
Cut-elimination and a permutation-free sequent calculus for intuitionistic
logic.

Roy Dyckhoff$ & Luis Pinto†

School of Mathematical & Computational Sciences,
St Andrews University, St Andrews, Scotland

{rd, luis}@dcs.st-and.ac.uk

Abstract. We describe a sequent calculus, based on work of Herbelin, of which the
cut-free derivations are in 1-1 correspondence with the normal natural deduction
proofs of intuitionistic logic. We present a simple proof of Herbelin’s strong cut-
elimination theorem for the calculus, using the recursive path ordering theorem of
Dershowitz.

Keywords. Cut-elimination, normalisation, natural deduction, intuitionistic logic,
recursive path ordering, termination.

1. Introduction
Herbelin introduced [16, 17] an elegant sequent calculus LJT and proved for it a
strong cut-elimination theorem by Dragalin’s method [8], using structural
induction on the associated proof-terms supported by inductions on measures of
the strong normalisability. The proof is complex: there is more than one cut rule to
consider. The calculus is of special interest because its cut-free derivations are in
natural 1-1 correspondence with the dp-normal [28] natural deduction proofs of
first-order intuitionistic logic.

The main purpose, and the novelty, of the present paper is to illustrate the
use of the recursive path ordering (r.p.o.) theorem of Dershowitz [7] by giving a
simple proof of Herbelin’s cut-elimination theorem. We begin with a routine
reformulation of the calculus in our own notation (developed as a basis for our
work [12] on the analysis of permutations in LJ); this is detailed elsewhere in [11],
which includes both a minor simplification of the Dragalin-style proof and the
r.p.o. proof in more detail.

Our subsidiary purpose is to draw attention to Herbelin’s calculus as a
good alternative to the traditional formalisations of natural deduction, such as
typed lambda calculus and the proof system N Jcut. Being close to the
formalisations (with a “stoup” formula [14]) used [23] in logic programming,
Herbelin’s calculus is attractive as a basis for proof search (being a “sequent
calculus” but avoiding the problems in LJ arising from the permutations [19, 12]).
It underlies, for example, the implementation of uniform proof search in

$ Both authors were supported by the European Commission via the ESPRIT Basic Research
Action 7232 “GENTZEN”; the second author was supported by the JNICT (Portugal).

† New address: Departamento de Matemática, Universidade do Minho, Braga, Portugal.

Studia Logica 60: 107–118, 1998
© 1998 Kluwer Academic Publishers. Printed in the Netherlands.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55605081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 R. Dyckhoff, L. Pinto

hereditary Harrop logic [22]. It may also be used as a basis for some inductive
proofs about derivations in LJ or natural deductions in NJ (e.g. those in [12],
where the strong eliminability of cut, rather than just the admissibility, is required;
and, we anticipate, those in [5] and [15]).

Herbelin called (following [6]) his calculus “LJT”, a name we avoid in case
of confusion with that in the first author’s [9]: we call its cut-free fragment “MJ”
because it is intermediate between [13] Gentzen’s cut-free LJ and NJ. We apologise
to Herbelin for not adopting his nomenclature. We use “MJcut” for the extension
of MJ with cut rules; similarly, we use NJcut for the usual natural deduction
calculus and NJ for the fragment consisiting only of normal deductions. As in [17],
we cover here only the implicational case; other connectives (dealt with in [16, 11])
pose no significant extra difficulty.

Herbelin’s cut-free calculus is here called “permutation-free”, because there
are no semantically trivial permutations of the inference rules, where by
“semantically trivial” we mean “interpreted in NJ as true equations between two
(normal) deductions”. In contrast, the interpretation [24] of LJ into NJ is many-
one, because of the permutations [19] in LJ. (Note however that there are some
permutations in LJ, involving disjunction or the existential quantifier, whose
interpretations in NJ are false. For details see [12].)

