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Abstract. In this work, Evolutionary Algorithms (EAs) are used to
achieve optimal feedforward control in a recombinant bacterial fed-batch
fermentation process, that aims at producing a bio-pharmaceutical prod-
uct. Three different aspects are the target of the optimization procedure:
the feeding trajectory (the amount of substrate introduced in a bioreactor
per time unit), the duration of the fermentation and the initial conditions
of the process. A novel EA with variable size chromosomes and using
real-valued representations is proposed that is capable of simultaneously
optimizing the aforementioned aspects. Outstanding productivity levels
were achieved and the results are validated by practice.

Keywords: Bio-engineering processes, Fed-batch fermentation optimization, Vari-
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1 Introduction

A number of valuable products such as recombinant proteins, antibiotics and
amino-acids are produced using fermentation techniques and thus there is an
enormous economic incentive to optimize such processes. However, these are
typically very complex, involving different transport phenomena, microbial com-
ponents and biochemical reactions. Furthermore, the nonlinear behavior and
time-varying properties make bioreactors difficult to control with traditional
techniques. Under this context, there is the need to consider quantitative math-
ematical models, capable of describing the process dynamics and the interrelation
among relevant variables. Aditionally, robust optimization techniques must deal
with the model’s complexity, the environment constraints and the inherent noise
of the experimental process.

Several optimization methods have been applied in this task. It has been
shown that, for simple bioreactor systems, the problem can be solved analytically,
from the Hamiltonian function, by applying the minimum principle of Pontrya-
gin. However, besides having a problem of singular control, those methodologies
become too complex when the number of state variables increases [14].
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Numerical methods make a distinct approach to dynamic optimization. The
gradient algorithms are based on the local sensitivities of the objective function
for changes in the values of the control variables, which are used to adjust the
control trajectories in order to iteratively improve the objective function [3].
In contrast, dynamic programming methods discretize both time and control
variables to a predefined number of values. A systematic backward search method
in combination with the simulation of the system model equations is used to find
the optimal path through the defined grid. However, in order to achieve a global
minimum the computational burden is very high [13].

An alternative approach comes from the use of Evolutionary Algorithms
(EAs), which have been used in the past to optimize nonlinear problems with
a large number of variables. Previous work has obtained interesting results in
the optimization of feeding or temperature trajectories [8][1]. Comparisons with
traditional methods have been addressed with favorable results [12][4]. Recent
work [6] focused on the feed optimization in the fed-batch culture of insect cells,
but uses EAs based on binary representations and only optimizes the maximum
densities of a pre-defined set of nutrients.

In this work, a fed-batch recombinant E. coli fermentation process was stud-
ied, aimed at producing a bio-pharmaceutical product [10]. In fed-batch fermen-
tations there is an addition of certain nutrients along the process, in order to
prevent the accumulation of toxic products, allowing the achievement of higher
product concentrations. The purpose is to apply real-valued representation based
EAs, with novel features such as variable sized chromosomes, in order to opti-
mize not only some of the fermentation’s variables, namely the substrate feeding
trajectory and the initial conditions, but also the duration of the fermentation.

2 The fed-batch fermentation process

Since the advent of the recombinant DNA technology, the bacterium E. coli is the
microorganism of choice for the production of the majority of the valuable bio-
pharmaceuticals, usually grown under fed-batch mode due to the effect of acetic
acid, which is produced when glucose is present above certain concentrations.

During this process the system states change considerably, from a low initial
to a very high biomass and product concentration. This dynamic behavior moti-
vates the development of optimization methods to find the optimal input feeding
trajectories in order to improve the process. The typical input in this process is
the substrate inflow rate as a function of time. One way to evaluate the process
performance is the productivity, defined as the units of product (recombinant
protein) formed per unit of time. In this case, it is usually related with the final
biomass obtained, when the duration of the process is pre-defined.

