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Abstract 

 

A two dimensional (r,z) time-dependent fluid model was developed and used to describe a DC planar magnetron 

discharge with cylindrical symmetry. The transport description of the charged species uses the corresponding first 

three moments of Boltzmann equation: continuity, momentum transfer and mean energy transfer (the latter one only 

for electrons), coupled with Poisson equation. An original way is proposed to treat the transport equations. Electron 

and ion momentum transport equations are reduced to the classical drift-diffusion expression of the fluxes since 

the presence of the magnetic field is introduced as an additional part in the electron flux, while for ions an effective 

electric field was considered. Thus, both continuity and mean energy transfer equations are solved in a classical 

manner. Numerical simulations were performed considering Argon as buffer gas, with a neutral pressure varying 

between 5 and 30 mtorr, a gas temperature from 300 to 350 K and cathode voltages lying from -200 up to -

600 V. Results obtained for densities of the charged particle, fluxes and plasma potential are in good agreement 

with previous works. 

 

Keywords: Magnetron discharge, Numerical modelling, Fluid model 
 
 
 
Introduction 

 

Magnetron discharge stands out from other low pressure electrical discharges through the presence of a strongly 

non-homogenous magnetic field in front of the cathode (target). This field is created by a pair of magnets co-

axially disposed under the cathode plate (fig. 1). As a consequence of the geometric arrangement a balanced or 

unbalanced structure of field lines emerges [1]. A strong axial electric field, Ez, is present in the magnetic field 

region due to the cathode fall. The simultaneous action of these two fields leads to a high density confined 

plasma, permitting thus a low voltage operating discharge (hundreds volts) at very low pressure, typically about 

10 mTorr. Larmour radius for ions is of the order of centimeters while, the thickness of the cathode fall does not 

exceed a few millimeters. Thus, the ions might be considered as being not affected by the magnetic field but 

accelerated directly to the cathode where by impact on the surface they are able to generate secondary 

electrons and to sputter particles which can typically be used for surface deposition of a wafer placed in front of 

the target.  
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Magnetron discharges were and still are extensively studied experimentally, analytically or numerically for 

better understanding of both physical and chemical processes involved in their multiple applications. Working in 

pure rare gases [2-5,9] or reactive mixtures [5-8], in DC [7-9], RF [5,6] or pulsed regimes [2-4], magnetron 

discharges are mainly and widely used as sputter/deposition sources. 

 

During the last years, many numerical models were proposed to properly describe these discharges and to speed 

up the computing time. Particle-in-cell/Monte Carlo collision (PIC-MCC) is a very common technique applied for 

2D [10-12] or 3D [13] simulations. It is easy to implement, without a priori physical approximations except the 

classical nature of particle trajectories, being very useful for non-equilibrium processes, but it requires a very 

large computational time. Hybrid model combines particle and continuum models, achieving more reasonable 

computing times. In some works [1,14] fast electrons, such as secondary emitted electrons at the cathode 

which are accelerated in the cathode fall (mainly giving the ionisation rate), are treated by Monte Carlo model 

while for slow electrons and ions, which are the dominant particle population, the fluid equations are used. 

Other authors [15] combine a particle simulation of neutral atoms and ions with a fluid description of electrons. 

This time such a model is applied for stationary plasma thrusters (SPT), devices related with magnetron 

discharges through the presence of a magnetic field. In the kinetic model [16,17] a microscopic description of the 

plasma is carried out. The distribution functions of the particles are calculated by solving Boltzmann equation and 

macroscopic plasma parameters can be obtained by integrating over distribution functions. The kinetic model is 

often combined with a collisional radiative one [18,19], the latter requiring to solve rate balance equations for 

excited species. 

 

Despite numerous paper devoted to the modelling of this type of discharge, those using the fluid approach are 

very rare and rather one-dimensional treatment of fluid equations is mentioned [20,21]. This is manly due to 

the difficulty to treat the effect of the inhomogeneous magnetic field on the electrons. The problem is typically 

3D but it can be spatially reduced to 2D in the particular case of cylindrical symmetry. For numerical simulations 

fluid model has an advantage upon the computing time but it looses its validity with decreasing of the gas 

pressure when the mean free path of charged particles strongly exceeds the characteristic length of the 

discharge. Although magnetron discharges work at low pressures (1 to tens mtorr), the presence of the magnetic 

field reduces the effective distance covered by electrons between two collisions, which is equivalent to an 

increase of the pressure, thus fulfilling the hydrodynamic hypothesis. As an alternative point of view, the set of 

fluid equations considered in this work should be regarded as a pure macroscopic representation of the electron 

Boltzmann equation whose solution concerns mainly the calculation of the electron density and mean energy. 

