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Abstract— The timing of movements and of action sequences
is important when particular events must be achieved in time-
varying environments, avoiding moving obstacles or coordi-
nating multiple robots. However, timing is difficult when it
must be compatible with continuous on-line coupling to low-
level and often noisy sensory information which is used to
initiate and steer action. We extended the Dynamic Approach
to Behavior Generation to account for timing constraints. We
proposed a solution that uses a dynamical system architecture
to autonomously generate timed trajectories and sequences of
movements as attractor solutions of dynamic systems. The model
consists on a two layer architecture, in which a competitive
“neural” dynamics layer controls the qualitative dynamics of a
second, “timing” layer. The second layer generates both stable
oscillations and stationary states, such that periodic attractors
generate timed movement. The first layer controls the switching
between the limit cycle and the fixed points, allowing for discrete
movements and movement sequences. This model was integrated
with another dynamical system without timing constraints. The
complete dynamical architecture was demonstrated on a vision-
guided mobile robot in real time, whose goal is to reach a
target in approximately constant time within a non-structured
environment. The obtained results illustrated the stability and
flexibility properties of the timing architecture as well as the
robustness of the proposed decision-making mechanism.

I. INTRODUCTION

The classical organization of autonomous robots separates
both conceptually and in implementation task planning, tra-
jectory planning and control (see, e.g., [8]). This separation
implies that space and time constraints on robot motion must
be known before-hand with the high degree of precision typical
for non-autonomous robot operation, making it very difficult
to work in unknown or natural environments. Moreover, such
systems remain inflexible, cannot correct plans online, and
thus fail both in non-static environments such as those in
which robots interact with humans, or are mounted on mobile
platforms, and in dynamic tasks or time-varying environments
which are not highly controlled and may change over time,
such as those involving interception, impact or compliance.

A reasonable requirement is that robust behavior must be
generated in face of uncertain sensors and a dynamically
changing environment, where there is a continuous online
coupling to sensory information. Such requirement is partic-
ularly relevant in Behavior-based approaches to autonomous
robotics, in which linkage between perception and action is
attempted at low levels of sensory information [1]. In [6],

real-time collision avoidance using potential fields has been
achieved as well.

Most current demonstrations of behavior-based robotics
do not address timing: The time when a particular action
is initiated and terminated is not a controlled variable, and
is not stabilized against perturbations. For instance, within
the classical problem of moving in ordinary non-engineered
environments, tasks commonly only require the vehicle to
work at a convenient overall speed. If an obstacle has been
circumnavigated such change of timing is not compensated for
by accelerating the vehicle along its path. Timed actions, by
contrast, involve stable temporal relationships. Stable timing
is important in robot arm motion which requires control of
timing in addition to control of spatial path. It is also critical
in tasks which involve sequentially structured actions. This
requires predictive planning, and thus inherently control of
timing.

One type of solution for developing time schedules is to
generate time structure at the level of control. Ref. [11], for
instance, generated rhythmic action by inserting into dynamic
control models terms that stabilized oscillatory solutions.
Ref. [12] generated rhythmic movements in a robot arm that
supported juggling of a ball by inserting into the control
system a model of the bouncing ball together with terms that
stabilized stable limit cycles. Earlier, Ref. [4] obtained juggling
in a simple manipulator by inserting into the control laws terms
that endowed the complete system with a limit cycle attractor.
Ref. [5] used limit cycle attractors to generate light seeking
behavior and obstacle avoidance in a robotic vehicle. Ref. [20]
exploits the properties of a simple oscillator circuit to obtain
robust rhythmic robot motion control in a wide variety of tasks.
More generally, the nonlinear control approach to locomotion
pioneered by [11] amounts to using limit cycle attractors
that emerge from the coupling of a nonlinear dynamical
control system with the physical environment of the robot. A
limitation of such approaches is that they essentially generate
a single ongoing pattern of rhythmic movement. However,
Ref. [13] has, like us, been able to generate temporally discrete
movement as well. The flexible activation of different motor
acts in response to user demands or sensed environmental
conditions is more difficult to achieve from the control level.

