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Summary

Variogram estimation is a major issue for statistical inference of spatially
correlated random variables. Most natural empirical estimators of the vario-
gram cannot be used for this purpose, as they do not achieve the conditional
negative-definite property. Typically, this problem’s resolution is split into
three stages: empirical variogram estimation; valid model selection; and
model fitting. To accomplish these tasks, there are several different ap-
proaches strongly defended by their authors. Our work’s main purpose was
to identify these approaches and compare them based on a numerical study,
covering different kind of spatial dependence situations. The comparisons
are based on the integrated squared errors of the resulting valid estima-
tors. Additionally, we propose an easily implementable empirical method
to compare the main features of the estimated variogram function.
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1 Motivation

It is well known that variogram analysis provides a useful tool for summa-
rizing spatial data and that it may be used to measure spatial dependence
between samples. However, its main contribution is related to inference pro-
cedures, when used to estimate the value of the spatial variable at an un-
sampled location. The approach differs from classical regression in that local
features can affect the solution. Bearing in mind that some measurements
in the vicinity of the point investigated, or sometimes elsewhere, are more
closely related to the unknown true value than others, a natural approxima-
tion to consider is a weighted mean.

The estimation of a variogram plays a decisive role, as it is commonly used
to find the optimal values of the weights. This is indeed the strategy used by
the popular kriging methods (see, e.g., Stein (1998)).

Suppose {Z(s) : s ∈ D ⊂ IRd} is a spatial random process, where D is
a bounded region with positive d-dimensional volume. This process is in-
trinsically stationary if its first moment is constant and the variance of the
difference between two variables is a function of the difference between their
locations:

(i) E[Z(s)] = µ(s) = µ ∀ s ∈ D;
(ii) V ar[Z(si)− Z(sj)] = 2γ(si − sj) = 2γ(h), ∀ si, sj ∈ D.

The function 2γ(.) defines the variogram function and γ(.) is termed the
semivariogram.

In theory, when the lag distance h is zero the semivariogram should also be
zero. In practice, however, it can be significantly different from zero, possibly
reflecting local effects or sampling error. This non-zero value is coined nugget
effect. Another important characteristic of the semivariogram deals with the
fact that, as the separation distance h increases, this function eventually ap-
proaches a constant value, known as the sill. When a semivariogram has a
sill, it means that there is a distance beyond which the correlation between
variables is zero; this distance is called the range.
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The first proposal for a variogram estimator for a stationary process is due
to Matheron (1963). This estimator is based on the method of moments and
it is given by

2γ̂(h) =
1

|N(h)|
∑

N(h)

(Z(si)− Z(sj))
2 (1)

where N(h) = {(si, sj) : si−sj = h, h ∈ IRd} and |N(h)| is the total number
of pairs in N(h). Matheron’s estimator is unbiased, however it presents some
drawbacks such as being badly affected by atypical values due to the squared
term in the summand of (1).

Cressie and Hawkins (1980) have minimized this weakness, by working with
square-root absolute differences and, under a Gaussianity assumption, have
produced the estimator

2γ(h) =

{
1

|N(h)|
∑

N(h) |Z(si)− Z(sj)| 12
}4

0.457 + 0.494
|N(h)|

(2)

Robustness to outliers is normally considered an important characteristic for
any estimator. In this regard, some other robust empirical estimators have
been proposed in addition to (2). For instance, Genton (1998a) proposes a
variogram estimator based on the highly robust scale estimator of Rousseeuw
and Croux (1992,1993), denoted below by QNh

. The theory of M-estimators
of scale is used to derive robustness properties. The resulting estimator is
2γ̂(h) = (QNh

)2, h ∈ IRd where

QNh
= 2.2191{|(Z(si + h)− Z(si))− (Z(sj + h)− Z(sj))| : i < j}(k)

The k value is equal to
(
[Nh/2]+1

2

)
, where [Nh/2] denotes the integer part of

Nh/2, and is used to compute the kth quantile of all sorted |.| values. One
may note that QNh

does not rely on any location knowledge and is thus said
to be location-free, in contrast to Matheron’s estimator.

Unfortunately, all these estimators are advised not to be used for inference
and prediction. They may fail the conditionally negative-definite property
which may lead to absurd negative values for the mean square prediction
errors, as proved in Cressie (1993). They are thus classified as non valid
estimators.

