller 

ed collar joints, 

On t

5.3.2 Compression simulations on full wallets 

The compression tests on wallets with and without shear keys have also been analysed. 

Friction between wallets and boundaries has been neglected in the simulations. In the case 

of the wallet with straight connections, a row of mesh elements at middle height was made 

slightly imperfect and a 10% lower compressive strength was given. The objective is to 

trigger the strain localization. 

A comparison betwe

the case of the wallet with straight collar joints, the predicted strength is about 20% higher 

5.2, the inner-leaf is almost no

 which can partially explain the difference 

rical strength values. 

 
s obtained 

NK3). 

merical strength of

 the wallet with straig

5.2

cross-sectional area of the outer-leaves in the case of the wallets with key

for which a reduced thickness of 130 mm was adopted for the courses without shear keys. 

he contrary, the outer-leaves of wallets with straight collar joints have a constant 
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thickn

al and consist of localization of deformation in a single finite element, as 

typica

d for straight collar joints are between 0.09-
2 2

al data was also addressed using a plasticity 

based 

ssions may be used as a first estimate of the wallets 

streng . It is stressed that width/length ratio and height/width ratio of the tested wallets 

have an influence on the confinement of the inner-leaf and in the compressive instability of 

the leaves at failure. Thus, extrapolation to real-case walls must be very careful. 

Suggestions for future work include further compression testing on composite 

wallets, considering also specimens with different ratios between inner and outer-leaves 

thicknesses. 

 

 

ess of 170 mm. Concerning the failure patterns, it is stressed that, of course, 

continuum finite element models can not realistically reproduce the propagation of cracks 

typical of compressive failure. The numerical failure patterns obtained are just 

phenomenologic

l of strain softening or non-associated plasticity models. 

5.4 Summary 

The present study addresses load-transfer and compressive failure in composite masonry 

walls, which seems to be not a sufficiently debated issue in literature. From the 

experimental tests, the following conclusions can be drawn: 

a) Shear strength values foun

0.17 N/mm , whereas for keyed joints the values are in the 0.58-0.81 N/mm  

range. 

b) In wallets with straight collar joints, shear failure occurs due to vertical cracks 

that arise in the connections while in wallets with keyed collar joints, failure is 

mainly due to the development of inclined cracks in the inner-leaf. 

Numerical assessment of the experiment

finite-element model, in which units and mortar were smeared out in a continuum. 

The influence of the boundary conditions on the response was investigated and good 

agreement with the experimental results has been found. 

Simplified calculations for predicting the compressive strength of composite walls 

have also shown good agreement with experimental results and with advanced numerical 

methods. Thus, simplified expre

th
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Conclusions 

ethods, continuum non-linear numerical simulations and a 

phenom

 

Strength prediction using analytical and continuum non-linear models 

The ability of analytical m sed on plasticity and cracking 

to reproduce the experim sonry has been addressed. The 

comparison between o ntal results available in 

literature from comp conclude that: (a) continuum 

finite element modellin ain of the prisms; 

(b) plane-st fferent strengths and 

different failure m erically correct. The 

usage of 3D m odels is therefore recommended; 

resul rical analyses and experimental values. This last 

conclusion has also been confirmed by Brencich and Gambarotta (2005), indicating that 

experi

6 

The present study addresses the compressive behaviour of unreinforced masonry 

structures, with an emphasis on historical structures. The ability to numerically predict the 

compressive strength of masonry under short-term static loading has been investigated 

using simplified analytical m

enological particle model developed in a discrete framework. Long-term effects 

have been also investigated by standard compressive tests, short-term creep tests and long-

term creep tests carried out on ancient masonry prisms. Finally, load-transfer and 

compressive failure mechanisms in multiple-leaf walls were analysed in an integrated 

experimental-numerical investigation. The conclusions that can be derived from this study 

are presented next for each subject addressed. 

ethods and continuum models ba

ental compressive behaviour of ma

btained numerical results and experime

ression tests on masonry prisms allow to 

g largely overestimates the strength and peak str

ress, plane-strain and “enhanced-plane-strain” lead to di

echanisms, which is physically non-realistic but num

odels or enhanced-plane-strain m

(c) simplified methods to predict the strength based on elastic considerations provide 

ts different from advanced nume

mental testing or rather conservative empirical formulae are the only possible 

solution at the present state of knowledge. 