We refer to [29] for basic proof theory and detailed descriptions (§3.3) of
the relationships between systems such as LJ and NJ. The system we call LJ is
roughly the cut-free Gentzen-Kleene system GK3i of [29], p 70. We also refer to
[29] (§1.3.5) for the Curry-Howard correspondence between typed lambda terms
and natural deduction proofs: this correspondence allows us to alternate between
the type-theoretic view (based on lambda calculus) and the proof-theoretic view of
natural deduction. We follow [29] in first naming the cut-free fragments of various
sequent calculi and then designating the extensions with cut by a superscript; NJ
is treated similarly.

2. Herbelin’s calculus (in the cut-free case)
Consider first a routine (but rarely written down) description of the normal terms
of the untyped lambda calculus:

A ::= ap(A, N) | var(V)

N ::= λV.N | an(A)

where V is some set of variables, N is the set of normal terms and A is the set of
normal non-abstraction terms. Variable binding conventions are, as usual, that, in
λV.N , λV binds free occurrences of V in N . We use explicit constructors var and

 an to ensure consistency with our type-checked implementations. This description
restricts the terms N so constructed to be normal in the traditional sense, because
the first argument A in ap(A, N) cannot be an abstraction λV. ′N . Another routine

Cut elimination and a permutation-free sequent calculus … 3

description N ::= λ
r
x.x

r
N or, equivalently, N ::= λx.N | x

r
N , of the normal lambda

terms leads to essentially the same ideas.

The normal terms are thus of the form

 λx1.λx2...λxn.an(ap(...ap(var(x), N1),... , Nm))

in which x is called the head variable.. The head variable of such a term N is, for a
large term, buried deep inside: Herbelin’s representation brings it to the surface.
So, following ideas in [17], we make the

Definition. The set M of untyped deduction terms and the set Ms of “lists” of such
terms are defined simultaneously as follows:

M ::= (V ; Ms) | λV.M
Ms ::= [] | M::Ms

We use again the same symbol λ where we should really use another symbol.
When other connectives are added, Ms will no longer be a list. [M] abbreviates
M::[], and so on. Variable binding conventions are as before. Terms are equal iff
they are alpha-convertible. Closed terms are those with no free variable
occurrences. These terms M are the “normal λ -expressions” of [16, 17] in a minor
variant of the notation.

Adding type restrictions in the usual way gives us a description of the
typable terms in contexts, where contexts Γ associate formulae (i.e. types) P to
variables x . We use both the judgment form Γ ⇒ M : P (read as “ M is a term of
type P in the context Γ ”) and the judgment form

Γ

P
⎯ →⎯ Ms : Q (read as “ Ms is

a term-list based on P of type Q in the context Γ ”). The idea here is that Ms is a
list of terms representing minor premisses of implication elimination rule
instances on the main (introduction-free) branch [24] from the head formula P
down to Q ; and the assumptions on which these minor premisses depend are all
declared in Γ . (The head formula of a normal deduction is that occurring at the top
left of the main branch, i.e. the type of the head variable.)

The schematic rules for deriving judgments of this kind are (in the
implicational fragment) as follows, where the Abstract rule has an implicit side-
condition about “newness” of the variable:

4 R. Dyckhoff, L. Pinto

Γ,x:P
P

⎯ →⎯ Ms : R

Γ,x:P ⇒ (x; Ms) : R
Select

Γ,x:P ⇒ M : Q
Γ ⇒ λx.M : P ⊃ Q

Abstract

Γ
P

⎯ →⎯ [] : P
Meet

Γ ⇒ M : P Γ
Q

⎯ →⎯ Ms : R

Γ
P ⊃ Q

⎯ →⎯⎯⎯ (M::Ms) : R
Split

There is a bijective translation between M and N , mentioned but not
detailed in [17]: briefly, (x;[M1 ,... , Mn]) translates into the normal term

 ap(...ap(x, M1),... , Mn) , usually written as xM1...Mn , and abstraction terms
translate in the obvious way. Formally, θ : M → N and ψ : N → M may be
defined as follows:

θ : M → N

θ(x; Ms) =def ′θ (var(x), Ms)

θ(λx.M) =def λx.(θM)

′θ : A × Ms → N

′θ (A,[]) =def an(A)

′θ (A, M::Ms) =def ′θ (ap(A,θM), Ms)

ψ : N → M

ψ (an(A)) =def ′ψ (A,[])

ψ (λx.N) =def λx.ψN

′ψ : A × Ms → M

′ψ (var(x), Ms) =def (x; Ms)

′ψ (ap(A, N), Ms) =def ′ψ (A,ψN::Ms)

Proposition 1. (i) ψ o θ = idM : M → M .
(ii) ψ o ′θ = ′ψ : A × Ms → M .

