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Abstract
In this work, Evolutionary Algorithms (EAs) are used

to control a recombinant bacterial fed-batch fermenta-
tion process, that aims at producing a bio-pharmaceutical
product. In a first stage, a novel EA is used to optimize
the process, prior to its start, by simultaneously adjust-
ing the feeding trajectory, the duration of the fermenta-
tion and the initial conditions of the process. In a second
stage, dynamic optimization is proposed, where the EA
is running simultaneously with the fermentation process,
receiving information regarding from the process, updat-
ing its internal model, reaching new solutions that will be
used for online control.

Keywords: Evolutionary Computation, Fed-batch
fermentation optimization, Online optimization, Vari-
able size chromosomes, Real-valued representations

1 Introduction
Valuable products such as recombinant proteins, an-

tibiotics and amino-acids are produced using fermenta-
tion techniques and thus there is an enormous economic
incentive to optimize such processes. However, these
are typically very complex, involving different transport
phenomena, microbial components and biochemical re-
actions. Furthermore, the nonlinear behavior and time-
varying properties make bioreactors difficult to control
with traditional techniques. Thus, there is the need to
consider quantitative mathematical models, capable of
describing the process dynamics and the interrelation
among relevant variables. Aditionally, robust optimiza-
tion techniques must deal with the model’s complexity,
the environment constraints and the inherent noise of the
experimental process.

Several optimization methods have been applied in
this task. It has been shown that, for simple bioreactor
systems, the problem can be solved analytically. Numer-
ical methods, such as gradient algorithms based on the
local sensitivities of the objective function for changes in

the values of the control variables, have also been used
[1]. One other popular method is dynamic programming
which discretizes both time and control variables to a
predefined number of values and uses a systematic back-
ward search. However, those methodologies become too
complex when the number of state variables increases.

An alternative approach comes from Evolutionary Al-
gorithms (EAs), where previous work has obtained inter-
esting results in the optimization of feeding trajectories,
being the comparison with traditional methods favorable
[2][3].

In this work, a fed-batch recombinant E. coli fermen-
tation process was studied, aimed at producing a bio-
pharmaceutical product [4]. In fed-batch fermentations
there is an addition of certain nutrients along the pro-
cess, in order to prevent the accumulation of toxic prod-
ucts. The purpose is to apply real-valued representa-
tion based EAs, with variable sized chromosomes, in
order to achieve both static and dynamic optimization.
The former is conducted offline before the process starts
and aims at setting some of the fermentation’s variables,
namely the substrate feeding trajectory, the initial condi-
tions and also the duration of the fermentation. The latter
is conducted in real time, interacting with the fermenta-
tion and optimizing the feeding trajectory by reacting to
information about the values of relevant state variables.

2 The fed-batch fermentation process

E. coli is the microorganism of choice for the produc-
tion of bio-pharmaceuticals, usually grown under fed-
batch mode due to the effect of acetic acid produced
when glucose is present above certain concentrations.
During this process the system states change consider-
ably, from a low initial to a very high biomass and prod-
uct concentration. This dynamic behavior motivates the
development of optimization methods to find the optimal
input feeding trajectories. The typical input is the sub-
strate inflow rate as a function of time. One way to eval-
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uate the process performance is the productivity, defined
as the units of product formed per unit of time, which is
usually related with the final biomass obtained.

A white box mathematical model was developed (can
be found in [4], based on differential equations that rep-
resent the mass balances of the state variables, namely
Fin,S the substrate feeding rate (in kg/h), W the fermen-
tation weight (in kg), S the glucose, X the biomass, O
the dissolved oxygen, C the dissolved carbon dioxide
and A the acetate Real experiments served as the basis
for the model derivation, being conducted in a fermen-
tation laboratory with a 5-L bioreactor, being the exper-
imental results consistent with the model. This model
will be used for the optimization described in the fol-
lowing, performing model simulation, by using the Eu-
ler numerical integration method, with a small step size
d and a given duration for the process (Tf ) measured in
hours. Typical values of Tf and d were 25 and 0.005.

3 Evolutionary Algorithms for Static Optimization
3.1 Evolutionary Algorithms for Feeding Trajectory
Optimization

The first approach to the problem was to develop an
EA capable of optimizing the feeding trajectory, i.e., to
determine the amount of substrate (glucose) to be fed
into the bioreactor per time unit (Fin,S). Real-valued
representations were used in order to encode the feeding
amounts. Each gene will encode the amount of substrate
to be introduced into the bioreactor in a given time unit
and the genome will be given by the temporal sequence
of such values.

In this case, the size of the genome is determined
based on the final time of the process (Tf ) and the dis-
cretization step (d) considered in the simulation, be-
ing given by the expression: Tf

d . However, this could
produce a very large genome (a typical value would
be 5000), which would difficult the EA’s convergence.
Thus, feeding values are defined only at certain equally
spaced points, and the remaining values are linearly in-
terpolated. The size of the genome becomes Tf

dp + 1,
where p stands for the number of points within each in-
terpolation interval. The values used in the experiments
are: Tf = 25, d = 0.005 and p = 200.