Over the last few years, an approach to planning with the
help of dynamical systems, the Dynamical Systems approach
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to autonomous robotics, has been developed for the control of
autonomous vehicles [17], [19], [7], [3]. This paper focuses
on the extension of this approach to the timing of motor
acts. Specifically, the aim is to autonomously generate timed
trajectories and sequences of movements as attractor solutions
of dynamic systems. The dynamic approach provides the
theoretical concepts to integrate in a single model a theory
of movement initiation, of trajectory generation over time
and also provides for their control. These ideas have been
formulated and tested as models of biological motor control in
[14], [16] inspired by analogies with nervous systems and by
the way the rhythmic movement patterns in legged locomotion
are generated (e.g., [2], [5]). The timing of rhythmic activities
in nervous systems is typically based on the autonomous
generation of rhythms in specialized neural networks (“central
pattern generators”), which can be mathematically described as
nonlinear dynamical systems with stable limit cycle (periodic)
solutions. Coordination among limbs can be modelled through
mutual coupling of such nonlinear oscillators [14]. The on-line
linkage to sensory information can be understood through the
coupling of these oscillators to time-varying sensory informa-
tion [16]. Limited attempts to extend these theoretical ideas
to temporally discrete movements (e.g., reaching) have been
made [15].

We build on previous work, where we proposed an attrac-
tor based two-layer dynamics that autonomously generated
timed movements and sequences of movements stably adapted
to changing online sensory information [18]. In this paper,
we integrate a timing architecture with another dynamical
architecture which do not explicitly parameterize timing re-
quirements. The timing model consists of a two layer ar-
chitecture, in which a competitive neural dynamics controls
the qualitative dynamics of a second, timing layer. At that
second layer, periodic attractors generate timed movement. By
activating such limit cycles over limited time intervals, discrete
movements and movement sequences are obtained. System
integration and behavioral organization is achieved through
local sensor control and global task constraints expressed by
logical interdependencies.

As an implementation of the approach, the capacity of a
low level vehicle to navigate in a non-structured environment
while being capable of reaching a target in an approximately
constant time is chosen. The robot, that initially rests on the
origin of an allocentric reference frame facing on a fixed
direction, starts to orient towards target location, which is
internally acquired by a visual system. After a certain time,
the robot starts its timed trajectory towards the target while
continuously avoiding sensed obstacles in its path. Robot
velocity is controlled such that the vehicle has a fixed time to
reach the target. The evaluation results illustrate the stability
and flexibility properties of the timing architecture robustly
adapted to changing online sensory information.

II. ATTRACTOR DYNAMICS OF HEADING DIRECTION

The robot action of turning is generated by letting the
robot’s heading direction, φh, measured relative to some

allocentric reference frame, vary by making φh the behavioral
variable of a dynamical system (for a full discussion see [17]).
This behavioral variable is governed by a nonlinear vector field
in which task constraints contribute independently by mod-
elling desired behaviors as attractors and undesired behaviors
as repellers of the overall behavioral dynamics. Integration
of the target acquisition and obstacle avoidance contributions
is achieved by adding each of them to the vector field that
governs heading direction dynamics

dφh

dt
= Fobs(φh) + ftar(φh) + Fstoch(φh). (1)

We add a stochastic component force, Fstoch, to ensure escape
from unstable states within a limited time. The complete be-
havioral dynamics for heading direction has been implemented
and evaluated in detail on a physical mobile robot [3].

III. THE DYNAMICAL SYSTEMS OF DRIVING SPEED

The path velocity, v of the vehicle is controlled through a
dynamical system architecture that generates timed trajectories
for the vehicle. We set two spatially fixed coordinates frames
both centered on the initial posture, which is the origin of
the allocentric reference frame: one for the x and the other
for the y spatial coordinates of robot movement. A complete
system of timing and neural dynamics is defined for each of
these fixed coordinate frames. Each model consists of a timing
layer [18], which generate both stable oscillations and two
stationary states
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where the index i = x, y refers to timing dynamics of x and
y spatial coordinates of robot movement. A neural dynamics
controls the switching between the three regimes through
three “neurons” uj,i (j = init, hopf , final). Although only the
variable, xi, will be used to control motion of a relevant robotic
task variable, a second auxiliary variable, yi, is needed to
represent oscillatory states. The “init” and “final” contributions
generate stable stationary solutions at xi = 0 for “init” and Aic

for “final” with yi = 0 for both. These states are characterized
by a time scale of τ = 1/5 = 0.2.

The “Hopf” contribution to the timing dynamics is defined
as follows:
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where γi = 4 αh

A2

ic

defines amplitude of Hopf i contribution.
This “Hopf” contribution is the normal form of the Hopf
bifurcation [10]. It generates a periodic solution (limit cycle
attractor) with cycle time T = 2π/ω and amplitude Aic/2 (xi

timing variables vary between the initial posture state at zero
and the final postural state at Aic). We use it because it can



be completely analytically solved, providing complete control
over its stable states [18].