In addition, a comparison between the numerical results obtained for running-bond 

prisms and simulations on stack-bond specimens was presented. A higher strength was 

found for the stack-bond configuration, which still requires experimental validation. 

Moreover, a larger difference was observed in prisms built with weaker mortars. 
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pression. The model is 

discussed in detail, including proposals for selection of numerical data, sensitivity studies, 

fracture processes and failure mechanisms, and size effect studies. Finally, the particle 

ith experimental results on masonry wallets under uniaxial 

compression and with numerical simulations using a continuum finite element model. 

 cracking, in predicting the 

compr i

strength v

particle distortion independent for practical purposes; (c) relations between structural and 

particl

responses

than tens influence the 

overall response of compressed masonry, as also confirmed by Vonk (1993). 

ferent types of ancient masonry 

specim

at a given 

time i

ep are unwieldy in the case of ancient masonry due to the high scatter in the 

mechanical properties and to the small number of specimens usually available. 

Strength prediction using a discrete particle model 

A particle model consisting in a phenomenological discontinuum approach has been 

proposed to represent the microstructure of masonry components, attempting to adequately 

reproduce the experimental behaviour of masonry under com

model is compared w

It is possible to conclude that: (a) discontinuum models show clear advantages when 

compared to continuum models, based in plasticity and

ess ve strength and peak strain of masonry prisms; (b) compressive and tensile 

alues provided by the particle model can be considered as particle size and 

e sizes lower than seven to ten should be avoided in simulations; (d) size dependent 

 have been obtained with the proposed model; and (e) shear parameters rather 

ile parameters play a major role at the micro-level and greatly 

 

Creep behaviour under high sustained stresses 

The creep behaviour under high stresses of three dif

ens has been analysed. Short-term creep tests have been conducted on regular and 

rubble masonry prisms recovered from the ruins of the collapsed Pavia Civic Tower and, 

also, on rubble prisms collected in the crypt of the Monza Cathedral. In addition, long-term 

creep tests were also carried out on regular prisms coming from the Pavia Civic Tower. 

From experimental practice, it is possible to conclude that creep tests on ancient 

masonry prisms should be carried out by applying the load in successive steps, 

nterval, starting from a low stress level. In this way, a throughout description of the 

viscous behaviour of the material can be obtained. Creep tests in which the load is applied 

in a single st
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he time period between successive load steps should be sufficiently long to 

extinguish primary creep. In fact, the evolution for different stress levels of the strain rate 

associated to secondary creep can only in such way be evaluated. From the results obtained 

on the regular masonry prisms tested, a minimum time period under sustained loading of 

70 to 80 days should be adopted. For this reason, remarkable differences were observed 

between secondary creep rates calculated from short-term or long-term creep tests. Short-

term creep results should, therefore, be interpreted carefully. 

Finally, it should be stressed that secondary creep was found to initiate at 60 to 70% 

of the compressive strength. A hyperbolic fit to describe the evolution of secondary creep 

rate with the applied stress-level has been suggested in the present study. 

 

Shear and compressive behaviour of multiple-leaf walls 

Load-transfer and compressive failure mechanisms in composite masonry walls have been 

addressed. From the experimental tests, the following conclusions can be drawn: 

a) Shear strength values found for straight collar joints are between 0.09-

0.17 N/mm2, whereas for keyed joints the values are in the 0.58-0.81 N/mm2 

range. 

b) In wallets with straight collar joints, shear failure occurs due to vertical cracks 

that arise in the connections, while in wallets with keyed collar joints, failure is 

mainly due to the development of inclined cracks in the inner-leaf. 

Numerical assessment of the experimental data was also addressed using a plasticity 

based finite-element model, in which units and mortar were smeared out in a continuum. 

The influence of the boundary conditions on the response was investigated and good 

agreement with the experimental results has been found. 

