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Abstract. We introduce the concept of identity based key encapsulation
to multiple parties (mID-KEM), and define a security model for it. This
concept is the identity based analogue of public key KEM to multiple
parties. We also analyse possible mID-KEM constructions, and propose
an efficient scheme based on bilinear pairings. We prove our scheme se-
cure in the random oracle model under the Gap Bilinear Diffie-Hellman
assumption.
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1 Introduction

A traditional public key encryption scenario involves communication between
two users. One party, Alice, wishes to communicate securely with another party,
Bob. Alice uses Bob’s public key, which she (somehow) knows to be authentic,
to create a message that only Bob can decrypt using his private key.

Due to the large computational cost associated with public key encryption
algorithms, most practical applications use hybrid encryption to handle large
plaintext messages. Rather than using the public key encryption algorithm di-
rectly over the plaintext, one generates a random session key and uses it to
encrypt the message under a more efficient symmetric algorithm. The (small)
session key is then encrypted using the public key encryption algorithm, and the
message is transferred as the combination of both ciphertexts.

The hybrid public key encryption paradigm has gained strength in recent
years with the definition and formal security analysis of the generic KEM-DEM
construction [7, 8, 17]. In this approach to hybrid encryption one defines a sym-
metric data encapsulation mechanism (DEM) which takes a key k and a message
M and computes C ← DEMk(M). Given knowledge of k one can also recover M
via M ← DEM−1

k (C).
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The key k is transferred to the recipient of the ciphertext in the form of an
encapsulation. To create this encapsulation, the sender uses a key encapsulation
mechanism (KEM). This is an algorithm which takes as input a public key pk
and outputs a session key k plus an encapsulation E of this session key under
the public key. We write this as

(k, E)← KEM(pk).

Notice that the session key is not used as input to the KEM. The recipient
recovers the key k using his private key sk via the decapsulation mechanism. We
denote this by

k ← KEM−1(E, sk).

The full ciphertext of the message M is then given by E||C.
The use of the KEM-DEM philosophy allows the different components of

a hybrid encryption scheme to be designed in isolation, leading to a simpler
analysis and hopefully more efficient schemes. In fact, Cramer and Shoup [7]
established that an hybrid encryption scheme is IND-CCA2 secure, if both the
KEM and DEM modules are semantically secure [9] against adaptive chosen
ciphertext attacks [14] (see Theorems 4 and 5 in [7]).

Smart [16] extends this notion to a setting in which Alice wants to send the
same message to multiple parties. He considers the question: is it possible, in
this situation, to avoid carrying out n instances of the KEM-DEM construction?
Smart [16] proposes a multiple KEM (or mKEM) primitive whereby the sender
can create an encapsulation of the session key k under n public keys. The purpose
of this type of construction is to save n− 1 data encapsulations overall: a single
DEM invocation using k suffices to obtain valid ciphertexts for all recipients.
The entire message encryption process becomes

(k,E)← mKEM(pk1, . . . , pkn)
C ← DEMk(M)

and each recipient i will get the pair (E,C). For decryption, user i simply per-
forms the following two operations:

k ← mKEM−1(E, ski)
M ← DEM−1

K (C).

Identity-based encryption is a form of public key encryption in which users’
public keys can take arbitrary values such as e-mail addresses. A central trusted
authority manages the public keys in the system, providing legitimate users with
private keys that allow recovering messages encrypted under their identities.

Boneh and Franklin [5] introduced a secure and efficient identity-based en-
cryption scheme based on pairings on elliptic curves. Lynn [11] mentions that
the encryption algorithm proposed by Boneh and Franklin is unlikely to be
used, since in practice one will use a form of identity based key encapsulation
mechanism. Bentahar et al. [4] call such an encapsulation mechanism ID-KEM.
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Lynn [11] describes a possible ID-KEM construction, but he gives no security
model or proof. Bentahar et al. [4] formalise the notion of key encapsulation for
the identity-based setting, define a security model and propose several provably
secure ID-KEM constructions.

In this work we bring together the concepts of ID-KEM and mKEM and
propose mID-KEM: identity-based key encapsulation to multiple users.