There are physical constraints on the amount of sub-
strate that can be introduced per time unit. Thus, there
is the need to impose limits in the gene values, in this
particular case defined in the range [0.0; 0.4]. In the ini-
tial population, each individual is assigned, for each of
its genes, a random value in the appropriate range.

The evaluation process, for each individual in the pop-
ulation, measures the quality of the feeding trajectory in
terms of the fermentation’s productivity. This calcula-
tion is achieved by firstly running a simulation of the

model, given as input the feeding values in the genome.
In each simulation, the relevant state variables are ini-
tialized with the following values: X0 = 5, S0 = 0,
A0 = 0, W0 = 3. The fitness value is then calculated
from the final and initial values of the state variables X
and W , by the expression

Xfinal ∗ Wfinal − X0 ∗ W0

Tf

Both mutation and crossover operators were taken into
account. Two mutation operators were used, namely:
Random Mutation (replaces one gene by a new ran-
domly generated value, within the range [min i, maxi])
and Gaussian Mutation (adds to a given gene a value
taken from a gaussian distribution, with a zero mean
and a standard deviation given by maxi−mini

4 , where
[mini; maxi] is the range of values allowed for gene
i). In both cases, the operators are applied to a variable
number of genes (a value that is randomly set between
1 and 10 in each application). On the other hand, the
following crossover operators were chosen: Two-Point,
Uniform, Arithmetical and Sum crossovers [5];

The population size was set to 200 and the selection
procedure is done by converting the fitness value into
a linear ranking in the population, and then applying a
roulette wheel scheme. In each generation, 50% of the
individuals are kept from the previous generation, and
50% are bred by the application of the genetic operators.

The implementation of the proposed EA was based on
a general purpose package, developed by the authors in
the Java programming language. All experiments re-
ported were run on a PC with a Pentium IV 2.4 GHz
processor.

A set of experiments was conducted in order to find
the best set of genetic operators for this problem [4]. The
best result was obtained using an alternative that contem-
plates the use of all genetic operators described above.
In this case each crossover operator is responsible for
breeding 12.5% of the offspring and each mutation op-
erator 25%.

3.2 Optimization of Initial Conditions

The initial conditions of the experiments were set
based on the practicioner’s experience and wisdom.
However, there is no guarantee that the initial values of
the state variables are optimal. So, it was decided to in-
corporate the initial values of significant state variables
in the optimization procedure.

Once each variable has different physical constraints
it was necessary to define a genome where the limits are
distinct in each position. The variables chosen to be op-
timized, aditionally to the feeding trajectory, were the
initial values of X , W , S and A, with their range of



variability given by X0 ∈ [1; 5], W0 ∈ [2; 4], S0 ∈ [0; 5]
and A0 ∈ [0; 5].

3.3 Optimization of the Final Time

The duration of the fermentation is not imposed by
any theoretical result, yet is chosen by empirical knowl-
edge, making it possible to optimize its value. In this
section, an EA will be proposed for this task considering
variable size chromosomes and new genetic operators.

The genetic operators defined in Section 3.1 were
kept: the mutations were unchanged and the crossovers
were updated to cope with parents of different sizes. In
this case, each of the offspring keeps the size of one par-
ent and for the genes where only one parent is defined
(the one with greater length), their value is passed into
the corresponding offspring. In the creation of the initial
population the individuals are given chromosomes with
distinct sizes, randomly selected in a range defined by
two parameters: a minimum and a maximum size. Fur-
thermore, two novel mutation operators were defined, in
order to allow for the change of the size of individuals
during the evolution process:

• Grow: consists in the introduction of a new gene
into the genome, in a random position, being its
value the average of the values of the two neigh-
boring genes.

• Shrink: a randomly selected gene is removed from
the genome.

Both operators are only applied when the maximum
and minimum size constraints are obbeyed. With the in-
troduction of the new genetic operators, the probabilities
used in the experiments are the following: each of the
four crossover operators has a probability value of 10%,
the random and gaussian mutation keep their probabili-
ties of 25% and the new mutation operators have a prob-
ability of 5% each.

Two different experiments were conducted: in the
first, only the final time and feeding trajectory are opti-
mized, being the genome made out of the feeding trajec-
tory; in the latter, the initial conditions are also consid-
ered a target of optimization, being the initial parameters
encoded into the first group of four genes (fixed size), as
before, and the remaining of the genome used to code
the feeding trajectory (variable size). The minimum and
maximum duration of the fermentation are set to 20 and
50 hours, respectively. The remaining parameters of the
EA are kept unchanged.

3.4 Results

A set of experiments was conducted to test the previ-
ous approaches and the results obtained are displayed in

Table 1. Comparison of the results obtained by the EAs for
feeding trajectory, initial conditions and duration op-
timization.