Such quantity plays a crucial role in defining a spatial dependence for the electron distribution function, 

when adopting the local mean energy approximation as in this work. We must pay attention that, due to the 

large electron density the Boltzmann equation stay available to describe the electron kinetics and, 

consequently, we can suppose that is effective also for the moments of its. Even if the fluid model deals with 

mean values and macroscopic quantities, valuable information of the discharge can be provided. 

 

This paper presents an original approach of two dimensional (r,z) time-dependent fluid model used to describe 

the transport of two charged species, electrons and positive ions, in a cylindrical symmetry DC planar 



magnetron reactor. The transport of the charged species is described by the corresponding first three moments 

of Boltzmann equation: continuity, momentum transfer and mean energy transfer equation (the latter only for 

electrons), coupled with Poisson equation. Due to the strong coupling of the fluid equations in presence of the 

magnetic field, some assumptions are required in order to simplify the numerical procedure. Thus, all transport 

equations are treated in the same manner, using classical drift-diffusion expression for fluxes. This condition is 

achieved by introducing the influence of the magnetic field as an additional part in the electron flux and 

considering an effective electric field for ions. Boundary conditions are settled for the fluxes of the charged 

particles and for electric potential at the walls. 

 

Computations were performed for a planar magnetron device, schematically drawn in fig. 2. The Argon was 

chosen as working gas. Due to the cylindrical symmetry of the system only a bi-dimensional picture is plotted. 

The cathode is a metallic disc with rcath = 16.5 mm radius, grounded metallic walls playing the role of the anode 

(Rmax = Zmax= 26.95 mm). Neutral gas pressure varies between 5 and 30 mtorr, while its temperature lies between 

300 and 350 K. The applied DC voltage on the cathode ranges from -200 to -600 V. Magnetic field structure is 

unbalanced, as shown in fig. 2. For a convenient visualization, the length of the plotted vectors is proportional to 

the logarithm of magnetic field strength, ln B, measured and numerically fitted as presented in [22]. In the 

region where the field lines are parallel to the cathode (r ≈ 9.5 mm), magnetic field strength decreases from about 

750 Gauss at z = 0 to 20 Gauss at Z ≈15 mm. Several plasma parameters such as plasma potential, densities of 

the charged particles and ion flux at the cathode yield from the model and they are discussed as representative 

results. 

 

Model equations 

 

A two-component fluid model was considered in order to describe the magnetron discharge. Basic fluid equations 

were written for electrons (1a-1c) and ions (1a,1b). They consist on the first three moments of Boltzmann 

equation, continuity (1a), momentum transfer (1b) and mean energy transfer (1c): 

 

 

 

 

where s is the type of particle (s = e - for electron and i- for ion, respectively), ns - the density, ms - the mass, vs - 

the velocity of the fluid particle, fiz - the ionisation frequency by electron-neutral impact, fms - the total 

momentum transfer frequency for s species - neutral collisions, E
r

- the electric field intensity, B
r

 - the 

magnetic field strength, sP
vr

 - the pressure tensor, qs - the particle charge, t - the time, εS - the mean energy (in 

eV), θS - the energy loss rate by collisions with s -neutral; SSS vn rr
=Γ  is the flux of particles and 

SSSS vn rεε =Γ
r

- the energy flux. Considering that both electrons and ions are created only by electron-neutral 

ionization collisions, the source term in the continuity equation is S = fizne. Magnetic field, B
r

, considered in the 



calculations takes into account only the stationary magnetic field produced by the magnets behind the cathode, 

excluding the one generated by movement of the charged species. In particular, the azimuthal drift current in the 

plasma ring in front of the target can be in the order of few Amperes [23]. The magnetic field generated by such 

currents can be estimated of about few percents of the static field when the latter one has hundreds Gauss 

strength. The electric field and plasma potential are given by Poisson equation 

 

 

All equations are developed in cylindrical coordinates (r, φ, z). Due to axial symmetry of the magnetron, 

the electric and magnetic fields have no azimuthal components, but the presence of the BE
rr

×  drift generates a 

flux component, , under φ direction. However, disregarding the possible drift current instabilities, this ϕsΓ

component can be expressed as a function of srΓ and szΓ , permitting thus to reduce the problem to a bi-

dimensional one, (r,z). 

