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Abstract: In this paper an adaptive model-based algorithm is proposed for the on-line 
estimation of reaction rates in stirred tank bioreactors. The main design condition imposes that 
the observation errors reflecting the mismatch between the estimated parameters and the 'true' 
values follow second-order dynamics of convergence. The gain matrices are shown to be  
functions of the state and of user-defined damping coefficients and natural periods of 
oscillation for second-order trajectories. The application of the algorithm is illustrated with a 
simple case-study involving the estimation of the specific reaction rate for a single substrate, 
single product scheme. 
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1. THE ESTIMATION PROBLEM 
 
Model-based state observation and parameter 
estimation represent fundamental tools for monitoring 
and control of biotechnological processes. Dochain 
and Bastin (1990) established a general theoretical 
framework for the analysis of bioreactor dynamics. 
The concept of a general state space dynamical model 
and that of minimal kinetic modelling were proposed  
d
dt

KH D F
ξ

ξ ρ ξ ξ= − + −( ) ( ) Q  (1) 

 
where ξ is the state vector (the set of n component 
concentrations), K an (n×m) yield coefficients matrix, 
D the dilution rate, F the feed rate vector with 
dim(F)=n and Q the gaseous outflow rate vector with 
dim(Q)=n. The reaction rates are defined as 
ϕ(ξ)=Hξ)ρ(ξ) to take advantage of any possible 
knowledge of the kinetic model, being H(ξ) a m×r 
matrix of known functions of the state and ρ(ξ) a 
vector of r unknown functions of the state.  
 
This general model constitutes the core element for 
the design of state observers and parameter 

estimators. A wide class of problems is covered, 
depending upon the degree of knowledge of the 
process model. The reaction rates ϕ are most often 
complex functions of the operating conditions and of 
the state of the process. Situations like 'unknown 
(some or all) yield coefficients', or 'unknown or 
partially known kinetic models' are extensively 
studied and discussed in the literature (Bastin and 
Dochain, 1990; Pomerleau and Perrier, 1990; Feyo 
de Azevedo et al., 1992). The construction of a 
suitable kinetic model may constitutes a difficult task, 
if not an impossible one. As such, there is a clear 
incentive to design estimators of the unknown 
functions ρ(ξ). 
 
The algorithm presented below addresses a class of 
estimation problems which can be defined in the 
following four points -  
 
i. The biotechnological process can be described by 

the state space dynamical model (1); 
ii. The yield coefficients (matrix K) are known and 

invariant; 
iii. The dilution rate D, the feed rates F and the 
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gaseous outflow rates Q are known on-line; 
iv. The state variables are known on-line either by 

measurement or by means of a state observer. 
 
As such, the scope of the algorithm will be the on-
line estimation of ρ(ξ) from the on-line knowledge of 
D, F, Q and ξ. 
 
For this general problem observer-based estimators 
were proposed (Bastin and Dochain, 1990; 
Pomerleau and Perrier, 1990), involving trial and 
error procedures or employing pole placement 
arguments for the tuning of the regression gain 
matrices. The latter, albeit with a theoretical basis, 
tends to be a sensitive technique. In a previous paper 
(Oliveira et al., 1994) a tuning procedure has been 
discussed for the gain matrices of one such algorithm 
which aimed at imposing a second-order dynamics of 
convergence of the estimated reaction rates to their 
true values. It was shown that the characteristic 
parameters of the second-order responses obtained, 
i.e. the natural period of oscillations τi and the 
damping coefficients ζ i were functions of the state 
variables, hence time-varying. In this work an 
adaptive scheme is proposed which imposes second-
order convergence with constant user-defined 
damping coefficients and periods of oscillation, while 
obeying the stability requirements dictated by a 
Lyapunov's analysis (Bastin and Dochain, 1990; 
Narendra and Annaswamy, 1989). 
 
 

2. THE OBSERVER-BASED ESTIMATOR 
 

The proposed kinetics estimator is based on a partial-
state observer which provides estimates of 'r' state 
space variables (ξ1) and on an additional equation for 
the updating of the 'r' parameter estimates. The 

observation error ( )ξ ξ1 1− !  which is supposed to 

reflect the mismatch between the estimated 
parameters and their true values, is used as the driven 
force in the updating law. The two relevant equations 
are stated as follows: 
d
dt

K H D F Q
!

( ! , ) ! ! ( ! )
ξ

ξ ξ ρ ξ ξ ξ1
1 1 2 1 1 1 1 1 1= − + − − −Ω

 (2a) 
d
dt
!

