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ABSTRACT 

 The tendency of wool to felt and shrink is mainly due to its scaly structure. The chlorine-Hercosett is 

the most widespread process used to modify the scales of wool fibres with the purpose of providing resistance 

to felting and shrinkage. There have been many attempts to replace this chlorine process by an environmental 

friendly enzymatic process that would similarly degrade the scales. However, although proteases are large 

molecules, their attack is not only limited to the scales; they penetrate inside the fibre causing unacceptable 

weight and strength loss. It is believed that if the proteases are chemically modified in order to increase their 

molecular weight, then they will act just on the surface of the fibres, thus providing wool with anti-shrinking 

behaviour, which is the main idea of this research.  

 In this work the screening of the attack of the proteolytic enzymes inside the fibre was made by 

means of several techniques. Among them, special attention was paid to the study of the protein adsorption 

inside the wool fibres. It was demonstrated that the penetration of protein (measured as the maximum 

adsorption capacity in g protein/g wool) was higher when the wool was previously subjected to a surfactant 

washing and bleaching. Furthermore, it was observed that the diffusion of the proteases into wool was 

dependent on their size. The free enzyme penetrated into wool fibre cortex while the modified enzyme, with a 

bigger size, was retained at the surface, in the cuticle layer. It was also confirmed that the diffusion of 

proteases was facilitated by the hydrolytic action. Scanning electron microphotographs were also used to 

observe the intensity of the proteolytic attack.  

 Some techniques of increasing the proteases molecular weight were attempted, namely the covalent 

crosslinking method using the bifunctional reagent glutaraldehyde. It was observed that the low amount of free 

lysine residues available in the protease for crosslinking was affecting the process. A more successful 

technique was attained by covalently coupling the enzyme to a soluble-insoluble polymer of high molecular 

weight. An enzyme conjugated to such a carrier may be used as a catalyst in its soluble form and then be 

recovered via the insoluble state. Moreover, this system overcomes the problem of the non accessibility of the 

enzyme to the macromolecular substrate, wool, whilst in the soluble state. When comparing to the native 

enzyme, the immobilized form presented a lower specific activity towards high molecular weight substrates but 

a higher thermal stability at all temperatures tested. It also exhibited a good storage stability and reusability, 

which makes this enzyme conjugate quite interesting from an industrial point of view. Wool fabrics were 

treated with the immobilized serine protease using harsh conditions and subjected subsequently to several 

machine washings, after which they presented a significant lower weight loss than wool treated with the native 

enzyme, in the same conditions. Using a moderate enzymatic treatment, a reduction to about half of the initial 

area shrinkage was attained, both for free and immobilized enzymes. However, the immobilized Esperase 

presented 92% of the original tensile strength resistance while native Esperase kept only 75% of its initial 

resistance.  

 The coupling of the protease to the polymer, Eudragit S-100, was optimized by using experimental 

design techniques. This optimization strategy allowed for an enzyme conjugate wherein the enzyme was 

covalently crosslinked to the polymer, with high activity yield and high operational stability at 60ºC. 

  All these results prove that modified proteases attained by this immobilization method, using a 

soluble-insoluble polymer of high molecular weight, can be a promising alternative for wool bio-finishing 

processes at an industrial level, since it is an effective way of removing wool scales and can be an 

environmental friendly option to the conventional chlorine treatments. This process needs to be further 

characterized for its complete understanding and optimization. 
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RESUMO 
 A tendência da lã para feltrar e encolher é devida, principalmente, à sua estrutura em escamas. O 

tratamento anti-feltragem normalmente utilizado para modificar as escamas das fibras de lã utiliza cloro, pelo 

que, várias tentativas têm sido levadas a cabo para substituir este processo por um processo enzimático 

amigo do ambiente. Estes processos recorrem à utilização de proteases que, apesar do seu tamanho, 

atacam não só a cutícula mas também penetram rapidamente dentro da fibra, provocando perdas de peso e 

resistência nas fibras, inaceitáveis do ponto de vista comercial. Assim sendo, este trabalho teve como 

principal objectivo o desenvolvimento de técnicas que permitissem modificar as proteases, aumentando o seu 

peso molecular e restringindo, deste modo, o seu ataque à superfície da fibra, removendo apenas a cutícula.  

 Várias técnicas foram utilizadas para a monitorização do ataque das enzimas proteolíticas ao interior 

da fibra, como por exemplo a adsorção de proteína nas fibras. Verificou-se que a penetração de proteína 

(medida como a máxima capacidade de adsorção em g proteína/g lã) foi superior quando a lã foi sujeita a um 

pré-tratamento de lavagem alcalina com surfactante e posterior branqueamento. Foi ainda constatado que a 

difusão das proteases na lã depende do seu tamanho. A enzima livre penetrou no córtex da fibra de lã 

enquanto que a enzima modificada, de maior tamanho, ficou retida à superfície, na cutícula. Foi também 

confirmado que a difusão das proteases no interior da fibra foi facilitada pela sua acção hidrolítica. A técnica 

de microscopia electrónica foi também utilizada para observar a intensidade do ataque proteolítico.  

 Para aumentar o peso molecular das proteases foram tentadas algumas estratégias, entre as quais 

o método de ligação covalente ao glutaraldeído, um reagente bifuncional. Demonstrou-se que o baixo teor em 

resíduos lisina da protease, disponíveis para ligação, afecta o processo. Uma técnica mais eficaz foi a ligação 

covalente da enzima a um polímero solúvel-insolúvel de elevado peso molecular. De facto, as enzimas 

ligadas a este tipo de suportes podem ser utilizadas como catalisadores na sua forma solúvel sendo 

posteriormente recuperadas no seu estado insolúvel. Para além disso, este tipo de imobilização contorna os 

problemas da não acessibilidade da enzima ao seu substrato macromolecular, a lã. A enzima imobilizada, 

quando comparada com a enzima nativa, apresentou uma actividade específica menor para substratos de 

elevado peso molecular, mas uma estabilidade térmica superior, a todas as temperaturas testadas. A 

protease imobilizada no polímero entérico exibiu ainda uma boa estabilidade de armazenamento e boa 

reutilização, o que torna este conjugado enzimático muito interessante do ponto de vista industrial. Foram 

tratados tecidos de pura lã em condições severas com a protease imobilizada, que foram depois sujeitos a 

várias lavagens domésticas à máquina. Os tecidos tratados com a enzima modificada apresentaram uma 

menor perda de peso do que a lã tratada com a enzima nativa, nas mesmas condições. Usando um 

tratamento enzimático moderado, verificou-se uma redução para cerca de metade no encolhimento da lã, 

para ambas as enzimas. No entanto, a Esperase imobilizada conservou cerca de 92% da sua resistência à 

tracção enquanto a Esperase nativa apresentou apenas 75% da sua resistência original. 

 O processo de acoplamento da protease ao polímero, Eudragit S-100, foi optimizado usando 

técnicas de desenho experimental. Esta estratégia de optimização permitiu obter um conjugado no qual a 

enzima se encontra covalentemente ligada ao polímero, com elevado rendimento em actividade e uma alta 

estabilidade operacional a 60ºC. 

 Os resultados obtidos mostram que as proteases modificadas pelo método de imobilização descrito 

neste trabalho, (usando um polímero solúvel-insolúvel de elevada massa molecular), podem ser uma 

alternativa promissora para os processos de bio-acabamento da lã, uma vez que, constituem um modo eficaz 

de remover as escamas da lã, podendo ser uma opção ambientalmente aceite para substituir os tratamentos 

convencionais com cloro. Este processo necessita, no entanto, de ser melhor caracterizado para a sua 

completa compreensão e optimização. 
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CHAPTER 1   
 

GENERAL INTRODUCTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

"The most beautiful thing we can experience is the mysterious.  

It is the source of all true art and all science. He to whom this emotion is a 

stranger, who can no longer pause to wonder and stand rapt in awe,  

is as good as dead: his eyes are closed." 

 

Albert Einstein (1879-1955)  

German physicist 
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1. GENERAL INTRODUCTION 

 

 The utilization of enzymes in the textile industry has been known and 

applied commercially for many years, principally in cellulosic fibres, like the use of 

amylases for desizing of cotton and cellulases for indigo abrasion on denim 

(Cavaco-Paulo and Almeida 1994; Cavaco-Paulo et al. 1996; Ericksson and Cavaco-Paulo 1998). 

