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13.1. General Characteristics of Descending 
Pain Inhibitory Controls

It is well established that the brainstem has a significant
role in regulating pain-related signals at the spinal 
cord level (for comprehensive reviews see Willis and
Coggeshall, 1991; Sandkühler, 1996; Fields and
Basbaum, 1999; Millan, 2002). It has been commonly
considered that brainstem–spinal pathways predomi-
nantly inhibit pain. However, there is accumulating 
evidence indicating that descending pathways also 
have pain facilitatory effects (Urban and Gebhart, 1999;
Pertovaara, 2000; Lima and Almeida, 2002; Vanegas
and Schaible, 2004; see also Chapter 14 in this volume).
In this brief review we focus on descending pain
inhibitory systems. First, we describe general characteris-
tics of brainstem–spinal pain inhibitory mechanisms.
This is followed by a description of some key structures
involved in descending pain inhibition. 

(a) Development and Modulatory Properties 
of Descending Inhibitory Controls

Descending pain inhibitory pathways originate in or relay
through a number of brainstem nuclei. Each pathway has
a different neurochemistry and different neuroanatomical
connections. It should be noted that some of the brain-
stem nuclei are involved not only in descending but also
ascending inhibition of pain-related responses (Morgan
et al., 1989). Descending pain inhibitory controls are
immature at birth and do not become functionally effec-
tive until postnatal day 10 in the rat (Fitzgerald and
Koltzenburg, 1986), although all descending projections

are already present at birth (Leong et al., 1984). With
advanced age the function of descending pain inhibition
is impaired and this is associated with a loss of noradren-
ergic and serotoninergic fibers in the spinal dorsal horn
(Iwata et al., 2002). Conditioning noxious stimulation,
which presumably activates descending pain modula-
tory pathways, has induced a weaker pain suppressive
effect in females than in males (Staud et al., 2003) sug-
gesting that descending inhibitory controls may have
gender-specific differences. In addition to gender, other
genetic differences in descending pain inhibition also
exist and they may contribute to individual variability
in pain sensitivity. For example, it has been demonstrated
that the descending projection and the pain inhibitory
influence of the noradrenergic locus coeruleus varies with
the strain of animals; i.e. locus coeruleus stimulation
inhibits pain-related responses only in a strain of animals
with coerulo-spinal axonal projections to the spinal dorsal
horn (West et al., 1993).

Since early studies on brainstem stimulation-
induced analgesia (Reynolds, 1969; Mayer et al., 1971)
it has been reported that descending inhibitory controls
produce a selective attenuation of pain-related responses.
However, in some experimental conditions responses of
innocuous as well as nociceptive neurons of the spinal
dorsal horn may be attenuated following stimulation 
of the brainstem nuclei involved in antinociception 
(e.g. Gray and Dostrovsky, 1983). Although the soma-
totopic organization of descending inhibitory influence
is quite diffuse, a preferential ipsilateral antinociception
induced by electrical stimulation of the midbrain 
periaqueductal gray (PAG) indicates that the descend-
ing inhibitory effect may not be equally distributed
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throughout the body (Levine et al., 1991). Tonic influ-
ence of descending controls has been studied by block-
ing brainstem–spinal pathways. At behavioral level, the
net effect caused by a block of descending pathways is
predominantly facilitation of reflexes, although the
descending influence depends on a number of factors
such as submodality of test stimulation (e.g. Kauppila
et al., 1998); in particular noxious heat-evoked reflex
responses are markedly enhanced distal to a spinal
block indicating that heat-evoked reflex responses are
under strong tonic inhibition in intact animals.
Recordings of putative pain-relay neurons of the spinal
dorsal horn indicate that at single neuron level a block
of descending pathways commonly results in facilita-
tion of noxious heat-evoked responses (Dickhaus et al.,
1985; Pertovaara, 1999), although the effect of a block
of descending pathways may vary from excitation to
inhibition depending on the response characteristics
and laminar location of the spinal dorsal horn neuron
(Laird and Cervero, 1990); this is in line with the 
evidence showing a differential effect of specific brain
areas upon superficial versus deep nociceptive neurons
(Rees and Roberts, 1993). Following local lesions of cer-
tain lateral structures in the brainstem (Hall et al., 1982),
such as the caudal ventrolateral medulla (Tavares and
Lima, 2002), tonic descending inhibition of spinal noci-
ceptive neurons was reduced, whereas a lesion of medial
structures of the brainstem, such as the raphe nuclei and
the PAG, had only a minor effect on tonic descending
inhibition (Hall et al., 1982). This finding obtained in
healthy, control animals suggests that mechanisms
underlying tonic and phasic descending inhibition at
least partly dissociate; in physiological conditions lateral
structures of the brainstem have a major role in tonic
descending inhibition of pain.

