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Abstract

The production of dextran and fructose from carob pod extract (CPE) and cheese whey (CW) as carbon source by the bacteriumLeuconostoc
mesenteroideswas investigated. The influence of secondary carbon sources (maltose, lactose and galactose) on dextran molecular weight and
fermented broth viscosity were also studied.
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Significant changes were not observed in broth viscosity during dextran production at initial sucrose concentration of 20 and
Complementary sugars maltose, lactose and galactose together with sucrose promote production of dextran with fewer glucose u
tran molecular weight decreases from the range 1,890,000–10,000,000 to 240,000–400,000 Da when complementary sugars a
Polydispersity was improved when complementary sugars were used.

Fermentation using mixtures of carob pod extract and cheese whey confirm these results obtained for production of dextran. Fina
trations of dextran and fructose indicate that reaction yields were not affected. Carob pod and cheese whey can be successfully u
material in the fermentation system described.

The maximum concentrations of dextran and fructose obtained using carob pod extract resulted in 8.56 and 7.78 g/l, respectively. C
carob pod extract and cheese whey resulted in dextran and fructose concentrations of 7.23 and 6.98 g/l, respectively. The correspond
mean molecular weight was 1,653,723 and 325,829.
© 2005 Published by Elsevier B.V.
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1. Introduction

Dextran is a d-glucose polymer composed of 95%
�(1→ 6) linkages in the linear chain. Commercial applica-
tions for dextran are generally in the pharmaceutical industry,
but new applications are being considered in the food and tex-
tile industries[1,2]. Dextran for human applications usually is
produced byLeuconostoc mesenteroidesNRRL B512(f)[3].
The bacterium is grown in a sucrose-rich media releasing
an enzyme, dextransucrase, which converts excess sucrose
to dextran and fructose[4]. When high sucrose concentra-
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tion is used to produce dextran and fructose, broth viscos
becomes high and process control becomes more diffic
Acceptor molecules, such as maltose present in the cul
media can influence dextran molecular weight by allowin
the growing chain to be separated from the enzyme ac
site and transferred to the acceptor[5–7].

A reduction in dextran molecular weight was observe
[8] together with less viscous and more Newtonian s
lutions, when working at lower temperatures. Howeve
Choplin and Sabatie[9] showed that dextran produced a
lower temperatures was less branched and as a result m
viscous.

The rheological behaviour of the broth depends on t
species of microorganism being cultured and on the proc
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conditions. Several authors[10,11,9]studied the rheological
behaviour of cultures ofLeuconostoc mesenteroidesrich in
dextran. Different results were obtained for different strains
and process conditions.

Carob (Ceratonia siliqua) is a perennial leguminous tree,
native to the Mediterranean basin and Southwest Asia. It
has been cultivated throughout the Mediterranean region
for approximately 4000 years. Portugal and Spain have
approximately 100,000 ha of carob trees and process ap-
proximately half of the world’s commercial carob supply.
World carob pod production is approximately 315,000 t per
year and the main carob bean producers and exporters
are Spain (42%), Italy (16%), Portugal (10%), Morocco
(8%), Greece (6.5%), Cyprus (5.5%) and Turkey (4.8%)
[12].

Carob is drought-resistant, requires little maintenance
and produces a range of products from the seed and the
pod. The endosperm is extracted from the seeds to produce
a galactomannan, which forms locust bean gum, a valuable
natural food additive used also in textile and cosmetic
industries. The pod is useful for high-energy stock feed and
the human food industry as a cocoa substitute and in syrups.
Carob pod is also an anti-diarrheic product[13] because of
its high tannin content.

Avallone et al. [14] determined carob pod composi-
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2. Materials and methods

2.1. Microorganism and inoculum

The strain used in this work wasLeuconostoc mesen-
teroides NRRL B512(f) obtained from DSM (Deutsche
Sammlung von Mikroorganismen und Zellkulturen GmbH)
in freeze-dried vials. Inoculum preparation is described else-
where[20].

2.2. Fermentation experiments

The composition of the fermentation medium used to
study the effect of initial sucrose concentration on the rhe-
ology of the fermentation broth was as follows: sucrose (20
or 120 g/l), yeast extract (7 g/l) and K2HPO4 (8 g/l). The pH
of the medium was adjusted, using HCl 4 M, to the value
required prior to autoclaving (15 min at 121◦C).

To assay the influence of complementary sugars on
dextran properties, four different experiments were carried
out in order to produce dextran with different molecular
weight. The first fermentation run was a typical fer-
mentation as described elsewhere[20] with sucrose as
substrate.

