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Abstract

This paper concentrates on the degradation characteristics of hydroxyapatite (HA) coatings on orthopaedic Ti–6Al–4V alloy

while immersed in Ringer’s salt solution, which were investigated by electrochemical impedance spectroscopy. Electrochemical

impedance spectroscopy measurements were used to in situ characterize the electrochemical behavior of the passivated alloy covered

with HA during aging in Ringer’s solution. Comparison of the electrochemical data for the coated material with that for the

uncoated metal substrate was also performed. The characteristic feature that describes the electrochemical behavior of the coated

material is the coexistence of large areas of the coating itself with pores where the substrate is exposed to the aggressive media. The

interpretation of results was thus performed in terms of a two-layer model of the film, in which the precipitation of hydrated oxide or

phosphate compounds seals the pores left by the ceramic coating. The blocking effect due to salt precipitation inside the pores

produces an enhancement of the resistance values, thus effectively diminishing the metal ion release in the system.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Metallic materials have found wide application in
restorative surgery as basic biomaterials for manufac-
turing implant prostheses for skeletal replacements and
fixtures. In this case, metallic materials which combine
good mechanical characteristics, high corrosion resis-
tance and good compatibility with biological materials
are chosen. Amongst the various materials currently
employed, the alloy Ti–6Al–4V has found extensive
biomedical applications due to its good mechanical
properties and ability for osseointegration [1], combined
with an excellent corrosion behavior due to passivity.
Passivity is due to the very stable and tenaciously
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adherent oxide films spontaneously formed over the
surface [2–6], which reform very rapidly if removed or
mechanically damaged. These films are fairly unreactive,
though transient microscopic breakdown of the passive
state induced by the presence of chloride ions in the
environment has been recently observed in vitro [7,8].
When the prostheses are placed in the human body, the
passive films undergo further transformations, namely
thickening of the passivating film and stoichiometric
changes, as well as metal dissolution [9–12]. Both
passivation and metal dissolution are processes of an
electrochemical nature.
Enhanced biocompatibility of titanium-base materials

is achieved by coating them with ceramic biomaterials,
and through this they have become the most widely used
material combination for dental and orthopaedic
implants [13,14]. The material response is governed by
ion leaching and by corrosion with the release of
particles. These processes are not only dependent on
solubility (especially in the case of surface reactive
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biomaterials, such as glasses, glass ceramics or calcium
phosphate ceramics), but also on intercellular turnover,
cellular activity, bacteria, pH, fretting due to biomecha-
nical situation, electrochemical processes at the inter-
face and other factors. They usually imply a change
in the chemical composition and physical properties
of the interface. In addition to it, the processes under-
gone at the buried interface between the metal and the
ceramic or polymeric material must be known and
characterized. Amongst the materials employed, hydro-
xyapatite (HA) coatings are specially attractive, as a
bone-like material is introduced in the interface between
the metal and the living tissue, which results in improved
osseointegration [15–18]. The stability of these bioma-
terials still originate from their electrochemical passivity,
and their ability to avoid passivity breakdown in the
highly aggressive physiological environment. But at
this stage, there is scarce information on the electro-
chemical behavior of ceramic coated biomaterials in the
scientific literature.
This investigation was aimed to investigate the effect

of plasma-sprayed HA-coatings on Ti–6Al–4V sub-
strates regarding the corrosion behavior of the metallic
biomaterials during experiments in physiological
media. Electrochemical impedance spectroscopy (EIS)
was the major investigative technique, since it has the
potential to discover new information on the pro-
cesses occurring, whilst not interfering significantly
with the mechanisms operating. Based on the proper-
ties of the coating and the corrosion reaction at the
coating/substrate interfaces, much more information
can be collected than by routine DC electrochemi-
cal methods [19,20]. The spectra of bare and coated
substrates were recorded, and the data were analy-
zed to evaluate the equivalent circuit parameters
in each case with the goal of determining the
degradation characteristics of ceramic-coated bio-
materials.
Table 1

Composition of the simulated physiological solution: Ringer’s

balanced salt solution [21]

Compound Ringer’s solution concentration

(g dm�3)