In our search for valid estimation procedures and in our posterior comparison
study, we have decided to focus on the isotropy case, with N(h) = {(si, sj) :
‖si − sj‖ = h, h ∈ IR}. This restriction can be relaxed by assuming geo-
metric anisotropy or by fitting a different semivariogram in each of several
directions.
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2 Traditional three stages

A common approach to achieving a valid variogram estimator is to approxi-
mate an empirical variogram by some theoretical model known as valid. The
idea is to select, within the families of valid variograms, a function which cap-
tures the underlying spatial dependence of the available data. Traditionally,
these type of approaches are accomplished through three distinct stages:

1. Compute an empirical parametric or non-parametric semivariogram
(typically non valid);

2. Choose a theoretical model among the family of valid parametric or
non-parametric semivariograms;

3. Estimate the semivariogram by fitting the theoretical model to the em-
pirical semivariogram.

Some authors prefer to group these three stages into two, called variogram
estimation and variogram fitting stages, the latter performing the stages 2
and 3 simultaneously (see, e.g., Cressie (1993)). In contrast, we argue that,
when possible, three separate stages allow a better classification of the exis-
ting approaches. The output of stage 2 is a vague valid candidate and its
complete specification is only obtained from stage 3.

Before giving details about the complete approaches that were examined, we
make some generic comments on each of the previously listed stages. We
shall point out some references, if we think they introduce a relevant idea for
the implementation of these tasks.

2.1 Stage 1 – Empirical variogram estimation

The word “empirical” means based on observation or experiment. The es-
timation of the empirical variogram always, unsurprisingly, begins with the
observed data, whichever estimator selected. Examples include those estima-
tors introduced in section 1, when slightly modified to suit isotropy require-
ments.

A non-parametric approach for the empirical estimation of γ can also be
considered. Nadaraya-Watson’s kernel estimator uses the weighted average

γ̂g(h) =

∑
i

∑
j wij [Z(si)− Z(sj)]2∑

i

∑
j wij

where wij = K

(
h− ‖si − sj‖

g

)
(3)

K is a symmetric, zero-mean and bounded density function, with compact
support [−C,C], and g is a bandwidth parameter. In Garcia-Soidán, Febrero-
Bande and Gonzalez-Manteiga (2004) several properties of this estimator are
studied and an asymptotically optimal bandwidth parameter obtained.
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With Matheron’s estimator, only pairs (si, sj) such that ‖si − sj‖ = h are
used to compute a specific γ̂(h). If data is not regularly spaced, Matheron’s
estimator can be adapted to consider a tolerance region around h. For kernel
estimator, all pairs are used and they are all given a particular weight: the
weights are at their maximum when the distance between two points is close
to h, and zero values if

∣∣∣h−‖si−sj‖
g

∣∣∣ > C ⇐⇒ ‖si − sj‖ /∈ [h− gC, h + gC].

2.2 Stage 2 – Valid model selection

The aim of this stage is to find a negative-definite function which, as a mea-
sure of spatial dependence, is in some sense closest to the sample data. The
notion of “in some sense” is considered in detail at stage 3. At this stage
we are concerned with questions such as the choice of exponential vs spheri-
cal families, or parametric vs non-parametric estimators. The most common
methods used to pick a valid family are based on graphical tools, with model
selection reduced to approximating the estimated variogram curve by one
from the valid family. In recent years, some alternatives have been suggested.

Maglione and Diblasi (2001) propose a statistical method for choosing a valid
model for the variogram. The test statistic for their approach is based on
smoothed random variables which reflect the underlying spatial variation.
The distribution of this test statistic, which is a ratio of quadratic forms, can
be approximated by a shifted chi-square distribution and is used to verify the
distance between the underlying model for the variogram and the one in the
null hypothesis.

Gorsich and Genton (2000) propose a method for the selection of a valid
parametric model via the derivative of a non-parametric variogram estimate,
without assuming a prior model. The basic idea of their proposal is to avoid
choosing among valid parametric variogram models, as they may look si-
milar, and to choose instead among their derivatives, as they are often quite
different. These derivatives should be compared with the one obtained from
the non-parametric variogram estimate based on the spectral representation
of positive definite functions.

The first non-parametric approach to the selection of a valid model ap-
peared in Shapiro and Botha (1991). Key result behind these approaches
is Bochner’s theorem, which states that a covariance function c(h) is positive
definite iff it has the following form (Cressie (1993)):

c(h) =
∫∞
0

Ωd(ht)F (dt)

where Ωd(x) = (2/x)(d−2)/2 Γ(d/2)J(d−2)/2(x) is a basis for functions in IRd,
F (dt) is a nondecreasing bounded function, Γ is the gamma function, and Jυ

is the Bessel function of the first kind of order υ.
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This theorem, together with the relation γ(h) = c(0) − c(h), are employed
to represent the family of non-parametric valid variograms. To allow the
numeric evaluation of γ, F (t) should be considered a step function with a
finite number m of positive jumps p1, ..., pm at points t1, ..., tm. A valid non-
parametric estimator can then be given by