However, for protein fibres, there are other possibilities for enzyme application, 

including the use of proteases for wool and silk processing (Nolte et al. 1996; Heine and 

Höcker 1995; Riva et al. 1999) and for the surface modification of cashmere fibres (Hughes 

et al. 2001), for instance.  

 Wool is a complex natural fibre composed mainly of proteins (97%) and 

lipids (1%), consisting of two major morphological parts: the cuticle and the cortex. 

The former is composed of overlapping cells (scales) that surround the latter. This 

scaly structure of wool is responsible, to a great extent, for the tendency of wool to 

felt and shrink (Heine and Höcker 1995; Feughelman 1997). Chlorination is a commonly used 

process to modify the scales of wool fibres with the purpose of providing 

resistance to felting and shrinkage. There have been many attempts to replace 

this chlorine process by an environmental friendly enzymatic process that would 

similarly degrade the scales (Nolte et al. 1996; Heine and Höcker 1995; Silva and Cavaco-Paulo 

2003; Cortez et al. 2004). However, despite proteases are large molecules, their attack 

is not only limited to the scales, causing unacceptable weight and strength loss to 

the fibres.  

 It is believed that if the proteases are chemically modified in order to 

increase their molecular weight, their attack would be restricted only to the surface 
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of the fibres, thus removing the cuticle, which is the main purpose of this doctoral 

thesis. 

 

 In agreement with the aims defined for the present thesis, in the general 

introduction corresponding to chapter 1, a brief bibliographic revision is made 

concerning the most relevant topics related to the use of proteases for wool bio-

finishing. The second part contains the major results attained in the scope of this 

thesis. The third part presents a general discussion, the major conclusions and 

gives some perspectives for continuing the work in this research field. 

 Thus, the organization of this thesis comprehends 3 major parts: 

- 1st part: Theoretical considerations about enzymatic wool treatments and aims of 

the work – Chapter 1 

- 2nd part: Major results, in the scope of this thesis. This section contains the 

experimental procedures, as well as the attained results and respective 

discussions – Chapters 2, 3, 4, and 5. 

- 3rd part: General discussion, conclusions and future perspectives – Chapters 6 

and 7.  
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1.1 PROPERTIES AND STRUCTURE OF WOOL FIBRE 

 

 The world's animal population has many species with bodies covered by 

hair, fur or wool. Mankind has the body least equipped to live in the world's varied 

climatic conditions, but man has used his intellect and enterprise to compensate 

for this. Primitive man protected his body with animal skins, and he learned to 

appreciate the merits of alternative furs according to fibre length, fibre fineness (or 

fibre diameter) and fibre density of the pelt. Innovative man eventually looked 

beyond furs to other fibrous materials, and he began to prepare them and make 

garments to suit his needs. In the world's hot and temperate zones, the fibres used 

were usually cellulosic or vegetable-based: cotton, linen, jute, ramie and hessian. 

These fibres are all vegetable in origin and have a common chemistry. Cellulosic 

fibres grow readily in hot climates, and the resultant garments were designed 

appropriately for wear in hot weather. In colder regions, nomadic tribesmen 

combed their animal flocks as they moulted each spring, and spent the long winter 

nights spinning and weaving the soft, woolly fibres into garments which would 

keep them warm and dry throughout the cold winter season ahead.  

 In the late 18th Century, the Industrial Revolution began a movement which 

took the textile industry from the home into the factory. Machines were invented to 

carry out processes which for countless generations had been carried out by hand. 

The machines and factories developed an insatiable demand for fibres, and an 

international trade in textile fabrics began to develop. All textile fabrics 

manufactured prior to 1884 were made of the natural fibres: wool, silk, cotton and 

linen. The most recent evolution in the textile industry has been the introduction of 

man-made fibres (Araújo and Melo e Castro 1984). Since the invention of synthetic fibres 
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many fabrics have been manufactured entirely of these fibres or mixed with natural 

ones. The first group of man-made fibres which are still widely in use were 

"regenerated" from naturally occurring products. For example, cellulose from trees 

is regenerated into fibrous cellulose to produce viscose rayon. The next 

evolutionary step was to completely synthesize the fibrous material. The oil 

industry yielded the base products for the synthesis of nylons, acrylic and 

polyester fibres. These are termed "man-made synthetic fibres”. 

 

 Thus, the contemporary consumer is able to choose from a wide array of 

fibres, which may be classified as follows (Ferreira Neves 1982; EPA 1996):  

• Cellulosic fibres - These are natural fibres of vegetable origin, like cotton, 

linen, jute, ramie, hessian and sisal. 

• Protein fibres - These are natural fibres of animal origin, like wool (Sheep), 

alpaca (Alpaca), mohair (Goats), cashmere (Goats), angora (Rabbit), camel 

(Camel), vicuna (Vicuna) and silk (Silkworm). 

• Man-made fibres - These are fibres produced by man. For many years 

textile technologists endeavoured to produce fibres with similar 

characteristics to natural ones. Now they are attempting not to imitate 

natural fibres, but to create fibres with characteristics which are distinct from 

these. Synthetic fibres now are playing a major role in the textile industry, 

due partly to the great variety of moderately priced fabrics which can be 

made from them. 
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Table 1.1 – Some examples of the man-made fibres (based on Ferreira Neves 1982) 

Regenerated cellulose fibres Synthetic fibres 

• Cellulose Acetate 

• Cellulose Triacetate 

• Viscose Rayon 

• Polynosic 

 

• Polyamide 

• Polyacrylic 

• Polyester 

• Polyethylene 

• Polypropylene 

• Polyvinylchloride 

 

 

1.1.1 THE NATURAL PROPERTIES OF WOOL 

 Wool, one of the oldest textile fibres known, has survived the test of time 

because of its unique natural properties (Table 1.2). The basic characteristics that 

wool possessed in the Stone Age are still the fundamental qualities that make 

wool unique in this century. Today there are many other textile fibres, but science 

as yet to produce another fibre containing all the natural properties of wool (Fact 

Sheet 2005; FAO 1995). 

 Hence, wool is a remarkable renewable resource with exceptional 

properties - cool in summer, warm in winter and in a variety of weights suitable for 

both apparel and interior fibre applications. Wool has excellent flame-resistant 

properties. This factor is of importance in industrial safety garments and in 

institutions. Legislation on children's night clothes has been a reminder of its value 

in domestic clothing also. The natural flame resistance of wool is inherent - it will 

not wash out or decrease in effectiveness with age. Consumers’ perception of the 

benefits of using natural products has stimulated interest in industrial uses of wool 

(Glaser 1996). However, the laundry and durability performance of wool is inferior to 
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synthetics; a factor which is a key selling point for synthetic fibre manufacturers 

and the cause of much research and development work in the wool industry.  

 

Table 1.2 – Brief description of wool’s natural properties 

• Insulation 
Because it absorbs moisture vapour, wool clothing provides superior 

comfort in both hot and cold weather. 

• Health  Because wool has the ability to insulate against heat and cold, it protects 

against sudden changes of temperature, and it lets your body breathe. 

• Water Repellence  While wool can absorb moisture, it repels liquids. 

• Fire Resistance  Wool is naturally safe. It does not have to be specially treated to become 

non-flammable. Wool does not melt when burned, and so will not stick to 

the skin and cause serious burns. 

• Resilience Wool's natural elasticity, greater than that of any other fibre, makes it 

comfortable to wear because it fits the shape of the body. Wool can be 

twisted, turned and stretched, and yet it returns to its natural shape.  

• Versatility  Wool fabric, knitwear and carpets are made from a wide range of wool 

types varying from extra fine for suits and knitwear through to broad fibres 

which give carpets their strength and character. This means that wool 

gives designers endless potential for their creations - from delicate fabrics 

to rugged outdoor wear.  

• Static Resistance Because wool naturally absorbs moisture from the air, its tendency to 

collect static electricity is reduced. 

• Noise Insulation  As mentioned above, wool is a wonderful insulator against heat and cold, 

but it is also a very good insulator against noise. It absorbs sound and 

reduces noise level considerably. For this reason wool wallpaper is often 

used in offices, restaurants, airport terminals, etc. Wool is also an ideal 

material for use in such places as concert halls to attain the best acoustics 

possible. 
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Table 1.2 – (continued) 

• Dirt Resistance  Wool resists dirt, retains its appearance, and stays cleaner longer. Its 

ability to absorb moisture prevents a build-up of static electricity and 

therefore wool does not attract lint and dust from the air. Furthermore, the 

crimp in the wool fibre and the scales on the outside of the fibre assist in 

keeping dirt from penetrating the surface. These same qualities also make 

it easier to clean.  