NaCl 8.6

CaCl2 0.48

KCl 0.3
2. Materials and methods

2.1. Materials

Ti–6Al–4V alloy matching the ASTM F136-84
was used as the substrate. Metal substrate was
annealed at 750�C for 2 h, and air cooled. Then the
substrate was alumina grit blasted to a surface rough-
ness RA (mean roughness, DIN 4762)=1.66 mm and RZ

(roughness depth, DIN 4768)=5.61 mm, and passivated
in nitric acid. Some specimens were then coated with
HA. HA-coatings with a thickness of 50710 mm on Ti–
6Al–4V were produced by plasma spraying. Samples
were beam shaped (180� 30� 6mm3), and coatings
performed by Plasma Biotal Company, Tideswell,
UK.
2.2. Electrochemical test

The investigation of the corrosion characteristics of
the HA-coatings deposited on Ti–6Al–4V substrates was
studied by electrochemical methods. Testing was carried
out in Ringer’s physiological solution open to air, not
stirred, at room temperature. The composition of the
testing solution is presented in Table 1 [21]. The
electrolyte was prepared with Millipore MilliQ� plus
water (resistivity greater than 18MO cm), and analytical
grade reagents.
The electrochemical measurements were performed

with a flat three-electrode cell, consisting of the studied
sample, a saturated calomel electrode (SCE) employed
as reference electrode, and a sufficiently large platinum
grid as auxilliary electrode. The specimen area exposed
to the electrolyte solution was 1 cm2.
Polarization curves and electrochemical impedance

spectra (EIS) measurements were determined by using
an EG&G Princeton Applied Research model 283A
potentiostat/galvanostat controlled from a computer.
Prior to the beginning of the polarization procedures,
the samples were kept in the solution for 55min in order
to establish the free corrosion potential (Ecor). The
potentiodynamic polarization curves were obtained with
a scan rate of 1mV/s from �1000mV (SCE). The
measurement of the EIS was performed at the open
circuit potential. A sine wave of 15mV (rms) was
applied across the cell at the open circuit potential of the
system. The spectra were acquired in a 50 kHz–5mHz
frequency range by introducing an EG&G Princeton
Applied Research model 5208 two-phase lock-in analy-
zer. A data density of six frequency points per decade
was used, and spectra data were averaged over four
cycles at each frequency. Impedance spectra were
represented in both complex impedance diagram (Ny-
quist plot), and Bode amplitude and phase angle plots.
In the Nyquist graph, the imaginary component of the
impedance is plotted as a function of the real
component, whereas the Bode representation shows
the logarithm of the impedance modulus |Z| and
phase angle f as a function of the logarithm of the
frequency f . The analysis of the EIS was performed
using a non-linear least squares fit method to obtain the
equivalent electrical model for the substrate–electrolyte
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interfaces after different exposure times in the testing
solution.
3. Results

3.1. Polarization experiments

In order to compare the susceptibility to corrosion of
the HA-coated specimen in relation to the bare alloy
material, the anodic polarization potentiodynamic
curves of the two materials in Ringer’s physiological
solution were first recorded. Prior to the beginning of
the polarization procedures, the samples were kept in
the solution for 55min in order to establish the free
corrosion potential (Ecor). Subsequently, the potentio-
dynamic polarization curves were obtained with a scan
rate of 1mV/s from �1000mV (SCE). The measured
polarization plots are depicted in Fig. 1.
From the inspection of the polarization curves, the

onset of passivity is found to occur in the same potential
region for both the coated and the uncoated specimens,
thus indicating that formation of the oxide passive film
apparently occurs under a similar mechanism and under
similar potential requirements on them. In this way,
after an initial range of cathodic depassivation, the open
circuit potential is reached for the samples. An active–
passive transition is observed next with passivating
currents in the order of a few microamperes, which are
typically observed during the passivation of titanium
and its alloys [22]. Despite the reported similarities
between the two systems, some differences can be
observed when considering the potential dependence of
the passive currents. Whereas a somewhat slow increase
of the passivation current is observed for the uncoated
specimen as the applied potential is made more positive,
the HA-coated specimen shows an increase of this
current for almost two orders of magnitude when the
potential is set more positive than 1.5V. This observa-
tion could be taken as an indication of an increased
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Fig. 1. Potentiodynamic polarization curves measured for (- - - - -) bare