γ̂(hi) = Σm
j=1 pj (1− Ωd(hitj)) (4)

2.3 Stage 3 – Model fitting

The classical goodness-of-fit criteria may be used to complete the specification
of the final variogram. Possible choices are the minimum variance or norm
quadratic unbiased (MIVQU or MINQU), the maximum likelihood (ML) and
the least squares (LS) criteria. Those based on LS are known as being less
limited in scope and by requiring the fewest distributional assumptions about
Z(s). In matrix notation, a LS minimizing problem is written as

min
{

(γ̃ − γθ)
T

W−1 (γ̃ − γθ)
}

where γ̃ identifies an empirical estimator and γθ identifies a valid model whose
exact form is known except for the unknown parameter θ. The W matrix
is a weight matrix. If W is an identity matrix, then one has the ordinary
least squares (OLS) criterion. If W = V where V is the variance-covariance
matrix, then one has the generalized least squares (GLS) criterion. If matrix
V is reduced to its diagonal, then the resulting criterion is called weighted
least squares (WLS). In Cressie (1985), he considers WLS as a pragmatic
compromise between GLS efficiency and OLS simplicity and suggests wj =
|N(hj)|
γ(hj)2

, where the unknown γ should be approximated by γθ through an
iterated procedure.

Genton (1998b) refuses to accept WLS as the solution for GLS complexity
and proposes an explicit formula for the covariance structure V , calling the
resulting method GLSE. The basic idea is to obtain a generic covariance
structure by using, iteratively, the correlation structure of Matheron’s esti-
mator in the independent case.

2.4 Existing combinations of the previous stages

Next, we shall introduce some existing complete approaches to reach our
target: a valid variogram estimator. All of them result from distinct combi-
nations of previous stages.

We shall begin with a mandatory reference, Zimmerman and Zimmerman
(1991), where seven different approaches are compared through a Monte
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Carlo simulation study. This comparative study, in spite of being consi-
derably exhaustive, is somehow restricted in scope as it only involves para-
metric techniques. In fact, these seven approaches are mainly distinguishable
by their third stage, being four LS-based, two ML-based and one using a
modified MIVQU.

Shapiro and Botha (1991) are indeed the pioneers on selecting a valid
model in a non-parametric space. They combine the Matheron’s estimator
at stage 1, a broad class of permissible variograms at stage 2 and at the last
stage, a WLS fitting criterion where the optimization problem is reduced to
a quadratic programming problem. Following Christakos (1984), they define
f(h), h ∈ IRd as a permissible semivariogram function, if it is continuous
(except possibly at the origin), f(h) = f(−h), f(h) ≥ 0 for all h, and −f(h)
is conditionally nonnegative definite. The resulting valid variogram estimator
then fulfills equation (4). This approach was evaluated by Cherry, Banfield
and Quimby (1996), where they conclude that this “non-parametric method
is faster, easier to use and more objective than parametric methods”.

Gribov, Krivoruchko and Ver Hoef (2000) suggest a new method of
computing the empirical variogram of Matheron. The squared differences
[Z(si)−Z(sj)]2 are binned into K distinct bins, and point estimations of the
semivariogram at K points are obtained. The complicating issue is how to
best bin the data. They introduce the notion of logarithmic increases in the
size of tolerance regions against the traditional fixed size. This new concept
allows better results in estimation near the origin. They also propose to use
a kernel method to assign, within a given bin, weighted values depending on
how close a value is to the center of the bin. This requires fewer elements
per bin than the recommended minimum of 30 pairs of the classic guideline
of Journel and Huijbregts (1978), as well as the weights’ presence minimizes
a possibly existing unequal distribution of lags.

In respects to the model fitting stage, they propose a modified WLS1 pro-
cedure. They split this stage into two steps. At step 1, typically with two
iterations, they consider logarithmic lag sizes. At step 2, a default lag size
obtained from the range estimate in step 1 is used instead.

The last approach included in our survey is the one proposed by Garcia-
Soidán et al. (2004). These authors introduce a non-parametric technique
in an additional stage. They propose the usage of the non-parametric empiri-
cal estimator given by equation (3) together with the permissible function of
Shapiro and Botha. The empirical γ̂g(h) and the theoretical curve are fitted
through a re-iterated WLS criterion. The former is shown to have desirable
properties, such as asymptotically unbiasedness and consistency.