This paper is organised as follows. In Sections 2 and 3 we briefly discuss
background on pairings, ID-KEMs and mKEMs. The concept and security of an
mID-KEM primitive is defined in Section 4. In Section 5 we present an efficient
mID-KEM construction, and prove it is secure in Section 6. We conclude the
paper by analysing the efficiency of our scheme in Section 7.

2 Background on Pairings

Our constructions will use bilinear maps and bilinear groups. We briefly review
the necessary facts about these here. Further details may be found in [5, 6].

Let G1, G2 and GT be groups with the following properties:

– G1 and G2 are additive groups of prime order q.
– G1 has generator P1 and G2 has generator P2.
– There is an isomorphism ρ from G2 to G1, with ρ(P2) = P1.
– There is a bilinear map t̂ : G1 ×G2 → GT .

In many cases one can set G1 = G2 as is done in [5]. When this is so, we can
take ρ to be the identity map; however, to take advantage of certain families of
groups [12], we do not restrict ourselves to this case.

The map t̂, which is usually derived from the Weil or Tate pairings on an
elliptic curve, is required to satisfy the following conditions:

1. Bilinear: t̂(aQ, bR) = t̂(Q,R)ab, for all Q ∈ G1, R ∈ G2 and a, b ∈ Zq.
2. Non-degenerate: t̂(P1, P2) 6= 1.
3. Efficiently computable.

Definition 1 (Bilinear groups). We say that G1 and G2 are bilinear groups
if there exists a group GT with |GT | = |G1| = |G2| = q, an isomorphism ρ and
a bilinear map t̂ satisfying the conditions above; moreover, the group operations
in G1, G2 and GT and the isomorphism ρ must be efficiently computable.

A group description Γ = [G1, G2, GT , t̂, ρ, q, P1, P2] describes a given set of
bilinear groups as above. There are several hard problems associated with a
group description Γ which can be used for building cryptosystems. These have
their origins in the work of Boneh and Franklin [5].

Notation. If S is a set then we write v ← S to denote the action of sampling
from the uniform distribution on S and assigning the result to the variable v.
If A is a probabilistic polynomial time (PPT) algorithm we denote the action
of running A on input I and assigning the resulting output to the variable v by
v ← A(I). Note that since A is probabilistic, A(I) is a probability space and not
a value.
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Bilinear Diffie-Hellman Problem (BDH). Consider the following game for
a group description Γ and an adversary A.

1. a, b, c← Z∗q
2. t← A(Γ, aP1, bP1, cP2)

The advantage of the adversary is defined to be

AdvBDH(A) = Pr[t = t̂(P1, P2)abc]. (1)

Notice there are various equivalent formulations of this: given xP2 one can com-
pute xP1 via the isomorphism ρ. This particular formulation allows for a clearer
exposition of the security proof in Section 6.

Decisional Bilinear Diffie-Hellman Problem (DBDH). Consider Γ and
the following two sets

DΓ = {(aP1, bP1, cP2, t̂(P1, P2)abc) : a, b, c ∈ [1, . . . , q]},
RΓ = G1 ×G1 ×G2 ×GT .

The goal of an adversary is to be able to distinguish between the two sets. This
idea is captured by the following game.

1. a, b, c← Z∗q
2. d← {0, 1}
3. If d = 0 then α← GT

4. Else t← t̂(P1, P2)abc

5. d′ ← A(Γ, aP1, bP1, cP2, t)

We define the advantage of such an adversary by

AdvDBDH(A) = |2 Pr[d = d′]− 1|.

The Gap Bilinear Diffie-Hellman Problem (GBDH). Informally, the gap
bilinear Diffie-Hellman problem is the problem of solving BDH with the help of
an oracle which solves DBDH. The use of such relative or “gap” problems was
first proposed by Okamoto and Pointcheval [13].

Let O be an oracle that, on input β ∈ RΓ , returns 1 if β ∈ DΓ and 0
otherwise. For an algorithm A, the advantage in solving GBDH, which we denote
by AdvGBDH(A, qG), is defined as in (1) except that A is granted oracle access to
O and can make at most qG queries.