Depending on the descending pathway, the pain
inhibitory effect may be a parallel rightward shift in 
the stimulus–response function or a decrease in the
slope of ascending nociceptive responses (Carstens et al.,
1980). Following a rightward shift of the stimulus–
response function, both the threshold and suprathres-
hold responses of spinal neurons are attenuated, whereas 
following a selective decrease in the slope (or gain) 
of the stimulus–response function the inhibition is
observed only with suprathreshold responses. This should
be taken into account when testing analgesic compounds
or manipulations potentially acting through brainste–
spinal pathways. Namely, studies addressing the
involvement of brainstem–spinal pathways and focus-
ing only on the pain threshold may miss inhibition of
suprathreshold pain caused by a selective decrease of
gain in spinal relay neurons. In addition, brainstem–
spinal pathways contribute to regulation of spatial
(Bouhassira et al., 1995) and temporal (Pertovaara, 1999)

summation in spinal nociceptive neurons. This includes
tonic descending inhibition of the long-term potentia-
tion of stimulus-evoked synaptic responses, a putative
neural correlate for “pain memory” in the spinal dorsal
horn (Sandkühler and Liu, 1998).

(b) Spinal Mechanisms Mediating the 
Descending Pain Inhibitory Action

A number of mechanisms are involved in mediating 
the descending inhibitory effect at the spinal dorsal
horn level (Fig. 13.1). Descending axon terminals have
direct contacts with presumed pain-relay neurons of the
spinal dorsal horn (e.g. Westlund et al., 1990), electrical
stimulation of the brainstem induced inhibitory postsy-
naptic potentials in nociceptive neurons of the spinal
dorsal horn (Giesler et al., 1981; Light et al., 1986) and
spinal application of noradrenaline, a transmitter released
from descending axons, hyperpolarized a population of
nociceptive spinal neurons (North and Yoshimura,
1984). These findings indicate that neurotransmitters
released from descending axons may block the ascending
pain signal by producing a hyperpolarization of spinal
relay neurons (direct postsynaptic inhibition; Fig. 13.1A).

Descending pathways may also suppress nociceptive
signals due to action on central terminals of primary
afferent fibers (presynaptic inhibition). Accordingly,
central terminals of nociceptive primary afferents have
receptors for neurotransmitters released in the spinal
cord only by descending axons, such as noradrenaline
(Stone et al., 1998). In line with this, postsynaptic
responses evoked by dorsal root stimulation in a popu-
lation of lamina II neurons of the spinal dorsal horn
were reduced by noradrenaline, without influence on
direct activation of the same neurons by excitatory
amino acids (Kawasaki et al., 2003). Due to rareness 
of axo-axonic synapses between nociceptive primary
afferent nerve fibers and central neurons, it has been
proposed that volume transmission may play a major
role in presynaptic inhibition of nociception in the spinal
dorsal horn (Rudomin and Schmidt, 1999); i.e. neuro-
transmitter released by descending axons diffuses 
further away to suppress presynaptically the peripheral
afferent volley in nociceptive nerve fibers (Fig. 13.1C).

Superficial laminas of the spinal dorsal horn have a
population of interneurons containing inhibitory neuro-
transmitters such as γ-aminobutyric acid (GABA),
glycine and enkephalin (Ruda et al., 1986). Descending
pathways excite some of these putative inhibitory
interneurons of the spinal dorsal horn (Millar and
Williams, 1989) and this provides one more mechanism
for descending inhibition of spinal pain-relay neurons
(indirect inhibition via excitation of inhibitory interneu-
rons; Fig. 13.1B).
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(c) Physiological Significance of Descending 
Pain Inhibition 

Descending pain inhibitory pathways have an impor-
tant role in the ascending–descending circuitry, provid-
ing negative feedback control of nociceptive signals
at the spinal cord level (Fields and Basbaum, 1999); 
i.e. a painful stimulus activates brainstem nuclei involved
in descending antinociception and prevents excessive
pain by attenuating the successive painful signals. This
implies that a full activation of descending inhibition is
observed only under painful conditions. The activation
of descending inhibitory controls by a painful stimulus
may not only serve reduction of excessive pain by neg-
ative feedback but it may also help in sharpening up of
the contrast between the stimulus site and adjacent
areas (Le Bars et al., 1979a,b). Higher nervous system
activity controlling behavior provides another physio-
logical way to recruit descending pain modulatory
pathways, as shown by the modulation of responses of
nociceptive spinal neurons by behavioral context and
attention (Dubner, 1985). Similarly, mood and emotions
may modulate pain through action on descending pain
modulatory pathways (Suzuki et al., 2004). Importantly,
analgesia induced by some centrally acting drugs involves
activation of descending pain inhibitory pathways.