Proof. By simultaneous induction on the structures of the argument and the
second argument respectively. QED.

Proposition 2. (i) θ o ψ = idN : N → N .
(ii) θ o ′ψ = ′θ : A × Ms → N .

Proof. By simultaneous induction on the structures of the argument and the
first argument respectively. QED.

It follows that M and N are in 1-1 correspondence. We must however
check that the correspondences θ and ψ work well at the typed level. Here is an
appropriate proof system for the typed version NJ of N :

Γ > A : P
Γ >> an(A) : P

x:P,Γ >> N : Q
Γ >> λx.N : P ⊃ Q

⊃I

x:P,Γ > var(x) : P
ax.

Γ > A:P ⊃ Q Γ >> N : P
Γ > ap(A, N) : Q

⊃E

Note again that we are considering just the fragment of NJ which allows only
normal terms, or (equivalently) the normal fragment of the simply typed lambda
calculus.

Cut elimination and a permutation-free sequent calculus … 5

Proposition 3. The following rules are admissible:

(i)

Γ ⇒ M : R
Γ >> θM : R

(ii)

Γ > A : P Γ
P

⎯ →⎯ Ms : R

Γ >> ′θ (A, Ms) : R

Proof. By simultaneous induction on the structures of M and Ms
respectively. For example, in the proof of (ii), in the case
 Ms = (M::Mss), the second premiss must be the conclusion of a Split
rule, with P of the form ′P ⊃ ′Q , with premisses Γ ⇒ M : ′P and
Γ ′Q⎯ →⎯ Mss : R . We can now build the proof

Γ > A:P
Γ ⇒ M : ′P

Γ >> θM : ′P
(i)

Γ > ap(A,θM) : ′Q
⊃ E Γ ′Q⎯ →⎯ Mss : R

Γ >> ′θ (ap(A,θM), Mss) : R
(ii)

where (i) refers to an inductive use of (i), M being a substructure of
Ms, and (ii) refers to an inductive use of (ii), Mss being a
substructure of Ms. From this, using the definition of ′θ , we
conclude that Γ >> ′θ (A, M::Mss) : R . QED.

Proposition 4. The following rules are admissible:

(i)

Γ >> N : R
Γ ⇒ ψN : R

(ii)

Γ > A : P Γ
P

⎯ →⎯ Ms : R

Γ ⇒ ′ψ (A, Ms) : R

Proof. By simultaneous induction on the structures of N and A
respectively. QED.

Using the Curry-Howard correspondence between [normal] terms of the
simply typed lambda calculus and the [normal] natural deductions of
intuitionistic implicational logic, we thus have a 1-1 correspondence between the
typed terms M and the normal natural deductions N of the same logic. There are
well-known problems [20] of ensuring that the Curry-Howard correspondence is
1–1; so we use assumption classes in our natural deductions, and then the
correspondence is (for closed terms and assumption-free proofs) 1–1 modulo α-
convertibility (more generally, it is 1–1 modulo choice of variable names).

More precisely, we are considering a version of natural deduction where
contexts Γ are multisets of formulae, judgments are sequents Γ ⇒ P and deductions
are trees; assumption discharge is achieved by discharging at most one assumption
class, i.e. an occurrence of the assumption in the context. Deductions are normal if
they contain no introduction step immediately followed by an elimination. Search
for the normal natural deductions of a sequent Γ ⇒ P is thus transformed by the
above results into the problem of searching in the calculus MJ, which, in contrast

6 R. Dyckhoff, L. Pinto

to NJ, has (like LJ) the immediate sub-formula property and, in contrast to LJ, has
its derivations in 1-1 correspondence with the (normal) deductions of NJ.