1This algorithm is included into the Geostatistical Analyst extension to GIS
ArcInfo/ArcView8.1 (Krivoruchko, 1999).
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Table 1: Taxonomy of existing approaches for valid γ̂ achievement. Bold
identifies those approaches selected for the comparative study.
Approaches Stage 1 Stage 2 Stage 3

Zimmerman Matheron(1) P model OLS
and Cressie-Haw.(2) P model WLS
Zimmerman Matheron P model WLS
(1991) Matheron P model WLS-Delfiner(1974)

— P model ML
— P model REML
Matheron P model OLS+MIVQU

Shapiro and Matheron NP function(4) WLS
Botha (1991)

Gribov Matheron-modif. P model WLS-modified
et al. (2000)

Garcia-Soidán NW kernel(3) NP function(4) WLS
et al. (2004)

One should have in mind that an important issue of kernel estimation is the
selection of the bandwidth parameter, g. These authors address the problem
by asymptotically minimizing the mean square error (MSE) or the mean inte-
grated square error (MISE), in order to derive the local and the global band-
width, respectively. Both expressions involve the unknown function γ(h).
For the purpose of the bandwidth derivation, a simple parametric approach,
like the first one presented by Zimmerman and Zimmerman (1991) (see Ta-
ble 1), may be used to estimate γ(h). This isolated parametric estimation
can even be improved by being incorporated into an iterated non-parametric
procedure.

Outside the boundary, the bias of the Nadaraya-Watson estimator (3) is of
the order g2; however, the latter order amounts to g for distances h close to
0. Then, proceeding as in Kyung-Joon and Shucany (1998), we may denote
by γ̂q,g(h) the estimator obtained by substituting a boundary kernel Hq for
the symmetric one K in (3), where q = min

{
hg−1, C

}
and

Hq(z) = K(z)−rL(z)
1−r , z ∈ [−C, q]

where r = c1,Kc0,L(c0,Kc1,L)−1 6= 1 and ci,G =
∫ q

−C
ziG(z). This particu-

lar selection of the boundary kernel Hq produces a semivariogram estimator
γ̂q,g(h) that makes it negligible the term of order g in the bias and preserves
the same convergence orders for all h > 0, as shown in Garcia-Soidán et al.
(2004).
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3 Simulation study

In order to analyze the performance of the previous approaches for valid γ̂
achievement, simulations of spatial data in IR2 were carried out for different
kind of dependence situations. We considered the exponential and the spheri-
cal semivariogram models. Additionally, the wave model was also considered,
because of its atypical irregular behaviour.

• Exponential model: γe(h, θ) = θ0 + θ1 [1− exp(−h/θ2)] , h 6= 0

• Spher. model: γs(h, θ) =

{
θ0 + θ1

[
3
2 (h/θ2)− 1

2 (h/θ2)
3
]

, 0 < h ≤ θ2

θ0 + θ1 , h > θ2

• Wave model: γw(h, θ) = θ0 + θ1 [1− θ2 sin(h/θ2)/h] , h 6= 0

In all cases, a uniform distribution on [0, 1] × [0, 1] was assumed for spatial
locations si = (xi, yi), i = 1, .., n, where n represents the sample size. Several
data sets were generated with Gaussian data, Z(si), i = 1, .., n, using one of
the above semivariogram models. These models’ parameters were chosen in
such a way that the corresponding curves were comparable according to their
radius of influence (or range). We have then fixed the values for the nugget
θ0 and θ1, being 0.25 and 5.0, respectively. The third parameter was the one
chosen depending on the model: exponential, θ2 = 0.167; spherical, θ2 = 0.5;
and wave, θ2 = 0.113. With this selection, the theoretical semivariograms
have a sill of 5.25 and a range (referred to the minimum value for which the
semivariogram reaches either the sill or 95% of the sill, in case that the range
is not finite) of 0.5. More precisely, the wave model oscillates around the sill
value and, consequently, the 0.5 value identifies the global maximum of the
corresponding semivariogram function.

3.1 Comparing empirical estimators

The aim of our first exercise was to compare the three main empirical estima-
tors used at stage 1 of the approaches included in Table 1, given in expressions
(1), (2) and (3). For data generation, we took sample size n = 200 and we
started by selecting the exponential model.