3 Review of ID-KEMs and mKEMs

An identity based KEM (ID-KEM) scheme is specified by four polynomial time
algorithms:

– GID−KEM(1t). A PPT algorithm which takes as input 1t and returns the master
public key Mpk and the master secret key Msk. We assume that Mpk contains
all system parameters, including the security parameter t.
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– XID−KEM(ID,Msk). A deterministic algorithm which takes as input Msk and
an identifier string ID ∈ {0, 1}∗, and returns the associated private key SID.

– EID−KEM(ID,Mpk). This is the PPT encapsulation algorithm. On input of ID
and Mpk this outputs a pair (k,C) where k ∈ K ID−KEM(Mpk) is a key in the
space of possible session keys at a given security level, and C ∈ C ID−KEM(Mpk)
is the encapsulation of that key.

– DID−KEM(SID, C). This is the deterministic decapsulation algorithm. On input
of C and SID this outputs k or a failure symbol ⊥.

The soundness of an ID-KEM scheme is defined as:

Pr


(Mpk,Msk)← GmID−KEM(1t)

k=DID−KEM(SID, C) ID← {0, 1}∗
(k,C)←EID−KEM(ID,Mpk)
SID ← XID−KEM(ID,Msk)

=1

Consider the following two-stage game between an adversary A of the ID-
KEM and a challenger.

IND-CCA2 Adversarial Game
1. (Mpk,Msk)← GID−KEM(1t)
2. (s, ID∗)← AO

1 (Mpk)
3. (k0, C

∗)← EID−KEM(ID∗,Mpk)
4. k1 ← K ID−KEM(Mpk)
5. b← {0, 1}
6. b′ ← AO

2 (Mpk, C
∗, s, ID∗, kb)

In the above s is some state information and O denotes oracles to which the
adversary has access. In this model the adversary has access to two oracles: a
private key extraction oracle which, on input of ID 6= ID∗, will output the cor-
responding value of SID; and a decapsulation oracle with respect to any identity
ID of the adversary’s choosing. The adversary has access to this decapsulation
oracle, subject to the restriction that in the second phase A is not allowed to
call it with the pair (C∗, ID∗).

The adversary’s advantage in the game is defined to be

AdvIND−CCA2
ID−KEM (A) = |2 Pr[b′ = b]− 1|.

An ID-KEM is considered to be IND-CCA2 secure if for all PPT adversaries A,
the advantage in this game is a negligible function of the security parameter t.

The notion of KEM is extended in [16] to multiple parties. An mKEM is
defined by the following three polynomial time algorithms:

– GmKEM(1t) which is a probabilistic key generation algorithm. On input of 1t

and the domain parameters, this algorithm outputs a public/private key pair
(pk, sk).

5



– EmKEM(P) which is a probabilistic encapsulation algorithm. On input of a set of
public keys P = {pk1, . . . , pkn} this algorithm outputs an encapsulated key-
pair (k, C), where k ∈ K mKEM(t) is the session key and C is an encapsulation
of the key k under the public keys {pk1, . . . , pkn}.

– DmKEM(sk, C) which is a decapsulation algorithm. This takes as input an en-
capsulation C and a private key sk, and outputs a key k or a special symbol
⊥ representing the case where C is an invalid encapsulation with respect to
the private key sk.

The soundness of an mKEM scheme is defined as:

Pr

 (pki, ski)←GmKEM(1t), 1 ≤ i ≤ n
k=DmKEM(skj , C) (k, C)←EmKEM(pk1, . . . , pkn)

j ← {1, . . . , n}

=1

Security of an mKEM is defined in a similar manner to a KEM via the
following game.

