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hours after slaughtering (e.g. pH and color). Under this
scheme, the classic animal science approach is badddlen
tiple Regressiomodels (Arvanitoyannis and Houwelingen-
Koukaliaroglou, 2003), using meat features as independent
(or input) variables and thé&/BSor sensorymeasures as the
depended (or output) ones. Yet, these linear models will

The assessment of quality is a key factor for the meat indus- fail when strong nonlinear relationships are present. In such

try, where the aim is to fulfill the consumer’s needs. In par-
ticular, tendernesss considered the most important charac-
teristic affecting consumer perception of taste. In this paper,
aNeural Network Ensembl&vith feature selection based on

a Sensitivity Analysiprocedure, is proposed to predict lamb
meat tenderness. This difficult real-world problem is defined

cases, a better option is to uNeural Networks (NNs)Xue

to their nonlinear mapping and noise tolerance capabilities
(Haykin, 1999). Indeed, NNs are gaining an attention within
the Data Miningfield, due to their performance in terms of
predictive knowledge. Another promising research area is
based in the use dEnsembleswhere several models are

in terms of two regression tasks, by using instrumental mea- combined in some way in order to produce an answer (Di-
surements and a sensory panel. In both cases, the proposecetterich, 2001). This interest arose due to the discovery that

solution outperformed other neural approaches and/le
tiple Regressiomethod.

1. Introduction

A top priority factor in the success of meat industry relies on
the ability to deliver specialties that satisfy the consumer’s

taste requirements. Although there are several factors that

influence meat quality (e.gjuicinessor appearancg ten-
dernesss considered the most important attribute (Huffman

et al., 1997). The ideal method for measuring tenderness
should be accurate, fast, automated and noninvasive. In the
past, two major approaches have been proposed (Arvanitoy-

annis and Houwelingen-Koukaliaroglou, 2003)strumen-
tal andsensoryanalysis. The former is based in an objec-
tive test, such as thiastroninstrument, which measures the
Warner-Bratzler Shear (WBSprce and is the most com-

monly used device. On the other hand, sensory methods

are based in subjective information, usually given by a hu-

man taste panel. Both approaches are invasive, expensive

ensembles are often more accurate than single models.

In Data Mining applications, besides obtaining a high
predictive performance, it is often useful to provide explana-
tory knowledge. In particular, the measure of input im-
portance is relevant within this domain. Since carcass fea-
tures are often highly correlaterincipal Component Anal-
ysis has been proposed to reduce the input dimensionality
(Arvanitoyannis and Houwelingen-Koukaliaroglou, 2003).
However, the principal components are compressed variables
and they do not represent a direct meaning for the meat user.

A better approach is to u€ensitivity Analysi@kewley et al.,

2000), which has outperformed other input selection tech-
niques (e.gForward SelectiorandGenetic algorithmy

In the past, several studies have ubldsto assess meat
quality (e.g. beef, pork, poultry or sausages) (Arvanitoyannis
and Houwelingen-Koukaliaroglou, 2003). However, regard-
ing tenderness prediction, the literature seems scarce and it
is primarily oriented towards beef (Hill et al., 2000). In this

work, aNeural Network Ensemblén conjunction with a fea-

and time demanding, since they require laboratory work. For ture selection procedure based oSensitivity Analysisis

instance, th&VBSvalues can only be obtained 72 hours af-
ter slaughtering, while the preparation and execution of con-
sumer taste panel may take several days.

An alternative is to use cheap and non invasive car-

cass measurements that can be collected within the first 24

*In Proceedings of theEuropean Simulation Multiconference -
ESM’2005 Oporto, Portugal, October, 2005, SCS.

proposed to predict lamb meat tenderness. This real-world
problem will be modeled in the R simulation environment (R
Development Core Team, 2004) in terms of two regression
tasks, using instrumental and sensory measurements. The
proposed strategy will be tested on animal data, collected

from the Tras-os-Montesegion of Portugal, and compared
with otherNNsapproaches andMultiple Regression
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2. Materials and Methods

2.1 Lamb Meat Data

This study considered lamb animals with fhetected Des-
ignation of Origin (PDO) certificate, from theTras-os-
Montes northeast region of Portugal. The database was
collected from November/2002 until November/2003, with

each instance denoting the readings obtained from a slaugh-
tered animal. Since each animal presents considerable costsA regression datasétis made up ok € {1,...
(around 6 euros per carcass), the dataset is quite small, with each mapping an input vect()x'{, R
a total of 81 examples. Table 1 presents the data attributes.