The other three runs were similar to the first one, but a
ith

lac-

nd
ere
ly

ct
l

nd
se
ct
od

st
PE
e
ed
a
e
l

d

ia.
-
al
ntos
tion. High content of carbohydrates (45%, sucrose at mo
than 30%), appreciable amounts of protein (3%) and lo
levels of fat (0.6%) were found. High tannin content i
also present in carob pod composition, which limits th
consumption by cattle because of reduced digestibil
[15].

Research has been carried out[16–18] fermenting
carob pod extract to produce high-value products. Ho
ever, dextran and fructose production using carob pod e
tract has not been investigated and may have substan
benefits.

Another potential area of economic benefit is ne
uses of milk sugar, which presents a challenge to da
research and the industry. Indeed, the market for la
tose in the pharmaceutical industry is over-saturated a
all the routes to chemically modify this sugar in prod
ucts, such as lactulose, lactitol and detergents invo
only small markets. The dairy industry worldwide is in
vestigating markets for by-products containing high la
tose content, such as whey. The worldwide lactose s
plus is actually 550,000 t per year[19]. Environmental
constraints fully justify discouraging direct discharge o
such a large amount witch has the equivalent polluting p
tential of 18 million people. The potential to create eco
nomical value from lactose containing liquids exists b
fermentation.

The aim of the present investigation was to study the pr
duction of dextran and fructose from carob pod extract a
cheese whey. Also, the influence of acceptors (maltose, l
tose and galactose) on the molecular weight of dextran w
studied.
-
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second carbon source was added to the media together w
sucrose. The complementary sugars used were maltose,
tose and galactose at 0.5% (w/v).

To test dextran production using carob pod extract a
cheese whey as substrates batch fermentation runs w
carried out using (a) carob pod extract (CPE) (approximate
20 g/l of sucrose initial concentration) with yeast extra
(4 g/l), and (b) CPE (approximately 20 g/l of sucrose initia
concentration) complemented with yeast extract (4 g/l) a
a percentage of cheese whey (CW) to obtain 5 g/l of lacto
in the fermentation medium (CPE + CW). Yeast extra
was added as no biomass growth occurs in pure carob p
extract. Appropriate dilutions were made in order to adju
sucrose and lactose initial concentrations of the media (C
or CPE + CW). To prepare 3 l of a 20 g/l initial sucros
concentration extract, 645 ml of carob pod extract were us
on a 5 l working volume batch reactor. To prepare 3 l of
20 g/l initial sucrose concentration and 5 g/l initial lactos
concentration extract, 645 ml of CPE were mixed with 234 m
of autoclaved cheese whey and with 2121 ml of distille
water.

2.3. Bioreactor

A 5 l bioreactor (Braun, Biostat® MD) was used to per-
form all experiments. A MCU-200 unit was used to perform
agitation and acid/base addition to the fermentation med
A micro DCU-Twin unit was used to monitor the fermen
tation experiment. Temperature control was by an extern
bath. The process conditions used are as described by Sa
et al.[20].
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2.4. Carob pod extract preparation

Carob pod residues from the galactomannan industry were
supplied by Indal (Algarve, Portugal). Carob pods were re-
ceived in small particles (0.5 cm× 0.5 cm× 0.25 cm) and re-
duced to flour with a hammer mill (Retschmuhle).

Sucrose extraction was carried out by mixing 100 g of
carob pod flour with 400 ml of an acetic acid/sodium acetate
buffer pH 7.4. The temperature was 70◦C and agitation was
100 rpm. After the first hour, samples were centrifuged at
4◦C and 8000 rpm for 10 min. Sucrose, glucose and fructose
concentrations were 93, 32 and 29 g/l, respectively.

Carob pod flour has a high content of tannins that can be
transferred to aqueous phase during sugar extraction. This
must be prevented because they inhibit bacterial growth;
acetic acid/sodium acetate buffer pH 7.4 was used to con-
trol tannin dissolution on the aqueous phase.

2.5. Cheese whey preparation

Cheese whey was obtained from a cheese company
(“Quinta dos Ingl̂eses”, Braga, Portugal), pH upon reception
being 5.0. Proteins were precipitated by autoclaving whey for
15 min at 121◦C and removed by centrifugation at 4◦C and
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2.8. Viscosity study

A moving body viscometer (Gilmont®) was used.
Here, the movement of a sphere through the sample is
studied—Stokes law[21]:

η = 2r2g(ρs − ρl)

9v
(1)

whereη is viscosity,r the sphere radius,ρs andρl the sphere
and liquid density, respectively;g is gravitational force and
v sphere velocity.

Generalised Stokes law can be written as:

η = k(ρs − ρl)

v
(2)

wherek is the instrument constant, measured by calibration
with standard fluids.