• Fashion  Leading designers throughout the world prefer to use wool - it comes in a 

wide choice of textures, weaves and weights, and is suitable for any style 

required.  

• Dyeing  Wool dyes very easily and the range of colours is limitless. The scales on 

the surface of the wool fibre tend to diffuse light giving less reflection and 

a softer colour. Because proteins in the core of the fibre are reactive, they 

can absorb and combine with a wide variety of dyes. This means that the 

wool holds its colour well as the dye becomes part of the fibre.  

• Comfort Wool is comfortable to wear because its elasticity makes garments fit well 

and yield to body movement. It absorbs moisture, allows your body to 

breathe, and yet never feels damp and clammy. No other fabric serves so 

well under such a variety of conditions, nor combines so many natural 

properties. 

 

 

1.1.2 THE MORPHOLOGICAL STRUCTURE OF WOOL 

 The textile industry uses substantial quantities of fibres obtained from 

various animal sources, of these sheep wool is the most important commercially 

(Rippon 1992). Early sheep were probably domesticated not for their wool, but rather 

as a source of food and skins. The most important breed for producing premium 

fine wools is the merino, which originated in Spain during the Middle Ages. This 

breed was so highly valued that their export was forbidden until the eighteenth 

century, when they were introduced into other countries. The most noteworthy of 
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which was Australia, where the breed has been developed to produce highly 

prized wool with exceptional fineness, length, colour, lustre and crimp.  

 A merino wool fibre, viewed under the scanning electron microscope is 

shown in Figure 1.1. Raw wool contains 25-70% by mass of impurities. These 

consist of wool grease, perspiration products (suint), dirt and vegetable matter 

such as burrs and seeds (Rippon 1992; Garner 1967; Pearson et al. 2004; Glaser 1996). These 

impurities are removed by specific processes (scouring and/or carbonizing) that 

will be further explained ahead in section 1.2 (Pearson et al. 2004; Lewis 1992). The wool 

discussed in this chapter is the fibrous material from which the surface 

contaminants, described above, have been removed.  

 

Figure 1.1 – Scanning electron micrograph of clean merino wool fibres. 

 

 Wool is an extremely complex protein, evolved over millions of years for the 

protection of warm-blooded animals in a great variety of climates and conditions. 

Wool is produced in the fibre follicle in the skin of the sheep. Because of the 

multitude of variations possible in, for example, the diet, breed and health of the 

sheep, as well as the climate, wool fibres vary greatly both in their physical 

properties, such as diameter, length and crimp, as in their chemical composition 

(Pailthorpe 1992).  



 10

 Wool consists principally of one member of a group of proteins called 

keratins (Hughes et al. 2001; Fiadeiro et al. 2000; Hogg et al. 1994). Keratin fibres are not 

chemically homogeneous; they consist of a complex mixture of widely different 

polypeptides (Rippon 1992). Despite the classification of wool as a keratin, clean wool 

in fact contains only approximately 82% of the keratinous proteins, which are 

characterized by a high concentration of cystine. Approximately 17% of wool is 

composed of proteins which have been termed nonkeratinous, because of their 

relatively low cystine content (Rippon 1992). The wool fibre also contains 

approximately 1% by mass of non proteinaceous material; this consists mainly of 

waxy lipids plus a small amount of polysaccharide material. The nonkeratinous 

proteins and lipids are not uniformly distributed throughout the fibre but are 

concentrated in specific regions of the structure (Rippon 1992). Their location and 

their importance in determining the behaviour of wool are discussed later in this 

section.  

 A significant proportion of the polypeptide chains in wool are believed to be 

in the form of an α–helix, this ordered arrangement being responsible for the 

characteristic X-ray diffraction pattern of α–keratin (Hogg et al. 1994). The individual 

peptide chains in wool are held together by various types of covalent crosslinks 

and noncovalent interactions (Figure 1.2). In addition to their occurrence between 

separate polypeptide chains (inter-chain), these bonds can also occur between 

different parts of the same chain (intra-chain). With respect to the properties and 

performance of wool, however, inter-chains bonds are the more important of the 

two types (Rippon 1992).   
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Figure 1.2 – Possible bonds between different wool protein chains, according to 

Rippon (1992). 
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 Thus, wool is a complex natural fibre composed mainly of proteins (97%) 

and lipids (1%), with a heterogeneous morphological structure (Heine and Höcher 1995). 

Wool fibres have approximately the form of elliptical cylinders, with average 

diameters ranging from 15 µm to 50 µm and lengths determined by the rate of 

growth of the wool and the frequency of shearing (Makinson 1979). Wool and other 

keratin fibres consist of two major morphological parts: the cuticle layer (usually 

referred as scale layer of wool) which is composed of overlapping cells that 

surround the cortex (inner part of the fibre). The cortex comprises spindle-shaped 

cortex cells that are separated from each other by a cell-membrane complex 

(Figure 1.3), which consists of non-keratinous proteins and lipids (Feughelman 1997; 

Rippon 1992; Makinson 1979; Plowman 2003; Negri et al. 1993).  

 

Figure 1.3 – Cross-section diagram of a merino wool fibre showing the structure at 

progressive magnifications, according to Feughelman (1997). 

 

 The cuticle cells are laminar, rectangular structures which form a sheath of 

overlapping scales enveloping the cortex (Speakman 1985; Naik 1994; Negri et al. 1993). 

They comprise 10% of the total weight of the wool fibre (Naik and Speakman 1993). The 
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cuticle cells are composed of three distinct layers, shown in Figure 1.4. The 

outermost layer is the outer resistant surface membrane (epicuticle); the next layer 

from the surface of the cells is called the exocuticle, which is subdivided into two 

main layers (A and B-layers) that differ mainly in the cystine content. Finally the 

endocuticle is the cuticular layer nearest to the cortex (Naik 1994; Heine and Höcker 1995; 

Rippon 1992; Feughleman 1997).  

 The substructure of the cuticle cells is directly relevant to felting, friction and 

shrinkproofing processes. The epicuticle, which constitutes about 0.25 percent of 

the total mass of the fibre, is very inert chemically, being resistant to acids, 

oxidising and reducing agents, enzymes, and alkalis (Makinson 1979; Negri et al. 1993). 

This membrane does not form a continuous sheet over the whole fibre, but covers 

the outer surface of each cuticle cell (Naik 1994). The epicuticle membrane is raised 

in the form of characteristic bubbles or sacs (Allworden bubbles) when the fibre is 

immersed in aqueous chlorine solutions (Makinson 1979; Rippon 1992). The epicuticle is 

known for its hydrophobicity, probably due to the lipid component bound to the 

membrane (Negri et al. 1993). The resistance of the surface membrane is thought to 

be due to the naturally occurring covalent isopeptide crosslinks as well as to 

covalent attached lipid, predominantly 18-methyleicosanoic acid (Naik 1994; Negri et al. 

1993; Brack et al. 1999; Swift and Smith 2001; Heine and Höcker 1995). This fatty acid is covalently 

bound to the protein matrix via cysteine residues, forming a layer that can be 

removed by treatment with alcoholic alkaline or chlorine solutions in order to 

enhance many textile properties such as wetability, dye uptake and polymer 

adhesion (Negri et al. 1993; Brack et al. 1999). 
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Figure 1.4 – Schematic scale structure of the cuticle showing the major 

components (based on Rippon (1992). 

 

 Thirty-five percent of the exocuticle A-layer is made by cystine residues, 

and in addition to normal peptide bonds, the cuticle is crosslinked by isodipeptide 

bonds (ε-(γ-glutamyl)lysine) (Naik 1994; Rippon 1992; Heine and Höcker 1995). The A and B-

layers are both resistant to boiling in diluted hydrochloric acid and to trypsin 

digestion; however they can be solubilised by trypsin treatment after oxidation or 

reduction. The endocuticle is preferentially attacked by proteolytic enzymes, and 

readily degraded in diluted boiling hydrochloric acid (Naik 1994; Sawada and Ueda 2001). 

