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Abstract

Necessary and sufficient conditions are given in order that a von
Neumann regular matrix over an arbitrary ring and some factorizations
are Moore-Penrose invertible.

1 Introduction

Consider the set M (C) of finite matrices over the field of complex numbers
C, and the matrix involution

A= (ay) = A% = (@)

known as the hermitian conjugate of a matrix . Given an m xn matrix A over
C and an n x m matrix X over C, let Pr,,x and Pr,4 denote respectively
the orthogonal projection on the subspaces ImX and ImA. In 1920, E. H.
Moore, see [13], defined a ”general reciprocal”, which is the unique solution
of

AX = Prpa, XA = Prpx.

Apparently unawared of Moore’s work, R. Penrose introduced in 1955, see
[16], the equations

AXA=A, XAX = X, (AX)T = AX, (XA)" = XA4,

and he proved that this system of equations has a unique solution. These
two generalizations are equivalent ([5, Theorem 1.1.1]), and its solution is
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known today as the Moore-Penrose inverse Af of A with respect to the
involution *. Standard book references are [4], [5], [14], [23]. Many authors
considered Moore-Penrose invertibility over more general rings (see [2], [8],
[10], [11], [12], [15], [17], [19], [24], [25]) and even for morphisms in (additive)
categories with involutions (see [20], [21], [22], [26]). For a description of the
evolution of generalized invertibility and a complete list of references on the
subject up to 1986, the reader is referred to [3].

In 1990, R. Puystjens and D. W. Robinson characterized the existence
of the Moore-Penrose inverse in the general case by a factorization together
with the existence of two invertible elements (see [22]).

In this paper we consider the set M (R) of finite matrices over a general
ring R with unity 1. Let * be an involution on the matrices over R and let
M., (R) be the ring of square n X n matrices over R. Given an m X n matrix
A over R, A is von Neumann regular if there exists a n X m matrix A~ such
that

AATA = A

A is said to be Moore-Penrose invertible with respect to * if there exists a
(unique) n x m matrix A" such that:

AATA = A,

AtAAT = At
(AAﬂ* — AAl
(ADQ* — Afa

Also, if m = n, then the group inverse of A exists if there is a (unique) A%
such that

AATA = A,
AT AAT = A7,
AAT = A7A.

In the first theorem, we consider the Moore-Penrose inverse of a von
Neumann regular matrix 7" over R. We give necessary and sufficient condi-
tions in order T' to be Moore-Penrose invertible with respect to *, as well
as an explicit formula for its computation. The group inverse will play an
important role in the proof.



Due to the existence of important structure theorems in linear algebra
involving factorizations, some authors have recently given necessary and
sufficient conditions for such products to be Moore-Penrose invertible (see
[8], [11], [12], [18]). We give a characterization of the case PAQ, where A is
a regular matrix and P, () are invertible matrices. We derive and complete a
known result of [22] and a known result of [8] when the factorization PAQ
is such that A is regular symmetric, and A is Moore-Penrose invertible,
respectively.

Finally, we give some applications concerning factorizations, such as the
Frobenius normal form, the Schur factorization and diagonal factorizations
over von Neumann regular rings.

2 Results

Theorem 1. Let T be an m X n matriz over R. The following conditions
are equivalent:

1. T is von Neumann reqular and U = TT*TT~ +1,,—TT~ is invertible.
2. T is von Neumann reqular and V =T~TT*T+ 1, —T~T is invertible.

3. The Moore-Penrose inverse TT exists w.r.t.*.

Moreover,

Tt = (T*T) (V*V)TiT
T (UUH (T
Proof. (1< 3) Assume U = TT*TT~ + I,,, — TT™ invertible. As UT =

TT*T, then
T=U"'TT*T. (1)

Moreover, UTT* = (T'T*)* and TT* = U~ (T'T*)*. As TT* is symmet-
ric w.r.t. %, then using [22, Lemma 1.1],

(TT* = (TT*)' = U~ 'TT* (U™Y)

is also symmetric with respect to the involution *.
Consider X = T* (TT*)¥ .