and (——) HA-coated Ti–6Al–4V alloy specimens after immersion in

Ringer’s solution.
metal dissolution in the system through the passive film
when the material is coated with hydroxyapatite, as it
has been proposed by some authors [23,24]. But
increased currents would also occur if the metal
dissolves from the metallic substrate and precipitates
as hydrated salts on the its surface [25,26], which has
been claimed to result in enhanced corrosion resistance
of the underlying metal substrate [26]. Conventional
electrochemical techniques do not allow to distinguish
between the two cases, and justifies the controversy
existing in the scientific literature on whether enhanced
or hindered metal ion release occurs for HA-coated Ti–
6Al–4V substrates [23–26].

3.2. Electrochemical impedance spectra

Electrochemical impedance experiments were per-
formed at the open circuit potential. Typical examples
of the impedance spectra obtained at different exposure
times during the immersion in Ringer’s simulated
physiological solution of the HA-coated specimen are
shown in Fig. 2. They are displayed in both complex
impedance (Nyquist diagram), and Bode amplitude and
phase angle plots. Though Nyquist plots are relatively
featureless, the Bode plots are more indicated for the
investigation of changes in the electrochemical char-
acteristics of the system with aging. In this way, it was
observed that upon immersion of the HA-coated speci-
men in the test electrolyte, variations in the impedance
spectra occurred already during the first day of
exposure, which resulted from the evolution of the
electrochemical behavior of the system. Changes are less
noticeable with time elapsing, and after 20 days
exposure, an almost stationary behavior was reached.
These observations clearly show that the electrochemical
properties of the film change with exposure time.
The impedance spectra displayed in Fig. 2 exhibit two

time constants at all exposure times. That is, they can be
divided into two distinct frequency regions: the time
constant in the high-frequency part, which arises from
the uncompensated ohmic resistance due to the electro-
lytic solution and the impedance characteristics resulting
from the penetration of the electrolyte through a porous
film, and the low-frequency part accounting for the
processes taking place at the substrate/electrolyte inter-
face. Such a behavior is typical of a metallic material
covered by a porous film which is exposed to an
electrolytic environment, and can be described in terms
of an equivalent circuit which accounts for the different
electrochemical processes occurring in the system.

3.3. Selection of the equivalent circuit

For the interpretation of the electrochemical behavior
of a system from EIS spectra, an appropriate physical
model of the electrochemical reactions occurring on the
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Fig. 2. Impedance spectra recorded for an HA-coated Ti–6Al–4V

alloy specimen exposed to the Ringer’s solution at diverse exposure

times: (&) 2 hours; (J) 40 days; (n) 80 days; and (}) 128 days.
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Fig. 3. Equivalent circuits used for the interpretation of the measured

impedance spectra. (a) Two-layer model of an unsealed porous surface

film; (b) two-layer model of a sealed porous surface film.
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electrodes is necessary. The electrochemical cell, because
it presents an impedance to a small sinusoidal excitation,
may be represented by an equivalent circuit [27]. An
equivalent circuit consists of various arrangements of
resistances, capacitors and other circuit elements, and
provides the most relevant corrosion parameters applic-
able to the substrate/electrolyte system.
After testing a number of different electrical circuit

models in the analysis of the impedance spectra obtained
at different exposure times, it was found that the whole
set of data could be satisfactorily fitted with the two
equivalent circuits given in Fig. 3. They are both based
on the consideration of a two-layer model for the
surface film. Circuit A was deduced to represent the
electrochemical behavior of a metal covered with an
unsealed porous film [28,29]. The equivalent circuit
consists of the following elements: a solution resistance
Re of the test electrolyte, electrical leads, etc., the
capacitance Cp of the intact (non-defective) coating
layer, the charge transfer resistance associated with the
penetration of the electrolyte through the pores or
pinholes existing in the coating Rp; and the polarization
resistance of the susbstrate Rb as well as the electrical
double-layer capacitance at the substrate/electrolyte
interface Cb:
On the other hand, circuit B was developed to