3. Termination of the cut reduction rules
We now consider the syntax of MJ extended to MJcut by allowing constructors for
terms representing derivations using a cut rule. Since there are two kinds of
sequent, there are several (in fact, four) cut rules. For convenience in proving cut-
elimination, the constructors cuti have an extra argument, the cut formula. The
context-free syntax is given by adding the productions

Ms : := cut1(P, Ms, Mss) | cut2(P, M,V.Ms)

M : := cut3(P, M, Ms) | cut4(P, M,V.M)

and the typed syntax is as follows:

Γ Q⎯ →⎯ Ms : P Γ P⎯ →⎯ Mss : R

Γ Q⎯ →⎯ cut1(P, Ms, Mss) : R
Cut1

Γ ⇒ M : P Γ
P

⎯ →⎯ Ms : R

Γ ⇒ cut3(P, M, Ms) : R
Cut3

Γ ⇒ M : P Γ,x:P Q⎯ →⎯ Ms : R

Γ Q⎯ →⎯ cut2(P, M,x.Ms) : R
Cut2

Γ ⇒ M : P Γ,x:P ⇒ ′M : R
Γ ⇒ cut4(P, M,x. ′M) : R

Cut4

.

The theorem (attributed by Herbelin to Coquand) asserting the admissibility of
these rules is a weak cut-elimination theorem: more powerfully one can prove [16,
17] by Dragalin’s method the (strong) termination, i.e. that every reduction
sequence is finite, of the following complete set of reduction rules:

cut1(P,[], Mss) → Mss

cut1(P, M::Ms, Mss) → M::cut1(P, Ms, Mss)

Cut elimination and a permutation-free sequent calculus … 7

cut2(P, M,x.[]) → []

cut2(P, M,x.(′M ::Ms)) → cut4(P, M,x. ′M)::cut2(P, M,x.Ms)

cut3(P,(x; Ms), Mss) → (x;cut1(P, Ms, Mss))

cut3(S ⊃ T ,λy.M,[]) → λy.M

cut3(S ⊃ T ,λy.M, ′M ::Ms) → cut3(T ,cut4(S, ′M , y.M), Ms)

cut4(P, M,x.(y; Ms)) → (y;cut2(P, M,x.Ms)) (y ≠ x)

cut4(P, M,x.(x; Ms)) → cut3(P, M,cut2(P, M,x.Ms))

cut4(P, M,x.(λy. ′M)) → λy.cut4(P, M,x. ′M)

The completeness of this set of rules is simply the fact, obvious by inspection, that
every term beginning with a cut (and whose sub-terms are cut-free) matches at
least one left-hand side. So, each irreducible term is cut-free. One also needs to
show for each reduction rule L → R that the appropriate one of the two inference
schemata

Γ
P

⎯ →⎯ L : Q

Γ
P

⎯ →⎯ R : Q
Γ ⇒ L : Q
Γ ⇒ R : Q

is admissible: this is routine. In fact, one can show more: w.r.t. the “obvious”
interpretation Θ of the terms of the extended calculus M Jcut into N Jcut,
 Θ(L) = Θ(R) or (just the seventh rule) Θ(L) →β Θ(R) , where →β is the usual β -

reduction relation. [11] gives details of these two arguments in our own notation.

Our own proof of this termination result depends on the recursive path
ordering (r.p.o.) theorem of Dershowitz [7]. Let > be a transitive and irreflexive
ordering on a set F of operators, and T(F) be the set of closed terms over F . Then
>rpo is defined recursively on T(F) by

 s = f (s1 ,…, sm) >rpo g(t1 ,…,tn) = t

iff
si ≥rpo t for some i = 1,…,m

or

 f > g and s >rpo tj for all j = 1,…,n

or
f = g and {s1 ,…, sm} >>rpo {t1 ,…,tn}

where >>rpo is the extension of >rpo to finite multisets and ≥rpo means >rpo or

equivalent up to permutations of subterms. The r.p.o. theorem says that if > is
well-founded, then so is >rpo.