Unusual estimated values were obtained by estimators (1) and (2) for the
largest lags. Additionally, some of them did not have the recommended
minimum of 30 pairs. Therefore, in posterior simulations, we have decided
to only consider the first 55% of lags. One may note that this guideline still
is less conservative than the one proposed by Journel and Huijbregts (1978),
specifying that the largest used lag, hk, should be less than or equal to half
of the largest existent lag. As non-parametric estimation requires more lags
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than those empirically obtained, we have also decided to consider a larger
number of lags, equally spaced, within interval [ min(hk) , 0.55 ∗max(hk) ].
Following these considerations, Figure 1 shows the obtained data, as well
as two more graphs assuming the spherical and the wave models for data
generation. All graphics included in this paper use the following notation:
lines are used to represent a valid estimator; and isolated symbols, e.g. small
squares, are used for empirical estimates.

Figure 1 demonstrates the behaviour of the estimator when one sample is
considered, although it will depend strongly on the sample variability. For
this reason, we include a second study where 100 independent samples are
considered. For each one, the integrated squared error (ISE) between each of
the three empirical estimators and the theoretical semivariogram, given by

ISE =
∫

[γ̂(h)− γ(h)]2 dh,

was approximated numerically through the trapezoid rule. γ̂(h) represents
an empirical estimator and γ(h) represents the theoretical curve. This simu-
lation was repeated for the previous models: exponential, spherical and wave.

The results are summarized in the boxplot in Figure 2, through the quartiles
of the found ISE values. If one compares the median’s values associated
to the three estimators, then the best performance is clearly achieved by
the non-parametric estimator, using the Nadaraya-Watson kernel. Another
advantage of this non-parametric estimator is that it is a continuous function.
In contrast, estimators (1) and (2) propose point values of the semivariogram
for given distances h, making them discontinuous. Most analyses requires
knowledge about estimations in a continuous range of γ(h).

We conclude by bringing attention to the different orders of magnitude of the
ISE values for each theoretical model, being the lowest values associated to
the exponential curve and the largest ones to the wave curve.

3.2 Comparing complete approaches

We highlight three approaches (marked in bold) from Table 1, which we
consider the most representative of the existing alternatives. For two of the
approaches, a valid model is chosen within the space of parametric families.
They are identified as the parametric approaches (P), one of which uses WLS
as fitting criterion and the other REML. The third approach, introduced by
Garcia-Soidán et al. (2004), is referred to as the non-parametric approach
(NP).

The superior results of the Nadaraya-Watson kernel estimator, when com-
pared to the Matheron’s estimator, led us not to include Shapiro and Botha
(1991) in our numerical study. Gribov et al. (2000) was also excluded as,
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a) Exponential

b) Spherical

c) Wave

Figure 1: Three empirical estimators and the associated theoretical curve.
Data simulated with three distinct models. Sample size equals 200.
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Figure 2: Boxplot of the evaluated ISE from three empirical estimators, using
data simulated from three distinct models. The simulation consisted of 100
replications, each with a sample size of 200.

under isotropy, their main contribution is mainly reduced to the usage of
weights within a given bin. In this case, the kernel estimator does not differ
much from their proposal and may be indeed a better choice.

Under the NP approach, we preferred to asymptotically minimize the MSE
to derive a local bandwidth parameter. For this purpose, the symmetric
Epanechnikov kernel was employed. Additionally, as the bandwidth deriva-
tion needs itself an estimation of the semivariogram, the available WLS para-
metric estimation was used for this purpose. Near the semivariogram end-
point 0, a specific asymmetric boundary kernel was constructed from the
Epanechnikov kernel and the quartic kernel.

For the implementation of the REML fitting criterion, we used the geoR
library from R, which provides several functions for geostatistical analysis as
explained in Ribeiro Jr and Diggle (2001). Excluding this particular case, we
used Fortran to implement our numerical study.

Figure 3 shows an example of results obtained with the three selected ap-
proaches, when using each of our theoretical models for data simulation and
a sample size n = 50. The correct specification of the theoretical variogram
is considered: if data is generated with a given model then this same model is
the one elected at stage 2. On the left side, are the valid estimators resulting
from the P approaches. On the right side, the final valid estimator is given
by a permissible function of Shapiro and Botha when fitted through WLS to
the NW kernel’s estimations.

The wave semivariogram, see e.g. Figure 3c, causes problems in achieving a
valid estimator through REML fitting criterion, because the Choleski facto-
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a) Data simulated with an exponential model

b) Data simulated with a spherical model

c) Data simulated with a wave model

Figure 3: Approaches to achieving a valid γ̂(h): the 2 parametric approaches
are on the left and the non-parametric approach is on the right. Data simu-
lated with three distinct models. Sample size equals 50.
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n = 50 n = 200