Simplified calculations for predicting the compressive strength of composite walls 

have also shown good agreement with experimental results and with advanced numerical 

methods. Thus, simplified expressions may be used as a first estimate of the wallets 

strength. It is stressed that width/length ratio and height/width ratio of the tested wallets 

have an influence on the confinement of the inner-leaf and in the compressive instability of 

the leaves at failure. Thus, extrapolation to real-case walls must be very careful. 

T
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or future work 

For a reliable prediction of masonry compressive strength from the properties of masonry 

asonry constituents, experimental results 

on the non-linear creep behaviour of units and mortar are virtually absent in literature, 

meaning that further investigation is required. In terms of numerical modelling, the 

ll needed. 

6.1 Suggestions f

constituents, an investigation on models that are able to consider the discrete nature of the 

masonry components is suggested. Detailed modelling approaches are, however, hindered 

by the lack of knowledge on the mechanical characteristics of mortar inside masonry 

composites, which are influenced by mortar laying and curing. Thus, an advanced 

experimental program to characterize mortar inside masonry would be of great interest to 

masonry research. 

For masonry creep behaviour under high sustained stresses, further creep tests 

should be conducted for an adequate characterization of the material, given the wide scatter 

associated to ancient masonry. Regarding the m

development of suitable 3D models for viscous inelastic behaviour is sti

Regarding multiple-leaf walls, further compression testing is suggested, considering 

specimens with different ratios between inner and outer-leaves thicknesses. Moreover, 

experiments are suggested that consider more complex test setups able to analyse the 

behaviour of multiple-leaf walls when an equal stress, rather than an equal deformation, is 

applied on the wallets leaves. 
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A.1 SHORT-TERM CREEP TESTS ON MRU SPECIMENS 
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Figure A.1 – Time-stress-strain diagrams for MRu specimens: (a) MRu_1 and (b) MRu_2. 
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Figure A.2 – Time-stress-strain diagrams for MRu specimens: (a) MRu_3 and (b) MRu_4. 
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Figure A.3 – Time-stress-strain diagrams for MRu specimens: (a) MRu_5 and (b) MRu_6. 
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A.2 SHORT-TERM CREEP TESTS ON PRU SPECIMENS 
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Figure A.4 – Time-stress-strain diagrams for PRu specimens: (a) PRu_2 and (b) PRu_3. 
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Figure A.5 – Time-stress-strain diagrams for PRu specimens: (a) PRu_4 and (b) PRu_5. 
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A.3 SHORT-TERM CREEP TESTS ON PRE SPECIMENS 
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Figure A.6 – Time-stress-strain diagrams for PRe specimens: (a) PRe_5 and (b) PRe_6. 
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Figure A.7 – Time-stress-strain diagrams for PRe specimens: (a) PRe_7 and (b) PRe_8. 
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A.4 LONG-TERM CREEP TESTS ON PRE SPECIMENS (TIME-STEPS OF 3 MONTHS) 
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Figure A.8 – Time-stress-strain diagrams for PRe specimens (time-steps of 3 months): 

(a) PRe_9 and (b) PRe_10. 
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A.5 LONG-TERM CREEP TESTS ON PRE SPECIMENS (TIME-STEPS OF 6 MONTHS) 
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                                                                             (b) 

Figure A.9 – Time-stress-strain diagrams for PRe specimens (time-steps of 6 months): 

(a) PRe_11 and (b) PRe_12. 
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                                                                             (b) 

Figure A.10 – Time-stress-strain diagrams for PRe specimens (time-steps of 6 months): 

(a) PRe_13 and (b) PRe_14. 
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ANNEX B: ADDITIONAL RESULTS OF TESTS ON MULTIPLE-LEAF 

WALLETS 
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B.1 COMPRESSIVE AND TENSILE TESTS ON STONE SPECIMENS 
 

 

Table B.1 – Results of the compression tests on Noto stone specimens. 

fc εp E ν 
Specimen 

Orientation 
(1) N/mm2 10-3 N/mm2 - 

1A A 22.0 2.8 8870 0.11 
2A A 19.3 2.2 9910 0.09 
3A A 20.4 2.3 9650 0.10 
4B B 13.2 2.0 7375 0.07 
5B B 20.4 2.5 9390 0.11 
6B B 19.2 2.5 8815 0.10 

(1) A stands for coring of the specimens along the loading direction of the units 

in the wallets and B for the bedding direction. 
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                                      (a)                                                                   (b) 

Figure B.1 – Noto stone compression diagrams obtained with transducers attached to the 

specimens: (a) 1A, 2A, 3A and (b) 4B, 5B 6B. Transversal strains are given on the left 

side of the graphics and vertical strains on the right side. 
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Figure B.2 – Noto stone compression diagrams given by the transducers positioned 

between plates for samples: (a) 1A, 2A and 3A, (b) 4B, 5B and 6B. 