8 R. Dyckhoff, L. Pinto

We treat the term cut1(P, Ms, Mss) as if made up of an operator cut1(P) and

two arguments Ms and Mss ; similarly for the other cut terms. The operators are
then ordered according to the following rules:

 cuti(P) > cutj (Q) for P > Q and i, j = 1,2,3 or 4

cut4(P) > cut3(P)

cut4(P) > cut1(P)

cut2(P) > cut3(P)

cut2(P) > cut1(P)

For the non-cut terms, we have the operators ';', 'λ', '::' and '[]', which just need to
be ordered below each of the cuti(P) operators. The formulae P can be ordered by
the sub-term relation. We thus have an ordered set (Op,>) of operators

Op = { cuti(P) : i = 1, 2, 3 or 4, P a formula } ∪ { ';', 'λ', '::', '[]' }

Proposition 5. The ordering > on Op is transitive, irreflexive and well-

founded.
Proof. Transitivity follows by examination of cases. Irreflexivity is trivial.
The only possibility of an infinite decreasing sequence is of the form
cuti0

(P0) > cuti1
(P1) >… whose length must be bounded by twice the depth of P0

since each reduction either reduces the argument P or both fixes P and reduces
the suffix of the cut from 4 or 2 to 3 or 1. QED.

It follows from the r.p.o. theorem that >rpo on the set of closed typed terms of

MJcut is well-founded. “Closed” in this context means containing no free
metavariables.

Theorem. The set of cut-reduction rules of MJcut is strongly terminating.
Proof. We must check for each instance of a cut-reduction rule that the LHS
>rpo RHS. Here we check just two of the rules to illustrate the technique:

(i) cut3(S⊃T,λy.M, M'::Ms) >rpo cut3(T, cut4(S,M',y.M), Ms)
because cut3(S⊃T) > cut3(T)

because S⊃T > T

and
cut3(S⊃T,λy.M, M'::Ms) >rpo cut4(S,M', y.M)

because cut3(S⊃T) > cut4(S)
because S⊃T > S

and cut3(S⊃T,λy.M, M'::Ms) >rpo M'
because M':: Ms ≥rpo Ms

and cut3(S⊃T,λy.M, M'::Ms) >rpo M

Cut elimination and a permutation-free sequent calculus … 9

because λy.M ≥rpo M

and
cut3(S⊃T,λy.M, M'::Ms) >rpo Ms.

because M'::Ms ≥rpo Ms

(ii) cut4(P,M, x.(x;Ms)) >rpo cut3(P,M,cut2(P,M, x.Ms))
because cut4(P) > cut3(P)
and cut4(P,M, x.(x;Ms)) >rpo M

because M ≥rpo M
and cut4(P,M, x.(x;Ms)) >rpo cut2(P,M, x.Ms)

because cut4(P) = cut2(P)
and {M, (x;Ms)} >>rpo {M, Ms}

because (x;Ms) >rpo Ms.

There is a minor problem: cut4(P) and cut2(P) are not necessarily equal; indeed no
order between them can be inferred from the above definition of >. So one must
work instead not with the operators as given but with equivalence classes
generated by the conditions that cut4(P) = cut2(P) and cut3(P) = cut1(P). This causes
no additional difficulties. QED.

4. Related work
Dershowitz [7], Okada (unpublished, see [3]), Cichon et al [3] and Tahhan
Bittar [26, 27] have drawn attention to the applicability of term rewriting
techniques (going back to Gentzen [13]) in proofs of cut elimination. As noted
above, Herbelin’s own proof of strong cut-elimination for his calculus LJT uses the
more complex structural induction technique of Dragalin [8].