(d) Descending Pain Inhibition under 
Pathophysiological Conditions

Pathophysiological conditions may cause complex
changes in descending pain regulatory circuitry. Enhanced
tonic descending inhibition has been described in
inflamed animals (Schaible et al., 1991; Tsuruoka and
Willis, 1996; Mansikka et al., 2004). Also, phasic
descending inhibition was stronger following inflam-
mation as indicated by enhanced spinal antinociceptive
effect by midbrain stimulation in inflamed animals
(Morgan et al., 1991). Inflammation has been associated
with increased turnover of noradrenaline (Weil-Fugazza
et al., 1986) and increased number of α2-adrenoceptors
in the spinal cord (Brandt and Livingston, 1990). These
changes are likely to contribute to an increase in
descending pain inhibition, and they probably explain
the enhanced antinociceptive potency of spinally
administered α2-adrenoceptor agonists in inflamed con-
ditions (Stanfa and Dickenson, 1994; Mansikka et al.,
1996). The inflammation-induced increase in ascending
nociceptive barrage may contribute to triggering and
maintenance of increased inhibitory controls. However,
increased efficacy of glutamatergic receptors of the
medulla, accompanied by a phenotypic switch of
medullary neurons, has also been observed following
inflammation (Ren and Dubner, 1996; Miki et al., 2002).
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Fig. 13.1. Spinal mechanisms mediating the descending pain
inhibitory effect. (A) Direct (postsynaptic) inhibition of spinal
pain-relay neurons. (B) Indirect inhibition of spinal pain-
relay neurons through activation of inhibitory interneurons.
(C) A hypothetical scheme for volume transmission of an
inhibitory neurotransmitter from the descending axons to cen-
tral terminals of nociceptive primary afferent nerve fibers
(presynaptic inhibition of nociceptive afferent barrage to 
the spinal cord). In each diagram, open symbols represent
excitatory synapses and neurons, whereas filled symbols 

represent inhibitory actions.
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These findings indicate that plastic changes at the
medullary level contribute to maintenance of enhanced
descending inhibition following inflammation (Ren and
Dubner, 2002). In contrast, phasic descending inhibi-
tion of spinal dorsal horn neurons has been reduced 
following a peripheral nerve injury (Hodge et al., 1983;
Pertovaara et al., 1997) but not following development
of diabetic neuropathy (Kamei et  al., 1992; Pertovaara
et al., 2001). On the other hand, peripheral nerve injury
may result in compensatory up regulation of descending
noradrenergic innervation to the lumbar dorsal horn
(Ma and Eisenach, 2003); this upregulation of nor-
adrenergic innervation probably explains the enhanced
antinociceptive potency of spinally administered syn-
thetic α2-adrenoceptor agonists following nerve injury
(Xu et al., 1992) and in some cases it may be enough 
to mask neuropathic symptoms (Xu et al., 1999).
Additionally, nerve injury or inflammation may activate
descending facilitation (Urban and Gebhart, 1999;
Pertovaara, 2000; Lima and Almeida, 2002; Porreca 
et al., 2002). Following injury or inflammation, the net
effect of descending controls depends on many factors
such as submodality of pain, pathophysiological condi-
tion (Kauppila et al., 1998), time from the start of the
injury (Ren and Dubner, 1996; Danziger et al., 1999),
location of the test site in the injured versus uninjured
area (Urban and Gebhart, 1999; Vanegas and Schaible,
2004) and the brain area that is experimentally manip-
ulated (Almeida et al., 1999). Increased inhibitory 
controls potentially help to maintain the capacity to 
use an inflamed body part for flight or fight in case of
emergency, whereas decreased inhibition or increased
facilitation of pain might in some cases help the healing
process by promoting immobilization and protection 
of the injured region (McNally, 1999). However, a pro-
longed decrease of pain inhibition or increase of pain
facilitation may not serve any useful purpose, but they
just cause unnecessary suffering and may underlie devel-
opment of chronic pain syndromes. 

Motor control and pain regulatory systems share many
common neurotransmitters. Disorders of neurotrans-
mitter systems in the motor control circuitries of the
basal forebrain are quite common and they are known
to be associated with motor dysfunction such as in
Parkinson’s disease (DeLong, 2000). In analogy, it may
be proposed that similar disorders of neurotransmitter
systems potentially occur also in pain regulatory cir-
cuitries and can underlie some chronic pain conditions
by causing hypofunction of descending inhibitory 
controls. This possibility is supported by a recent series
of studies indicating that striatal dopamine D2 receptor-
binding potential is associated with the occurrence of
chronic orofacial pain as well as baseline pain sensitiv-
ity (Hagelberg et al., 2004); i.e. hypofunction of the

nigrostriatal dopamine system may cause not only
motor disorders but also chronic pain. Further studies
are needed to determine potential dysfunctions of other
neurotransmitter systems in pain inhibitory pathways
and their possible relationship with chronic pain.