(i) XTX =T*(TT*)* TT* (TT*)* = T* (TT*)* = X;



(i) (1) = (T71* (TT*)#>* = (7 (TT*)T>* — TT*(TT*)! = TX;

*

(i) (XT)* = (T* (TT*)* T) — T (TT"#T = XT;

(iv) TXT = TT*(TT**T = U~ (IT** (IT*T = U 'TT*T = T,
using (1).
Then, T is Moore-Penrose invertible, and
T = T (TT"*
= 1 [vT'Trre (Ut (2)
Conversely, admit T' Moore-Penrose invertible. Then
T~ = TT'TT™
*
— T(TTT) T
= TT*T™T~
*
- TT* (TTTTT ) T
= TT*THr*TH7-
*
- TT* (TTT) THT-
= TT*TTITHT~
= [(r77) () (r77)] [ (777 (7T
Multiplying on the right by 77—,
Tr = [(T77) (r7) (177)] |(r77) (TTiTh ) (17| (3)
Futhermore,
T~ = TT'TT~
- (TTT ) TT-
= T
_ ot (T*T“) T*TT-
= rThrtrrrT
[(rtrt) (r77)] [(777) (77) (T77)]



Multiplying on the left by T7—,
7 = |(r77) (0Tt (770) | [(TT7) (1T (TTT)] . (4)

So, using (3) and (4), (TT~) (T'T*) (T'T™) is invertible in the ring 7T~ M,,, (R) TT ™,
and TT*TT~ + I, — TT~ is invertible in M, (R) [11, Lemma 2].
(24 3) Assume V =T-TT*T + I, — T~ T invertible. As TV =TT*T,
then
T=TT"TV ! (5)

and
T = (V) (T*T)°.
So, the symmetric T*T is group invertible, and

Ty = (7Y = (V) 7Ty

is also symmetric.
Let X = (T*T)% T*. Then

(1) XTX = (T*T)* T*T (T*T)* T* = (T*T)* T* = X;
(i) (TX)" = (T (T*T)* T*)* = T(T*T)* T* = TX;
(i) (xXT)* = ((T*17)* T*T>* = () T*T>* — (T*T) T*T = XT;

(iv)) TXT = T(T*T)* T*T = T (T*T)* (I*T)* V! = TT*TV~! = T,
using (5).
So T is Moore-Penrose invertible with
™ = ()1
= (v v (6)
Conversely, suppose 1" is Moore-Penrose invertible. Then
T = T- (TTT) T
= T-T™r*T
- T (TT*T*TT*) T
= T rhHrirrT
Tt (0T | (17T T (17 T).

!



Multiplying on the left by T~ T,
T = [(r-T) Tt (17T | [(7T) T (17T (7)
In addition,
T = T (TTT T)

— 7T (TTT)*

= T TT*T™
T-TT* Tt
T-TT*TTITH
= [(r-r) T (177 [(TT) T

Multiplying on the right by 7T,
7T = [(T77) 7T (T7T)] | (177) TV (17T)] . (8)

So, as (7) and (8) hold, (T—T) T*T (T~T) is invertible in the ring T~-TM,, (R) T~ T,
and T-TT*T + I,, — T~ T is invertible in M,, (R).
Finally, since the invertibility of U is equivalent to the invertibility V,
with TV ~! = U~!T, then from (2) and (6), respectively,
T = (7)) (v*V)!
= T (UUY N (TTY). O

Remarks.

1. From the proof of the previous theorem, and since
TV t=U"'T,
it is clear that
T" = T (UT'TTTUTY)
T (TVITTUTY)
T ( lTV l*T*)
( 1*T*TV )
(7"
\4

I*TV )
l*T* 1T) T*



2. If T is invertible, then U = TT™ and
T = T (UUNTH (1T
= T(TT")""
which is a well known expression.

3. If T'is an m x n Moore-Penrose invertible matrix w.r.t. *, and setting
U and V as in the previous theorem, then

TT* (UU*)" ' TT*
and
T*T (V*V) ' 7T

are two symmetric idempotents elements of M,, (R) and M, (R),
respectively.