represent a sealed anodic oxide film [30]. That is, the
model represented by circuit A has been modified to
take in account the precipitation of some hydrates/
precipitates inside the surface porous film, thus hinder-
ing the penetration of the electrolyte to the metal
substrate through the pores of the surface films. In this
case, the components Cho and Rho introduced in circuit
B represent the capacitance and resistance of hydrates/
precipitates inside the pores of the surface film.
A reasonable fit to the equivalent circuit for a given

impedance spectra was established by admitting a
relative error [31] of less than 1% for the real and
imaginary parts of the impedance. Next, the quality of
fitting was judged by the error distribution vs. the
frequency comparing experimental with simulated data
for different models. This procedure is illustrated in
Figs. 4 and 5 which show the experimental and
simulated spectra for two exposure times, as well as
the corresponding error distributions after the applica-
tion of circuits A and B, respectively. Inspection of these
figures show that both circuits satisfy the first of the
criteria, with errors of less than 1% in all cases. But the
comparison of the simulated and experimental spectra
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show that the best results are always attained by
employing circuit B. A special mention must be made
about early exposure times, such as those given in Fig. 4
for the spectra measured after 2 h exposure to the
physiological solution. In this case, both circuits provide
similar distributions over the frequency range studied.
Thus, when HA-coated Ti–6Al–4V alloy is exposed to

Ringer’s solution, its EIS spectra exhibit behavior
typical of a porous film on the metallic substrate.
Electrolyte penetration occurs through the pores of the
ceramic coating, thus exposing the underlying metal to
the physiological environment. But EIS spectra demon-
strate an evolution with elapsed time that reflects that
progressively the pores in the coatings are filled with
precipitates, and after ca. 20 days exposure, these
precipitates quite effectively seal the pores. Nevertheless,
the blockage of the pores in the coating by precipitates
do not result in an effective blockage of the metal. That
is, no effective blockage is provided by the salts
deposited in the pores, and metal dissolution continues
through the coating. This conclusion is sustained by the
fact that resistance values in the impedance spectra are
below 106O cm2 at all exposure times.
Such an observation is confirmed by the time

dependency of the fitted parameters Rho and Cho (cf.
Fig. 6), which represent the effects due to the precipita-
tion of salts in the pores of the coating. Major variations
are observed during within 20 days from the time the
specimen was exposed to the solution, but a rather
stationary condition is achieved after that time. This is
an indication that the metal substrate achieves an
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approximately constant rate of dissolution when im-
mersed in Ringer’s solution.
The effect of precipitates partially blocking the

conductive ionic paths in the pores after 20 days can
also be observed from the inspection of the values of Rp

as plotted in Fig. 7a, which give the electrolytic solution
resistance inside the pores. As a result of the progressive
blocking effect due to salt precipitation inside the pores
in the ceramic coating, a significant and stable growth of
Rp values is observed in time until they reach a
stationary value after 20 days. No further variation of
the resistance Rp was observed during the remaining
part of the experiment. On the other hand, no significant
variations were observed for Cp and Cb, respectively, the
porous layer and the barrier layer capacitances, during
the complete time interval covered by our experiments
(cf. Figs. 7b and c). Thus, it can be concluded that the
variations in the electrochemical system are related to
changes in the chemical environment inside the pores
existing in the HA-coating.
Finally, it must be noticed that the elements

represented in both circuits as capacitors Cb and Cp

were fitted as constant phase elements. This is a general
diffusion related to element Q which accounts for
deviations from ideal dielectric behavior related to
surface inhomogeneities [32] or current leakage in the
interface. Thus, a dissipation factor (n) is associated
with them. This element is written in its admittance
form as

Y�ðoÞ ¼ Y0ðjoÞ
n;

where Y0 is the adjustable parameter used in the non-
linear least-squares fitting, and n is defined as the
phenomenological coefficient which can be obtained
from the slope of |Z| on the Bode plot [33]. Pure
capacitance behavior is represented by n ¼ 1:0: In Fig. 8,
the time dependencies of n values for both elements are
shown. The low n values indicate a rough surface of the
coating film, and these values may even increase with the
time elapsed since immersion of the specimen in the
physiological solution.