For the proper optimization of the process, a white box mathematical model
was developed, based on differential equations that represent the mass balances
of the relevant state variables. The general dynamical model [2] is accepted
as representing the dynamics of an n components and m reactions bioprocess.
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During the aerobic growth of the bacterium, with glucose as the only added
substrate, the microorganism can follow three different metabolic pathways:

– Oxidative growth on glucose:

k1S + k5O
µ1

−→ X + k8C (1)

– Fermentative growth on glucose:

k2S + k6O
µ2

−→ X + k9C + k3A (2)

– Oxidative growth on acetic acid:

k4A + k7O
µ3

−→ X + k10C (3)

where S, O, X , C, A represent glucose, dissolved oxygen, biomass, dissolved
carbon dioxide and acetate components, respectively. In the sequel, the same
symbols are used to represent the state variables concentrations (in g/kg); µ1 to
µ3 are time variant specific growth rates that nonlinearly depend on the state
variables, and ki are constant yield coefficients.

The associated dynamical model can be described by the following equations:

dX

dt
= (µ1 + µ2 + µ3)X − DX (4)

dS

dt
= (−k1µ1 − k2µ2)X +

Fin,SSin

W
− DS (5)

dA

dt
= (k3µ2 − k4µ3)X − DA (6)

dO

dt
= (−k5µ1 − k6µ2 − k7µ3)X + OTR − DO (7)

dC

dt
= (k8µ1 + k9µ2 + k10µ3)X − CTR − DC (8)

dW

dt
' Fin,S (9)

being D the dilution rate, Fin,S the substrate feeding rate (in kg/h), W the
fermentation weight (in kg), OTR the oxygen transfer rate and CTR the carbon
dioxide transfer rate.

Real experiments served as the basis for the model derivation, being con-
ducted in a fermentation laboratory with a 5-L bioreactor, being the exper-
imental results consistent with the model [9]. This model was thus used for
the optimization of several relevant features of the process. For optimization
purposes, the model simulation was performed, by using the Euler numerical
integration method, with a small step size d and a given duration for the process
(Tf ) measured in hours. Typical values of Tf and d were 25 and 0.005. The ki-
netic behavior, expressed in the rates µ1 to µ3, was given by a specific algorithm
based on the state variables, that is out of the scope of the present work but can
be found in [9].
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3 Evolutionary Algorithms for Feeding Trajectory

Optimization

The first approach to the problem was to develop an EA capable of optimizing
the feeding trajectory, i.e., to determine the amount of substrate (glucose) to be
fed into the bioreactor per time unit (Fin,S). Real-valued representations were
used in order to encode the feeding amounts, since these have proven to be
more appropriate than the classical binary ones, in tasks where the purpose is
to optimize real valued parameters [5][7].

Thus, each gene will encode the amount of substrate to be introduced into
the bioreactor in a given time unit and the genome will be given by the temporal
sequence of such values. In this case, the size of the genome is determined based
on the final time of the process (Tf ) and the discretization step (d) considered

in the simulation, being given by the expression:
Tf

d
.

However, this could produce a very large genome (a typical value would
be 5000), which would difficult the EA’s convergence. Thus, feeding values are
defined only at certain equally spaced points, and the remaining values are lin-
early interpolated. The size of the genome becomes

Tf

dp
+ 1, where p stands for

the number of points within each interpolation interval. The values used in the
experiments described in this section are: Tf = 25, d = 0.005 and p = 200.

There are physical constraints on the amount of substrate that can be intro-
duced per time unit, due to limitations in the feeding pump capacity. Thus, there
is the need to impose limits in the gene values, in this particular case defined
in the range [0.0; 0.4]. In the initial population, each individual is assigned, for
each of its genes, a random value in the appropriate range.