(m,n)-IND-CCA2 Adversarial Game
1. (pki, ski)← GmKEM(1t) for 1 ≤ i ≤ n
2. P ← {pk1, . . . , pkn}
3. (s,P∗)← AO

1 (P) where P∗ ⊆ P and m = |P∗| ≤ n
4. (k0, C

∗)← EmKEM(P∗)
5. k1 ← K mKEM(t)
6. b← {0, 1}
7. b′ ← AO

2 (pk, C∗, s,P∗, kb)

In the above s is some state information and O denotes the decapsulation
oracle to which the adversary has access in rounds 1 and 2. As it is noted in
[16], restricting access to this oracle by simply disallowing the query (C∗, pk∗)
for some pk∗ ∈ P∗ would be too lenient. Consider an mKEM in which an encap-
sulation is of the form C = c1|| . . . ||cn where each ci is intended for the recipient
with public key pki. On reception of a challenge encapsulation of this form, the
adversary could query the decapsulation oracle with a pair (c∗i , pk

∗
i ), which is

not disallowed, and win the game.
To avoid this type of problem, Smart [16] defines more restrictive, but still

reasonable, oracle access. The restriction imposed in the model is that in the
second stage the adversary is only allowed to query the decapsulation oracle
with those C which decapsulate to a different key from that encapsulated by
C∗. We will come back to this in the next section.

The advantage of the adversary A is defined as

Adv(m,n)−IND−CCA2
mKEM (A) = |2 Pr[d = d′]− 1|.

An mKEM is considered to be (m,n)-IND-CCA2 secure if for all PPT adversaries
A, the above advantage is a negligible function of the security parameter t.
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4 ID-KEM to Multiple Parties

In this section we propose a new cryptographic primitive: identity based key
encapsulation to multiple parties (mID-KEM). This primitive is a direct adap-
tation of the mKEM primitive in [16] to the identity-based setting.

An mID-KEM scheme is a four-tuple of polynomial time algorithms:

– GmID−KEM(1t). A PPT algorithm which takes as input a security parameter
1t and returns the master public key Mpk and the master secret key Msk.
We assume that Mpk contains all system parameters, including the security
parameter t.

– XmID−KEM(ID,Msk). A deterministic algorithm which takes as input Msk and
an identifier string ID ∈ {0, 1}∗, and returns the associated private key SID.

– EmID−KEM(I,Mpk). This is the PPT encapsulation algorithm. On input of a
tuple I = (ID1, . . . , IDn) of n identities and Mpk, this outputs a pair (k, C),
where k ∈ K mID−KEM(Mpk) is a session key and C = (c1, . . . , cn), with each
ci ∈ C mID−KEM(Mpk) an encapsulation of k for IDi ∈ I.

– DmID−KEM(SIDi , ci). This is the deterministic decapsulation algorithm. On in-
put of the private key SIDi for identity IDi and ci, this outputs k or a failure
symbol ⊥.

The soundness of an mID-KEM scheme is defined as:

Pr


(Mpk,Msk)← GmID−KEM(1t)
IDi ← {0, 1}∗, 1 ≤ i ≤ n

k=DmID−KEM(SIDj
, cj ,Mpk) (k, c1, . . . , cn)←EmID−KEM(ID1, . . . , IDn,Mpk)

SIDi
← XmID−KEM(IDi,Msk), 1 ≤ i ≤ n

j ← {1, . . . , n}

=1

There is a subtle difference between this and the mKEM definition presented
in the previous section. Recall that Smart [16] views encapsulation for multiple
users as an algorithm taking a set P of public keys and producing a single
token C. Decapsulation must then recover the encapsulated key whenever C is
provided together with the secret key for one of the users in the set. This is the
most natural extension of KEM to the multi-user setting.

In our approach, however, C is seen as an n-tuple, where the i-th component
is an encapsulation specific to IDi, and the decapsulation algorithm does not
accept the whole of C as input, but only ci. We take this approach because it
simplifies the security model (note the definition and access restrictions of the
decapsulation oracle below) and allows for a clearer explanation of the security
proof in Section 6.