3.4. Comparative remarks

Comparison of the HA-coated specimen in relation to
the bare alloy material was also performed on the basis
of the measured EIS, as shown in Fig. 9. In this case, the
substrate was employed as received, without any further
pre-treatment. Under these conditions, the Ti–6Al–4V
alloy is covered by a passive oxide film that has been
spontaneously developed during exposure to air. This
oxide layer is typically in the order of some tens of
nanometers, and its electrochemical impedance char-
acteristics could also be described in terms of the model
circuit A. This observation agrees well with the previous
findings by Pan et al. [34–36] derived from the EIS
spectra measured for titanium samples immersed in
biofluids with and without H2O2. In this case, the
double-layer titanium oxide film was hypothesized to
consist of a Ti–TiO2 inner-TiO2 outer porous unsealed
layer when titanium was immersed in physiological
solution without H2O2 [34,35], or in H2O2-containing
biofluid at short exposure times [36], and to evolve into a
Ti–TiO2 inner-TiO2 outer porous sealed layer when
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titanium was immersed in the H2O2-containing medium
at longer exposures [36], in which case model circuit B
was applicable instead.
Differences can be observed from the inspection of the

EIS spectra depicted in Fig. 9, which were measured for
both systems after a 1 h immersion in Ringer’s solution.
The spectra were subsequently analyzed, and could be
satisfactorily modeled in terms of the model circuit A.
The resulting impedance parameters are given in
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Table 2

Impedance parameters of uncoated and HA-coated Ti6Al4V samples after i

Specimen Cp (F cm�2) np Rp (O cm

Uncoated 1.27� 10�4 0.777 5.11� 1

HA-coated 6.20� 10�5 0.751 4.59� 1

Impedance spectra have been fitted with model circuit A [28,29].
Table 2. From their comparison it can be observed that
a significant increase of the resistance values for the
HA-coated system, which are two orders of magnitude
higher for Rp and Rb than those determined for the bare
metal. In this way, though the HA-coating is not an
effective anticorrosion layer, it hinders to some extent
the electrochemical processes occurring at the metal
substrate interface, thus contributing to a decrease in the
metal ion release from the system.
4. Conclusions
* Electrochemical impedance spectroscopy is a very
useful technique for studying the corrosion behavior
of surgical implant alloys, even when they are coated
with a ceramic material such as hydroxyapatite.

* Over the frequency range applied the equivalent
circuit employed for the description of the coated
samples provides the best fitting of the experimental
data. Two-layer models satisfactorily describe the
electrochemical behavior of the system by considering
a porous film on the metallic substrate. Metal
dissolution occurs through the pores in the HA-
coating, and leads to the precipitation of salts which
block the pores. The resulting precipitates layer
originates an additional barrier to metal dissolution
in the system, as it can be followed through a
significant increase in the resistance values measured
after ca. 20 days. Nevertheless, it should be realized
that this barrier does not provide an effective
protection against metal dissolution, as there is only
a reduction in its extent. The nature of the salts was
not investigated in this study, but may probably be
the result of metal phosphate formation or incor-
poration of metal ions in the HA structure [25].

* The electrochemical behavior of the system is
characterized by the dissolution and passivation
characteristics of the underlying metallic substrate.
In this way, similar spectra are measured for both
coated and uncoated substrates despite the obvious
major differences existing in the physical character-
istics of both systems. That is, the bare alloy relies on
the formation of a porous oxide film for the
achievement of the passive state, and the thickness
of such layer is typically in the order of a few tens of
nanometer. On the other hand, the HA-coating layer
mmersion in Ringer’s balanced salt solution for 1 h

2) Cb (F cm
�2) nb Rb (O cm2)

03 6.47� 10�5 0.74 6.25� 104

05 4.26� 10�4 1.00 2.44� 106
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investigated ranged 50–200 mm and was very porous
in nature. Despite these thickness values were ca.
1000 times bigger than those expected for an oxide
passive layer, a two-layer model of the surface film
accurately describes the electrochemical behavior of
the coated system. That is, the corrosion resistance of
the biomaterial is not greatly affected by the presence
of the ceramic coating, but rather depends on the
passivation ability of the metallic substrate and, to a
minor extent, on the porosity of the ceramic coating.

* After a 4 month exposure to Ringer’s solution, no
evidence was found from the EIS that might indicate
a (partial) detachment of the HA film from the
underlying alloy. Thus, it can be expected that
the coated system may outstand longer exposure
periods in this physiological solution.
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