Herbelin’s notation (his “normal λ -expressions”) for the terms of MJ is
similar to ours in the cut-free case; for the terms with cut, he uses a notation
involving explicit substitutions, such as (t[x:=t']) where we would use
cut4(P,M',x.M). Our own notation, chosen initially for the applications in [12] (and
a forthcoming verification [1] thereof in Coq), made it easier for us to see how to
order terms as required for the proof using the r.p.o. theorem. We have adopted a
notation used in logic programming [21] for judgments with a “privileged” or
“stoup” formula rather than Herbelin’s Γ; P|−Q (with P optional).

Howard [18] also has a calculus which allows a bijective correspondence
with (normal) natural deduction; but this correspondence no longer works well
when disjunction is taken into account. The intercalation calculi [25, 4] of Sieg and
Cittadini are similar, in having formulae in special positions in the sequent, but
with extra features to ensure (in the propositional case) termination of the proof
search.

10 R. Dyckhoff, L. Pinto

5. Conclusion and further work
For a sequent calculus so natural that Gentzen might well have discovered

it (rather than LJcut) as an alternative to natural deduction, we have shown how
to use the r.p.o. theorem to prove cut-elimination. Use of this technique is not
novel, but is much simpler than the Dragalin-style proof in [16, 17]. (One can even
more easily apply the same technique to LJcut.) Maybe it is possible to adapt the
r.p.o. technique to prove strong normalisation of the typed lambda calculus itself,
but the difficulty, noted in the last sentence of [17], of including the (in our
notation) cut-reduction rule

 cut4(P, ′M , y.cut3(Q,λx.M, Ms)) → cut3(Q,cut4(P, ′M , y.λx.M),cut2(P, ′M , y.Ms))

is unresolved.

Elsewhere we show (or plan to show) how the MJ calculus is well-suited
both for applications to inductive arguments [5, 12, 15] about other sequent calculi
and for proof search. The same methodology, of finding a calculus between a
sequent calculus (admitting lots of permutations) and a natural deduction system
(without the immediate subformula property), should also be applied to
substructural logics. As suggested by a referee, it would be interesting to relate the
Dragalin-style proofs and the r.p.o.-based proofs; in particular, to see which proof
methods give effective bounds on the maximal length of cut-reduction sequences.
Our suspicion is that it is the former.

6. Acknowledgments
Special thanks are due to Andrew Adams, Adam Cichon, Hugo Herbelin, Frank
Pfenning and Elias Tahhan Bittar for making [1], [3], [16], [23] and [27] available
before publication.

7. References
[1] Adams, A. A.: “Meta-theory of sequent calculus and natural deduction systems in Coq”, in

preparation (St Andrews University).

[2] Andreoli, J.-M.: “Logic programming with focusing proofs in linear logic”, Journal of Logic
and Computation, 2 (1992), 297–347.

[3] Cichon, E. A., M. Rusinowitch and S. Selhab: “Cut elimination and rewriting: termination
proofs”, in preparation (preprint received in June 1996), INRIA-Lorraine, Nancy, France.

[4] Cittadini, S.: “Intercalation calculus for intuitionistic propositional logic”, Report 29 in
Philosophy, Methodology, Logic Series, Carnegie Mellon University (1992)..

[5] Cubric, D.: “Interpolation property for bicartesian closed categories”, Arch. Math. Logic 33
(1994), 291–319.

[6] Danos, V., J. B. Joinet and H. Schellinx: “LKQ and LKT: Sequent calculi for second order
logic based upon dual linear decompositions of classical implication”, in “Advances in
Linear Logic” (Proceedings of the Cornell Workshop on Linear Logic, edited by J.–
Y. Girard, Y. Lafont and L. Regnier), Cambridge University Press (1995), 211–224.

[7] Dershowitz, N.: “Orderings for term-rewriting systems”, Theoretical Computer Science 17
(1982), 279–301.

Cut elimination and a permutation-free sequent calculus … 11

[8] Dragalin, A.: Mathematical intuitionism — Introduction to proof theory, AMS Translations
of Mathematical Monographs 67 (1988).

[9] Dyckhoff, R.: “Contraction-free sequent calculi for intuitionistic logic”, Journal of Symbolic
Logic 57 (1992), 795–807.