The evaluation process, for each individual in the population, measures the
quality of the feeding trajectory in terms of the fermentation’s productivity. This
calculation is achieved by firstly running a simulation of the defined model, given
as input the feeding values in the genome. In each simulation, the relevant state
variables are initialized with the following values: X0 = 5, S0 = 0, A0 = 0,
W0 = 3. The fitness value is then calculated from the final and initial values of
the state variables X and W , by the expression Xf ∗ Wf − X0 ∗ W0 (measured
in g).

Regarding the recombination step, both mutation and crossover operators
were taken into account. Two mutation operators were used, namely:

– Random Mutation, which replaces one gene by a new randomly generated
value, within the range [mini, maxi] [7]; and

– Gaussian Mutation, which adds to a given gene a value taken from a gaussian
distribution, with a zero mean and a standard deviation given by maxi−mini

4

(i.e., small perturbations will be preferred over larger ones).

where [mini; maxi] is the range of values allowed for gene i. In both cases, an
innovation is introduced: the mutation operators are applied to a variable number
of genes (a value that is randomly set between 1 and 10 in each application).
This operator obtained interesting results in the training of Artificial Neural
Networks [11], and its good performance in this context was verified empirically
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On the other hand, the following crossover operators were chosen:

– Two-Point and Uniform, two standard Genetic Algorithm operators [7], ap-
plied in the traditional way;

– Arithmetical, each gene in the offspring will be a linear combination of the
values in the ancestors’ chromosomes [7];

– Sum, inspired in Differential Evolution [4], where the offspring genes denote
the sum/ subtraction of the ones in the parents.

All operators were constrained to respect the limits of the gene’s values, so
when a value would be out of range it was replaced by the nearest boundary.

In terms of the EAs setup, the population size was set to 200. The selection
procedure is done by converting the fitness value into a linear ranking in the
population, and then applying a roulette wheel scheme. In each generation, 50%
of the individuals are kept from the previous generation, and 50% are bred by
the application of the genetic operators.

The implementation of the proposed EA was based on a general purpose
package, developed by the authors in the Java programming language. All ex-
periments reported were run on a PC with a Pentium IV 2.4 GHz processor.

A first set of experiments was conducted in order to find the best set of ge-
netic operators to tackle this problem. All possible combinations of a crossover
and a mutation operator were tested, as well as alternatives with one single mu-
tation operator. It must be noticed that, in the proposed EA, genetic operators
are selected whenever a new individual is created, based on a given probabil-
ity. In this case, both crossover and mutation operators were considered to have
equal oportunities of breeding offspring. Each run of the EA is stopped after
500 iterations and the results are given in terms of the mean of thirty runs,
with the associated 95% confidence intervals. The results are given in Table 1,
where the most promising method seems to be the combination of the arith-
metical crossover with a random mutation, although there are alternatives with
overlapping confidence intervals.

Table 1. Comparison of EAs with different genetic operators on the problem of feeding
trajectory optimization.

Crossover Gaussian Mutation Random Mutation

None 111.6 ± 2.6 128.4 ± 6.1
Two-Point 184.4 ± 4.4 185.3 ± 2.3
Uniform 182.3 ± 2.3 198.3 ± 3.6
Arithmetical 191.3 ± 4.3 200.6 ± 3.1
Sum 103.7 ± 3.2 100.2 ± 3.3

An alternative that contemplates the use of all genetic operators described
above was also attempted. In this case each crossover operator is responsible
for breeding 12.5% of the offspring and each mutation operator 25%. Testing
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this alternative a result of 210.4± 1.9 was obtained, which is better than all the
previous attempts, being the difference statiscally significant. To further evaluate
this alternative, the number of generations was increased to 3000, being obtained
a new result of 224.4± 1.4.

These results are similar to those obtained by two different approaches. The
first uses a gradient based algorithm, implemented by the MATLAB optimiza-
tion toolbox function fmincon (version 2.1); the latter is based on the genetic
algorithm toolbox for MATLAB (version 1.7), developed by Polheim at Univer-
sity of Sheffield. However, the computational time taken to achieve results in
both cases is clearly superior (between 10 to 100 times) than the ones of the
proposed Java-based EAs. As a consequence, more experiments were made pos-
sible and statistical significance could be reached. Since that is not the case with
the other approaches the results are not given here. Furthermore, it was possible
to develop new algorithms to tackle other kinds of , such as the ones described
in the following.