Conceptually, these two approaches are equivalent. Any C in the mKEM
model can be recast as an n-tuple by setting ci = C for all i. Conversely an
n-tuple in the mID-KEM model is just a special case of the first approach that
provides more information, as it implies a semantic interpretation of the encap-
sulation.
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We define the semantic security of an mID-KEM scheme according to the
following two-stage game between an adversary A and a challenger. 3

n-IND-CCA2 Adversarial Game
1. (Mpk,Msk)← GmID−KEM(1t)
2. (s, I∗)← AO

1 (Mpk)
3. (k0, C

∗)← EmID−KEM(I∗,Mpk)
4. k1 ← K mID−KEM(Mpk)
5. b← {0, 1}
6. b′ ← AO

2 (Mpk, C
∗, s, I∗, kb)

In the above, I∗ = (ID∗1, . . . , ID
∗
n) denotes the identities chosen by the adver-

sary to be challenged on, C∗ = (c∗1, . . . , c
∗
n) denotes the challenge encapsulations,

s is some state information and O denotes oracles to which the adversary has
access.

In this model the adversary has access to a private key extraction oracle
which, on input of ID /∈ I∗, will output the corresponding value of SID. The
adversary can also query a decapsulation oracle with respect to any identity ID
of its choice. It has access to this decapsulation oracle, subject to the restriction
that in the second phase A is not allowed to call O with any pair (c∗i , ID

∗
i ).

4

The adversary’s advantage in the game is defined to be

Advn−IND−CCA2
mID−KEM (A) = |2 Pr[b′ = b]− 1|.

An mID-KEM is considered to be n-IND-CCA2 secure, if for all PPT adversaries
A, the advantage in the game above is a negligible function of the security
parameter t.

5 mID-KEM Schemes

In this section we present two mID-KEM schemes, one of which is a simple
construction that uses identity based encryption. The second scheme is non-
trivial in the sense that it provides a significant improvement in efficiency.

5.1 A Simple mID-KEM Scheme

One might think that an obvious way to construct an mID-KEM scheme would
be to use n instances of an ID-KEM scheme. However this is not valid since
it would not guarantee that the same key k is encapsulated to all users. In
fact, this would imply using n parallel instances of the associated DEM, thereby
subverting the principle of efficient hybrid encryption to multiple users.

3 Similarly to what is done in [16], one could define an (m, n)-IND-CCA2 notion of
security for mID-KEMs. Our definition is equivalent to (n, n)-IND-CCA2, which is
the worst case scenario.

4 Note that this accounts for cases where the adversary includes repetitions in I∗.

8



An mID-KEM scheme can be easily built using a generic construction sim-
ilar to that used in [16], whereby an IND-CCA2 secure public key encryption
algorithm is used to build a secure mKEM.

In the identity based setting, one would take a secure identity based encryp-
tion algorithm, for instance Boneh and Franklin’s Full-Ident scheme [5], as the
starting point. The resulting mID-KEM construction would operate as follows.

EmID−KEM(ID1, . . . , IDn,Mpk)
– m←MIBE(Mpk)
– k ← KDF(m)
– ci ← EIBE(m, IDi,Mpk), for 1 ≤ i ≤ n
– Return (k, c1, . . . , cn)

DmID−KEM(SIDi
, ci,Mpk)

– m← DIBE(SIDi , ci,Mpk)
– k ← KDF(m)
– Return k

where KDF is a key derivation function that maps the message space of the
identity based encryption algorithm to the key space of the DEM.

The security proof in [16] for the generic mKEM construction builds on the
work by Bellare et al. [3], who established that a public key encryption algorithm
which is secure in the single user setting, is also secure when multiple users are
involved. Given that the authors have no knowledge of such a result for identity
based encryption algorithms, proving the security of the previous construction
will require extending Bellare et al.’s results. Since the main result of this paper
is a more efficient scheme proposed in the next section, we do not further debate
the security of this simpler construction.

5.2 An Efficient mID-KEM from Bilinear Pairings

The scheme we propose in this section is inspired by Smart’s OR constructions in
[15]. Our construction uses a parameter generator GmID−KEM(1t) similar to that
of most identity based schemes. On input of a security parameter 1t, it outputs
the master public key Mpk and the master secret key Msk, where Msk ← Z∗q and
Mpk ←Msk · P1.

Private key extraction is also performed in the usual way. On input of an
identity ID and the master secret key Msk, the extraction algorithm XmID−KEM

returns SID ← Msk · H1(ID), where H1 : {0, 1}∗ → G2 is a cryptographic hash
function.