[10] Dyckhoff, R. & L. Pinto: “Uniform proofs and natural deductions”, in Proceedings of
CADE-12 workshop on “Proof search in type theoretic languages” (edited by D. Galmiche
& L. Wallen), Nancy, June 1994.

[11] Dyckhoff, R. & L. Pinto: “A permutation-free sequent calculus for intuitionistic logic”, St
Andrews University Computer Science Research Report CS/96/9 (August 1996).; revised
version from "http://www-theory.dcs.st-and.ac.uk/~rd/".

[12] Dyckhoff, R. & L. Pinto: “Permutability of proofs in intuitionistic sequent calculi”,
submitted (1996) for publication; abstract appeared in Proceedings of 10th International
Congress on Logic, Methodology and Philosophy of Science, held at Florence (1995).

[13] Gentzen, G.: “The collected papers of Gerhard Gentzen”, (M. Szabo, editor), North-
Holland, Amsterdam 1969.

[14] Girard, J.-Y.,: “A new constructive logic: classical logic”, Mathematical Structures in
Computer Science 1 (1991), 255–196.

[15] Girard, J.-Y., A. Scedrov & P. Scott : “Normal forms and cut-free proofs as natural
transformations”, in “Logic from Computer Science”, MSRI publications, Y. Moschovakis
(editor), 21, Springer-Verlag, (1992), 217–241.

[16] Herbelin, H.: “A λ-calculus structure isomorphic to sequent calculus structure”, preprint,
(October 1994); now available at "http://capella.ibp.fr/~herbelin/LAMBDA-BAR-
FULL.dvi.gz".

[17] Herbelin, H.: “A λ-calculus structure isomorphic to Gentzen-style sequent calculus
structure”, Proceedings of the 1994 conference on Computer Science Logic, Kazimierz
(Poland), (edited by L. Pacholski & J. Tiuryn), Springer Lecture Notes in Computer Science
933 (1995), 61–75.

[18] Howard, W.A.: “The formulae-as-types notion of construction”, in To H. B. Curry, Essays
on Combinatory Logic, Lambda Calculus and Formalism, (edited by J.R. Hindley & J.P.
Seldin), Academic Press (1980).

[19] Kleene, S. C.: “Permutability of inferences in Gentzen’s calculi LK and LJ”, Mem. Amer.
Math. Soc. (1952), 1–26.

[20] Leivant, D.: “Assumption classes in natural deduction”, Zeitschrift für math. Logik 25
(1979), 1–4.

[21] Miller, D.: “FORUM: a multiple-conclusion specification logic”, Theoretical Computer
Science, 165 (1996), 201–232.

[22] Miller, D., G. Nadathur, F. Pfenning & A. Scedrov : Uniform proofs as a foundation for
logic programming, Annals of Pure and Applied Logic 51 (1991), 125–157.

[23] Pfenning, F.: “Notes on deductive systems”, Carnegie Mellon University, (June 1994).

[24] Prawitz, D.: “Natural deduction”, Almquist & Wiksell, Stockholm (1965).

[25] Sieg, W.: “Mechanisms and search”, AILA preprint 14 (1992).

[26] Tahhan Bittar, E.: “Gentzen cut elimination for propositional sequent calculus by rewriting
derivations”, Pub. du Laboratoire de Logique, d’Algorithmique et d’Informatique de
Clermont 1, Université d’Auvergne, 16 (1992).

[27] Tahhan Bittar, E.: “Strong normalisation proofs for cut elimination in Gentzen’s sequent
calculi”, Prépub. du Laboratoire de Logique, d’Algorithmique et d’Informatique de
Clermont 1, Université d’Auvergne, 56 (1996).

[28] Troelstra, A. S., and D. van Dalen: “Constructivism in mathematics: an introduction (vol
2)”, North Holland, 1988.

[29] Troelstra, A. S., and H. Schwichtenberg, “Basic Proof Theory”, Cambridge University
Press, 1996.