The “neuronal” dynamics of uj,i ∈ [−1, 1] (j =
init, final, hopf) switches each timing dynamics from the
initial and final postural states into the oscillatory regime and
back. The competitive dynamics are given by

αu u̇j,i = µj,i uj,i − |µj,i| u
3
j,i − ν

∑

a6=j

u2
a,i uj,i + gwn. (4)

This dynamics enforces competition among task constraints
within the timing level depending on the neural competitive
parameters (“competitive advantages”), µi. As the sensory
information changes, the competitive parameters change, and a
bifurcation occurs. The neuron, ui, with the largest competitive
advantage, µi > 0, is likely to win the competition, although
for sufficiently small differences between the different µi

values multiple outcomes are possible (the system is mul-
tistable). These parameters are explicitly designed such that
their functions reflect the current sensorial context and the
global constraints expressing which states are more applicable
to the current situation.

We assure that one neuron is always “on” by varying the
µ-parameters between the values 1.5 and 3.5: µi = 1.5 + 2bi,
where bi are “quasi-boolean” factors taking on values between
0 and 1 (with a tendency to have values either close to 0 or
close to 1). These quasi-booleans express logical or sensory
conditions controlling the sequential activation of the different
neurons (see [19], for a general framework for sequence
generation based on these ideas and [18] for a description).
Herein, the time, t, and target location, fully control the neural
dynamics through the quasi-boolean parameters.

The competitive advantage of the initial postural state is
controlled by the parameter binit. This parameter must be “on”
(= 1) when either of the following is true: (1) time, t, is bellow
the initial time, tinit, set by the user (t < tinit); (2) timing
variable xi is close to the initial state 0 (bxi close xinit

(xi));
and time exceeds tinit (t ≥ tinit); and target has not been
reached.

We consider that the target has not been reached when the
distance, dtar, from the actual robot position (as internally
calculated through dead-reckoning) and the (xtarget, ytarget)
position is higher than a specified value, dmargin. This
logical condition is expressed by the quasi-boolean factor,
bxi has not reached target(dtar) = σ(dtar−dmargin), where σ(·)
is a sigmoid function that ranges from 0 for negative argument
to 1 for positive argument, chosen here as

σ(x) = [tanh(10x) + 1]/2, (5)

although any other functional form will work as well. Note
that this switch is driven from the sensed actual position of
the robot.

The factor bxi close xinit
(xi) = σ(xcrit−xi) has values close

to one while the timing variable xi is bellow 0.15Aic and
switches to values close to zero elsewhere.

These logical conditions are expressed through the mathe-
matical function:

binit = 1 − {(t ≥ tinit)

[1 − (bxi close xinit
(xi) (t ≥ tinit)

bxi has not reached target(dtar) ) ] } . (6)

A similar analysis derives the bhopf and bfinal parameters:

bhopf = (t ≥ tinit) bxi not close xfinal
(xi) (7)

bxi has not reached target(dtar) σ (bupdate Aic
)

bfinal = (t ≥ tinit) [ bxi not close xfinal
(xi) +

bxi reached target(dtar) + bxi not close xinit
(xi)

+ (1 − σ (bupdate Aic
)) ] . (8)

We algorithmically turn off the update of the i timed target
location, Txtarget or Tytarget, once this changes sign relatively
to the previous update and the corresponding timing level is
in the initial postural state.

The factor bxi not close xfinal
(xi) = σ(dswitch − dcrit) is

specified based on absolute values, where dswitch represents
the distance between the timing variable xi and the final
postural state, Aic and dcrit is tuned empirically.

The competitive dynamics are the faster dynamics of the
all system. Its relaxation time, τu, is set ten times faster than
the relaxation time of the timing variables (τu = 0.02). This
difference in time scale guarantees that the analysis of the
attractor structure of the neural dynamics is unaffected by
the dependence of its parameters, µi on the timing variable,
x, which is a dynamical variable as well. Strictly speaking,
this difference in time scales makes it possible to treat x
as a parameter in the neural dynamics. Conversely, from the
view point of the timing dynamics, the neural weights can be
assumed to have already relaxed to their corresponding fixed
points (adiabatic elimination).

The system is designed such that the planning variable is in
or near a resulting attractor of the dynamical system most of
the time. The maximal rate of shift, ψ̇max, of the fixed points
is a function of the object’s relative velocity and the distance
d between the robot and the object (target or obstacle) (see [3]
for full discussion). Thus, if we control the driving velocity, v,
of the vehicle, we limit the rate of such shifts and the system
is able to track the moving attractor.