Therefore, as pointed out by several authors, wool cuticle forms a diffusion barrier 

to chemicals and other treatment agents (Naik 1994; Schäfer 1994; Nolte et al. 1996). This 

diffusion barrier (to dye molecules, for example) is mostly due to the hydrophobic 

character of the exocuticle A-layer, caused by the large amount of disulphide 

crosslinks and the bound lipid material. Consequently, the fibre pre-treatment 

processes modify mainly the composition and morphology of the wool surface 

(Brack et al. 1999; Millington 1998; Pascual and Julia 2001). 
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1.1.3 FELTING AND SHRINKAGE 

 One of the intrinsic properties of wool, that is peculiar to wool only, is its 

tendency to felting and shrinkage. Under certain conditions, such as moisture, 

heat and mechanical agitation, wool shrinks, basically due to its morphological and 

scale structure. There are two kinds of shrinkage: relaxation shrinkage and felting 

shrinkage.  

 Relaxation shrinkage describes the shrinkage which appears during 

production when fabrics are subjected to more or less strong mechanical tensions 

in warp or in weft direction. In finished garments these tensions can still be present 

either completely or partially. If such a garment gets wet either during wearing or 

washing, these tensions are loosened and the garment shrinks. The antifelt 

finishing does not remove relaxation shrinkage. Therefore, to obtain a lower 

relaxation shrinkage the garment must be processed with as less tension as 

possible or it must be relaxed by corresponding finishing processes.  

 Felting shrinkage describes the shrinkage of garments due to the felting of 

wool fibres. Legends state that the felting of wool was discovered by a mediaeval 

saint who packed wool or fur into his shoes to ease his blistered feet and 

subsequently found that it had matted into a fabric. Only keratin fibres, grown on 

animals from their skin, can be induced to felt. This is because a directional 

surface structure is provided by the scales (the cuticle scales are arranged 

towards the fibre tip) which occur on all animal fibres but are not present on 

vegetable or man-made fibres (Makinson 1979). Hence, the friction of a wool fibre in 

the scale direction is lower than the friction against the scale direction. There are 

different theories concerning the origin of wool felting (Heine 2002). The hydrophobic 

character and the scaly structure of the wool surface are the main factors causing 
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the differential frictional effect (DFE) resulting all fibres to move to their root end 

when mechanical action (such as moisture, heat, and pressure) is applied in the 

wet state (Makinson 1979; Chi-wai et al. 2004; Höcker 2002). The felting changes not only the 

garment dimensions but its look as well. The woven or knitted structure becomes 

less visible, and the garment becomes thicker and less elastic. 

 The word shrinkproofing means, in practice, treating textiles to reduce 

felting shrinkage; it does not as a rule imply the prevention of relaxation shrinkage. 

Thus, a better term is proposed for this type of finishing process: antifelt-finishing 

(Makinson 1979). The commercially implemented antifelt-finishing processes will be 

described briefly in section 1.2. These shrinkproofing processes aim at the 

modification of the fibre surface either by oxidative or reductive methods and/or by 

the application of a polymer resin onto the surface. 

 

 

1.2 CONVENTIONAL FINISHING PROCESSES FOR WOOL FIBRE 

 

 A variety of processes are available to improve the appearance, handle, 

performance and durability of the wool fabrics. Before the more specialised 

finishing processes are applied, fabrics usually require cleaning (scouring) to 

remove warp sizing, oils, other additives and dirt. Processes such as bleaching 

and dyeing are known as wet-finishing processes, since the fabric is exposed to 

bleaches or dyes in aqueous solutions. Treatment of fabric with particular resin 

systems can improve crease and shape resistance. These are examples of 

chemical finishing processes, which depend upon the ultimate use of the textile. 

(Glaser 1996). Some of the finishing processes in which enzymes can be employed 
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will be described later (section 1.4). In common with almost all other 

manufacturing activities, wool processing has the potential to cause environmental 

damage that should be eliminated or minimized for wool to maintain its 

naturalness. Pollution is a concern in several areas of wool finishing. In a study 

performed by the International Wool Secretariat (IWS), four high priority areas 

were identified (Shaw 1996): 

 - Pesticide residues in wastewater from chemicals applied to sheep. 

 - Discharge of mothproofing agents from wool carpet manufacture. 

 - Emissions of halo-organics from wool shrinkproofing. 

 - Chromium releases from chrome dyeing operations. 

 The finishing processes that may be carried out on wool prior to 

commercialization are discussed bellow. Such processes include scouring, 

carbonizing, bleaching, dyeing, antimicrobial finishing and shrinkproofing. 

 

Scouring  

 Washing, also denominated as scouring, is the first process that raw wool 

goes through, and its purpose is to remove the dirt, grease, and other impurities. 

As already referred, wool fleeces usually contain less than 50% of clean fibre, 

being heavily contaminated by wool wax, skin flakes, suint, sand, dirt and 

vegetable matter (Araújo and Melo e Castro 1984; Dominguez et al. 2003). To achieve 

satisfactory wool products, these contaminants need to be efficiently removed by 

scouring with sodium carbonate and non-ionic surfactants (Tomasino 1992; Dominguez et 

al. 2003). The pollution load from a wool scouring mill can be equivalent to the 

normal discharge from a small town, and steps must therefore be taken to recover 

at least some of the contaminants before discharge (Lewis 1992; Jones and Westmoreland 
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1999). The wool emerges at the end of this process about 30 percent lighter than its 

original weight. The grease that is removed (lanolin) is considered a valuable by-

product. Raw wool contains 10 to 25 percent grease, or lanolin, which is recovered 

during the scouring process (Glaser 1996). Lanolin consists of a highly complex 

mixture of esters, alcohols, and fatty acids and is used in adhesive tape, printing 

inks, motor oils, and auto lubrification. It can also be purified for use in the 

manufacture of many cosmetics and pharmaceuticals (Glaser 1996; Phillips 2004; López-

Mesas et al. 2000). 

 

Carbonising   

 Scouring does not always eliminate vegetable matter such as burrs and 

seeds. Heavily contaminated wool must go through a process known as 

carbonising. If burrs are not removed at this stage they can cling to the wool fibres 

and not be noticed until the process is complete. The process of carbonising is the 

treatment of the vegetable matter with sulphuric acid and heat. The wool is 

steeped in the acid solution which causes the burrs to break up. The wool is then 

subjected to heat which converts the disintegrated material into carbon. The burrs 

are then finally removed, firstly by crushing and then shaken out of the wool by a 

machine rotating at high speed (Araújo and Melo e Castro 1984). Any remaining impurities 

are thus blown out of the fibre. Following carbonising, the wool should be rinsed 

and neutralised by a wet process. Such neutralisation should be carried out 

immediately after baking, otherwise fibre damage will occur during storage of the 

wool in such an acidic state (Araújo and Melo e Castro 1984; Lewis 1992; Tomasino 1992). 
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Bleaching   

 Only a small percentage of the total world production of wool is bleached 

(Araújo and Melo e Castro 1984; Lewis 1992) and this operation is only performed when wool 

is intended to be white dyed or light dyed, like for baby clothes. Hydrogen peroxide 

and peroxy compounds damage wool fibres, due to progressive oxidation of 

disulfide bonds ultimately forming cysteic acid (Gacen and Cayuela 2000).  

 

Dyeing  

 Dyeing operations are used at various stages of production to add colour 

and sophistication to textiles and increase product value. Wool textiles are dyed 

using a wide range of dyestuffs, techniques, and equipment (EPA 1997). Until fairly 

recently, most of the dyes used on wool were acid dyes. Nowadays, acid, chrome, 

metal-complex and reactive dyes may all be used for the dyeing of wool (Pailthorpe 

1992).  

 

Antimicrobial Finishing   

 Textiles are an excellent medium for the growth of microorganisms when 

the basic requirements such as nutrients, moisture, oxygen, and appropriate 

temperature are present. Natural fibres are more susceptible to microbial attack 

than synthetic fibres, and unlike any other textile fibres, wool and other protein 

fibres are subject to attack by the larvae of certain moths (Lepidoptera sp.) and 

beetles (Coleoptera sp.). In the carpet industry, the antimicrobial and/or 

mothproofing of wool fabric is an important finishing step. A durable antimicrobial 
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finish is a potentially effective means of controlling microorganisms on a textile. 

Various chemicals have been applied to wool to control microbial and larval attack 

(Purwar and Joshi 2004; Han and Yang 2005). Especially in the last decades, however, 

considerable environmental restrictions have been placed on the type of agent 

which may be employed. Magnesium hydroperoxide and related compounds, and 

chitin and chitosan based antimicrobial agents are the new generation of 

environmentally friendly antimicrobial agents (Purwar and Joshi 2004). Non-toxic natural 

dyes have also been tested on the antimicrobial activity of wool with good results 

(Han and Yang 2005).  