4. Tt is known that given T' € M,, (R) von Neumann regular, then 72T~ +
I, — TT~ is invertible iff T has a group inverse T# (see [19, Theorem
1]). So, if T* =T and T is regular then

37~ + 1, —TT~

is invertible iff
T~ + 1, - TT™
is invertible.
5. Finally, we note that the result is independent of the choice of T~.

That is, if U is invertible for one choice of T, then both U and V are
invertible for any choice of T~.



Theorem 2. Let A be a von Neumann reqular m X n matriz and P and Q
invertible matrices over R. The following conditions are equivalent:

1. U =[AQ (PAQ)* P)AA™ + I, — AA™ is invertible.
2.V =A A[Q(PAQ)* PA] + I, — A~ A is invertible.
3. The Moore-Penrose inverse (PAQ)! exists w.r.t. *.

In that case, if Q = UP~ ! andT = Qflff,

(PAQ)T = [(4Q)" (@) AQ| (PAQ)" (9)

— (PAQ)* [pA (') ! (PA)*} . (10)

Proof. Since P and @ are invertible and A has a von Neumann inverse A™,
Q'A~P~!is a von Neumann inverse of PAQ.

(1 < 3) Let us first consider W = PAQ (PAQ)* PAQ (PAQ)™ + I, —
PAQ (PAQ)™ , with (PAQ)” = Q" 'A~P~!. Then

W = PAQ(PAQ)"PAQQ 'A P ' 41, -PAQQ 'A P!
= PAQ(PAQ)* PAA-P ' 4 PP™' - PAA P!

and B
P'w=uUp! (11)

So, W is invertible iff U is invertible.
Now, assume U invertible. Then W is invertible and using the previous
theorem, PAQ is Moore-Penrose invertible. Moreover, and as (11) holds,

(PAQ)! = (PAQ)* WW*) ' PAQ (PAQ)*

(PAQ)
(PAQ)* P*'U*'P*PUTPT'PAQ (PAQ)®
= |(4Q)* (ﬁ*l)* P*Pﬁ*lAQ} (PAQ)”

~ ~ *\ —1
= |@er (Fr (1)) 10| (paer
Conversely, assume (PAQ)T exists. Then

PAQ (PAQ)* PAQ (PAQ)™ + I, — PAQ (PAQ)~

is invertible, for any (PAQ)~ von Neumann inverse of PAQ. In particular,
setting (PAQ)”™ = Q7 'A~P~!, W is invertible. Using (11), this implies U
is invertible.



(2 < 3) Let us first consider K = (PAQ)” PAQ (PAQ)" PAQ + 1 —
(PAQ)” PAQ, with (PAQ)” = Q" *A~P~!. Then
K = Q'A"P'PAQ(PAQ) PAQ + I, — Q 'A"P7'PAQ
Q'ATAQ (PAQ)" PAQ+Q'Q - Q1A AQ

and B
KQ'=qQ'v. (12)

So, K is invertible iff V is invertible.
Now, if V is invertible, then K is invertible and (PAQ)]L exists. Using
(12) and the previous theorem

(PAQ)! = (PAQ)" PAQ(K*K) ' (PAQ)*
= (PAQ)" [PAQQ TV 1QQ" (V1) @@ (Pay']
— (PAQ)* [PAV1Q0* (17—1)* (PA)*}

= (PAQ)* |(PA) ((Q—lff)* Q—lff)fl (PA)*] .

Finally, if (PAQ)Jr exists, then K is invertible, and using (12), V is
invertible. O
Remarks.