The instrument equation for viscosity is:

η = K × (ρs − ρl) × t (3)

whereη is viscosity in centipoises (cp),ρs the glass sphere
density (2.53 g/ml),t the time (min) that the sphere takes to
reach the bottom of the sample andK the viscometer constant
(K= 3.3 cp ml/g/min).

Samples were collected every 2 h till the end of fermenta-
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8000 rpm for 10 min. Supernatant contained 64 g/l of lacto

2.6. Bacterial growth determination

Bacterial growth was followed by UV spectrophotom
etry (660 nm). A calibration curve of dry weight versu
o.d. (660 nm) was used to determine biomass concentra
(g biomass/l). Bacterial growth was determined as opti
density because of numerous contaminants suspended i
carob pod extract culture media that causes difficulties in
weight biomass determination.

In order to avoid any influence of the material in suspe
sion in o.d. values of the fermented broth, all the obtain
values were subtracted by the initial o.d. value of culture m
dia (before inoculation was done).

2.7. Sugar analysis

The levels of sugar in carob pod extract and cheese w
and the concentrations of residual sugar and products w
determined by HPLC with RI detection. An ion-exchang
column (Interaction, model 300) was used. Solvent w
H2SO4 0.005N and flow rate was 0.3 ml/min.

Dextransucrase activity was assayed by measuring
amount of sucrose consumed. One dextransucrase
(1 DSU) was defined as the amount of enzyme that c
verts 1 mg of sucrose in 1 h under ideal reaction con
tions (T= 30◦C; pH 5.0) [4]. Samples were centrifuged a
5000 rpm for 5 min to remove biomass before analysis.
.
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tion and viscosity was measured at 26C.

2.9. Characterisation of dextran molecular weight

Size exclusion chromatography (SEC) was used to ch
acterise the molecular size distribution of dextran[22]. The
column used was a NUCLEOGEL GFC 4000-8 (Machere
Nagel) on a system equipped with a refractive index det
tor. The column was previously calibrated using dextran
different molecular weight (Sigma). Samples were collect
during fermentation runs and centrifuged in order to remo
cellular mass.

Operating conditions wereT= 26◦C and pH 7; the eluent
was pure water at 1 ml/min.Fig. 1 presents the calibration
curve obtained by Eq.(4):

Mw = 1.27× 1017V−14.88
e (4)

Fig. 1. Calibration of gel filtration chromatography column with dextra
solutions of different molecular weight; Mw vs. volume eluted (Ve).
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Fig. 2. Variation of biomass concentration and fermentation supernatant vis-
cosity for fermentations with initial sucrose concentration of 20 and 120 g/l.

where Mw is molecular weight in Dalton andVe the elution
volume in ml.

Dextran samples from fermentation were passed through
the column and a study on the distribution of obtained
molecular weight was done[23]. From Eqs.(5) and (6),
mean molecular weight in number (Mn) and mean molec-
ular weight in mass (Mw) were calculated. Polydispersity
(Q) was calculated as being the ratioMw/Mn.

Mn =
∫

ydVe∫
(y/Mw)dVe

(5)

Mw =
∫

Mw × ydVe∫
ydVe

(6)

Q = Mw

Mn
(7)

In Eqs.(5) and(6), y represents the chromatogram signal in
mV.

3. Results and discussion

3.1. Effect of sucrose concentration on the viscosity of
the fermentation broth

g

tia

amount of sucrose, final dextran and cell concentration will
never be over 10 g/l and so we are in presence of a Newtonian
solution and the viscosity study is simplified.

Fig. 2demonstrate that for the operating conditions used in
this study, the viscosity is not much affected suffering a small
variation from the beginning to the end of the fermentation.

These results are very important because potential rhe-
ological problems will not occur if fermentations are per-
formed at the same conditions. Expensive powerful agitation
systems are not needed to promote homogenisation of these
fermentation units.

3.2. Effect of complementary sugars on dextran
properties

The presence of complementary sugars on fermentation
media causes a reduction on dextran molecular weight from
the moment polymer starts being produced, leading also to
higher values of polydispersity (Table 1). The smallest values
for dextran molecular weight were obtained for maltose as
an acceptor, followed by lactose and galactose. It can also
be seen that the acceptor molecules improveQ from 1.87 for
fermentation with sucrose only, to a maximum value of 7.85
for fermentation with sucrose and lactose or galactose.

However, dextran and fructose production is not consider-
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Landon et al.[11] concluded that fermented broth with
10 g/l of dextran and cell concentration between 5 and 10
shows a Newtonian behaviour.