 

Table B.2 – Results of the compression tests on Serena stone specimens. 

fc E ν 
Specimen 

Orientation 
(1) N/mm2 N/mm2 - 

1A A 104.3 18045 0.21 
2A A 105.3 18840 0.19 
3A A 102.9 17765 0.18 
4B B 98.3 24650 0.23 
5B B 94.3 22940 0.24 
6B B 74.2 22285 0.18 

(1) A stands for coring of the specimens along the loading direction 

of the units in the wallets and B for the bedding direction. 
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                                        (a)                                                               (b) 

Figure B.3 – Serena stone compression diagrams up to 53 N/mm2 (about 50% of of fc) for 

specimens: (a) 1A, 2A, 3A and (b) 4B, 5B, 6B. Transversal strains are illustrated on 

the left side of the graphics and vertical strains on the right side. 
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Table B.3 – Results of tension tests for both Noto and Serena stone specimens. All tested 

specimens were cored along the bedding direction B of the units in the wallets. 

Noto samples    Serena samples 
Peak load ft,s Peak load ft,sSpecimen 

kN N/mm2    Specimen 
kN N/mm2

7B1 18.2 1.80    7B1 72.4 7.20 
7B2 20.8 2.05    7B2 61.6 6.05 
8B1 22.9 2.30    8B1 59.4 5.90 
8B2 20.9 2.05    8B2 62.5 6.15 
9B1 17.2 1.70    9B1 51.4 5.05 
9B2 23.9 2.40    9B2 58.2 5.70 

 

B.2 FLEXURAL AND COMPRESSIVE TESTS ON MORTAR SPECIMENS 
 
Table B.4 – Results of the flexural and compressive tests on mortar specimens. 

Flexion Compression 1 Compression 2 Curing 
time Peak load ff Peak load fc Peak load fcPrism 
days 

Batch 
N N/mm2 N N/mm2 N N/mm2

P1 28 first 637.7 1.60 11968.2 7.50 11772.0 7.35 
P2 28 first 598.4 1.50 12360.6 7.75 11772.0 7.35 
P3 28 first 608.2 1.50 12164.4 7.60 12654.9 7.90 
P4 28 second 539.6 1.35 11673.9 7.30 11870.1 7.40 
P5 28 second 588.6 1.45 11379.6 7.10 11477.7 7.15 
P6 28 second 627.8 1.55 11575.8 7.25 11379.6 7.10 
P7 75 first 843.7 2.10 15597.9 9.75 15205.5 9.50 
P8 75 first 922.1 2.30 15401.7 9.65 15794.1 9.85 
P9 75 first 765.2 1.90 15303.6 9.55 15303.6 9.55 

P10 75 second 637.7 1.60 14028.3 8.75 14126.4 8.85 
P11 75 second 775.0 1.95 13832.1 8.65 13832.1 8.65 
P12 75 second 696.5 1.75 13930.2 8.70 13635.9 8.50 
P13 90 first 1069.3 2.65 17167.5 10.75 17069.4 10.65 
P14 90 first 892.7 2.25 15401.7 9.65 15794.1 9.85 
P15 90 first 1000.6 2.50 16284.6 10.20 15892.2 9.95 
P16 90 second 951.6 2.40 15009.3 9.40 15303.6 9.55 
P17 90 second 804.4 2.00 14911.2 9.30 13537.8 8.45 
P18 90 second 902.5 2.25 14028.3 8.75 15009.3 9.40 
P19 172 first 775.0 1.95 17952.3 11.20 17167.5 10.75 
P20 172 first 1010.4 2.55 18540.9 11.60 18442.8 11.55 
P21 172 first 902.5 2.25 19031.4 11.90 18933.3 11.85 
P22 172 second 863.3 2.15 15990.3 10.00 16971.3 10.60 
P23 172 second 853.5 2.15 17363.7 10.85 17952.3 11.20 
P24 172 second 941.8 2.35 17854.2 11.15 18050.4 11.30 
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B.3  SHEAR TESTS: LOAD-DISPLACEMENT DIAGRAMS 
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Figure B.4 – Load-displacement diagrams for wallet NS1. Positive sign is adopted for 