 

Shrink-resist Treatments   

 Wool is a relatively expensive fibre when compared with other natural and 

synthetic fibres and its position as a high quality, luxury fibre permits relatively 

costly processing and finishing treatments to be carried out, increasing the value 

of wool textiles. One of the intrinsic properties of wool and other animal fibres, as 

previously stated, is their tendency to felt and shrink thus limiting the use of 

untreated wool materials as machine washable textiles. The shrinkage behaviour 

of wool can be regulated to a greater or smaller degree by various chemical 

means; however, choices are more limited if it is desired to achieve the high 

performance demanded by consumers, particularly with the increasing tendency 

towards tumble dryability properties as part of the consumer trend to “easy-care” 

properties. There are various successful commercial shrink-resist processes 

available for textile industries that have been developed decades ago. The 

processes which have been developed so far can be combined in 3 groups:  

a. Subtractive processes – The oldest type of shrinkproofing treatment involves 
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chemical attack on the cuticle of the fibres. Such treatments are commonly 

called degradative processes. The earliest degradative treatment was 

chlorination, introduced as a shrinkproofing treatment during the latter half of 

the nineteenth century (Makinson 1979). The principal mode of action of 

degradative antifelting treatments is that they make the cuticle cells softer in 

water than those of untreated fibres. This softening is the result of oxidation 

and scission of the numerous disulfide bonds in the exocuticle of the wool 

(Makinson 1979). This softening, which results from an increase in the number of 

charged and/or soluble molecules contained inside the cell membrane, 

causes a reduction in the directional frictional effect (Makinson 1979).  

b. Additive processes – The second class of shrinkproofing treatments consists of 

those in which a polymer is added to the wool; they are also called additive 

treatments. The polymer is deposited on the surface of the fibres, and it can 

be applied to the fabric/yarn or to the wool tops. The polymers which are 

effective only when applied to fabric or yarn act by sticking the fibres together 

at the points where they touch or come close together. This prevents relative 

movement between the fibres of the magnitude necessary for felting. The 

polymers that are applied to tops require a pre-treatment which is, in practice, 

a mild chlorination. Thus, this treatment is the combination of these two 

processes.  

c. Combination of subtractive and additive processes (e.g. chlorine-Hercosett 

process) - Nowadays the combination of subtractive and additive processes 

has the highest importance in commercial processes. To date the most 

successful process for producing truly machine-washable wool is the 

chlorine-Hercosett process. This extremely effective process consists of a 



 22

strongly acid chlorination step followed by a dechlorination step (subtractive 

process) with a subsequent application of a cationic polymer (Hercosett: 

polyamide-epichlorohydrin resin) (additive process). The chlorination results 

in the oxidation of cystine residues to cysteic acid residues in the surface of 

the fiber and allows the cationic polymer to spread and adhere to wool 

surface (Lewis 1992; Heine 2002).  

 The chlorine-Hercosett process has been dominant in the industry for 30 

years, and still about 75% by weight of the world's treated wool is processed by 

this route in one of its forms (Holme 2003). With respect to efficiency and cost the 

chlorine-Hercosett process offers tremendous advantages which are hard to 

overcome even with great effort: excellent antifelt effect, purposive modification of 

the wool surface, low damage and low weight loss. From today's modern point of 

view, however, the chlorine-Hercosett process shows a number of drawbacks 

which make the search for an ecologically clean alternative worthwhile: limited 

durability, poor handle, yellowing of wool, difficulties in dyeing and the most 

important today, environmental impact (release of absorbable organic halogens-

AOX to the effluents) (Heine 2002; Julia et al. 2000; Schlink and Greeff 2001). 

 

 Therefore, because of the new environmental directives, the development 

of clean technologies such as enzymatic finishing processes is a priority. The 

biotechnology applied to textile industry, by the use of enzymes, has already 

contributed to a reduction of energy costs and also to the reduction of pollutant 

emissions into the environment (Feitkenhauer and Meyer 2001). 

 Before introducing some of the enzymatic finishing processes already 

implemented in the textile industry (section 1.4), a brief description of enzymes 
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characteristics and their properties will be given in the following section. 

 

 

1.3 CHARACTERISTICS AND PROPERTIES OF ENZYMES 

 

 Most of the reactions in living organisms are catalysed by protein molecules 

called enzymes. Enzymes can rightly be called the catalytic machinery of living 

systems and have played an important role in many aspects of life since the dawn 

of times. In fact they are vitally important to the existence of life itself. Enzymes are 

nature’s catalysts (i.e. they speed up the rates of reactions without themselves 

undergoing any permanent change). Civilizations have used enzymes for 

thousands of years without understanding what they were or how they worked. 

Over the past several generations, science has unlocked the mystery of enzymes 

and has applied this knowledge to make better use of these amazing substances 

in an ever-growing number of applications. Today, nearly all commercially 

prepared foods contain at least one ingredient that has been made with enzymes. 

Enzymes also play a significant role in non-food applications. Industrial enzymes 

are used in laundry and dishwashing detergents, stonewashing jeans, pulp and 

paper manufacture, leather dehairing and tanning and desizing of textiles. 

 Some enzymes are still extracted from animal or plant tissues. Plant derived 

commercial enzymes include the proteolytic enzymes papain, bromelain and ficin 

and some other special enzymes like lipoxygenase from soybeans. Animal derived 

enzymes include proteinases like pepsin and rennin. Most of the enzymes are, 

however, produced by microorganisms in submerged cultures in fermentors. 

 Criteria used in the selection of an industrial enzyme include specificity, 
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reaction rate, optimum pH and temperature, stability, effect of inhibitors and affinity 

to substrates. Enzymes used in industrial applications must usually be tolerant 

against various heavy metals and have no need for cofactors.  

 The simplest way to use and apply enzymes to practical processes is to add 

them into a process stream where they catalyse the desired reaction and are 

gradually inactivated during the process. In these applications the price of the 

enzymes must be low to make their use economical.  An alternative way to use 

enzymes is to immobilise them so that they can be reused. Many different 

methods for enzyme immobilization based on chemical reaction, entrapment, 

specific binding or adsorption have been developed.  

 Therefore, enzymes play crucial roles in producing the food we eat, the 

clothes we wear, even in producing fuel for our automobiles. Enzymes are also 

important in reducing energy, water, raw materials consumption and 

environmental pollution (by generating less waste and fewer environmental 

pollutants). In this section, a brief overview of the characteristics and properties of 

enzymes will be given. 

 

 

1.3.1 NOMENCLATURE AND CLASSIFICATION OF ENZYMES 

 Presently more than 3000 different enzymes have been isolated, mainly 

from mesophilic organisms, and characterized (Kumar and Takagi 1999; Sharma et al. 2001). 

Only a limited number of all the known enzymes are commercially available and 

even a smaller amount is used in large quantities. At least 75% of all industrial 

enzymes are hydrolytic in action (Sharma et al. 2001). Protein-degrading enzymes 
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dominate the market, accounting for approximately 40% of all enzyme sales 

(Godfrey and West 1996; Sharma et al. 2001; Gupta et al. 2002). Proteases have found new 

applications but their use in detergents is still the major market.  

 Enzymes are categorized according to the compounds they act upon. As in 

the development of organic chemistry, many enzymes were given “trivial” names 

before any attempt was made to create a system of nomenclature. Some of the 

most common include: proteases which break down proteins, cellulases which 

break down cellulose, lipases which split fats (lipids) into glycerol and fatty acids, 

and amylases which break down starch into simple sugars. The present-day 

accepted nomenclature of enzymes is that recommended by the Enzyme 

Commission (EC), which was set up in 1955 (IUB 1992; Price and Stevens 1999; Fornelli 

1995). The six major types of enzyme-catalysed reactions are: 

 1. oxidation-reduction reactions, catalysed by Oxidoreductases; 

 2. group transfer reactions, catalysed by Transferases; 

 3.  hydrolytic reactions, catalysed by Hydrolases; 

 4. elimination reactions in which a double bound is formed, catalysed by 

Lyases; 

 5. isomerization reactions, catalysed by Isomerases;  

 6. reactions in which two molecules are joined at the expense of an 

energy source (usually ATP), catalysed by Ligases. 