Theoretical Parametric model Parametric model
model EXP SPH WAV EXP SPH WAV

E Mean(ISEPwls
) 0.61 0.58 0.79 0.21 0.20 0.38

X Mean(ISEPreml
) 0.54 0.63 1.00 0.37 0.77 1.42 *

P Mean(ISENP ) 0.61 0.63 0.74 0.19 0.19 0.22

S Mean(ISEPwls
) 0.96 0.85 0.95 0.34 0.26 0.44

P Mean(ISEPreml
) 1.10 1.10 1.12 0.63 0.69 1.60 *

H Mean(ISENP ) 1.14 0.87 0.88 0.32 0.25 0.24

W Mean(ISEPwls
) 0.84 0.99 1.35 0.89 0.68 0.70

A Mean(ISEPreml
) 2.22 2.98 N/A 3.31 4.77 N/A

V Mean(ISENP ) 0.62 0.95 1.20 0.62 0.67 0.55

Table 2: Mean values of the obtained ISE for the three approaches (Pwls,
Preml and NP) chosen to achieve a valid γ̂(h). Data simulated with three
theoretical models. Total number of replicas is 100 and each sample size is
either 50 or 200. For each combination of one theoretical and one parametric
model, bold identifies the lowest mean when comparing the three approaches.
* For these two cases about 80 replicas were used, as for the remaining replicas the variance-

covariance matrix was non-positive definite, not allowing the Choleski factorization.

rization of the variance-covariance matrix was required and this matrix was
typically non-positive definite.

Next, we will cover different kinds of spatial dependence situations. The data
were generated using any of our three elected models, exponential, spherical
or wave, and we supposed that any of these models could be chosen as the
best guess by the user at stage 2. The idea is to analyze how the wrong
selection of a parametric model affects our approaches. It is worth noting
that even the NP approach is expected to be somehow affected by this error,
through the procedure of bandwidth derivation.

Table 2 shows the mean values of the evaluated ISE for 100 independent data
sets. The errors associated with the P approaches, WLS and REML fitting
criteria, are denoted by ISEPwls

and ISEPreml
respectively, and the errors

associated with the NP approach are denoted by ISENP . Two different
sample sizes, n = 50 and n = 200, were considered.

The NP approach is, in general, preferable, as it provides smallest mean of
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ISE values in 55.5% of the cases considered for samples of size n = 50 and
100% for n = 200. More precisely, the results achieved for the NP approach
exceed, at least 5%, those obtained for the second best approach in 44.4%
and 77.8% of the total cases for n = 50 and n = 200, respectively.

The Pwls approach seems competitive with NP (i.e. not more than 5% inferior
or even superior) in 44.4% of the observed cases for samples of size n = 50 and
22.2% for n = 200. As regards the Preml approach, it should be avoided for
larger samples, as well as when the wave model is involved on the procedure
for valid γ̂(h) achievement. The Preml approach presents the best behaviour
when the exponential model is correctly specified and n = 50.

The boxplot in Figure 4 shows more detailed information about previous
ISE values, for one particular situation: the exponential curve was elected
as the parametric model. This illustrates a likely situation as this family
is one of the most popular, making it a strong candidate for election at
stage 2. This boxplot contains three different groups of boxes: the first one,
labelled EXP-EXP, stands for data simulated with an exponential model,
whereas the second, SPH-EXP, and third, WAV-EXP, represent two cases of
wrong specification, as data was simulated with a spherical and wave model,
respectively.

In this boxplot, the NP approach shows the lower dispersion, measured in
terms of the interquartile range, even when the median value of its evaluated
ISE is worst. Another interesting conclusion is that the larger median values
and the larger interquartile ranges are normally associated to the smaller
sample size, i.e. n = 50. The exception is the Preml approach, as its median
value is degraded by a large sample size.

From the boxplot, it is also evident that the NP approach is the preferred
choice in the presence of the wave model. Otherwise, one of the two P
approaches might be acceptable.

The last comparison of estimates included in our simulation study involves
important features typically associated with the semivariogram function and
introduced in section 1: nugget, sill and range. Table 3 summarizes the
median values (P50) and the mean square errors (MSE) of their correspon-
ding estimators, comparing the outcome results from Pwls, Preml and NP
approaches. The correct specification of the theoretical model was always
considered.

The nugget effect’s estimator is given by θ̂0, for the P approaches, and by
γ̂(0), otherwise. These estimates should be compared with the theoretical
value of 0.25. In respect to the remaining features of γ̂(h), sill and range,
we proposed an empirical method extended to the family of non-parametric
valid semivariograms. With our proposed method, the derivative of γ̂(h) is
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Figure 4: Boxplot of the evaluated ISE from the three approaches (Pwls,
Preml and NP ) chosen to achieve a valid γ̂(h). Data was simulated with
exponential, spherical and wave models, but the exponential model was esti-
mated.

used to estimate a sill approximation and range.