The HCW is obtained one hour after slaughter, exfoliation
and evisceration. The former two attribut@ded andSex

tribute was measured as the average of the grades from the
panel. Since the original data contained missing values (2 for
theWBS and 10 for theSTP), two new datasets were created
by discarding these entries. The first contains 79 rows (for
the WBS task), while the second has 71 exampl8$Fg).

2.2 Learning Models

,N} examples,

x€) to a given target

Yk. The error for a giverk is: & = yk — Yk, whereyy repre-
sents the predicted value flrinput pattern. The overall re-
gression performance is computed by global metric, namely

are also registered at slaughterhouse, while the others aretheMean Absolute Error (MAERelative Mean Absolute Er-

measured in laboratory. Due to their visual nature, the color
attributes &*, b*, dgE, dL anddB*) have a high impact in
consumer’s perception. In most of the situations, these are
the only attributes that the consumer can judge.

Table 1: The Dataset Main Attributes

Attribute  Description Domain
Breed Breed type {1,2}2
Sex Lamb sex {1,2}°
HCW Hot carcass weighkg) [4.1,14.8]
STF2 Sternal fat thickness [6.0,27.8]
C Subcutaneous fat depth [0.3,5.1]
pH1 pH 1 hour after slaughtering [5.5,6.8]
pH24 pH 24 hours after slaughtering[5.5,5.9]
ax Color red index [115,22.2]
b* Color yellow index [6.5,12.5]
dE Total color difference [46.5,60.9]
dL Luminosity differential [—56,—39
dB* Yellow differential [15.3,22.5]
WBS Warner-Bratzler Shear force [9.5,57.0]
STP Sensory Taste Panel [0.7,7.1]

a1 —Bragancana?2 —Mirandesa? 1 —Male, 2 —Female

The WBS force is the major index for measuring meat
tenderness. It can only be obtained in laboratory, no sooner
than 72 hours after slaughter, by using an invasive device
calledInstron On the other hand, a more elaborated scheme
was devised to obtain the sensory valus$K). A panel of
12 trained individuals, from thBraganca Polytechnic Insti-
tute, was selected. Then, meat samples fromléingissinus
thoracis muscle were collected and defrost &C4in a re-
frigerator. Next, each sample was randomly encoded with a
3 digit number, wrapped in an aluminum sheet and heated
at 100C. Then, each panel member was set in an individual
compartment, performing a taste proof, under similar condi-

tions, of random selected samples. Between different tastes,

mouths were cleaned by using water and by eating small

ror (RMAE), Root Mean Squared (RMSEj)dRelative Root
Mean Squared (RRMSEyhich can be computed as:

MAE =1/Nx 3N, |yi — il
RMAE=1/N x MAE/ SN, ly;

RMSE= /31 (i —%)2/N
RRMSE= RMSE/ /SN, (v,

— 5] x 100(%)
()

—9,)2/N x 100(%)

In all these statistics, lower values result in better predictive
models. ThLeRMAE andRRMSEmetrics are scale indepen-
dent, where a 100% means that the regression method has
similar performance as the constant average predictor.

A Multiple Regression (MRJnodel is defined by the
equation (Hastie et al., 2001):

|
=Bo+ Y Bix (2)
2P
where {x1,...,x} denotes the set of input variables and
{Bo,.-.,Bi} the set of parameters to be adjusted, usually by

applying a least squares algorithm. Due to is additive nature,
this model is easy to interpret and has been widely used in
regression applications.

Neural Networks (NNsjlenote a set of connectionist
models inspired in the behavior of the central nervous sys-
tem of living beings. In particular, th®lultilayer Percep-
tron is the most popular neural architecture, wheeairons
are grouped ifayers and onlyforward connectionsexist
(Haykin, 1999). TheMultilayer Perceptronsused in this
study make use of biases, one hidden layer withidden
nodes and sigmoid activation functions (Fig. 1). When mod-
eling regression tasks, the usual approach is to adopt one out-
put node with a linear function, since outputs may lie out of
the logistic output rangd(, 1]) (Hastie et al., 2001). Thus,
each regression taskMBS and STP) will be modeled by a
differentNN and the overall model is given by the equation:

o-1 |

y=Woo+ f(_ZXin,i +Wj,0)Wo,i 3

golden apple pieces. Each sample was ranked from O (the wherew; ; denotes the weight of the connection from ngde

most tender) to 10 (the most tough). Finally, {B&P at-

toi (if j = 0thenitis ebiasconnection)p denotes the output



node, f the logistic function %), and| the number of
input nodes.