 

 

1.3.2 PROPERTIES OF ENZYMES AS CATALYSTS 

 Enzymes are natural protein molecules that act as highly efficient catalysts 
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in biochemical reactions, i.e., they help a chemical reaction take place quickly and 

efficiently. This catalytic capability is what makes enzymes unique. Enzymes not 

only work efficiently and rapidly, but they are also biodegradable.  

 The use of enzymes frequently results in many benefits that cannot be 

obtained with traditional chemical treatments (Kragl 1996; Powell 1990). These often 

include higher product quality and lower manufacturing cost, less waste and 

reduced energy consumption (Silva and Roberto 2001; Bickerstaff 1997; Sarkar and Etters 1999). 

The traditional chemical treatments are generally non-specific, not always easily 

controlled, and may create harsh conditions. Often they produce undesirable side 

effects and/or waste disposal problems. The degree to which a desired technical 

effect is achieved by an enzyme can be controlled through various means, such as 

dosage, temperature, and time. Because enzymes are catalysts, the amount 

added to accomplish a reaction is relatively small.  

 With environment and cost issues surrounding conventional chemical 

processes being subjected to considerable scrutiny, biotechnology is gaining 

ground rapidly due to the various advantages that it offers over conventional 

technologies. Industrial enzymes represent the heart of biotechnology processes. 

According to a recent released report from Business Communications Company, 

Inc. (BCC 2004) the global market for industrial enzymes was estimated at US $2 

billion in 2004. Volume growth of industrial enzymes is between 4% and 5% of the 

Average Annual Growth Rate (AAGR), which is accompanied by decreasing 

prices, due to the increase in the number of smaller players competing in the 

market. The industrial enzyme market is divided into three application segments: 

technical enzymes, food enzymes and animal feed enzymes. The following chart 

shows the global enzyme markets by application sectors, through 2009.  
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Figure 1.5 - Global enzyme markets by application sectors, through 2009 ($ 

Millions), according to BCC (2004).  

 

 Textile enzymes are the third most significant segment of the market of 

industrial enzymes, as can be depicted from Figure 6 (BCC 1998). The major 

enzymes in this category are enzymes for processing cotton and cellulosic textiles, 

followed by enzymes for processing leather and fur. The enzyme market for the 

treatment of silk and wool is minor (BCC 1998). 
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Figure 1.6 – Distribution of industrial enzymes: worldwide market forecast in 2002 

($ million), according to BCC (1998). 
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1.3.3 PROTEOLYTIC ENZYMES 

 Proteases have been used in food processing for centuries, like rennet 

obtained from calves’ stomachs used traditionally in the production of cheese and 

papain from the leaves and unripe fruits of the pawpaw used to tenderize meats 

(Chaplin and Bucke 1990). Proteolytic enzymes catalyse the hydrolysis of certain 

peptide bonds in protein molecules, as already mentioned in the previous section. 

The general reaction can be illustrated by: 
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Figure 1.7 – Schematic representation of the cleavage of a peptide bond by a 

protease. 

 

 Microbial proteases are among the most important hydrolytic enzymes and 

have been studied extensively since the advent of enzymology (Gupta et al. 2002). 

Today, proteases account for more than 40% of the total enzyme sales in various 

industrial market sectors, such as detergent, food, pharmaceutical, leather, 

diagnostics, waste management and silver recovery (Godfrey and West 1996; Gupta et al. 

2002; Sharma et al. 2001; Kumar and Takagi 1999; Rao et al. 1998; Banerjee et al. 1999; Singh et al. 2001). 

However, until today, the largest share of the enzyme market has been held by 

alkaline proteases and different companies worldwide have successfully launched 

several products based on these, in the past few years (Gupta et al. 2002).   
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 Probably the largest application of alkaline proteases is as additives for 

detergents, where they help in removing protein based stains from clothing (Gupta et 

al., 2002; Kumar and Takagi 1999). In textile industry proteases may also be used to 

remove the stiff and dull gum layer of sericine from the raw silk fibre to achieve 

improved lustre and softness (Freddi et al. 2003). Protease treatments can modify the 

surface of wool and silk fibres to provide new and unique finishes. Research has 

been carried out on the application of proteases to prevent wool felting (Silva and 

Cavaco-Paulo 2003; Cortez et al. 2004; Heine and Höcker 1995; Heine 2002). The bio-industrial 

viewpoints of microbial alkaline proteases have been reviewed (Gupta et al. 2002; 

Kumar and Takagi 1999). 

 Since proteases are physiologically necessary for living organisms, they are 

ubiquitous, being found in a wide diversity of sources such as plants, animals, and 

microorganisms (Rao et al. 1998). In earlier days, proteases were classified according 

to molecular size, charge or substrate specificity. A more rational system is now 

based on a comparison of active sites, mechanism of action and three-

dimensional structure (Neurath 1996; Rao et al. 1998).  

 Proteases attack proteins via two modes, yielding different products (Hsieh 

and Cram 1999; Romero et al. 2001). Exopeptidases act cleaving off single amino acids 

from either end of the peptide chain. Exoproteases are specific according to which 

end of the protein chain they attack, either carboxypeptidases if they attack the 

end with a free carboxylic acid (C-terminus) or aminopeptidases if they attack the 

free amino end group (N-terminus). Endopeptidases or proteinases attack peptide 

bonds in the interior of the peptide chain, yielding smaller polypeptides and 

peptides. The endoproteases are classified according to the mechanism of their 

active site. Four mechanistic classes: serine and cysteine proteases (which form 
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covalent enzyme complexes) and aspartic and metallo-proteases (which do not 

form covalent enzyme complexes) are recognized by the International Union of 

Biochemistry (IUB 1992), and within these classes, six families of proteases are 

distinguished to date. Each family has a characteristic set of functional amino acid 

residues arranged in a particular configuration to form the active site (see Table 4) 

(Neurath 1996). Members of each family are believed to have descended from a 

common ancestor by divergent evolution. 

 Table 1.3 - Families of proteolytic enzymes, according to Neurath (1996) 

Familya Representative protease(s) 
Characteristic active 

site residuesb 

Serine proteases I Chymotrypsin Asp102, Ser195, His57 

      Trypsin  

      Elastase  

      Pancreatic kallikrein  

   

Serine proteases II Subtilisin Asp32, Ser221, His64 

   

Cysteine proteases Papain Cys25, His159, Asp158 

      Actinidin  

   

Aspartic proteases Penicillopepsin  Asp33, Asp213 

     Rhizopus chineses and Endothia 

parasitica, acid proteases  

 

      Renin  

   

Metallo-proteases I Bovine carboxypeptidase A Zn, Glu270, Try248 

   

Metallo-proteases II Thermolysin Zn, Glu143, His231 
a This table includes only enzymes of known amino acid sequence and three dimensional structure. 
b The number of residues corresponds to the amino acid sequence of the enzyme listed in bold 

column 2. 
 

The serine peptidases are the most thoroughly studied class of enzymes in 

the protease field, and perhaps in all of enzymology (Dunn 1996), being 

characterized by the presence of a serine group in their active site (Rao et al. 1998). 
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They are numerous and widespread, suggesting that they are vital to the 

organisms. The serine proteases include two distinct families: the mammalian 

serine proteases (for example chymotrypsin and trypsin) and the bacterial serine 

proteases (for example subtilisin). They differ from each other in amino acid 

sequence and three-dimensional structure, despite a common active site geometry 

and enzymatic mechanism. Analogously, the metallo-proteases include two 

families: the mammalian and bacterial metallo-proteases.  

 One of the most extensively studied families of serine proteases is the 

subtilisin family. It consists of primarily prokaryotic proteases, such as subtilisin 

BPN´ from Bacillus amyloliquefaceins, but subtilisins have also been discovered in 

organisms such as fungi and higher eukaryotes.  

 In this research, a subtilisin (EC 3.4.21.62) was used. This protease 

promotes the hydrolysis of proteins with broad specificity for peptide bonds. It also 

hydrolyses peptide amides. Subtilisin is a serine endopeptidase, and it contains no 

cysteine residues. This enzyme, which has no disulfide bonds, consists of a single 

polypeptide chain of about 275 aminoacids residues and possesses the “catalytic 

triad” of Asp, His and Ser residues that is conserved among serine proteases as 

the hallmark of its active site (Takagi and Takahashi 2003). Species variants include 

subtilisin BPN' (also subtilisin B, subtilisin Novo, bacterial proteinase Novo) and 

subtilisin Carlsberg (subtilisin A, alcalase Novo). Similar enzymes are produced by 

various Bacillus strains (PDB). 
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Figure 1.8 – Ribbon drawings of X-ray structure of a subtilisin from Bacillus sp. 