Under a wave model, we compare the global maximum of γ̂(h) obtained from
the NP approach, against θ̂0 + (1 − (

√
2π)−1 sin(

√
2π)) θ̂1 obtained from

the P approaches. The corresponding range is defined as
√

2πθ̂2. Under the
exponential and the spherical models, the range’s estimators are 3θ̂2 and θ̂2,
respectively. All three models share a theoretical range of 0.5. For these
last models, the estimated sill approximation is specified as the maximum of
γ̂(h) or 95% of this value, when considering a finite number of lags. The P
approaches use θ̂0 + 0.95θ̂1, for the exponential model, and θ̂0 + θ̂1, for the
spherical one.

In terms of MSE values, the NP approach offers the best estimators for the
semivariogram’s features, as it provides lowest values in 77.8% of the total
evaluated MSEs. The Pwls approach always presents the worst MSE values.
In terms of median values, however, the best results are not necessarily asso-
ciated with the NP approach. More precisely, the nugget effect seems to be
under-estimated when a spherical or a wave model is used. As well as, this
same approach seems to over-estimate the sill approximation when sample
size is equal to 200. An aspect also worth mentioning is that, overall, the
performance of each estimator improves as sample size increases.

A final remark about the numerical study is related to the computational
cost of the three approaches chosen to achieve a valid estimator. The CPU
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̂Nugget ̂SillApprox ̂RangeApprox

Model n Approach P50 MSE P50 MSE P50 MSE

EXP 50 Pwls 0.31 0.71 5.58 7.74 0.57 0.98
Preml 0.30 0.29 5.15 4.36 0.55 0.20
NP 0.16 0.06 5.15 3.93 0.39 0.02

200 Pwls 0.40 0.58 5.08 8.76 0.49 1.15
Preml 0.20 0.03 4.74 2.60 0.47 0.06
NP 0.20 0.02 7.87 9.31 0.52 0.01

SPH 50 Pwls 0.23 0.29 5.65 8.46 0.52 0.12
Preml 0.23 0.07 5.38 7.81 0.54 0.07
NP 0.00 0.23 5.30 5.70 0.44 0.01

200 Pwls 0.60 0.34 5.12 3.33 0.38 0.05
Preml 0.32 0.04 4.98 3.27 0.33 0.04
NP 0.17 0.04 7.40 8.41 0.51 0.01

WAV 50 Pwls 0.37 0.15 6.64 7.10 0.49 0.02
NP 0.00 0.05 6.30 5.14 0.48 0.01

200 Pwls 0.35 0.46 6.43 8.67 0.50 0.03
NP 0.08 0.03 7.24 6.28 0.49 0.01

Table 3: Summary of the main features of the estimated semivariogram:
nugget effect, sill approximation and corresponding range. Data simulated
with three theoretical models. 100 replications and each sample size is 50 or
200. Bold identifies the lowest MSE when comparing the chosen approaches,
while italic identifies the P50 value closest to the theoretical value.

execution times2 were recorded for each sample, without considering data
simulation but just the time needed to implement all existing stages. The
results are summarized below

n = 50 n = 200
Pwls 1.3 s 1.5 s
Preml 3.0 s ≈ 30 s
NP ≈ 30 s ≈ 30 s

The lowest computational cost was achieved by the Pwls approach, being
around 1.3 and 1.5 seconds for n = 50 and n = 200, respectively. The cost
for the Preml approach was around 3 seconds for n = 50, being at least 10
to 15 times greater for n = 200. With respect to the NP approach, we have

2The CPU times, in seconds, were obtained on an Intel Pentium III 850 MHz.
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registered CPU times from 27 to 36 seconds for n = 50, being the lowest
values associated to the spherical data and the greatest to the exponential
data. These costs have only shown a slight increase when we moved to
sample sizes of n = 200. Bear in mind that the heavy costs obtained for the
NP approach are usually justified by the optimal bandwidth derivation.

3.3 Concluding remarks

The problem of estimation of the variogram can be analyzed in practice
from several points of view. If the aim is just to obtain an approximation
of the dependence structure of the spatial data, then the classical and the
Nadaraya-Watson kernel provide good estimators that behave better than
the robust estimator proposed by Cressie and Hawkins, using as a term of
comparison the values estimated for the median and interquartile range of
the ISE; however, the robust estimator reduces the range of variation of the
ISE.