1. From the proof of the previous theorem, and since AVl =U 1A, it
is clear that also

(PAQ)! = (PAQ)* [Pr?—lAQ] [Pff—lAQr

[PAXN/_lQr [PAVIQ| (PAQ)Y
— (PAQ) {PAXN/‘lQ} [PAv—lQr
- [Pﬂ'*lAQ]* [Pﬁ*lAQ} (PAQ)".

2. Again, the result is independent of the choice of A™. That is, if PAQ
is Moore-Penrose invertible, then U and V' are invertible for any choice
of A7, and also if U (or V') is invertible for one choice of A~, then U

and V are invertible for any choice of A™.



3. If T'is a m x n matrix over R that has a factorization PA( such that
P and Q are unitary matrices w.r.t. * and A is regular, then (PAQ)T
exists iff AA*AA~ + I, — AA~ is invertible iff AT exists, which was a
known result (cf. [16, page 408]).

4. If T is a m x n matrix over the complex numbers, where the involution
is the hermitian conjugate, then T is unitarily equivalent to

A 0
= (00),
where A is the diagonal invertible matrix whose diagonal elements are

the non-zero singular values of T'. By the previous remark, T is always
Moore-Penrose invertible since I' is Moore-Penrose invertible, with

At 0
t—
r=(g o)

3 Derived results

Now, we derive and complete [22, Theorem 3] and [8, Theorem 2| from
Theorem 2, that is, in the case the factorization PAQ has the property that

(i) A is regular and A* = A,

(ii) A is Moore-Penrose invertible.

Theorem 3. Let A be a von Neumann reqular m X n matriz such that
A* = A and P and @ invertible matrices over R. The following conditions
are equivalent:

1. U = AQQ*AA™ + I, — AA~ and V = A"AP*PA+ 1, — A~ A are
tnvertible.

2. U = [AQ (PAQ)* P| AA™ + I,,, — AA~ is invertible.
3. V=A"A[Q(PAQ)" PA] + I, — A~ A is invertible.
4. The Moore-Penrose inverse (PAQ)' exists w.r.t. *.
In that case, besides the expressions (9) and (10), we also have

(PAQ) = Q*U'4avV—'pP*.

10



Proof. Firstly, note that 2, 3 and 4 are equivalent by Theorem 2. So, it
remains to prove that 1 and 2 are equivalent. In order to do so, we remark
that

UA = AQ (AQ)* = AU* (13)
as AQ (AQ)" is symmetric w.r.t. * and that similarly
AV = (PA)* PA=V*A. (14)
In addition,
AV = UA
= UAA AV
= UAV. (15)

Assume U and V invertible and let
X = AQ(AQ)" P*PAA~
UAVA™.
Using (15), A= U"'UAV ! and so
UTIUAVTIA™ = AA™,
As XA=UA=UAV then
UAVVTIATU + I, — AA™

(X + I — AA7) (A?—lA—ﬁ—l 1, — AA—)
= UAA U ' 41, — AA-
= I,

as AA~ commutes with U. Moreover, since X = XAA™ = U AYA/A_,

(VA0 4 Ly = AA7) (X + Ly — AAT) = AV A TT'UAVA™ + 1, — AA”
= AV 'ATAVA 41, — AA-
= I,

as A=A commutes with V. Therefore, X + I, — AA™ = U is  invertible.
Conversely, assume that U is invertible, and consequently, V is invertible.
We remark that by (15),

A U'UAV (16)

UAVV (17)

11



and as A is symmetric w.r.t. *,

A

[l
=
-

<

|
—~
<|2
N
Y 3
D
N

by (13). So, and as AA~ commutes with U,
(V) V1, —aa7) 0 = (V) V7 + Iy — A7) (044" 41, — 447)

(17*1)* V*UAA™ + Iy — AA™
I,

It is clear, by (17), that
U (AY7X7‘1 Iy — AA—) (ﬁAA— Iy — AA—> <A1717‘1 Iy — AA—)
I,.