The velocities we want to achieve, Vobs or Vtiming, are
imposed by a dynamics similar to that described by [3]. Vobs,
is computed as a function of distance, where ψ̇max is a design
parameter. The path velocity, Vtiming, as planned by the timing
dynamical level is set as:

Vtiming =
√

ẋx + ẋy . (9)

Suppose that at t = 0 s the robot is resting at an initial fixed
position. The robot rotates in the spot in order to orient towards
the target direction. At time tinit, the quasi-boolean for motion,
bhopf , becomes one, triggering activation of the corresponding
neuron, uhopf , and movement initiation. Movement initiation
is accomplished by setting the driving speed, v, different from



zero. During periodic movement, the target location in time is
updated each time step based on error, xR − Txx, such that

Txtarget = xtarget −
(

xR − Txx

)

, (10)

where Txx is the current timing variable xx. The periodic mo-
tion’s amplitude, Axc, is set as the distance between Txtarget

and the origin of the allocentric reference frame (which is
coincident with the x robot position previously to movement
initiation), such that

Axc(t) = Txtarget(t). (11)

In case an obstacle is detected, velocity is set according to the
current distance to the obstacle.

The periodic solution is deactivated again when the vehicle
comes into the vicinity of the x timed target, and the final
postural state is turned on instead (neurons |uhopf | = 0;
|ufinal| = 1). At this moment in time, the x timed target
location is no longer updated in the timing dynamics level.
The same behavior applies for the timing level defined for the
y spatial coordinate.

IV. EXPERIMENTAL RESULTS

The dynamic architecture was implemented and evaluated
on an autonomous wheeled vehicle [3]. Image processing has
been simplified by working in a structured environment, where
a red ball lies at coordinates (xB , yB) = (−0.8, 3.2) m on the
top of a table at approximately 0.9m tall. The sensed obstacles
do not block vision.

The dynamics of heading direction, timing, competitive
neural, path velocity and dead-reckoning equations are numer-
ically integrated using the Euler method. An image is acquired
only every 10 sensorial cycles such that the cycle time is 70
ms, which yields a movement time (MT) of 14s. Forward
movement only starts for tinit = 3s.

A. Properties of the generated timed trajectory

The sequence of video images shown in Fig. 1 illustrates
the robot motion in a very simple scenario: during its path
towards the target, the robot faces two obstacles separated of
0.7m, which is a distance larger enough for the robot to pass
in between. The detailed time courses of the relevant variables
and parameters are shown in Fig. 2. In case timing dynamics
stabilize the velocity dynamics the robot is strongly acceler-
ated in order to compensate for the object circumnavigation.

Fig. 3 illustrates the robot trajectory as recorded by the
dead-reckoned robot position when the distance between the
two obstacles (0.3 m) is not enough for the robot to pass in
between them. In such case, the path followed by the robot
is qualitatively different. Fig. 4 illustrate the robot’s behavior
when the environment is more complex.

These trajectories display a number of properties of dynam-
ical decision making. The system is able to make decisions
such that it flexibly responds to the demands of any given
situation while keeping timing stable. Stability is displayed
in the sense that the approach is robust to the presence of
noise. Finally, Fig. 2(a) shows how the hysteresis property

Fig. 1. A sequence of video images illustrates robot motion when the robot
faces two objects separated of 0.7m during its path. The robot successfully
passes through the narrow passage towards the target and comes to rest at
a distance of 0.9m near the red ball. The overall generated timed trajectory
takes t = 16.6−3 s to reach the target. The effective movement time is 13.6
s for a movement time of 14s.

allows for a special kind of behavioral stability. At t = 15s the
quasi-boolean parameter bx,hopf becomes zero but the ux,hopf

neuron remains active until the neuron ux,final is more stable,
what happens around t = 16.2 s. At this time, the x periodic
motion is turned off. Thus, hysteresis leads to a simple kind
of memory which determines system performance depending
on its past history and enables the system to be robust to
ambiguity in the environment.

B. Trajectories generated with and without timing control

Table I surveys the time the robot takes to reach this target
for several configurations when path velocity is controlled
with and without timing control. In the latter, path velocity
is specified differently: when no obstructions are detected
the robot velocity is stabilized by an attractor, which is
set proportional to the distance to the target [3]. Note that
forward movement starts immediately. Conversely, forward
movement only happens at t = 3 s when there is timing
control. The specified movement time is 14s. We observe
that both controllers have stably reached the target but the
former is capable of doing it in an approximately constant
time independently of the environment configuration.

We have also compared the time the robot takes to reach
the target for different target locations. The results have shown
that the achieved movement time is approximately constant
and independent of the distance to the target.