Input Layer : Hidden Layer

+1*

. Output Layer

Fig. 1: TheMultilayer PerceptrorArchitecture

Supervised learning is achieved by an iterative adjust-
ment of the network connection weights (ttnaining algo-
rithm), in order to minimize an error function (typically the
sum of squared errors), computed overttiaming examples
(or case}. Before training, the data needs to be preprocessed.
Hence, all attributes were standardized to a zero mean and
one standard deviation domain (Hastie et al., 2001)

The performance will be sensitive to tiNN topology
choice: a small network will provide limited learning, while
a large one will overfit the data. To solve this hurdle, one so-
lution is to use a large number of hidden nodd3 &nd train
the NN with aregularizationmethod (Hastie et al., 2001). In
this work, regularization will be performed byveeight de-
cay procedure, where a weight penalty teri) §hrinks the
size of the neural weights. Under this scheme, the crucial
parameter is the choice af

For a given network, the initial weights will be randomly
set within the rangg—0.7,+0.7]. Next, the training algo-
rithm is applied and stopped when the error slope approaches
zero or after a maximum @& epochs. After training, th8en-
sitivity Analysisis performed. It is measured as the variance
(V) produced in the outpuf)] when the input attributeaj is
moved through its entire range (Kewley et al., 2000):

S -9)/(L-1)
Va/ 3 j—1Vj x 100(%)

Va
Ra

wherel denotes the number of input attributes &tadhe rel-
ative importance of tha attribute. They; output is obtained
by holding all input variables at their average values. The
exception isxa, which varies through its entire range with
levels. In this workL was set to 2 for the binary attributes
and 7 for the continuous inputs.

(4)

Since theNN cost function is nonconvex (with multiple
minima), the quality of the trained network depends on the
choice of the starting weights. Thug,runs will be applied
to each neural configuration and the seledidtiwill be the
one with the lowest penalized error. This setup will be called
Multiple Neural Network (MNN)Another option is to use a

Neural Network Ensemble (NNEonsisting ofR networks
trained with random weights. The final prediction is given as
the average of the individual predictions.

2.3 Simulation Environment

All experiments were conducted with &mtel Centrino 1.60
GHzprocessor, under thgnux operating system. The sim-
ulations were programmed in tt environment (R Devel-
opment Core Team, 2004), an open source and high-level
matrix programming language that provides a powerful suite
of tools for statistical and graphical analysis.

The R functions that were used by the written code in-
clude: Im, nnet andcrossval The former function is de-
fined in theR base distribution (R Development Core Team,
2004) and fits aMultiple RegressionThe second procedure
is available in theanetpackage (Venables and Ripley, 2002)
and trains a multilayer network with thBFGS algorithm,
from the family of quasi-Newton methods, allowing also the
use ofweight decay Finally, the last function implements
the K-fold estimation procedure and it can be found in the
bootstrappackage (Efron and Tibshirani, 1993). For demon-
strative purposes, a small piece of the minode is shown:

library(bootstrap) # load this package
library(nnet)

source("code.R") # load the written R code

# read the WBS dataset from a file
d<-read.table("wbs.csv",header=T,sep=";")

# set the input and output variables
Inputs<-d[,1:12] # matrix with the 12 inputs
Output<-d[,13] # vector with the WBS values
Runs<-5 # number of runs

for(i in 1:Runs)

{

# display current run and time
print(paste("Run:",i,date()))

# fit the MR model (uses Im and crossval)
MR<-Im.ktest(Inputs,Output)

# get the MAE, RMAE, RMSE, RRMSE errors
eMR<-errors(MR,Output)

# fit the MNN model (uses nnet and crossval)
MNN<-mlp.ktest(Inputs,Output)
eMMN<-errors(MNN,Output)

# fit the NNE model (uses nnet and crossval)
NNE<-mlpens.ktest(Inputs,Output)
eNNE<-errors(NNE,Output)

}

3. Results

After preliminary experiments, the maximum number of
training epochs was set 6 = 10, the number of hidden
nodes was set tbl = 24 and the number of runs/ensemble
networks was set t&R = 5. The most important param-
eter (\) is tuned by applying a coarse grid-search. The
first grid level searches all discrete values within the range
{0.00,0.01,...,0.20} and the configuration with the low-
est prediction errorX;) is selected. Then, the second
level proceeds with a fine tune within the ramgec {A\; —
0.005,...,A1 —0.00L A1 +0.00%,...,A1 +0.004} AA2 > 0.
Therefore, the number of searches is equal te- 2% 30 (or
21+5=261if A1 =0).