If we focus on the problem of spatial prediction, we modify the variogram
estimators to obtain valid variograms; otherwise, negative mean squared pre-
diction errors may be achieved. From the different alternatives discussed,
the valid kernel estimation (referred to as the NP approach) has the best
performance for large sample sizes in terms of the values estimated for the
ISE, regardless of the parametric model that is considered. In this respect,
it is surprising that fitting the correct parametric family does not produce
a better fit than the non-parametric method. The misspecification of the
parametric family has a second order effect on the kernel estimator, since it
affects estimation of values associated to the bandwidth parameter. On the
other hand, when considering typical features associated with the variogram
(nugget, sill and range), we conclude that the valid kernel estimation provides
lowest values of the MSE, although the P approaches prove competitive in
the estimation of the corresponding median values.

In general, the results presented here show that a valid semivariogram es-
timator obtained from a NP approach is a good alternative to those valid
estimators obtained from the classic parametric approaches. The NP ap-
proach has the additional advantage of avoiding problems associated with
using the wrong parametric model, which can occur in many conventional
approaches. These advantages become even more evident if sample data un-
derlies an atypical spatial dependence, like the one from the wave model.
However, one must be prepared to pay an extra computational cost over the
cost associated to a simple P approach like the one that fits a valid model to
some empirical estimations through the WLS criterion.

The P approach using REML as fitting criterion is only able to compete with
the other methods in the presence of small datasets and, simultaneously,
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observed data does not follow a wave-type structure.

Acknowledgements

We thank Patrick Brown and two anonymous referees for many comments
that improved earlier versions of the paper. The first author is also grateful
to Jonathan Tawn and Paulo Ribeiro for the valuable hints and stimulating
discussions.

References

Cherry, S., Banfield, J. and Quimby, W. (1996), ‘An evaluation of a non-
parametric method of estimating semivariograms of isotropic spatial
processes’, Journal of Applied Statistics v.17, 563–586.

Christakos, G. (1984), ‘On the problem of permissible covariance and vario-
gram models’, Water Resources Res. 20, 251–265.

Cressie, N. (1985), ‘Fitting variogram models by weighted least squares’,
Journal of Int. Association for Mathematical Geology 17, n.5, 563–586.

Cressie, N. (1993), Statistics for Spatial Data, John Wiley and Sons Inc., New
York.

Cressie, N. and Hawkins, D. (1980), ‘Robust estimation of the variogram’,
Journal of Int. Association for Mathematical Geology 12, n.2, 115–125.

Garcia-Soidán, P., Febrero-Bande, M. and Gonzalez-Manteiga, W. (2004),
‘Nonparametric kernel estimation of an isotropic variogram’, J. Statist.
Plann. Inference 121, 65–92.

Genton, M. (1998a), ‘Highly robust variogram estimation’, Journal of Int.
Association for Mathematical Geology 30, n.2, 213–221.

Genton, M. (1998b), ‘Variogram fitting by generalized least squares using an
explicit formula for the covariance structure’, Journal of Int. Association
for Mathematical Geology 30, n.4, 323–345.

Gorsich, D. and Genton, M. (2000), ‘Variogram model selection via nonpara-
metric derivate estimation’, Journal of Int. Association for Mathematical
Geology 32, n.3, 249–270.

Gribov, A., Krivoruchko, K. and Ver Hoef, J. (2000), ‘Modified weighted
least squares semivariogram and covariance model fitting algorithm’,
Stochastic Modeling and Geostatistics. AAPG Computer Applications
in Geology 2.



20

Journel, A. and Huijbregts, C. (1978), Mining Geostatistics, Academic Press,
London.

Kyung-Joon, C. and Shucany, W. (1998), ‘Nonparametric kernel regression
estimation near endpoints’, J. Statist. Plann. Inference 66, 289–304.

Maglione, D. and Diblasi, A. (2001), ‘Choosing a valid model for the Vario-
gram of an isotropic spatial process’, 2001 Annual Conference of Int.
Association for Mathematical Geology .

Matheron, G. (1963), ‘Principles of geostatistics’, Economic Geology
58, 1246–1266.

Ribeiro Jr, P. and Diggle, P. (2001), ‘geoR: A package for geostatistical
analysis’, R-NEWS vol 1, n.2, ISSN 1609–3631.

Shapiro, A. and Botha, J. (1991), ‘Variogram fitting with a general class of
conditionally nonnegative definite functions’, Computational Statistics
and Data Analysis 11, 87–96.

Stein, M. (1998), Interpolation of Spatial Data - Some Theory for Kriging,
Springer.

Zimmerman, D. and Zimmerman, M. (1991), ‘A comparison of spatial semi-
variogram estimators and corresponding ordinary kriging predictors’,
Technometrics 33, n.1, 77–91.