elongation and negative for contraction. 
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Figure B.5 – Position of the transducers for wallet NS1. 
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Figure B.6 – Load-displacement diagrams for wallet NS2. Positive sign is adopted for 

elongation and negative for contraction. 

 

 

2

A

             

3

54 6

7 8

B

               

9

               

10
15

11

14

1312

 

Figure B.7 – Position of the transducers for wallet NS2. 
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Figure B.8 – Load-displacement diagrams for wallet SS1. Positive sign is adopted for 

elongation and negative for contraction. 
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Figure B.9 – Position of the transducers for wallet SS1. 
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Figure B.10 – Load-displacement diagrams for wallet SS2. Positive sign is adopted for 

elongation and negative for contraction. 
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Figure B.11 – Position of the transducers for wallet SS2. 
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Figure B.12 – Load-displacement diagrams for wallet NK1. Positive sign is adopted for 

elongation and negative for contraction. 
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Figure B.13 – Position of the transducers for wallet NK1. 
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Figure B.14 – Load-displacement diagrams for wallet NK2. Positive sign is adopted for 

elongation and negative for contraction. 
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Figure B.15 – Position of the transducers for wallet NK2. 
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Figure B.16 – Load-displacement diagrams for wallet SK1. Positive sign is adopted for 

elongation and negative for contraction. 
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Figure B.17 – Position of the transducers for wallet SK1. 
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Figure B.18 – Load-displacement diagrams for wallet SK2. Positive sign is adopted for 

elongation and negative for contraction. 
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Figure B.19 – Position of the transducers for wallet SK2. 
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B.4  SHEAR TESTS: CRACK PATTERNS 
 

A B C D

 
(a) 

A B C D

 
(b) 

Figure B.20 – Crack pattern for NS1 at: (a) 62 kN (failure of the first connection) and 

(b) 43 kN (failure of the second connection). 

A B C D

 

 

(a) 
A B C D

 
(b) 

Figure B.21 – Crack pattern for NS2 at: (a) 97 kN (failure of the first connection), (b) 60 kN 

(failure of the second connection). 



 J. Pina-Henriques 164

 

 
A B C D

 
(a) 

DCBA

 
(b) 

DCBA

 
(c) 

Figure B.22 – Crack pattern for SS1 at: (a) 29 kN (51% of of fc), (b) 50 kN (peak load - 

failure of the first connection) and (c) 29 kN (failure of the second connection). 
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DCBA

 
(a) 

A B C D

 
(b) 

A B C D

 
(c) 

Figure B.23 – Crack pattern for SS2 at: (a) 25 kN (78% of fc), (b) 32 kN (peak load - failure 

of the first connection) and (c) 25 kN (failure of the second connection). 
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A B C D

 
(a) 

A B C D

 
(b) 

A B C D

 
(c) 

A B C D

 
(d) 

Figure B.24 – Crack pattern for NK1: (a) prior to test, (b) at 137 kN (50% of fc), 

(c) at 278 kN (peak load) and (d) at 179 kN (64% of fc, post-peak regime). 
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A B C D

 
(a) 

A B C D

 
(b) 

A B C D

 
(c) 

A B C D

 
(d) 

Figure B.25 – Crack pattern for NK2: (a) prior to test, (b) at 162 kN (55% of fc), 

(c) at 291 kN (peak load) and (d) at 188 kN (65% of fc, post-peak regime). 
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A B C D

 
(a) 

A B C D

 
(b) 

A B C D

 
(c) 

Figure B.26 – Crack pattern for SK1 at: (a) 235 kN (61% of fc), (b) 383 kN (peak load) and 