To estimate theNN prediction accuracy for the grid-
search, a 10-fold cross-validation (Efron and Tibshirani,
1993) will be adopted, where the training set is divided in

sion NNE). Regarding the computational effort, tMR re-
sults were obtained after 1 second, while KRN andNNE
configurations required 1 hour each. Since both neural ap-

10 subsets of equal size. Sequentially, one different subset proaches demand a similar computation, the last setup will
is tested (with 10% of the data) and the remaining data used be favored due to its best performance.

for ajusting theNN weights. At the end of 10 trainings, the
predictor has been tested on all training data and the final
estimate is given by thRMSE(Equation 1) computed over
the 10 test sets. As an example, Fig. 2 plots the error evolu-
tion for a given execution of the two level grid-seartgS
task). The figure clearly illustrates that the error curve is
nonconvex, thus justifying the use of the grid search. In this
case, the highest predictive dec®MSE= 6.75) was found

for A = 0.097. After obtaining the best decay, the fihills

are retrained with the all the data from the training set.
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Fig. 2: The Decayx-axis) vsSRMSE (y-axis) Values for the
First Level (left) and Second Level (right) Grid Searches

At a higher level, and to compare the different models,
5 runs of a 10-fold cross-validation (computed over all avail-

Table 3 shows the average relative importance (Equation
4) of the most important input variables for tN&lE method.
For the feature analysis, it was decided to select the attributes
with a relative importance> 3%, which allows an input re-
duction to around half the inputs. Despite the difference in
the percentage values, the selected features are quite simi-
lar for both problems. It is also interesting to notice that the
Sexattribute is the least relevant factor, with a relevance of
0.08% WBS) and 1.48% $TP). Apparently, this contrasts
with the known knowledge that gender affects tenderness.
However, female meat often presents a higher weight and fat-
ness, thus the sex information may be indirectly represented
in theHCW andSTF2 variables.

Since non relevant inputs may affect the performance, an-
other setup, calletlleural Network Ensemble based on Sen-
sitivity Analysis (NNESA)was devised by considering the
most important inputs of Table 3. Indeed, RESAmethod
managed to obtain the best results (Table 2), outperforming
theNNEapproach, specially for th@TP task. In Table 3, the
sensitivity values were also presented for this last method.
For theWBS task, the red coloraf*) seems to be the most
important attribute, followed by the weightCW) and to-
tal color difference dE). Regarding theSTP problem, the
most relevant features are tiBzeed, red color index &*)
and sternal fat thicknes&TF2). The differences obtained
between the two tasks may be explained by psychological

able data) were executed. This means that in each of these 50factors. For instance, thgreed importance increased from

experiments, 90% of the data is used for learning and 10%
for testing. The results are shown in Table 2, in terms of the
average of the test errors obtained over the 50 experiments.

Table 2: The Lamb Meat Tenderness Regression Results

2.8% (WBS) to 36.8% GTP). As an example, Fig. 3 shows
the scatter plots of the predicted values vs the observed ones
for the WBS task, where the diagonal line denotes the per-
fect forecast. Th&INESAapproach clearly presents a better
performance, with more predictions along the line than the
MR method.

Task  Model MAE RMAE RMSE RRMSE
MR 92 1347% 116 1304%  s{ 8 .