 
Electron transport treatment 

 

Starting from the momentum transfer equation (1b), the electron flux can be expressed in the form 

                                                                  10
eee Γ+Γ=Γ
rrr

                                                    (4) 

with 0
eΓ
r

the classical drift-diffusion flux and 1
eΓ
r

 a contribution of the magnetic field. To obtain (4) some 

simplifying assumptions were made in equation ( lb):  i )  the inert ial  term 

( )[ ]eeeee vvtvnm rrr
∇⋅+∂∂  was neglected due to small mass of the electron; ii) the ionisation frequency fiz 

was also neglected with respect to the total electron-neutral momentum transfer frequency, fme iii) considering 

isotropic electron distribution function, the pressure tensor becomes a scalar, Pe = nekTe. Thus, the momentum 

transfer equation can be written as 

 

where   ( )meee fme=µ c   and   ( )meeee fmkTD =    are   electron   mobility   and   diffusion   coefficient, 

respectively. The two electron flux components are then 

  

and 

 

  

where  eee mBe
rr

=Ω is related to electron cyclotron giro-frequency. Due to the cylindrical symmetry  0
eΓ
r

 

has only two components, 0
erΓ
r

and 0
ezΓ
r

, while 1
eΓ
r

  has also the azimuthal one induced by the magnetic field 

 
 



The azimuthal flux component can be deduced from the combination of the eqs. (4) and (7a) as a ϕsΓ

function of  and , erΓ ezΓ

 

The reduced electron transport parameters, DeN and µeN, depend on electron energy distribution function 

(EEDF), f( rr ,u), where u = mev2/2e is the electron kinetic energy in eV. Under the classical two terms 

approximation of EEDF they can be written [24] as 

 

 

 
 

where σme  is the total electron-neutral momentum transfer collision cross section, N is the gas density and   

fo( rr ,u)   is the  isotropic part of f( rr ,u),  satisfying the normalization  condition 

 

 

 

The energy flux is written in the same manner as the particle flux, with corresponding reduced transport 

coefficients, DεeN and µεeN [24] 

 

 

 
 

The spatial map of electron transport parameters can be obtained adopting the local mean energy approximation 

[24], which consists in introducing the spatial dependence of EEDF via the electron 

mean energy profile, εe( rr ), The profile εe( rr ) of the electron mean energy is obtained as solution of electron 

mean energy transfer equation (lc). Due to the high density (n0 ~ 1010 cm-3) of the magnetron plasma a 

maxwellian EEDF was considered instead of calculating the solution of electron Boltzman equation, 

 

 

 

In the equation (lc), electron energy loss rate in elastic and inelastic (excitation, ionisation) collisions is 

calculated according to the same reference [24] 

 
where Mn is the mass neutral atoms, is elastic cross section of the electron-neutral collision, Wel

ne−σ k the 

energetic threshold for the k - inelastic process characterized by fke collision frequency. All collision frequencies 



are calculated with 

 
using collision cross sections given by [25]. Elastic, excitation and ionization collisions with ground state neutrals 

are considered. 

 

Ion transport treatment 

 

In the ion momentum transfer equation, the inertial term cannot be neglected due to the ion heavier mass. 

Magnetic field influence was not considered because ion cyclotron giro-radius is larger than the linear 

dimension of the examined region. In front of the cathode, where the magnetic field is important, ion Larmour 

radius is higher than 7 cm, while the linear dimension of the examined region is 2.7 cm. Under such 

assumptions, ion momentum transfer equation becomes 

 
where the ion pressure was also considered as scalar, Pi= n:kTi, by the reason of isotropic ion distribution 

function assumed. For convenience the ion flux is written in a drift-diffusion form, by introducing an effective 

electric field, effE
r

, [26] as that 

 
Identifying these two expressions, (12) and (13), for the ion flux and performing some simple calculations [27], 

an equation for the space-time evolution of  effE
r

is yielded 

 
Argon ions reduced diffusion coefficient is deduced from Einstein relation 

 

where ion reduced mobility depends on the reduced effective electric field, µiN = f( effE
r

/N). The data adopted 

for this dependence are given in [28] for E/N in the range of 0 - 2 x 103 Td and were extrapolated up to 105 Td 

according to [29]. Argon ions were supposed to be thermalised at gas temperature, Ti =TAr. The ion momentum 

transfer frequency, fmi, was calculated through the expression for classical mobility 

 
 

Boundary conditions 

 