The best of the thirty runs will be analyzed in detail, to get an insight of the
EA’s behavior. The fitness value was 228.0, obtained with the values of Xf = 50.1
and Wf = 4.85. It is known that a value of W = 5 is a physical limit (maximum
weight allowed by the fermentation vessel), so the optimal result should set the
value of Wf to 5. The value obtained is near, but is still sub-optimal, which
can be due to an optimization insufficiency, but can also mean that the initial
conditions and/or the duration of the process are not correctly set.

4 Optimization of Initial Conditions

The initial conditions of the experiments were set based on the practicioner’s
experience and wisdom. However, there is no guarantee that the initial values
of the state variables are optimal. So, it was decided to incorporate the initial
values of significant state variables in the optimization procedure.

Once each variable has different physical constraints it was necessary to define
a genome where the limits are distinct in each position. The variables chosen to
be optimized, aditionally to the feeding trajectory, were the initial values of X ,
W , S and A, with their range of variability given by X0 ∈ [1; 5], W0 ∈ [2; 4], S0 ∈

[0; 5] and A0 ∈ [0; 5]. In the experiment performed to evaluate this approach,
the fitness function, the genetic operators and the EA’s setup was kept from the
previous section and each run of the EA was stopped after 3000 generations.

The mean of the results obtained was 234.4 (±1.4), which means a consid-
erable improvement over the previous results. As before the best run will be
examined in detail to illustrate the EAs behavior, being the fitness obtained
236.5, with Xf = 50.3 and Wf = 5.0. As explained before this value for W

is highly desirable and an important condition to reach the optimality of the
process. The initial values of the state variables, in the best run, were Xi = 5.0,
Si = 0.45, Ai = 0.01 and Wi = 3.15. It is believed that the slight difference of
values in the W initial’s value is determinant to the result obtained, since it is
almost unchanged in the other runs.
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5 Optimization of the Final Time

The duration of the fermentation is not imposed by any theoretical result, yet is
chosen by empirical knowledge, making it possible to optimize its value. In this
section, an EA will be proposedfor this task, based on the ones defined above,
but considering variable size chromosomes and new genetic operators.

The genetic operators defined in Section 3 were kept: the mutations were
unchanged and the crossovers were updated to cope with parents of different
sizes. In this case, each of the offspring keeps the size of one parent and for
the genes where only one parent is defined (the one with greater length), their
value is passed into the corresponding offspring. In the creation of the initial
population the individuals are given chromosomes with distinct sizes, randomly
selected in a range defined by two parameters: a minimum and a maximum size.
Furthermore, two novel mutation operators were defined, in order to allow for
the change of the size of individuals during the evolution process:

– Grow: consists in the introduction of a new gene into the genome, in a random
position, being its value the average of the values of the two neighboring
genes.

– Shrink: a randomly selected gene is removed from the genome.

Both operators are only applied when the maximum and minimum size con-
straints are obbeyed. With the introduction of the new genetic operators, the
probabilities used in the experiments are the following: each of the four crossover
operators has a probability value of 10%, the random and gaussian mutation keep
their probabilities of 25% and the new mutation operators have a probability of
5% each.

Two different experiments were conducted: in the first, only the final time
and feeding trajectory are optimized, being the genome made out of the feeding
trajectory; in the latter, the initial conditions are also considered a target of
optimization, being the initial parameters encoded into the first group of four
genes (fixed size), as before, and the remaining of the genome used to code the
feeding trajectory (variable size).