Therefore, U is invertible. B
In order to show the invertibility of U is sufficient to V' be invertible, by
(16) and keeping in mind that A is symmetric,

A = Vrar (T
— AVDY (17—1)* ,
by (14), which implies, as A~ A commutes with V, that
V(0 (07) +1-a4) = (4 AV+1,—a7A) (4 a0" (1) +1, - A=)

A-AVD (17*1)* YT, —A A
I,

It is clear, by (16), that

(A— ((7—1)* UA+ I, — A—A) v

(A— (ﬁ—l)* UA+ I, — A—A) (A—Af/ Y1, — A—A)

A ((7—1)* DAV +1,— A~ A
I

n-

12



So, V is invertible.

Thus, all four conditions are equivalent. Finally, the expression for the
Moore-Penrose inverse of PAQ, with A symmetric w.r.t. * follows from the
expression (9) given in Theorem 2. In fact,

(PAQ)t = [(aQy (TP (TP 1)) <A@>] (PAQ)’

- :Q*A (ﬁ—l)*P*Pﬁ—IAQ] O* AP*

= [@ (T1a) PP (0-14) Q| @ ap”

- (Ij'*lA)*P*P ((7*114) 0OQ* AP* (18)

Now, U l=AV1A- U +1, - AA~, and so
U'A=AVIAU 1A
Moreover, since AP*PA = A‘A/, and thus
AP*PAV™! = A,
and since AQQ*A = [714, and thus

U 'AQQ*AP* = U 'UAP*

it follows from (18) that

(PAQ)T = o (AXA/”A*(?”AY PP (AV*A*@*A) 0QQ* AP*

= Qa(07) (a7) (V1) (4P pAV) Amapr
= Qa(07) (a) (V) (AP PAV ) A APt
= Qa(07) (a) (V) aa-apr

— QA ((7*1>* (A7) (f/*l)* AP,

Using (13) and (14),

(PAQ)T = QU tA(A7) AV-ip*
= QU AV 'P*. O

13



Theorem 4. Let A be a Moore-Penrose invertible m x n matriz and P and
Q invertible matrices over R. The following conditions are equivalent:

1.V = AQ(AQ)* + I, — AAT and U = (PA)* PA + I, — ATA are
invertible.

2. U = [AQ (PAQ)* P| AAT + I,,, — AAT is invertible.

3.V =ATA[Q (PAQ)* PA] + I, — AT A is invertible.

4. The Moore-Penrose inverse (PAQ)' exists w.r.t. *.

In that case, besides the expressions (9) and (10), we also have

(PAQ)" = (AQ)* VAU (PA)*.

Proof. 2 < 3 < 4 follows from Theorem 2.
We now prove that 1 is equivalent to 2.
(1 = 2) Let us first remark, since A* = A*AAT, that

VAAT = AQ(AQ)",
ATAU = (PA)* PA,
VAAT = AATV, (19)
ATAU = UATA. (20)

Let X = AQQ*A*P*PAA'. So,

XA = AQQ*A*A™A*P*PAATA
— (AQ(AQ)) (AAT) Al (ATA) (PA)* PA)
= VAATA™ATAU,
that is, ) )
XA=VA™U (21)
and ~ .. .. ~
UA=VA™U = AV. (22)

Recall that U is invertible iff V is invertible, using Theorem 2.
If U and V are invertible, using (19) and (21),

XAU'A VT = VArUU ATV
= VAAIV!
= AAL

14



So,
’ (X Ty - AAT) (AU*A*X"/*1 Ty - AAT) = L. (23)

Moreover, and as

AATX = XxAf

= VAFUAT
then
AUTTAVTTAATX = AUTTATV VAU AT
= AU TATAUAT
= AUT'UAT
= AAT
by (20), and

(AU*lA*V*lAAT 4l — AAT) (X 4l — AAT) — I, (24)

Using (23) and (24), the invertibility of U/ and V implies the invertibility of
U.