Fluid equations as well as Poisson equation can be solved only if boundary conditions are specified. For charged 

particles, these conditions are imposed upon fluxes. All parallel fluxes with respect to 



any surface are zero, , s = e, i. In the absence of the magnetic field, the normal electron flux to the 0|| =Γs

anode surface must verify eee vn2
10 =Γ ⊥  [24], where <ve> is the mean electron velocity obtained by 

integrating over EEDF. At the cathode, in the same conditions, normal flux has two components: one is coming 

from the discharge, ee vn2
1 , while the other one is due to the secondary electrons emitted by ion impact, 

⊥Γ− iiγ , where iγ , is the coefficient for secondary electron emission. Due to the very low electron density in the 

cathode fall, being 3 to 4 orders of magnitude lower than the one in the anode sheath, the inner flux is negligible 

with respect of the flux of the secondary electron emitted, permitting thus to write . Taking into ⊥⊥ Γ−=Γ iie γ0

account the magnetic field, total normal flux is ⊥⊥⊥ Γ+Γ=Γ 10
eee

rrr
, with ⊥Γ1

e

r
given by (7a) and zero.  ||

eΓ

Because the secondary emission coefficient has a strong influence on the properties of the magnetron 

discharge, some remarks have to be done. Due to the presence of a strong magnetic field close to the cathode 

surface, the secondary electron trajectory is turned around the field lines, enabling electrons to interact with the 

target, which reflects or recaptures them. The last process diminishes the effective value of the coefficient for 

total secondary electron emission without magnetic field, iγ , so that the magnetron discharge "sees" only a 

fraction of it, )1( pinet −= γγ  [30]. As the probability of the recapture, p, depends on both orientation and 

magnitude of the magnetic field strength on the cathode surface, from fig. 2 it can be concluded that netγ  

depends on the radial position, ))(1()( rpr inet −= γγ . Also, it must be mentioned that secondary electrons can 

collide with gas neutrals or they can interact with the cathode. Once a collision takes place, the electron can no 

longer return to the surface. Thus, the probability of the recapture depends of the electrons mean free path and, 

implicitly, of the gas pressure [30]. Even if netγ depends of the position, according to [30] a constant coefficient 

dγ can be calculated for the whole cathode surface, as being the effective coefficient "seen" by the discharge. In 

our case it is not necessary to introduce an effective coefficient because it appears explicitly from the 

calculus, thus it can also be estimated. Assuming , the total normal electron flux at the cathode ⊥⊥ Γ−=Γ iie γ0

becomes  

 
with 

 

Expression (18) clearly shows the dependence of netγ  on the gas pressure, through fme, on the magnetic field, 

by Ωe,cr and implicitly on the position. 

According to [31], below 500 eV, iγ  can be considered independent of the ion energy for clean metal 

surfaces, with typical values in the range of 0.05—0.1. For the Ar-Cu couple, ref. [32] reports a mean value for 

iγ , at about 0.01 versus reduced electric field, E/p, in the range of hundreds of Vcm-1torr -1. In this paper it was 



chosen for iγ an intermediate value between the two references, iγ = 0.02. The boundary conditions for the 

equivalent flux are available for electron energy transport by changing <ve> to <εe ve > and taking a mean 

energy, ε0= 1 eV, for secondary electrons emitted at the cathode surface, even if in the literature are given energy 

values between 2-6 eV [33]. For all surfaces, normal ion flux is given by, ⊥⊥ +=Γ effiithiii Envn δµ4
1  where 

vthi is ion thermal velocity; δ=1 if is directed to the surface and δ=0 otherwise. For Poisson equation, ⊥
effE

the boundary conditions include the fact that the anode is grounded (Vanode = 0) and that a negative voltage, 

Vcathode, is applied to the cathode. For symmetry reasons at the reactor axis ∂V/∂r = 0 and for particle density 

∂ns/∂r = 0, s= e,i. 

 

Numerical solution 

 

As was already mentioned above, due to cylindrical symmetry of the magnetron, a bi-dimensional (r,z) treatment 

is complete for a proper description of the discharge. Even if an electronic azimuthal flux exists, it can be 

expressed in (r,z) co-ordinates system as shown in eq. (7b). For the charged particles, continuity type equations, 

 

 

 

have to be solved. The transport equation for electron energy has the same form, by changing particle density 

with electron mean energy density and correctly expressing the source term Sε. In the equations (19) the fluxes 

of the charged species must be introduced in order to obtain the particle densities. If the expression of the 

global flux for electrons (5) and ions (12) are used, it will result a complicated system to be solved. Two 

conditions are imposed to simplify the problem: i) the fluxes are expressed under the forms (4) and (13) and ii) 

only the drift-diffusion component of the flux is kept in the left side terms of the equations (19). The last 

condition does not affect ions equation because in the expression (13) the flux has already a classical drift-

diffusion form. Under these assumptions, equations (19) are developed as 

 