The fitness function also has to suffer a slight modification. Indeed, once the
time is variable it makes sense to evaluate the productivity of the process per
time unit. The fitness of an individual is thus given by the following expression:

Xf ∗ Wf − X0 ∗ W0

Tf

The minimum and maximum duration of the fermentation are set to 20 and
50 hours, respectively. The remaining parameters of the EA are kept unchanged.
The results obtained are displayed in Table 2 and compared with the previous
ones. In the table, the first column indicates the purpose of the EA, where
F stands for feeding trajectory, I for initial conditions and T for final time
optimization. The results are given in terms of the newly defined fitness, in
order to make a comparison possible, being shown, in the second column, the
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mean of the thirty runs and the confidence interval and in the third column the
best result obtained over all the runs.

Table 2. Comparison of the results obtained by the EAs for feeding trajectory, initial
conditions and duration optimization.

Optimization aim Mean and conf.interval Best result

F 8.98 ± 0.06 9.12
F+I 9.38 ± 0.06 9.46
F+T 9.16 ± 0.09 9.32

F+T+I 9.44 ± 0.05 9.50

From the results, it is possible to conclude that the final time optimization
implies some significant improvement over the results of the feeding trajectory
optimization. The mean of duration obtained was 26.2 hours, a value slightly
higher than the value of 25 (set empirically). The best run results in a process
duration of 26 hours, obtaining the values of Xf = 51.7 and Wf = 4.98. So,
comparing with previous results, the final biomass is increased, taking advantage
of the extra hour and the final value of W is very near its physical limit.

A further and more significant improvement is obtained when the initial
parameter optimization is added. The duration of the process obtained in all
runs was 25 hours, the default value, showing the correctness of the practicioner’s
choice. Analyzing the results of the best run, the values of Xf and Wf are 50.7
and 5.0, respectively. The initial parameters took values similar to those obtained
in the previous section, being worth to notice that Wi = 3.15. The feeding
trajectory obtained is depicted in Figure 1. It can be noticed the smoothness of
the result obtained, without resorting to specially tailored genetic algorithms,
such as the ones proposed in [12]. The smoothness is important since it makes
easier the physical implementation of the proposed solution.

Making a comparison of the different EAs, their computational performance
is quite similar, although the EAs for final time optimization can be dependent
on the minimum and maximum values defined. The convergence of the different
algorithms is plotted in Figure 3, where it is visible that good results are obtained
in about 1000 generations, which means about 15 minutes of computation time.

6 Conclusions and further work

In this work an EA, based on real-valued representations and variable size chro-
mosomes was proposed in order to optimize both the feeding trajectory, the ini-
tial conditions and the duration of a fermentation process. The results, although
based on a simulation model, show that the EA is capable of simultaneously
optimizing all the aforementioned aspects, a result that is never been obtained
in any study known by the authors. The settings reached by the EAs are quite
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Fig. 1. Feeding trajectory obtained by the EA which combines feeding, initial condi-
tions and final time optimization (best run).
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Fig. 2. Biomass trajectory obtained by the EA which combines feeding, initial condi-
tions and final time optimization (best run).

near the values used in real experiments, being the result of both theoretical
knowledge and years of practice. It is remarkable that the EAs are capable of
setting, in tens of minutes, a number of parameters that takes years for a prac-
ticioner to learn. Therefore, the results of the EA are quite encouraging and its
application to these kind of bioprocesses highly recommended.

The quantitative model that serves as a base for the simulations done in
this work is based on differential equations. Other types of models have been
proposed in literature, namely Fuzzy Rules or Artificial Neural Networks [13].
The testing of the proposed EAs in these settings is desirable. Another area of
future research is the consideration of on-line adaptation, being the model of
the process updated during the fermentation process, a task that can be also
performed by EAs. In this case, the good computational performance of the
proposed EAs are a benefit, if there is the need to re-optimize the feeding given
a new model and values for the state variables measured on-line.
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Fig. 3. Plot of the convergence of the different EAs.
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