(e) Diffuse Noxious Inhibitory Controls

The application of conditioning noxious stimulation to
one area of the body is capable of inhibiting responses
of the presumed pain-relay neurons of the spinal dorsal
horn evoked by stimulation of other body areas. This
implies that painful stimulation inhibits concurrent 
pain signals evoked from heterotopic stimulation sites
allowing focusing of the sensory system on the most
dangerous stimulus; this mechanism is called diffuse
noxious inhibitory controls (DNIC) (Le Bars et al.,
1979a,b). DNIC involves an opioid link and it has 
also been described in humans (Pertovaara et al., 1982;
Willer et al., 1984). Although DNIC involves a
descending inhibitory influence, it has been postulated
that the net effect of DNIC is facilitation of pain percep-
tion evoked by the most threatening noxious stimulus;
i.e. the strongest painful stimulus may become more
prominent due to activation of DNIC and a consequent
suppression of concurrent signals from other body
areas. In line with this, the caudal brainstem area impli-
cated in descending inhibition of heterotopic nocicep-
tive signals (i.e. involved in DNIC), the dorsal reticular
nucleus of the medulla (Bouhassira et al., 1992), was
shown to have a descending pronociceptive action on
spinal nociceptive transmission mediated by homotopic
neurons (Almeida et al., 1996, 1999; Dugast et al., 2003).
Counter-irritation phenomena, including acupuncture,
may, at least partly, be based on DNIC (Bing et al.,
1990). In experimental models of acute inflammation,
the effect of DNIC corresponds with excitatory drives
evoked by conditioning and test stimulation; i.e. the
DNIC effect is enhanced, when the conditioning nox-
ious stimulation is applied to a hyperalgesic site and the
test stimulus to a healthy site, and vice versa (Calvino
et al., 1987; Kalmari and Pertovaara, 2004). However,
following development of chronic arthritis in experi-
mental animals the magnitude of DNIC was reduced
and not associated with the strength of the excitatory
drive induced by conditioning or test stimulation
(Danziger et al., 1999). Clinical studies indicate that in
patients with fibromyalgia a reduction of DNIC poten-
tially contributes to hyperalgesia (Kosek and Hansson,
1997). In neuropathic pain patients the effect of DNIC
has varied from a differential influence on on-going
versus evoked pain (Witting et al., 2003) to a selective
supraspinal inhibition of concurrent pain (Bouhassira 
et al., 2003).
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(f) Clinical Manipulation of Descending 
Inhibitory Systems

Stimulation of descending inhibitory systems has been
used for treatment of various pain syndromes
(Meyerson, 2001). This treatment method is based on
the fact that the amygdala–(PAG)–rostral ventrome-
dial medulla (RVM)–dorsal horn endogenous antinoci-
ceptive system is endowed with high concentrations 
of opioid receptors in every relay station (Mansour 
et al., 1994; Yaksh, 1997). Chronic deep brain stimulation
has been used for the treatment of chronic central pain
for decades but, although potentially successful, the
electrical stimulation by chronic implanted electrodes
of traditional pain-inhibiting centers (e.g. PAG) in
humans (Hosobuchi, 1986) had multiple side effects
(Tasker, 1982) and therefore it was gradually abandoned.
However, there are other areas that can be stimulated
with success like the ventrobasal (sensory) thalamus
(Vilela Filho, 1994), medial thalamus (Krauss et al.,
2002), basal ganglia (Eltahawy et al., 2004), periven-
tricular gray area (Nandi et al., 2003) and posterior
hypothalamus (Franzini et al., 2003). A series of clinical
studies reported that electrical stimulation of the 
motor cortex produces variable degrees of pain relief
(reviewed by Brown and Barbaro, 2003). Motor cortex
stimulation was effective in patients with post-stroke
pain (Katayama et al., 2001), phantom limb pain 
(Sol et al., 2001), neuropathic facial pain (Rainov and
Heidecke, 2003) and brachial plexus avulsion-related
pain (Saitoh et al., 2001). Experimental animal studies
suggest that some forms of behavioral pain therapy 
may involve modulation of spinal neuronal activity via
descending pain-control systems (Dubner, 1985).
Moreover, pain treatment by some centrally acting
drugs is based on enhancement of descending inhibitory
controls.