WBS  MNN 62 901% 81 91.2% A 5 o
NNE 59 866% 7.8 87.3% 0o g
NNESA 55 814 75 83 ¢ 2% ¢ 8o 5
MR 16 1193% 21 1317% s oot 8 P o

STP MNN 14 99.9% 1.7 104.1% _ % 3 $%5gh ° oo
NNE 1.3 92.4% 1.6  96.7% ) 55500 ) e
NNESA 12 849% 15 89.% 2 ° 2 °

The Multiple Regression (MRJ)esults are worst than the
trivial average forecast. The differences betweerMReand
the NN methods suggest that both tasks present nonlinear-
ity. The Multiple Neural Network (MNNyvorks better than
the MR, although it is outperformed by the ensemble ver-

Fig. 3: The Predictedx{axis) vs Observedyfaxis) Values
for the MR (left) and theNNESA(right)



Table 3: The Relative Importance of the Input Variables (in percentage)

Attribute
Task  Model g0y HCw STF2 pH1I  a* dE dL dB*
WBS NNE 4.3 5.8 7.6 - 503 11.1 55 85
NNESA 2.8 214 7.7 - 417 117 6.2 85
STP NNE 41.0 - 51 66 226 75 - 38
NNESA 36.8 - 201 93 224 97 - 17
4. Conclusions Dietterich, T. 2001. Ensemble methods in machine learning.
In Kittler, J. and Roli, F., editorsMultiple Classifier
In this work, aNeural Network Ensemble based on Sensitiv- Systems, LNCS 185¥-15. Springer.
ity Analysis (NNESAalgorithm is proposed, aiming at the  Diéz, J., Bagn, G., Quevedo, J., Coz, J., Luaces, O., Alonso,
prediction of lamb meat tenderness. This real-world prob- J., and Bahamonde, A. 2004. Discovering relevancies
lem was addressed by two distinct regression tasks by using in very difficult regression problems: applications to
instrumental and sensory measurements. In both cases, the sensory data analysis. Rroc. of ECA] 993—-994.
NNESAoutperformed otheNeural Networkapproaches, as  Efron, B. and Tibshirani, R. 1993An Introduction to the
well as aMultiple Regression Furthermore, the final neu- Bootstrap Chapman & Hall, USA.

ral solution is much simpler, requiring only half the num- . <iia T  Tibshirani. R.. and Eriedman. J. 200the Ele-
ber of inputs (7/6 instead of 12). In addiction, the proposed ments of Statistical Learning: Data Mining, Inference,
method is noninvasive, much cheaper than\WigSor STP and Prediction Springer-Verlag, NY, USA.

procedu.res, and can be computed just 24 hours after Slaugh_Haykin, S. 1999 Neural Networks - A Compreensive Foun-
ters. This opens the room for the development of automatic ; : "

s dation Prentice-Hall, New Jersey, 2nd edition.
tools for decision support (Turban et al., 2004). One draw- )
back may be the obtained accuracy, which is still high when Hill: B., Jones, S., Robertson, W., and Major, I. 2000. Neural
compared with the simple constant average predictor. Never- Network Modeling of Carcass Measurements to Pre-
theless, it should be stressed that the tested datasets are very ~ dict Beef TendernessCanadian Journal of Animal
small. Furthermore, as argued byeR et al. (2004) , mod- Science(80):311-318. N
eling sensory preferences is a very difficult regression task. Huffman, K., Miller, M., Hoover, L., Wu, C., Brittin, H., and

To our knowledge, this is the first time lamb meat tender- Ramsey, C. 1997. Effect of beef tenderness on con-
ness is approached by neural regression models and further sumer satisfaction with steaks consumed in the home
exploratory research needs to be performed. and restaurantlournal of Animal S¢.74(1):91-97.
Kewley, R., Embrechts, M., and Breneman, C. 2000. Data
Another relevant issue regards the high importance of the Strip Mining for the Virtual Design of Pharmaceuticals
Breedattribute in theSTPtask, which seems to contradict the with Neural Networks.IEEE Transactions on Neural
animal science theory. The obtained results were discussed Networks 11(3):668—679.
with the experts, which discovered that td@&andesalambs R Development Core Team 200R: A language and envi-
were considered less stringy and more odor intense. This be- ronment for statistical computingR Foundation for
havior may be due to animal stress during slaughter, although Statistical Computing, Vienna, Austria, http://www.R-
further research needs to be addressed towards this issue. In project.org.

future work, it is also intended to enrich the datasets by gath- Turban, E., Aronson, J., and Liang, T. 200@ecision Sup-
ering more meat samples. Moreover, other nonlinear tech- p(,)rt éystems a,nd ,Intelligent éysterﬁsentice-Hall

nique_s (e.gSupport Vector Machingsvill also be explored Venables, W. and Ripley, B. 200Rodern Applied Statistics
(Hastie etal., 2001). with S Springer, New York, USA, fourth edition.
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