( ! )
ρ

ξ ξ= −Ω2 1 1  (2b) 

 

where !ξ1  denotes the on-line estimate of ξ1 and !ρ  
the on-line estimate of ρ(ξ). Ω1 and Ω2 are square 
(rxr) tuning matrices for the control of stability and 
tracking properties of the algorithm. The defining 
equations for these matrices are the result of stability 
considerations and of the established design 
conditions (eqns. 17a and 17b below).  
 

3. STABILITY ANALYSIS 
 

The dynamics of the observation error ( )ξ ξ1 1− !  

and of the tracking error ( )ρ ρ− !  are obtained by 
subtracting eqn. (2a) from eqn. (1) and by rearranging 
eqn. (2b), leading to the following non-linear error 
system: 

[ ]d
dt

K H H D
( ! )

( , ) ( ! , ) ! ( ! ) ( ! )
ξ ξ

ξ ξ ρ ξ ξ ρ ξ ξ ξ ξ1 1
1 1 2 1 2 1 1 1 1 1

−
= − − − − −Ω

 (3a) 
d

dt
d
dt

( ! )
( ! )

ρ ρ
ξ ξ

ρ−
= − − +Ω2 1 1  (3b) 

where "ρ  is considered as an external perturbation. 

 

The point ξ ξ= ! 1  and ρ ρ= !  is an equilibrium point 
of the unperturbed system. Stating that Ω2 is 
independent of ρ, a linear approximation of the 
unperturbed system around such point gives: 

( )d
dt

C K H
( ! )

( ! , , ! ) ( ! ) ( ! , )( ! )
ξ ξ

ξ ξ ρ ξ ξ ξ ξ ρ ρ1 1
1 2 1 1 1 1 1 2

−
= − − + −Ω

 (4a) 
d

dt
( ! ) ( ! )ρ ρ ξ ξ− = − −Ω2 1 1  (4b) 

being C( ! , , ! )ξ ξ ρ1 2  defined by 

[ ]C K
H

DI N(! , , ! )
( , )!

!

ξ ξ ρ
∂ ξ ξ ρ

∂ξ
ξ ξ

1 2 1
1 2

1
1 1

=












−
=

(4c) 

 
The relevant coefficients matrix for the analysis of 
stability is: 

A C K H= −
−













(! , , ! ) (! , )ξ ξ ρ ξ ξ1 2 1 1 1 2

2 0
Ω

Ω
 (4d) 

 
From the direct method of Lyapunov, it follows that 
the unperturbed system is exponentially stable if - 
 
Condition 1 - the eingenvalues of matrix A have 

strictly negative real parts. 
 
With the convenient and consistent definition of 
matrices Ω1 and Ω2 as: 
 
Ω Ω1 = +C  (5a) 

( )[ ]Ω Γ2 1 1 2

1

=
−

K H ! ,ξ ξ  (5b) 

 
matrix A can then be rewritten as: 

( )
( )[ ]A

K H

K H
=

−

−

















−

Ω

Γ

1 1 2

1 1 2

1

0

! ,

! ,

ξ ξ

ξ ξ
 

 
and the eingenvalues of A (λi, i=1,...,2r) are obtained 
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by solving in order to λ the polynomial equation    
P2r(λ)=0, represented by: 

( )
( )[ ]

− −

− −
=−

Ω

Γ

λ ξ ξ

ξ ξ λ

I K H

K H I

r

r

1 1 2

1 1 2

1 0
! ,

! ,
 (6) 

 
A decoupled solution of (6) is possible by defining Ω 
and Γ as: 
Ω = ωIr  (7a) 
Γ = γIr  (7b) 
 

then, eqn.(6) can be decoupled in "r" eqns.: 
( )λ ω λ γ i  i+ + = 0       i=1,...,r (8) 

which accepts the solutions: 

λ ω ω γi = − ± −
2

1
2

42  (9) 

If the parameter ω is a real positive constant, then 
Condition 1 is obeyed, hence the unperturbed non-
linear error system (3) is exponential stable 
 
In addition, the perturbed system is globally stable 
(i.e. the output error is bounded for all t) if "ρ  is a 
continuously differentiable bounded function. The 
conditions under which this is verified were 
established by Dochain and Bastin (1990) - 
 
Condition 2 - The dilution rate is bounded below: 
0 < ≤ ∀D D t tmin ( )  (10) 
 
Condition 3 - The feed rates are bounded: 
0 < ≤ ∀ ∀F t F ti i t( ) ( )  (11) 
 
Condition 4 - Each reaction involves at least one 

reactant that is neither a catalyst nor an 
autocatalyst. 