13.2. Functional Organization of the Descending
Pain Inhibitory Systems

(a) The Forebrain–PAG–RVM–spinal Pain 
Inhibitory Circuitry

The PAG–RVM System: Circuitry in the Midbrain 
and Medulla
The PAG matter, located in the mesencephalon around
the Sylvius aqueduct was the first brain area shown to
exert a powerful pain inhibitory action (Reynolds, 1969)
and its pain modulatory role has been exhaustively
studied by numerous laboratories (for a review see
Fields and Basbaum, 1999; Fig. 13.2). The lack of a
strong projection from the PAG to the spinal cord led to
the discovery of a relay, the RVM, through which the

PAG influences spinal nociception (Behbehani and
Fields, 1979; Gebhart et al., 1983). Both the PAG and
RVM receive direct projections from the spinal dorsal
horn and, thus, they may control the ascending nocicep-
tive input by a feedback mechanism (Fields and
Basbaum, 1999). The RVM includes the nucleus raphe
magnus and adjacent reticular formation, including the
nucleus gigantocellularis pars α and paragigantocellu-
laris ventralis, all of which project directly to the spinal
cord (Newman, 1985). Based on their physiological
response properties, spinally projecting RVM neurons
can be classified into three types:

1) On cells that give an excitatory response to a noxious
stimulus starting just prior to a spinal nocifensive
reflex.

2) Off cells that give an inhibitory response to a noxious
stimulus starting just prior to a spinal nocifensive
reflex.

3) Neutral cells that give variable responses or are unre-
sponsive to noxious stimuli (Fields et al., 1991).
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Fig. 13.2. The midbrain periaqueductal gray (PAG)–rostral ven-
tromedial medulla (RVM)–spinal cord pathway. Descending
pain inhibitory influence from many areas of the brain 
is mediated through the PAG–RVM–spinal cord pathway.

HT= hypothalamus; AMY= amygdala.
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Both on and off cells are activated by electrical 
stimulation of the PAG. Importantly, morphine applied
systemically or in the PAG suppresses on-cell activity,
increases off-cell activity and has little effect on neutral-
cell activity (Fields and Basbaum, 1999). Additionally,
morphine administered into the RVM suppresses directly
on- but not off-cell activity (Heinricher et al., 1992);
morphine-induced increase of off-cell activity is indi-
rect through a GABAergic mechanism within the RVM
(Fields and Basbaum, 1999). These findings suggest
that on and off cells of the RVM and supraspinal opioid
receptors have an important role not only in antinoci-
ception induced by administration of morphine but also
in general in descending inhibitory controls relaying
through the PAG and RVM. The pain modulatory role
of neutral cells of the RVM is less clear. It is known that
a subgroup of neutral cells are serotoninergic (Mason,
1997); serotoninergic RVM cells project to the spinal
cord (Lakos and Basbaum, 1988) and spinal serotonin
receptors contribute to descending antinociceptive
influence induced by stimulation of the RVM or PAG
(Rivot et al., 1984; Aimone et al., 1987). Although these
findings indicate a significant pain modulatory role for
a serotoninergic subpopulation of neutral cells, noxious
stimulation or morphine produce little or no effect on
neutral-cell discharge as expected if their discharge rate
was critical for descending inhibitory controls (Heinricher
et al., 1992). Serotoninergic neutral cells possibly con-
tribute to spinal antinociceptive action by modulating
the effects induced by on and off cells. Interestingly,
pain-modulatory effect descending from the RVM is
biphasic as indicated by the finding that stimulation of the
RVM at sub-antinociceptive intensities enhances spinal
nociception (Zhuo and Gebhart, 1990; Gebhart, 2004).

The PAG–RVM System: Circuitry at the 
Spinal Cord Level
The dorsolateral funiculus is the main descending path-
way mediating antinociceptive effects from the RVM to
the spinal dorsal horn (Basbaum et al., 1976). A number
of neurochemical and neurophysiological mechanisms
contribute to spinal antinociceptive effect induced by
stimulation of the PAG or RVM: (i) among the pain-
inhibitory neurotransmitters are monoamines, amino acids
and neuropeptides (Jensen and Yaksh, 1984); (ii) among
the neurophysiological inhibitory mechanisms at the
spinal cord level are postsynaptic inhibition of pain-relay
neurons (Giesler et al., 1981), activation of inhibitory
interneurons (Millar and Williams, 1989) and presynaptic
inhibition of afferent barrage from the primary afferent
nociceptive nerve fibers. However, lack of a significant
effect by stimulation of the PAG and RVM on excitability
of central terminals of primary afferent nociceptive nerve
fibers suggests that presynaptic inhibition of afferent

barrage to the spinal cord may not have a major role 
in descending inhibition originating in the PAG–RVM
circuitry (Morton et al., 1997; in contrast, Martin et al.,
1979). It should also be noted that the activation of the
PAG–RVM–spinal cord pathway might recruit other
parallel descending pain inhibitory pathways. Namely,
the association of the antinociception induced by PAG
stimulation with a spinal release of noradrenaline (Cui
et al., 1999) and its attenuation by a spinally adminis-
tered α2-adrenoceptor antagonist (Peng et al., 1996) may
be explained by recruitment of a spinally projecting
noradrenergic cell groups of the brainstem, such as A7
or the locus coeruleus (Sim and Joseph, 1992; Bajic and
Proudfit, 1999).