 

 

 

 

which gives a semi-implicit temporal discretization scheme, where ∆t is the time step. The spatial discretization 

method is based on the finite difference scheme. The equations (20a,b) are multiplied by rdrdz and are 

integrated over a grid cell, permitting thus to avoid the singularity problem of the divergence for r = 0. The 

drift-diffusion fluxes for electrons and ions are discretized using the Scharfetter-Gummel exponential scheme 

[34]. The equations (20a,b) can then be solved to obtain particle densities and the drift-diffusion fluxes. After 

that, ⊥Γ1
e

r
is deduced from eq. (7a) and the total electron flux is obtained. Plasma potential is calculated from the 

Poisson equation for every time step. All equations are numerically solved using a band matrix method [35], 

including the boundary conditions. 

 



The time step value is constrained by the convergence of the numerical methods used to solve the system of 

equations mentioned above. First of all, Courant-Friedrichs-Lewy (CFL) stability criterion [36,37] must be 

accomplished. This condition imposes to a particle to cover at the most dimension of one cell per time step. 

Also, for the stability of the space charge and electric field, the time step must be upper limited by Maxwell 

relaxation time [37]. 

 

Results 

 

Simulation results in Argon are presented here for a pressure p = 20 mtorr, neutral temperature TAr = 350 K and 

a polarization of the cathode of -550 V. Spatial distribution of the potential in the reactor is plotted in fig. 3. 

In the largest part of the discharge, plasma potential is slowly positive. The cathode fall thickness is about 5 

mm on the magnetron axis while in the highest confinement zone it does not exceed 3.8 mm. This zone 

corresponds to the region where vectors E
r

and B
r

 are perpendicular to each other. As the electric field is 

axially dominant in the cathode fall, the magnetic field must be radial and, according to fig. 2, this occurs in 

front of the cathode at about 9.5 mm radius. Confinement zone is visible in fig. 3, being characterized by a higher 

local potential but more evident is fig. 4 where electron and ion densities are yielded. Representation is bi-

dimensional (r,z), but rotating the picture around z-axis, according to the cylindrical symmetry, it is clearly 

shown that the negative glow in magnetron is a torus. Maximum density both for electrons and ions reaches 2.5 x 

1010 cm -3 at r = 9.5 mm, z = 5 mm. The electron density decreases significantly in the anode sheath and cathode fall 

with respect of the volume, the white zone in fig. 4a corresponding to a density smaller than 2.4 x 108 cm -3. 

Plasma potential and charged particle densities are in very good shape agreement with previous results from 

hybrid model [1,14], the latter ones having the same spatial profile above-mentioned. Comparable results are 

given also by PIC simulation [11-13], even if they were performed for a different geometry. In fig. 5 is given the 

axial ion particle flux in the cathode fall. While ion energy at the target does not depend of the radial position r, 

particle flux is a measure of the sputtering profile of the cathode. It must be mentioned that unlike figs. 2-4 this 

picture is plotted in a reduced region in front of the cathode, rmax= 16.5 mm, zmax = 10 mm, there where ion flux is 

really interesting. Positive/negative values of the ion flux denote the orientation from/toward the cathode of the 

flux vector. Plotting data were not limited to the cathode fall (z<5 mm) in order to put in evidence also the 

positive diffusive flux due to the ion density gradient. 

 

Concluding remarks 

 

An original treatment of fluid equations is proposed in this paper. Separating the electron flux in two parts and 

treating the influence of the magnetic field as an additional term in the flux expression seems to be a valid 

and convenient approach. Calculated results are in good shape agreement with previous one obtained by PIC 

or hybrid schemes. Even more, if this approach works for a term containing a vector product, Bve

rr
× , that 

creates a strong coupling between the flux components, erΓ , ϕeΓ , ezΓ , it is expected so much the more to 

work for the other neglected terms in eq. (1b). Thus, we can consider the electron inertial term, pressure 

anisotropy or the contribution of the finite fraction fiz/fme to the total electron flux. Each term can be introduced 



following the same procedure presented in this paper, the advantage being an easy way for linearizing and 

solving eq. (la,c) by keeping in the left side term only a drift-diffusive flux form. Such approaches, which 

solve time-dependent fluid equations, can be used for RF magnetron discharges without modifications 

except for the applied potential at the cathode. 
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