 
Condition 5 - ρ(ξ) is a differentiable function of ξ. 
 
It is thus clear that global stability is related to the 
prevalent experimental conditions. 
 
 

4. TUNING AND DYNAMICS OF 
CONVERGENCE 

 
The error system eqns. (3a) and (3b) is the basis for 
the analysis of convergence. Under the restriction of 
employing the linear approximation of this full error 

system, around ξ ξ= ! 1  and ρ = ρ̂, it is possible to 
prove that second order convergence with constant 
parameters can be obtained.  
 
Substituting eqns. (5a) and (5b) (for Ω1 and Ω2) in 
such linearized system gives: 

d
dt

K H
( ! )

( ! ) ( ! )ξ ξ
ξ ξ ρ ρ1 1

1 1 1
−

= − − + −Ω (12a) 

[ ] ( )11
1

1
ˆˆ

ξξρ −Γ= −HK
dt
d

  (12b) 

 
Differentiating eqn. (12b) and combining with (12a) 
results in -   

[ ] [ ] [ ] [ ]Γ ΩΓ− −+ + =1
1

2

2
1

1 1 1K H
d
dt

K H
d
dt

K H K H
! !

!ρ ρ
ρ ρ

 (13) 
 
with definitions (7), eqn. (13) simplifies to 
1 2

2γ
ρ ω

γ
ρ ρ ρd

dt
d
dt

! ! !+ + =  (14) 

 
Setting ω and γ as 

ω ζ
τ= 2

 (15a) 

γ
τ

= 1
2  (15b) 

 
then, eqn. (14) can be rewritten as: 

τ ρ ζτ ρ ρ ρ2
2

2 2d
dt

d
dt

! ! !+ + =  (16) 

 
where τ and ζ represent respectively the well known 
natural periods of oscillation and damping 
coefficients which characterise second order 
trajectories.  
 
Finally, combining eqns. (5a), (5b), (7a), (7b), (15a) 
and (15b) leads to the setting of matrices Ω1 and Ω2 
as: 

( ) ( )Ω1 1 2 1 2
2! , , ! ! , , !ξ ξ ρ ξ ξ ρ ζ
τ

= +C Ir  (17a) 

( )[ ]Ω2 1 2 2 1 1 2

11(! , ) ! ,ξ ξ
τ

ξ ξ=
−

K H  (17b) 

 
 
The adaptive observer-based kinetics estimator is 
thus constituted by eqns. (2a) and (2b), with the 
tuning matrices Ω1 and Ω2 defined by eqns. (17a) and 
(17b). Under the constraints of the validity of the 
linearized tangent observation and tracking error 
model, this scheme leads to a second-order dynamics 

of convergence of ρ̂ to ρ(ξ). The only other condition 

is that matrix K H1 1 2(! , )ξ ξ  is full rank. This is in 
principle attained through an appropriate partition of 
the system state.  
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5. PROCEDURE IMPLEMENTATION 
 
The general procedure implementation can be 
summarised in the following way: 
 

(i) Derive appropriate process dynamical model 
and state observer; 

(ii) Choose suitable state partition ξ1 to satisfy the 
theoretical constraints; derive the observer-
based kinetics estimator; choose a suitable 
sampling time T (problem dependent); 

(ii) At sampling time nT: read available 
information and compute the state either 
solely by direct measurement or by 
additionally applying a state observer 
procedure; 

(iii) Compute a linear interpolation function of the 
state between times (n-1)T and nT; 

(iv) Integrate eqns. (2), employing a finite 
difference 4th/5th order variable step 
integration scheme. At each internal 
integration step, update the regression gains as 
stated by eqns. (17), using where required the 
linearly interpolated values of step (iii)  

 
The theoretical development and the numerical 
implementation are based in continuous-time 
equations. The switch to discrete time versions 
(Euler's approach) as employed by other authors 
(Bastin and Dochain, 1990, Pomerleau and Perrier, 
1990) would raise specific stability questions in 
which the sampling period would play an important 
role. In particular, it can be shown that the sampling 
period would have an upper bound function of the 
tuning parameters ζ and τ. The requirement of too 
frequent measurements may pose practical 
difficulties. With today's availability of computational 
power there seems to be no reason to avoid higher 
order and more complex integration schemes. More 
detailed discussion is out of the scope of this work 
 

 
6. A CASE-STUDY 

 
5.1 The fermentation process 
 
The use of algorithm (2) is illustrated through a 
simple application: the estimation of a microbial 
specific reaction rate in a simple biological culture 
which involves a single biomass (X) growing on a 
single substrate (S) and yielding a single product (P).  
 