The PAG–RVM system: convergence from 
other pain modulatory areas
A large number of brainstem, diencephalic (thalamic
and hypothalamic) and telencephalic (cortical and sub-
cortical) structures suppress pain through descending
projections to the spinal dorsal horn, and in most cases
their descending pain suppressive effect is relayed
through the PAG and the RVM [e.g. the ventrolateral
orbital cortex (Dong et al., 1999), prefrontal cortex
(Hardy, 1986), amygdala (Helmstetter et al., 1998),
parafascicular thalamic nucleus (Sakata et al., 1989) and
lateral hypothalamus (Aimone and Gebhart, 1988)].
These findings suggest that the RVM is the final relay
station for descending antinociceptive action from most
structures of the forebrain (Gebhart, 2004; Fig. 13.2).

Experimental and clinical studies show interactions
between pain and emotions (Price, 2000). Amygdala
plays an important role in emotional behavior.
Nociceptive inputs through the spino–parabrachio–amyg-
dala pathway probably contribute to pain-induced
changes in affective behavior (Bernard et al., 1996),
and the projections of the amygdala to the PAG–RVM
circuitry may be involved in mediating the influence of
emotions on pain (Helmstetter et al., 1998). Stressful
situations like physical exercise, exposure to extreme
temperatures, fight, fear and pain may induce a
decrease in pain sensitivity (Amit and Galina, 1986;
Terman and Bonica, 2001), a phenomenon called stress-
induced analgesia. The hypothalamus is involved in
stress-induced analgesia, since a lesion of the arcuate
nucleus (Millan et al., 1980) or paraventricular nucleus
(Truesdell and Bodnar, 1987) attenuates stress-induced
analgesia, and electrical stimulation of the hypothalamus
results in spinal antinociception (e.g. Bach and Yaksh,
1995). Stress activates the hypothalamo pituitary–adrenal
axis by releasing the corticotrophin releasing factor in the
hypothalamus (Lariviere and Melzack, 2000) and this
may result in modulation of pain due to endocrine mech-
anisms (Blackburn-Munro and Blackburn-Munro, 2003).
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Alternatively or in parallel, stress may induce spinal
antinociception through axonal projections from the
hypothalamus to the PAG–RVM circuitry (Sim and
Joseph, 1991). Stress-induced analgesia may be based
on opioid or non-opioid mechanisms depending on sev-
eral factors such as severity of the stress (Mogil et al.,
1996) and the body region to which stress-inducing
stimulation is applied (Watkins and Mayer, 1982).
Lesions of the dorsolateral funiculus attenuate both
opioid and non-opioid forms of stress-induced analge-
sia indicating that descending medullo-spinal pathways
have a significant role in mediating the spinal antinoci-
ceptive action induced by stress (Watkins and Mayer,
1982; Lewis et al., 1983).

(b) Descending Noradrenergic Pain 
Inhibitory Pathways

Noradrenergic Pain Modulation: Noradrenergic 
Brainstem Nuclei
Noradrenaline is known to have a significant antinocicep-
tive influence through action on spinal α2-adrenoceptors
(Yaksh, 1985). The source of spinal noradrenaline is
descending axons originating in the noradrenergic 
neuronal cell groups of the brainstem (Jones, 1991;
Proudfit, 1988), particularly the locus coeruleus (or A6)
but also noradrenergic cell groups A5 and A7 (Kwiat
and Basbaum, 1992; Fig. 13.3). The locus coeruleus,
A5 and A7 cell groups are connected with other pain-
control centers and all of them receive projections from

the PAG (Bajic and Proudfit, 1999). Additionally, the
locus coeruleus receives projections from the central
nucleus of the amygdala, preoptic area, paraventricular
nucleus of the hypothalamus and lateral hypothalamus
(Cedarbaum and Aghajanian, 1978). Of the nuclei 
projecting to noradrenergic cell groups of the brain-
stem, the parabrachial nucleus is noteworthy since it is
an important relay for nociceptive signals from the
superficial laminas of the spinal cord to the amygdala
and hypothalamus, structures involved in control of
emotional responses and stress, respectively (Bernard
et al., 1996; Gauriau and Bernard, 2002). Due to their
anatomical connections to multiple forebrain areas, the
descending noradrenergic systems provide a putative
subcortical relay for descending antinociceptive actions
from some forebrain areas (Jasmin et al., 2004).
Moreover, the descending analgesic influence triggered
by PAG stimulation is partially mediated by recruitment
of the descending noradrenergic system (Peng et al.,
1996), through projections of the PAG and RVM to nora-
drenergic cell groups of the brainstem (Morton et al.,
1984; Sim and Joseph, 1992; Bajic and Proudfit, 1999).