V. DISCUSSION

This paper addressed the problem of generating timed
trajectories and sequences of movements for autonomous
vehicles when relatively low-level, noisy sensorial information
is used to steer action. The developed architectures are fully
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(a) Timing and neural dynamics in x coordinate.
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(b) Timing and neural dynamics in y coordinate.
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(c) Top panel depicts both neural variables. The next two panels
represent timing variables, robot trajectories, the real target
locations and the periodic motion amplitudes. The bottom
panel depicts velocity variables.

Fig. 2. Time courses of variables and parameters for the robot trajectory
depicted in Fig. 1.

Fig. 3. A timed trajectory as recorded by the dead-reckoning mechanism.
During its trajectory to the target, the robot is faced with two obstacles which
are separated of 0.3m. The robot smoothly circumnavigates the obstacles and
comes to rest near the ball. The ball position as calculated by the visual system
slight differs from the real robot position (indicated by the line over the ball).

TABLE I
TIME (IN SECONDS) THE ROBOT TAKES TO REACH THE TARGET BOTH FOR

A DYNAMIC ARCHITECTURE WITH AND WITHOUT TIMING CONTROL.

Experiments timing (MT) without timing
No obstacles 16.8 (13.8) 18.6
one obstacle 16.6 (13.6) 19.0
obstacles separated 0.8m 16.5 (13.5) 18.9
obstacles separated 0.7m 16.6 (13.6) 19.0
obstacles separated 0.3m 18.8 (15.8) 23.6
Complex configuration 1 19.3 (16.3) 22.5
Complex configuration 2 17.2 (14.2) 19.2
Complex configuration 3 17.4 (14.4) 19.6
Complex configuration 4 16.8 (13.8) 19.7
Complex configuration 5 17.3 (14.3) 18.3
Complex configuration 6 17.7 (14.7) 19.8
Complex configuration 7 23.3 (20.3) 28.0

formulated in terms of nonlinear dynamical systems which
lead to a flexible timed behavior stably adapted to changing
online sensory information. The model consists of a timing
layer with either stable fixed points or a stable limit cycle. The
qualitative dynamics of this layer is controlled by a “neural”
competitive dynamics. By switching between the limit cycle
and the fixed points, discrete movements and sequences of
movements are obtained. These switches are controlled by
the parameters of the neural dynamics which express sensory
information and logical conditions. Further, we have shown
that by manipulating the timing of a limit cycle the system
performed well tasks with complex timing constraints.

The dynamical systems approach has various desirable prop-
erties. Firstly, we guarantee the stability and the controllability
of the overall system by obeying the time scale separation
principle. In addition, we can use properties, such as stability,



Fig. 4. Robot motion in a more complex environment named of complex
configuration 7 in which the robot is faced with a barrier of obstacles behind
which lies the ball. The robot comes to rest at 0.9m from the target, at t =

23.29 s (the effective movement time is around 20s).

bifurcation, and hysteresis, which enable planning decisions
to be made and carried out in a flexible, yet stable, way
even if noisy sensory information is used to steer action.
Secondly, a globally optimized behavior is achieved through
local sensor control and global task constraints expressed by
logics contained in the parameters of the differential equations.

The ease with which the system is integrated into larger
architectures for behavioral organization that do not neces-
sarily explicitly represent timing requirements is a specific
advantage of our formulation. This scalability property implies
a high modularity. Another advantage is the fact that it is
possible to parameterize the system by analytic approximation,
which facilitates the specification of parameters. Not only we
have generated discrete movement as well as we provide a
theoretically based way of tuning the dynamical parameters to
fix a specific movement time or extent.

As a case study, we have addressed the generation of
trajectories with stable timing for a low-level autonomous
vehicle which must reach a target within a certain time
independently of the environment configuration or the distance
to the target. The implemented decision making mechanism
allowed the system to flexibly respond to the demands of
the sensed environment at any given situation. The generated
sequences were stable and a decision maintained stable by the
hysteresis property. Thus, stable coupling to unreliable timing
information is achieved. The described implementation in
hardware probes how the inherent stability properties of neural
and timing dynamics play out when the sensory information
is noisy and unreliable.

Future work will address how to endow the timed dynamical
model discussed here with cognitive capabilities, how to
extend the described model to achieve more complex behavior,

how to integrate this approach with the dynamical systems
approach to generate formation control and how to incorporate
the ability of using learning. Another direction in which these
ideas could be developed lies in the domain of computer based
animation, in which autonomy can help to reduce the amount
of programmer effort to generate scenes and can provide user
interactivity [9].
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