Optim. aim Mean and conf.interval Best res.
F 8.98 ± 0.06 9.12

F+I 9.38 ± 0.06 9.46
F+T 9.16 ± 0.09 9.32

F+T+I 9.44 ± 0.05 9.50

Table 1. Each alternative was tested by 30 independent
runs, and each run was stopped after 3000 generations.
In the table, the first column indicates the purpose of the
EA, where F stands for feeding trajectory, I for initial
conditions and T for final time optimization. The results
are given in terms of the defined fitness, being shown,
in the second column, the mean of the runs and the con-
fidence interval and in the third column the best result
obtained over all the runs.

The optimization of both time, feeding trajectory and
initial parameters had the best overall results, showing
that the EA can simultaneously optimize all these as-
pects. An interpretation of the results led to the con-
clusion that the best results confirmed the findings of the
practitioners and reached after years of practical experi-
ments, although in some cases the results gave some in-
teresting insights to the researchers.

4 Evolutionary Algorithms for Online Optimization

The offline optimization described previously makes
use of a simulation model to evaluate each solution. Al-
though this is a reliable model, validated by experimen-
tation, in a real environment several sources of noise can
contribute to changes in the observed values of the state
values. This scenario has an impact on the experimental
results that end up being worse than the ones predicted.
During the fermentation process, some of the state vari-
ables can be measured, but its values tend to serve only
for modelling purposes. However, it is possible to de-
velop dynamic optimization algorithms that are capable
of timely reacting to this new knowledge by updating its
internal model and generating new solutions.

EAs make a promising approach to this real-time opti-
mization task, since they keep a population of solutions
that can be easily adapted to perform re-optimization.
Indeed, the population can be evaluated under the new
scenario and better adapted solutions created through the
use of reproduction operators. The fact that a set of so-
lutions is kept, and not only the best solution, makes a
faster adaptation to new conditions possible, while tak-
ing advantage of previous work.



In this work, online optimization based on EAs is pro-
posed, working in two stages: the former is the static
optimization, conducted before the fermentation process
and described in the previous section; the latter is the
dynamic optimization, where the fermentation monitor-
ing software sends information about the values of state
variables to the EA, that reacts by updating its internal
model and reaching a new optimal solution, that is sent
back to the monitoring software.

The EA used to perform online optimization is simi-
lar to the ones described in the previous section. When
new information is received, the EA determines a start-
ing point (in time) for its optimization, by adding the
time label of the received data with its predicted run-
ning time. Then it takes the last available population and
adapts it by removing from the genome of each individ-
ual the genes that encode feeding values for elapsed time
periods. Each of these individuals is re-evaluated taking
the new knowledge into consideration and the normal
process of the EA proceeds for a given number of iter-
ations. The best solution (feed) obtained is then sent to
the fermentation process and can be used.

In order to validate this method a set of experiments
was conducted, where the online measurements are sim-
ulated by adding noise to relevant state variables (X and
W were selected since they have a direct impact on the
fitness values). These variables were disturbed in regu-
lar intervals in time (of 1 hour) by the following rules:
Xi = Xi +Xi.U(−p, p) and Wi = Wi +Wi.U(−p, p),
where U(a, b) is a value taken from an uniform distri-
bution in the range [a, b]. In the experiments, both in
static and dynamic optimization, only feed trajectory op-
timization was considered and the experimental setup
was kept from the previous section. The offline EA is
stopped after 2000 generations, while the online one runs
for 500 generations in each time step.

Table 2 summarizes the results obtained with different
values of p ranging from 0.01 to 0.1. In the columns the
result from the static optimization in shown, followed by
the result obtained by the optimal feed with the added
noise and finally the result of the online optimization
method.

It is possible to observe that the added noise is enough
to make an huge impact on the process even when the
disturbance is small (p=0.01), a result that shows that
the process is quite sensitive to small changes in state
variables (a conclusion shared by the researchers with
practical experience), and emphasizes the need for dy-
namic optimization. The online optimization is capable
of results near the ones initially expected, therefore com-
pensating the noise, even though there is a decrease in
performance when p raises, as would be expected.

Table 2. Results obtained by the EAs for online optimization.

p Initial opt. Init.+ noise Online Opt.
0.01 8.84 ± 0.06 4.58 ± 0.21 8.68 ± 0.07
0.02 8.81 ± 0.06 4.49 ± 0.17 8.35 ± 0.10
0.05 8.82 ± 0.09 4.26 ± 0.14 7.67 ± 0.12
0.1 8.68 ± 0.09 4.17 ± 0.18 7.44 ± 0.13

5 Conclusions and further work
In this work EAs, based on real-valued representations

and variable size chromosomes were proposed in order
to optimize relevant parameters for a fermentation pro-
cess, both in offline and online modes. The results, al-
though based on simulations, show that the offline EA is
capable of simultaneously optimizing the feeding trajec-
tory, the initial conditions and the duration of a fermenta-
tion process. On the other hand, the online optimization
deals well with significative changes (up to 10%) in the
state variables relevant to the fitness function.

Future work includes the validation of the system by
further testing, including both simulations and real fer-
mentation processes. An integration of the time and
initial parameter optimization in the dynamic procedure
will also be undertaken.
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