Noradrenergic Pain Modulation: Spinal Cord Level
Electrical stimulation of the noradrenergic locus
coeruleus/subcoeruleus, A5 and A7 cell groups produces
spinal antinociceptive effects (Burnett and Gebhart, 1991;
Yeomans et al., 1992; West et al., 1993; Tsuruoka et al.,
2004). Interestingly, activation of α2-adrenoceptors
within the noradrenergic cell groups of the brainstem
has not produced marked antinociceptive effects
(Pertovaara et al., 1994; Mansikka and Pertovaara,
1995; however, Guo et al., 1996), but even hyperalgesia
in some experimental conditions (Ossipov and Gebhart,
1986; Pertovaara et al., 1994). These findings suggest
that spinal and supraspinal α2-adrenoceptors may have
opposite effects on pain sensitivity.  Ventrolateral path-
ways have a major role in mediating descending
antinociceptive influences from the noradrenergic cell
groups. This is shown by the finding that the antinoci-
ceptive effect induced by locus coeruleus stimulation is
blocked by a lesion of the ventrolateral part of the spinal
cord but not the dorsolateral funiculus (Mokha et al.,
1986; Tsuruoka et al., 2004). At the spinal cord level,
several pain inhibitory mechanisms may be activated
by noradrenaline released from descending pathways.
First, direct catecholaminergic innervation of the cell
bodies of spinothalamic tracts neurons provides a struc-
tural basis for postsynaptic noradenergic inhibition 
of spinal pain-relay neurons (Westlund et al., 1990).
Second, in the superficial laminas of the spinal dorsal
horn noradrenaline activates a population of small, low-
threshold units that are likely to be inhibitory interneurons
(Millar and Williams, 1989). Noradrenergic activation 
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Fig. 13.3. Noradrenergic descending pain inhibitory pathways
originating in the catecholaminergic nuclei of the brainstem.

LC = locus coeruleus (A6).
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of inhibitory interneurons involves enhancement of
GABAergic and glycinergic inhibitory synaptic trans-
mission in the substantia gelatinosa (Baba et al., 2000).
Third, noradrenaline inhibits transmission of nocicep-
tive signals in the spinal cord due to action on presynap-
tic α2-adrenoceptors (particularly adrenoceptor subtype
α2A), as shown by the following findings: the primary
location of α2A-adrenoceptors in the spinal cord is the
central terminals of nociceptive primary afferents
(Stone et al., 1998), release of neurotransmitters from
central terminals of nociceptive primary afferent nerve
fibers is attenuated by noradrenaline (Kuraishi et al.,
1985), noradrenaline induces α2-adrenoceptor antagonist-
reversible attenuation of responses of spinal dorsal horn
neurons to dorsal root stimulation but not to direct
administration of excitatory amino acids (Kawasaki et al.,
2003) and exogenous α2-adrenoceptor agonists loose
their antinociceptive potency in animals with a knockout
of the α2A-adrenoceptors (e.g. Stone et al., 1997). Another
receptor subtype, α2C-adrenoceptor, is also found in the
spinal dorsal horn, although its distribution is very 
different from that of α2A-adrenoceptors. Namely, 
α2C-adrenoceptors are located on axon terminals of
spinal interneurons that are likely to be excitatory ones
and that innervate presumably nociceptive neurons 
with ascending projections to the medulla (Olave and
Maxwell, 2003). These anatomical findings support the
hypothesis that spinal α2C-adrenoceptors have pain- 
suppressive effects by inhibiting presynaptically prono-
ciceptive spinal interneurons. Axon terminals with spinal
α2C- and α2A-adrenoceptors receive only sparse, if any,
direct contacts from descending noradrenergic pathways.
Therefore, volume transmission is likely to play a
major role in the spread of noradrenaline from descend-
ing axon terminals to the site of α2-adrenergic action
within the spinal cord.

Noradrenergic Pain Modulation: Physiological Role
The descending noradrenergic systems have a low tonic
activity, since α2-adrenoceptor antagonists (Pertovaara,
1993) or knockouts of various subtypes of α2-adreno-
ceptors (Malmberg et al., 2001) have not consistently
produced increases in pain-related responses to brief
noxious stimuli in animals without sustained pain. 
A knockout of the dopamine, β-hydroxylase gene led to
absence of noradrenaline and it had only minor and
submodality selective effects on pain sensitivity
(Jasmin et al., 2002) supporting the concept that nor-
adrenergic systems have little influence on baseline pain
sensitivity. During persistent pain, however, noradrener-
gic systems have a more important role. This is shown by
the findings that a lesion of the noradrenergic locus
coeruleus (Tsuruoka and Willis, 1996) or a knockout of
α2A-adrenoceptors (Mansikka et al., 2004) significantly

increased pain-related reflex responses in animals with
inflammatory pain, indicating an involvement of the
noradrenergic feedback inhibition in the regulation of
sustained pain. 