(c) 350 kN (91% of fc, post-peak regime). 
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A B C D

 
(a) 

A B C D

 
(b) 

A B C D

 
(c) 

Figure B.27 – Crack pattern for SK2 at: (a) 240 kN (59% of fc), (b) 408 kN (peak load) and 

(c) 395 kN (97% of fc, post-peak regime). 
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B.5 COMPRESSION TESTS ON SINGLE LEAVES: STRESS-STRAIN DIAGRAMS 
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Figure B.28 – Load-deformation diagrams for leaves NS2_E. Positive sign is adopted for 

elongation and negative for contraction. 
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Figure B.29 – Position of the transducers for leaves NS2_E. 
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                         (a)                                                                       (b) 

Figure B.30 – Load-deformation diagrams for leaves (a) SS1_E1 and (b) SS1_E2. Positive 

sign is adopted for elongation and negative for contraction. 
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Figure B.31 – Load-deformation diagrams for wallets (a) SS2_E1 and (b) SS2_E2. Positive 

sign is adopted for elongation and negative for contraction. 
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Figure B.32 – Position of the transducers for leaves SS1_E1, SS1_E2, SS2_E1 and SS2_E2. 
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                         (a)                                                                       (b) 

Figure B.33 – Load-deformation diagrams for leaves NS1_I. and NS2_I. Positive sign is 

adopted for elongation and negative for contraction. 

 

       
                         (a)                                                                       (b) 

Figure B.34 – Load-deformation diagrams for leaves SS1_I and SS2_I. Positive sign is 

adopted for elongation and negative for contraction. 
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Figure B.35 – Position of the transducers for leaves NS1_I, NS2_I, SS1_I and SS2_I. 
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B.6 COMPRESSION TESTS ON SINGLE LEAVES

 

 

: CRACK PATTERNS 

A B C D

 
(a) 

A B C D

 
(b) 

Figure B.36 – Crack pattern for NS1_E: (a) 588 kN (60% of fc) and (b) 951 kN (peak load). 

Due to a problem in the data acquisition system, the specimen had to be unloaded 

immediately after reaching the peak load. 
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A B C D

 
(a) 

A B C D

 
(b) 

A B C D

 
(c) 

Figure B.37 – Crack pattern for NS2_E at: (a) 421 kN (48% of fc), (b) 874 kN (peak load) 

and (c) 296 kN (34% of fc, post-peak regime). 

 



 Annex B 175

 

 
A B C D

 
(a) 

BA C D

 
(b) 

BA C D

 
(c) 

Figure B.38 – Crack pattern for SS1_E1 at: (a) 882 kN (46% of fc), (b) 1926 kN (peak load) 

and (c) 1417 kN (74% of fc, post-peak regime). 
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A B C D

 
(a) 

A B C D

 
(b) 

Figure B.39 – Crack pattern for SS1_E2 at: (a) 1275 kN (63% of fc) and (b) 2011 kN 

(peak load). 

 
A B C D

 
(a) 

A B C D

 
(b) 

Figure B.40 – Crack pattern for SS2_E1 at: (a) 1833 kN (89% of fc) and (b) 2061 kN 

(peak load). 

expulsion 
of the 
stone 
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A B C D

 
(a) 

A B C D

 
(b) 

Figure B.41 – Crack pattern for SS2_E2 at: (a) 1800 kN (76% of of the maximum load 

reached) and (b) 2380 kN (maximum load reached). 
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A B C D

 
(a) 

A B C D

 
(b) 

A B C D

 
(c) 

Figure B.42 – Crack pattern for NS1_I at: (a) 139 kN (63% of fc), (b) 222 kN (peak load) 

and (c) 146 kN (66% of fc, post-peak regime). 

 

 



 Annex B 179

 

 
A B C D

 
(a) 

A B C D

 
(b) 

A B C D

 
(c) 

Figure B.43 – Crack pattern for NS2_I at: (a) 124 kN (60% of fc), (b) 206 kN (peak load) 

and (c) 148 kN (72% of fc, post-peak regime). 