The key encapsulation and decapsulation algorithms work as follows.
EmID−KEM(ID1, . . . , IDn,Mpk)
– r ← Z∗q
– s← Z∗q
– Ur ← rP1

– Us ← sP1

– QIDi
← H1(IDi)

– For i = 1 to n
Ui ← r(QIDi

− sP2)
ci ← (Ur, Us, Ui)

– T ← t̂(Mpk, rsP2)
– k ← H2(T ||Ur||Us)
– Return (k, c1, . . . , cn)

DmID−KEM(SIDi , ci,Mpk)
– t← t̂(Ur, SIDi

)
– t′ ← t̂(Mpk,−Ui)
– T ← t · t′
– k ← H2(T ||Ur||Us)
– Return k
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In the above, H2 is a cryptographic hash function that takes elements in
GT ||G1||G1 to the DEM key space.

6 Proof of Security

Theorem 1 describes our result on the security of the mID-KEM scheme in Sec-
tion 5.2 with respect to the security model defined in Section 4. The technique
we use in the proof might allow one to establish the security of a suitable mod-
ification of the scheme in [15], for which no proof is provided.

Theorem 1. The mID-KEM construction described in Section 5.2 is n-IND-
CCA2 secure under the hardness of GBDH in the random oracle model. Specifi-
cally, for any PPT algorithm A that breaks this mID-KEM scheme, there exists
a PPT algorithm B with

Advn−IND−CCA2
mID−KEM (A) ≤ 2qn

T ·AdvGBDH(B, q2
D + 2qDq2 + q2)

where q1, q2, qX and qD denote the maximum number of queries the adversary
places to the H1, H2, private key extraction and decapsulation oracles respec-
tively, and qT = q1 + qX + qD is the total number of queries placed to H1.

Proof. Let S be the event that A wins the n-IND-CCA2 adversarial game in
Section 4. Let also T ∗||U∗

r ||U∗
s denote the value that must be passed to H2 to

obtain the correct key encapsulated in the challenge ciphertext. Then, we have

Pr[S] = Pr[S ∧ Ask] + Pr[S ∧ ¬Ask] ≤ Pr[S ∧ Ask] +
1
2

(2)

where Ask denotes the event that A queries H2 with T ∗||U∗
r ||U∗

s during the
simulation. This follows from the fact that if A does not place this query, then
it can have no advantage.

We argue that in the event S ∧ Ask, there is an adversary B that uses A
to solve the GBDH problem with probability q−n

T while making at most q2
D +

2qDq2 + q2 DBDH oracle queries. We implement algorithm B as follows.
For a given GBDH problem instance (Γ, aP2, bP2, cP2) the strategy is to

embed the problem into the mID-KEM challenge presented to the adversary.
Namely we construct the simulation so that the value of the pairing associated
with the challenge encapsulation is T ∗ = t̂(P1, P2)abc. Hence, when A places a
query with the correct value of T ∗ to H2, it provides us with the solution to the
GBDH problem instance.

We pass Γ and Mpk = cP1 = ρ(cP2) on to A as the global public parameters.
We also maintain three lists that allow us to provide consistent answers to A’s
oracle calls: L1 ⊂ {0, 1}∗ ×G2 × Fq; L2 ⊂ GT ×G1 ×G1 ×K mID−KEM(Mpk); and
LD ⊂ {0, 1}∗ ×G1 ×G1 ×K mID−KEM(Mpk).

Initially, we generate a list of n random indices i∗1, . . . , i
∗
n, with 1 ≤ i∗k ≤ qT .

These indices will determine the set of n identities which B is guessing the
adversary will include in its challenge query I∗. Namely, these indices determine
the way in which the hash function H1 is simulated.
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H1 queries: H1(IDi). On the i-th query to H1, we check whether i matches
one of the indices i∗k. If this is the case, we generate random ri∗k

∈ Z∗q , return
QIDi∗

k
= ri∗k

P2 + bP2 and add (IDi∗k
, QIDi∗

k
, ri∗k

) to L1. Otherwise, we generate
random ri ∈ Z∗q , return QIDi = riP2 and add (IDi, QIDi , ri) to L1.