(2 = 1) Let us now assume U invertible. Then V is invertible and as
(22) holds, ) L
VAUV TAT = AAT

and so

Vv (AT*UIN/‘lAT I — AAT) - (AQ (AQ)* + I, — AAT) (AT*UV/—lAT I — AAT)
= Im:
which implies, as V' is symmetric, the invertibility of V. Similarly, and using

(22), as o )
AT~ AN = AT A,

then

(Afﬁ—WAT* I, — ATA> U = <ATﬁ‘1VAT* I, — ATA) ((PA)* PA+1I, - ATA)
= I,

and the symmetric U is invertible.

15



To obtain the expression of (PAQ), we first remark that if U and V
are invertible then, since VA = AQ (AQ)" A and AU = A(PA)" PA,

A = V1AQQ*A*A (25)
AA*P*PAUL. (26)
Moreover, U has inverse AU 1A*V =1 4+ I,, — AAT by (24), and (PAQ)!
exists with
(PAQ)! = @ A P*PU 1 AQQ A" (T1) P,
by a remark after Theorem 2. That is,
(PAQ)! = @ A*P*P <AU‘1A*V‘1 I — AAT) AQQ*A* x
x (AU*lA*V*1 Ty - AAT)* p*
— QFA*P*PAU AT AQQ ((AU—lA*V—l 1, — AAT> A)* P
= QUAPTPAUTI ATV TIAQQ” (AU ATV 1A) P!
= QA'P*PAU'A*VTAQQ A*V ! x
x AU A*P* as U™! and V™! are symmetric
— Q*A*P*PAU'A* (V’lAQQ*A*A) ATV =LA~ A* P
= QA (AA*P*PAU‘1> A*AATT T AT~ A* P* using (25)
= Q*ATAA*AATV AU A* P* using (26)
= QA VTIAU'A*P*
= (AQ)*V AU 1 (PA)*. O

4 Applications

1. Let A be anxn matrix over a field F. Then, by the use of the Frobenius
normal form, A is similar to the direct sum of the companion matrices
of its elementary divisors. That is,

A=P(C;@®..®Cy) P!

where C1, ..., C} are the companion matrices of its elementary divisors.
Writing, for 1 < j <k,

_ (0 a
Cj_<f Kj)’

16



C1 @ ... ® C} is von Neumann regular and

F (-Kjaj 1)
:
=1 a; 0

is a von Neumann inverse of C1 & ... ® Cj, where

a;

t aj_l if a; is invertible
| 0 otherwise

We can apply Theorem 2 to characterize the Moore-Penrose inverse of

A.

. Suppose M is a von Neumann regular matrix partitioned into the form
A B
v=( 1),
where A is nonsingular. The Schur decomposition of M by A is

e (1 0 A0 I A™'B
—\cAat o 0 D—-CA'B 0 I

and the Shur complement of A in M is
M/A=D—-CA'B.

Then M /A is von Neumann regular and the Moore-Penrose inverse of
M can be characterized by Theorem 2.

. Let R be a von Neumann regular ring. Then, it follows from [7, Theo-
rem 1.7] that square and nonsquare matrices over R are von Neumann
regular and hence Theorem 1 can be applied. Only for square ma-
trices over von Neumann regular separative rings, we also can apply
Theorem 2 because a recent result of P. Ara, K. R. Goodearl, K. C.
O’Meara and E. Pardo states that square matrices over these rings are
diagonalizable (see [1, Theorem 2.5]). So, if A is a n x n matrix over
a von Neumann regular separative ring R then

T 0 0
A=P|l o . 0o |Q,
O 0 ry,



for some invertible matrices P, (), and r1, ..., 7, € R, and thus Theorem
2 characterizes the Moore-Penrose inverse of such matrices. According
to [1], no nonseparative regular rings are known, and therefore Theo-
rem 2 can conceivably be applied to square matrices over any regular
ring.
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