Process conditions were determined elsewhere[20] and
the sucrose concentration used was 20 g/l. For this ini

Table 1
Calculated values ofMw, Mn, Q and Mw intervals obtained in each one o

Sugar t (h) B (g/l) D (g/l) F (g/l) E (DSU/m

Maltose 8 5.73 7.66 7.79 49.73
Lactose 10 4.8 6.88 7.00 30.64
Galactose 10 5.58 7.08 7.37 52.74
Sucrose only 10 6.04 7.48 7.19 55.28

Final concentration of biomass (B), dextran (D), fructose (F), enzyme activ
/l

l

ably affected by acceptor molecules. Complementary sug
allow the growing chain to be separated from the enzy
active site and transferred to the acceptor reducing size
dextran molecules.

None of the three complementary sugars is consum
by the bacteria and fermentation time varies between 8
10 h. In the presence of lactose, dextransucrase produc
is strongly inhibited (less 40% enzyme being produced),
dextran and fructose final yield is maintained.

3.3. Dextran and fructose production using carob pod
extract and cheese whey

The main point of the work presented in this sectio
was to produce lower molecular weight dextran using ag
industrial residues. This is an important issue, because c
panies have to deal with the residues they are produc
re-using them is an optimal solution.

Samples were collected every 2 h along fermentation a
treated as described elsewhere[20]. Results of both fermen-
tations can be observed onFigs. 3 and 4. Biomass growth is
smaller and sucrose consumed is higher in presence of

he fermentations carried out with complementary sugars

) Mw Mn Q Mw interval

240,800 35,800 6.72 3,440,651–7941
311,700 39,700 7.85 7,294,851–8209
398,500 34,000 7.85 9,255,139–674

1,890,500 10,000,000 1.87 14,677,264–183

() and fermentation time (t) are also reported.
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Table 2
Calculated values ofMw, Mn, Q and Mw intervals obtained in each one of the fermentations carried out with carob pod extract (CPE) and carob pod extract
enriched with cheese whey (CPE + CW)

Sugar t (h) B (o.d.× 10) D (g/l) F (g/l) E (DSU/ml) Mw Mn Q Mw interval

CPE 12 5.82 8.56 7.78 53.2 1,653,723 8,981,231 1.84 12,845,641–190,837
CPE + CW 12 5.07 7.23 6.98 29.5 325,829 43,322 7.52 7,875,371–8879

Final concentration of biomass (B), dextran (D), fructose (F), enzyme activity (E) and fermentation time (t) are also reported.

Fig. 3. Biomass and sucrose consumption during fermentation using carob
pod extract and a mixture of carob pod extract and cheese whey.

tose. Lesser quantities of biomass indicate lesser extracellular
enzyme produced. Once more, data analysis (Fig. 4) shows
a clear inhibition of dextransucrase synthesis in presence of
lactose, around 40% fewer enzymes produced. Lopretti et al.
[24] have already concluded this but the main issue is to pro-
duce dextran, and biopolymer production levels are good as
we can observe by analysis of bothTables 1 and 2. Enzyme
produced is then enough to break glucose–fructose linkages
in sucrose, liberating fructose and producing dextran. Sam-
ples collected at the end of both fermentations were used to
study dextran properties.Table 2shows these results.

Confirming studies of previous section of this work, dex-
tran molecular weight is considerably lower when produced
in presence of lactose as a complementary sugar in fermen
tation media. Mean molecular weight in mass found was
1,653,723 when carob pod extract (CPE) was used, an
325,829 when cheese whey was added to the carob pod e

atio
whe

tract (CPE + CW). It is important to notice that these values
are of the same order of magnitude of those obtained when
pure sugars were used in the culture medium (Table 1).

4. Conclusions

From the study of viscosity we conclude that for sucrose
concentration of 20 and 120 g/l, the viscosity broth does not
have a strong negative impact on homogenisation when scal-
ing up dextran and fructose production.

Controlling dextran molecular weight with manipulation
of fermentation media composition is very important. Lower
costs to hydrolyse long dextran chains to shorter ones may be
obtained using complementary sugars in fermentation media.

On the studied cases, dextran molecular weight fell from
the range of 1,890,000–10,000,000 Da using only sucrose to
values between 240,000 and 400,000 Da, when using other
sugars together with sucrose. A wider range of dextran molec-
ular weights implies higher polydispersity values. Lactose is
an enzyme production inhibitor but final dextran and fructose
yield is maintained, so if the objective is to produce dextran-
sucrase together with dextran, complementary sugars may be
optimal.

L. mesenteroidesNRRL B512(f) grows and produces the
extra-cellular enzyme dextransucrase and also dextran and

ce
er

.

n

-
ol.

f

s

Fig. 4. Dextransucrase, dextran and fructose production during ferment
using carob pod extract and a mixture of carob pod extract and cheese
-
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fructose on carob pod extract and cheese whey. In presen
of cheese whey lactose, dextran produced is also of a low
molecular weight.
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