Algorithm B requires that at the end of phase one, the adversary outputs
a list of identities I∗ = (ID∗1, . . . , ID

∗
n) such that ID∗k = IDi∗k

. This happens with
probability at least q−n

T . If this is not the case, the simulation fails. Otherwise,
the mID-KEM challenge encapsulation is created as

Ur ← ρ(aP2)
Us ← ρ(bP2)
Uk ← ri∗k

aP2

c∗k ← (Ur, Us, Uk)

for each ID∗k ∈ I∗. Notice that this is a well-formed encapsulation:

Uk = a(QID∗k
− bP2) = a(ri∗k

P2 + bP2 − bP2) = ri∗k
aP2.

When A outputs I∗, algorithm B responds with C∗ = (c∗1, . . . , c
∗
n) constructed

as above plus a random challenge key k∗.
Given that A is not allowed to obtain the private keys associated with the

identities in the challenge, the extraction oracle is easily simulated as follows.

Extraction queries: OX(IDj). On input IDj , we obtain QIDj
by calling H1

first. If QIDj
is of the form riP2, we look in L1 for the corresponding ri and

return SIDi
= ri(cP2). If during the first stage of the game, A should query for

the extraction of a private key corresponding to a QID of the form ri∗k
P2 + bP2,

the simulation would fail.

Finally, the decapsulation and H2 oracles are simulated as follows.

Decapsulation queries: OD(IDm, Urm
, Usm

, Um). On queries in which we can
calculate a value Tm, we do so, and call H2 with parameters (Tm, Urm

, Usm
)

to obtain the return value. This will happen when IDm /∈ I∗, in which case
we query the private key extraction oracle, and compute Tm as in a standard
decapsulation:

Tm = t̂(Urm , SIDm)t̂(ρ(cP2),−Um).

When IDm ∈ I∗ we first search L2 for an entry such that Urm
= Urn

, Usm
= Usn

and the DBDH oracle returns 1 when queried with (Urm , Usm , cP2, Tn). If this
entry exists, we return the corresponding kn. If not, we search LD for a tuple
matching the parameters (IDm, Urm

, Usm
). If it exists, we return the associated

key km. Otherwise, we generate a random km, return it and update LD by adding
the entry (IDm, Urm

, Usm
, km).
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H2 queries: H2(Tn, Urn
, Usn

). We first check if Tn is the solution we are look-
ing for by calling the DBDH oracle with (aP1, bP1, cP2, Tn). If it returns 1,
the solution is found, we output Tn and terminate. Otherwise, we proceed to
search L2 for a tuple matching the parameters (Tn, Urn , Usn). If it exists, we
return the corresponding key kn. If not, we search LD for an entry such that
Urm

= Urn
, Usm

= Usn
and the DBDH oracle returns 1 when queried with

(Urm
, Usm

, cP2, Tn). If this entry exists, we return the corresponding km. Other-
wise, we generate a random kn, return it and update L2 by appending the entry
(Tn, Urn , Usn , kn).

To complete the proof, it suffices to notice that B will only fail when the
identities I∗ chosen by A at the end of the first round do not match the random
indices chosen at the beginning. Since this happens with probability at least q−n

T ,
we conclude

Pr[S ∧ Ask] ≤ qn
T ·AdvGBDH(B, q2

D + 2qDq2 + q2). (3)

The total number of DBDH oracle calls (q2
D + 2qDq2 + q2) follows from the way

we simulate the decapsulation and H2 oracles. Theorem 1 now follows from (2)
and (3).

We note that the tightness of the security reduction in Theorem 1 decreases
exponentially with the number of recipients. For practical purposes, and in line
with the discussions on practice-oriented provable security in [2, 10], it is impor-
tant to emphasise that our result provides theoretical security guarantees only
in scenarios where messages are encrypted to a small number of recipients. A
slightly better result, although still exponential in n, can be obtained by opti-
mising the simulation in the proof above. We leave it as an open problem to find
a sub-exponential security reduction for this type of scheme.