 



 J. Pina-Henriques 180

 

 
A B C D

 
(a) 

A B C D

 
(b) 

A B C D

 
(c) 

Figure B.44 – Crack pattern for SS1_I at: (a) 147 kN (70% of fc), (b) 211 kN (peak load) 

and (c) 156 kN (74% of fc, post-peak regime). 
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A B C D

 
(a) 

A B C D

 
(b) 

A B C D

 
(c) 

Figure B.45 – Crack pattern for SS2_I at: (a) 113 kN (55% of fc), (b) 207 kN (peak load) 

and (c) 156 kN (75% of fc, post-peak regime). 
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B.7 COMPRESSION TESTS ON FULL WALLETS: CRACK PATTERNS 
 

 
A B C D

 
(a) 

A B C D

 
(b) 

DA B C

 
(c) 

Figure B.46 – Crack pattern for NS3 at: (a) 539 kN (59% of fc), (b) 913 kN (peak load) and 

(c) 569 kN (62% of fc, post-peak regime). 
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A B C D

 
(a) 

A B C D

 
(b) 

A B C D

 
(c) 

Figure B.47 – Crack pattern for SS3: (a) prior to test, (b) at 441 kN and (c) at 2380 kN 

(maximum load reached). 
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A B C D

 

 

(a) 

A B C D

 
(b) 

A B C D

 
(c) 

Figure B.48 – Crack pattern for NK3 at: (a) 515 kN (51% of fc), (b) at 1013 kN (peak load) 

and (c) 588 kN (58% of fc, post-peak regime). 
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DCBA

 
(a) 

A B C D

 
(b) 

Figure B.49 – Crack pattern for SK3 at: (a) 1289 kN and (b) 2380 kN (maximum 

load reached). 

 

B.8 DISPLACEMENT TRANSDUCERS LENGTH 
 

Table B.5 – Length of the transducers employed in the shear tests (in mm). 

 

Transducer NS1 NS2 SS1 SS2 NK1 NK2 SK1 SK2 
2 326 324 319 322 325 320 318 318 
3 143 60 58 63 160 160 161 164 

340 340 317 338 
6 342 433 343 450 345 345 318 342 
7 81 99 99 98 95 85 100 100 
8 325 342 341 343 340 345 344 340 
9 325 324 325 318 325 320 322 324 

10 143 60 58 48 150 150 151 151 
11 443 60 60 29 150 150 162 151 
12 450 470 338 448 150 150 150 150 
13 339 431 436 421 150 150 146 151 
14 84 90 99 102 150 153 159 149 
15 325 335 340 343 150 150 148 146 

4 448 463 56 447 340 350 311 343 
5 448 51 437 61 
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Table B.6 – Length of the transducers employed in the compression tests on single 

leaves (in mm). 

Trans-
ducer 

NS1_E NS2_E SS1_E1 SS1_E2 SS2_E1 SS2_E2 NS1_I NS2_I SS1_I SS2_I 

2 326 324 320 320 321 322 364 320 341 326 
3 143 158 164 156 160 158 188 250 160 157 
4 327 321 321 322 318 328 345 322 342 364 
5 327 321 121 118 120 117 100 99 100 98 
6 - - 327 320 318 325 319 325 343 320 
7 - - 167 162 161 160 165 255 156 155 
8 385 361 322 322 316 320 341 329 339 321 
9 325 324 117 119 118 118 96 90 99 102 

10 143 160 - - - - - - - - 
11 325 321 - - - - - - - - 
12 325 319 - - - - - - - - 
13 - - - - - - - - - - 
14 - - - - - - - - - - 
15 385 355 - - - - - - - - 

 

Table B.7 – Length of the transducers employed in the compression tests on full wallets 

Transducer NS3 SS3 NK3 SK3 

(in mm). 

2 317 323 317 317 
3 316 320 319 320 
4 326 33 22 

00 99

20 12 19 

21 32 99 

22 32 20 
9 98

42 34 73 

2 318 3
5 1  321 319 
6 121 119 121 122 
7 1 0 123 1
8 338 340 332 345 
9 3 2 98 

10 321 322 320 312 
11 3 0 319 3
12 9  319 317 
13 121 117 324 329 
14 120 119 183 103 
15 3 4 380 3
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