(c) Other Brain Areas Involved in Descending 
Inhibition of Pain

In addition to the PAG–RVM–dorsal horn circuitry and
the noradrenergic nuclei of the brainstem, a large number
of other brain areas from the telencephalon to the
caudal medulla have been shown to inhibit pain-related
responses following electrical or chemical stimulation
(Millan, 2002). For many of these structures the more
exact role in pain regulation still needs to be studied.
Moreover, it should be noted that the PAG–RVM–spinal
dorsal horn circuitry and the descending noradrenergic
systems also provide final common pathways for most
of the other pain inhibitory areas some of which have
already been dealt with in previous chapters (see above).

In the brainstem, antinociceptive actions were trig-
gered from the ventral, lateral and gigantocellular retic-
ular nuclei, the nucleus tractus solitarius (Aicher and
Randich, 1990), caudal ventrolateral medulla (Tavares
and Lima, 2002), cuneiform nucleus (Zemlan and
Behbehani, 1988), deep mesencephalic nucleus (Wang
et al., 1992), deep layers of the superior colliculus
(Coimbra and Brandao, 1997), anterior pretectal
nucleus (Rees and Roberts, 1993) and posterior hypo-
thalamic area (Manning and Franklin, 1998).  All of
these areas receive afferents from (Yezierski, 1988;
Lima et al, 1991; Iwata et al., 1998) and project directly
to (Newman, 1985; Tavares and Lima, 1994; Tracey,
2004) the spinal cord. Putative pain-inhibiting areas
projecting to the spinal cord but not receiving spinal
afferents include the pedunculopontine tegmental
nucleus (Iwamoto, 1991), somatosensory (Yezierski 
et al., 1983; Kuroda et al, 2001) and motor cortex (Brown
and Barbaro, 2003). Some of the putative antinociceptive
areas, like the ventral tegmental nucleus (Sotres-Bayon
et al., 2001), receive spinal afferents but do not project
to the spinal dorsal horn. Among the brain areas that
appear to have a role in descending pain regulation but
which do not have direct connections to or from the
spinal cord are the basal ganglia (Chudler and Dong,
1995), particularly the striatum (Hagelberg et al., 2004)
and substantia nigra (Baumeister, 1991) and the nucleus
accumbens (Gear and Levine, 1995). The cerebellum,
an important part of motor control circuitry, appears to
have a role also in descending pain regulation, since
stimulation of the fastigial nucleus suppressed spinal
responses evoked by nociceptive visceral stimulation
(Saab and Willis, 2002). Interestingly, covariance
analysis of human brain imaging data indicate that
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attention-related modulation of pain may be based on
“top down” modulation of nociception by descending
brainstem–spinal pathways from the dorsolateral pre-
frontal cortex (Lorenz et al., 2003), and activation of
the PAG–RVM circuitry by descending influence from
the rostral anterior cingular cortex may have a major
contribution to placebo- as well as opioid-induced anal-
gesia (Petrovic et al., 2002).

13.3. Summary

The magnitude of the ascending nociceptive signal and
the consequent pain sensation can be greatly influenced
by descending pathways originating in the brainstem
and terminating in the spinal dorsal horn. The best-
known descending circuitries involved in pain inhibi-
tion are the PAG–RVM–spinal cord pathway and the
descending noradrenergic pathways. Descending pain-
regulatory pathways are subject to “bottom up” (feedback
inhibition) as well as “top down” control (e.g. cognitive
and emotional regulation). The descending inhibitory
effect is mediated by a number of neurotransmitters
such as monoamines, peptides and amino acids, and by
several different types of neurophysiological mechanisms
acting on central terminals of primary afferent nocicep-
tive nerve fibers, spinal interneurons and spinal projection
neurons. In conditions that cause persistent pain, such
as inflammation or injury, the function of descending
pathways may change considerably. These changes
may enhance the efficacy of descending inhibition.
Alternatively, depending on a number of factors, injury
and inflammation may result in a decrease of descending
inhibition or an increase of descending facilitation of
pain. Moreover, disorders of neurotransmitter systems
per se potentially lead to hypofunction of descending
pain-inhibition and consequently, to chronic pain. The
function of descending pain-inhibitory systems may be
enhanced by some centrally acting drugs (e.g. drugs
acting on monoaminergic system or opioid receptors),
direct stimulation of brain areas involved in descend-
ing inhibitory controls, indirect activation of descend-
ing pathways with peripheral stimulation (“bottom up”
activation) or using behavioral manipulations (“top down”
activation). Further understanding of the pain-inhibitory
systems may provide new pharmacological, physical and
behavioral methods for treating chronic pain. Finally, it
should be noted that many of the neural structures
involved in descending pain inhibition also have other
functions such as control of vigilance, motor behavior,
circulation and respiration.

Abbreviations

DNIC = diffuse noxious inhibitory controls; PAG = peri-
aqueductal gray; RVM = rostral ventromedial medulla
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