The reaction scheme is stated as follows: 

S X Pϕ → +  (18) 
 
The process dynamics in a fed-batch fermenter is 
described as 

d
dt

X
S
P

k
k

D
X
S
P

DSin

















= −
















−
















+
















1 0

0
1

2

ϕ  (19) 

 
where D is the dilution rate (D=Fo/V), being Fo the 
input flow rate, V the broth volume in the fermenter) 
and Sin the substrate concentration in the feed. The 
reaction rate may be defined as: 
 
ϕ = XSα (20) 
being α the unknown kinetic term. 
 
Typical experimental conditions were: 
Sin= 10 g.l-1, V(0)= 3 l, X(0)= 0.1 g.l-1, S(0)= 0.1 g.l-1, 
P(0)=0.01 g.l-1, k1= 2.85 g gS X. −1 , k2= 1.55 g gP X. −1 . 
The input flow rate Fo was a forced square wave 
between 0.01 and 0.02 l.hr-1. 
 
 
5.2 The observer-based estimator 
 
In the present case the objective is the on-line 
estimation of the time-varying reaction rate term α 
from the on-line knowledge of X, S, P, Sin, V and Fo. 
 
The application of algorithm (2) with ξ1=X leads to 
the following two eqns.: 

dX
dt

XS DX X X
! ! ! ! ( ! )= − − −α ω1  (21a) 

d
dt

X X
!

( ! )α ω= −2  (21b) 

 
From the defining eqns. (17a) and (17b), ω1 and ω2 
are given by 

ω α ζ
τ1

2= − +S D!  (22a) 

ω
τ2 2

1= !XS
 (22b) 

 
 

7. RESULTS AND CONCLUSIONS 
 
To test the capability of the algorithm at imposing a 
second order dynamics of convergence, the 'true' 
specific rate has been assumed to be a square wave 
signal. The process has been implemented in a 
process simulator and data taken at sampling times of 
T=6 minutes. 
 
Running the estimator with constant values of ω1 and 
ω2 (in eqns. 21), i.e. not employing the defining eqns. 
(22) for the adaptive algorithm, would lead to a 
variable second order convergence (Oliveira et al., 
1994). Tests were performed, employing the adaptive 
scheme (eqns. 22), but with negative weights for 
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either ζ or τ. As expected, the estimator diverged, 
since such combinations lead to negative values of ω 
(eqn.15a), which violates stability condition 1 
discussed above. 
 
Finally, under the same operating conditions, the 
estimator has been tested for a range of positive 
values for the damping factor and for the natural 
period of oscillation. Illustrative results are presented 
in Figs. 1-6. The square wave line is the 'true' specific 
rate parameter, whereas the full line represents its on-
line estimate. The accuracy of the estimates can be 
assessed from the ITAE error index (ITAE - integral 
of time-weighted absolute errors) given in the legend. 

The dynamics of convergence of α̂ to α exhibits 
characteristics which are in full agreement with 
typical second order dynamic response to step inputs, 
viz.-  

(a) increasing ζ, the response turns to be less 
oscillatory;  

(b) decreasing τ the response becomes faster;  
(c) ζ=1 defines the frontier between oscillatory and 

non-oscillatory behaviour;  
(d) low values of ζ give rise to high peak responses. 

As expected, a choice of the damping factor around 
0.8, together with a low natural period of oscillation, 
leads to good convergence.  
 
Overall, results are good and coherent with the 
theory. The choice of tuning parameters has an 
intuitive and theoretically simple basis, since this type 
of second order response is widely observed in 
natural phenomena and well studied.  
 
Further theoretical analysis is out of the scope of this 
paper. Work is in progress which aims in particular at 
testing the robustness and at establishing the domains 
of validity of the procedure proposed. 
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Fig. 1. Results obtained with τ = 0.15  

and ζ = 0.25 (ITAE = 14.0). 
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Fig. 3. Results obtained with τ = 0.15  

and ζ = 1.0 (ITAE = 9.9). 
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Fig. 5. Results obtained with τ = 0.1  

and ζ = 0.8 (ITAE = 4.6). 
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Fig. 2. Results obtained with τ=0.15  

and ζ = 0.5 (ITAE = 8.1). 
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Fig. 4. Results obtained with τ = 0.15  

and ζ = 1.5 (ITAE = 16.0). 
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Fig. 6. Results obtained with τ = 0.01 

 and ζ = 0.8 (ITAE = 0.73). 
 