7 Efficiency Considerations

Execution time and bandwidth usage are two important factors affecting the
efficiency of a KEM. In this section we present a comparison, with respect to
these factors, between the simple scheme described in Section 5.1 and the scheme
proposed in Section 5.2.

The former scheme requires n identity based encryption computations for
encapsulation, and one identity based decryption computation for decapsulation.
Assuming that we use the Full-Ident scheme of Boneh and Franklin [5], this
means n pairing computations for encapsulation and another for decapsulation.
On the other hand, as it can be seen from the description of the latter scheme, it
takes only one pairing computation to encapsulate and two more to decapsulate.
Note that one could essentially eliminate the pairing computation needed in
encapsulation by pre-computing the value t̂(Mpk, P2).

The bandwidth usage of the scheme in Section 5.2 is 2`1 + `2 bits for each
recipient, where `1 and `2 are the bit lengths of the representations of elements

12



of G1 and G2. Using the Full-Ident encryption scheme in [5], the simpler scheme
uses `1 +2`k bits per user where `k is the length of the session key. For example,
using supersingular elliptic curves over characteristic three we could take `k =
128 and `1 = `2 ≈ 190 bits. This means a bandwidth usage of 570 bits for the
second scheme versus 446 bits for the first one.

To conclude this discussion we note the n-fold gain in computational weight
obtained in Section 5.2 is achieved at the cost of a small increase in bandwidth
usage, and also by reducing the security of the scheme to the hardness of GBDH,
which is a stronger assumption than the hardness of BDH used in [5].

Acknowledgements

The authors would like to thank Nigel Smart and John Malone-Lee for their
input during this work, and the anonymous reviewers whose comments helped
to improve it.

References

1. M. Abdalla, M. Bellare and P. Rogaway. DHAES : An encryption scheme based on
the Diffie-Hellman problem. Cryptology ePrint Archive, Report 1999/007. 1999.

2. M. Bellare. Practice-priented provable-security. Proceedings of First International
Workshop on Information Security, LNCS 1396. Springer-Verlag, 1998.

3. M. Bellare, A. Boldyreva and S. Micali. Public-key encryption in the multi-user set-
ting: security proofs and improvements. Advances in Cryptology – EUROCRYPT
2000, LNCS 1807:259-274. Springer-Verlag, 2000.

4. K. Bentahar, P. Farshim, J. Malone-Lee and N. P. Smart. Generic constructions
of identity-based and certificateless KEMs. Cryptology ePrint Archive, Report
2005/058. 2005.

5. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. SIAM
Journal on Computing, 32:586–615. 2003.

6. D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing. Ad-
vances in Cryptology – ASIACRYPT 2001, LNCS 2248:514–532. Springer-Verlag,
2001.

7. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen-ciphertext attack. SIAM Journal on
Computing, 33:167–226. 2003.

8. A. W. Dent. A designer’s guide to KEMs. Coding and Cryptography, LNCS
2898:133-151. Springer-Verlag, 2003.

9. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
Systems Sciences, 28:270–299. 1984.

10. N. Koblitz and A. Menezes. Another look at provable security. Cryptology ePrint
Archive, Report 2004/152. 2004.

11. B. Lynn. Authenticated identity-based encryption. Cryptology ePrint Archive,
Report 2002/072. 2002.

12. A. Miyaji, M. Nakabayashi and S. Takano. New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E84-A:1234–1243. 2001.

13



13. T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for
the security of cryptographic schemes. Public Key Cryptography – PKC 2001,
LNCS 1992:104–118. Springer-Verlag, 2001.

14. C. Rackoff and D. R. Simon Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. Advances in Cryptology – CRYPTO 1991, LNCS
576:433-444. Springer-Verlag, 1991

15. N. P. Smart. Access control using pairing based cryptography. Topics in Cryptology
– CT-RSA 2003, LNCS 2612:111–121. Springer-Verlag, 2003.

16. N. P. Smart. Efficient key encapsulation to multiple parties. Security in Commu-
nication Networks, LNCS 3352:208–219. Springer-Verlag, 2005.

17. V. Shoup. A proposal for an ISO standard for public key encryption (version 2.1).
Preprint. 2001.

14