(from PDB, entry 1SCN). Arrows denote beta-sheets and spirals denote 

helices. 

 

 

1.3.4 ENZYME IMMOBILIZATION BY COVALENT COUPLING 

 An important factor determining the use of enzymes in a technological 

process is their cost (Chaplin and Bucke 1990; Swaisgood 1991; Ciardelli and Ciabatti 2002). 

Immobilization of enzymes often incurs an additional expense and is only 

undertaken if there is a solid economic or process advantage in the use of the 

immobilized, rather than free (soluble) enzymes. The interest in the use of 

immobilized enzymes in industry is based on the potential advantages they confer 

over their soluble counterparts, including increased stability to temperature, pH 

and organic solvents; recovery and reuse of the enzyme; and, in the case of 

proteases, removal or reduction of autolysis or denaturation (Park et al. 2002; Kumar and 

Takagi 1999). 

 The most important benefit derived from immobilization is the easy 

separation of the enzyme from the products of the catalysed reaction. This 
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prevents the enzyme from contaminating the product, minimising downstream 

processing costs and possible effluent handling problems. It also allows 

continuous processes to be practicable, with a considerable saving in enzyme, 

labour and operating costs. Immobilization often affects the stability and activity of 

the enzyme, but conditions are usually available where these properties are hardly 

changed or even enhanced (Chaplin and Bucke 1990; Bickerstaff 1997; Worsfold 1995). 

However, insoluble immobilized enzymes are of little use when the substrate is 

also insoluble, due to steric hindrance and diffusional limitations (Chaplin and Bucke 

1990; Kumar and Gupta 1998; Fujimura et al. 1987; Chen 1998).  

 Immobilized enzymes have been defined as enzymes that are physically 

confined or localized, with retention of their catalytic activity, and which can be 

used repeatedly and continuously (Worsfold 1995). There is a variety of methods by 

which enzymes can be immobilized, ranging from covalent chemical bonding to 

physical entrapment. However they can be broadly classified as follows (Powell 1990; 

Bickerstaff 1997; Bullock 1989, Kennedy and Roig 1995; Worsfold 1995; Carr and Bowers 1980): 

1) Adsorption of the enzyme into a support material. 

2) Covalent binding of the enzyme to a support material. 

3) Entrapment by intermolecular cross-linking of enzyme molecules using 

multi-functional reagents.   

4) Encapsulation by membrane confinement of the enzyme inside a water-

insoluble polymer lattice or semi-permeable membrane. 

 Immobilization of biocatalysts has gained popularity over the past decades. 

Among the different methods of immobilization techniques considered (Figure 9), 

covalent coupling of the enzymes to matrices is an extensively researched 

technique due to its own merit and to the benefits in the repeated use of 
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biocatalysts in bioconversions and down-stream processing (Arasaratnam et al. 2000). 

This method of immobilization involves the formation of a covalent bond between 

the enzyme and the support material, or matrix (Bickerstaff 1997). The strength of 

binding is strong, and very little leakage of enzyme from the support occurs. The 

relative usefulness of various groups, found in enzymes, for covalent link formation 

depends upon their availability and reactivity (nucleophilicity), in addition to the 

stability of the covalent link, once formed. Lysine residues are found to be the 

most generally useful groups for covalent bonding of enzymes to insoluble 

supports due to their widespread surface exposure and high reactivity, especially 

in slightly alkaline solutions. They also appear to be only very rarely involved in the 

active sites of enzymes.  

 
Figure 1.9 - Immobilised enzyme systems. (1) enzyme non-covalently adsorbed to 

an insoluble particle; (2) enzyme covalently attached to an insoluble 

particle; (3) enzyme entrapped within an insoluble particle by a cross-

linked polymer and (4) enzyme confined within a semi-permeable 

membrane (Based on Worsfold 1995; Carr and Bowers 1980 and Chaplin and Bucke 

1990). 
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 Generally it is found that covalent immobilization is more effective than the 

other methods of immobilization in improving enzyme resistance to heat, chemical 

disruption and pH changes (Bickerstaff 1997). This method is also useful to avoid one 

of the major causes of inactivation of proteases which is the proteolytic self-

degradation (autolysis). This can be avoided by covalently binding proteases onto 

supports to prevent them from attacking each other (Bickerstaff 1997; Stoner et al. 2004), 

although some loss of enzyme activity might occur. 

 Carbodiimides are very useful bifunctional reagents as they allow the 

coupling of amines to carboxylic acids. Careful control of reaction conditions and 

choice of carbodiimide allow a great degree of selectivity in this reaction. 

Glutaraldehyde is another bifunctional reagent which may be used to cross-link 

enzymes or link them to supports. This bifunctional aldehyde is relatively cheap, 

available in industrial quantities and has the additional advantage to be a biocide 

and sanitize the biocatalyst (Kragl 1996). There are other numerous methods 

available for the covalent attachment of enzymes (e.g. the attachment of tyrosine 

groups through diazo-linkages, and lysine groups through amide formation with 

acyl chlorides or anhydrides). 

 

 Proteases have been immobilized using a wide range of methods including 

deposition or precipitation into porous supports and covalent attachment to 

activated supports. Attachment of alkaline proteases to insoluble carriers (by either 

physical adsorption or covalent coupling) is the most prevalent method of 

immobilization. Various carriers employed for this purpose include porous glass 

(Wilson et al.  1994; Parrado and Bautista  1995), silica (Haensler et al. 1997; Ferreira et al. 2003), 

resins (Chae et al. 2000), nylon (Chellapandian and Sastry 1994), chitosan and chitin (Abdel-
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Naby et al. 1998; Farag and Hassan 2004), polyester (Nouaimi et al. 2001) and vermiculite 

(Chellapandian 1998).  

 There are also reports of the immobilization of proteases into soluble 

matrices, like polyethylene glycol (Gaertner and Puigserver 1992) or soluble-insoluble 

polymers (Kumar and Gupta 1998; Fujimura et al. 1987; Sharma et al. 2003; Arasaratnam et al. 2000; 

Chen 1998). These polymers can easily be reversibly made soluble-insoluble by 

changing the physical conditions, such as pH and temperature, and by adding 

certain ions. Thus, if enzymes are attached to soluble-insoluble polymers, they 

present several advantages since they can be used as catalysts in their soluble 

form and then be recovered by precipitation for reuse, being easily separated from 

the products. Moreover, they overcome the problem of the non accessibility of the 

enzyme to macromolecular substrates. One of such supports with reversible 

solubility is Eudragit S-100, a random copolymer of methacrylic acid and methyl 

methacrylate. Enzymes coupled to Eudragit have been used for hydrolysis of 

macromolecular substrates, such as starch, cellulose, olive oil, xylan, and casein, 

among others (Dourado et al. 2002; Sardar et al. 1997; Charusheela and Arvind 2002; Rodrigues et al. 

2002; Sardar et al. 2000; Cong et al. 1995; Taniguchi et al. 1989; Teotia et al. 2003). 

 The bioconjugates formed with Eudragit S-100 have several attractive 

features which favours its use as an immobilization matrix for enzymes/proteins. It 

is non-toxic (safe for use in food processing industries), water soluble (allowing its 

use for macromolecular substrates), recoverable from solution by pH alteration, 

economical, and commercially available (Kumar and Gupta 1998). According to Valuev 

et al. (1998), to prevent the decrease in the biological activity of immobilized 

proteins, it is necessary to carry out the immobilization process in two steps. The 

first step should be the activation of the polymer surface by carbodiimides, and the 
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second step should be the modification of these surfaces by enzymes. The 

coupling of the polymer to enzymes using water-soluble carbodiimides can be 

illustrated by the following scheme: 
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Figure 1.10 – Schematic representation of the different steps in the immobilization 

of enzymes to Eudragit S-100: (1) activation of the polymer with soluble 

carbodiimide and (2) coupling reaction with the enzyme. 

 

 

1.4 ENZYMATIC FINISHING PROCESSES FOR WOOL 

 

 Textile processing requires the use of vast amounts of water (about 100 L 

of water by 1 kg of processed textile material, Rodrigues 2000), chemicals and energy, 

and therefore it has important effects on the quality of the environment in textile 

manufacturing regions (Cooper 1993). There are many strategies which a 

manufacturer might use for reducing potential sources of pollution (such as 

process modifications, reuse, recovery, and other control strategies). In most 
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cases, the results that can be obtained are site-specific, and each manufacturing 

process must be evaluated on its own merit as a separate situation (Cardamone and 

Marmer 1995). One control strategy that has given proof of efficiency in replacing 

pollutant processes in textile industry is, as already mentioned, the use of 

enzymes to replace the conventional chemical processes. Biotechnology 

processing was introduced into the textile industry in the beginning of the 20th 

century, being facilitated by the use of water solutions and relatively mild 

conditions in the textile processes (Sørup et al. 1998), and specifically aimed at 

minimising the environmental effects as well as improving product quality 

(reducing the damage caused to the fibres during processing). The textile industry 

has widely and generally accepted the use of enzymes in its processes, especially 

in fairly simple large-scale applications, such as stone-washing (Sørup et al. 1998). 

The market share of industrial enzymes in the textile field stands at about 10% of 

the total market, being textile enzymes one of the fastest growing areas in the 

enzyme industry (BCC 1998; Sørup et al. 1998). 

 

 Enzymes can be applied potentially to all stages of textile production. The 

most classical enzymatic application in the textile industry is the desizing of cotton 

fabrics using amylases (Nilsson and López-Ainaga 1996). The use of amylases to remove 

starch-based sizing agents has decreased the use of harsh chemicals in the textile 

industry, resulting in a lower discharge of waste chemicals into the environment, 

improving the safety of working conditions for textile workers and has raised the 

quality of the fabric (Nilsson and López-Ainaga 1996; Sørup et al. 1998; Cegarra and Emer 1999).  

 The following step in the textile process comprises the removal of dirt and 

impurities from the fabrics (scourig). The application of several enzymes such as 
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pectinases, lipases and cellulases to perform a bio-scouring has been reported. 

Pectinases have been used together with cellulases in the elimination of impurities 

in cotton and wool (Heine 2002; Tzanov et al. 2001; Lange 2000; Durden et al. 2001). Lipases are 

used in the textile industry to assist in the removal of size lubricants, and are also 

used in detergent formulations together with proteases and amylases (Chaplin and 

Bucke 1990; Cortez et al. 2005), being responsible for removing fatty substances from 

clothing. There is also an increasing use of cellulases in domestic washing 

products (Cavaco-Paulo et al. 1999), where they are claimed to aid detergency and to 

remove damaged fibrillar material, improving fabric appearance, softness and 

colour brightness (Chaplin and Bucke 1990).  

 Most of the fabrics are then subjected to a bleaching procedure, using 

hydrogen peroxide. The use of catalases to break down residual hydrogen 

peroxide after the bleaching process of cotton is an already established application 

(Heine 2002; Jensen 2000; Sørup et al. 1998), enabling the dyeing process to be carried out 

without prolonged washing between bleaching and dyeing, thus being more 

environmental friendly by saving water, time and energy (Costa et al. 2001).  

 The contamination arising from a dyeing process is concerning, since colour 

is the first contaminant to be recognized in wastewaters and dyes are difficult to 

eliminate. Several recent studies report the use of laccases, peroxidases or 

microorganisms to remove the dyes from the environment and for the 

decolourization of textiles effluents (Zille et al. 2003; Campos 2000; Ramalho et al. 2002).  

 The last stage in a textile process is the finishing, where several enzymes 

can be applied, depending on the intended look and final properties. A very well 

established application is the use of cellulases in the replacement of pumice 

stones in the “stone-washing” process to produce the aged appearance of denim 
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garments (Nilsson and López-Ainaga 1996; Sariisik 2004; Cavaco-Paulo et al. 1998; Tzanov et al. 2003a). 

Cellulases are also used in bio-polishing processes to improve the appearance of 

cellulosic fabrics (particularly cotton and Lyocell) by removing fuzz fibre and pills 

from the surface, reducing pilling propensity, or delivering softening benefits 

(Azevedo 2001; Cavaco-Paulo 1998). 

 Proteolytic enzymes are used in the textile industry for the degumming of 

silk and for producing sandwashed effects on silk garments (Lange 2000; Heine 2002; 

Freddi et al. 2003; Sørup et al. 1998). The use of proteases has also been reported for 

cotton scouring (Hsieh and Cram 1999) and to prevent backstaining in denim washing 

(Yoon et al. 2000). The use of proteases to reduce prickle and improve softness in 

wool has been investigated with encouraging results (Heine 2002).  

 

 Research on the use of proteases for decreasing the felting tendency of 

wool has been carried out since the beginning of the 1900's, but the results 

obtained so far present a high variance and no great achievements comparing to 

the classical chemical method. Therefore wool bio-finishing was not yet 

implemented at an industrial scale (Heine 2002). Some of the recent attempts are 

described below: 

- In the earliest enzyme finishing processes, wool was pre-treated by gas 

chlorination (Chlorzyme process) or by hydrogen peroxide (Perzyme process) 

prior to treatment with papain and bisulphite (Heine 2002; Mackinson 1979). These 

processes resulted in a complete removal of the cuticle cells, but because of 

non-tolerable weight loss of the fibre and treatment irregularity, these 

processes were never implemented on an industrial scale. 

- From the patent literature it is obvious that proteases can be used for wool 
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treatment but always with corresponding wool pre-treatment or specific 

modification to enhance the enzyme action (Dybdal et al. 1996; McDewitt and Winkler 

1999; Leman 1999; Breier 1999). 

- Other patented processes describe methods for wool treatment using 

proteases and other class of enzymes. The enzymes researched so far to 

assist proteases in the attenuation of wool shrinkage have been 

transglutaminases (Ogawa et al. 1991; McDewitt and Winkler 2000), peroxidases or 

oxidases (Yoon 1998) and protein disulphide isomerase (King and Brockway 1989).  

- Some patents refer methods to improve the shrink-resistance of wool either by 

treating wool previously with an oxidizing agent (Kondo et al. 1985) or alkali-

containing alcohol solution (McDevitt and Shi 2000) and then with a protease. Other 

authors refer processes to achieve shrink-resistance by treating wool with a 

protease followed by a heat treatment (Ciampi et al. 1996). 

- Several authors have suggested the use of benign chemical processes such as 

low-temperature plasma to treat wool (Chi-way et al. 2004; Höcker 2002). Plasma 

treatment is a dry process, which involves treating wool fibre material with 

electric gas discharges (so-called plasma). At present, there are obstacles 

(costs, compatibility and capacity) to large-scale commercialization of a plasma 

treatment process.  

 Consequently, the application of proteases for achievement of wool shrink 

resistance is being extensively researched, but the main problem, still not 

completely solved, lies in obtaining the anti-felting effect that is comparable to that 

produced by commercially used chlorine-Hercosett process. 
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1.4.1 LIMITATIONS OF WOOL PROTEASE FINISHING  

 Since wool is a protein fibre and proteases are fairly unspecific in their 

hydrolytic action, many problems arise from the wool hydrolysis using proteases, 

explaining the poor success of all the attempts for wool bio-finishing using this type 

of enzymes. The main problem with proteases is their controllability. Excessive 

protease treatment can severely damage wool, especially if used after an oxidative 

process.  

 Generally speaking, if the proteases are applied at levels that provide the 

sufficient shrink resistance in washing, wool fibres are unacceptably damaged and 

the treatment is not uniform and regular. Major reasons for such treatments to be 

unsuccessful are: 

- Proteases can diffuse inside wool inducing high levels of strength loss; 

- Process control is laborious and not feasible for the wool wet processing, when 

native proteases are applied; 

- No real methodologies have been developed to induce a superficial treatment 

of wool; 

- Wool is a very heterogeneous substrate, changing with the race, sex, age and 

nutrition of sheep (Pailthorpe 1992; Ülkü et al. 1998).  
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1.5 DESIGN OF EXPERIMENTS  

 

 In research and development, often half of the resources are spent on 

solving optimization problems. With the rapidly rising costs of experiment making, 

it is essential that the optimization is performed with as few experiments as 

possible. This is one important reason why design of experiments is needed. 

Experimental design, more commonly called design of experiments (DOE), is an 

important statistical tool. DOE is a systematic set of experiments that allows one to 

evaluate the impact, or effect, of one or more factors without concern for 

extraneous variables or subjective judgements. Thus, it is a structured, organized 

method for determining the relationship between the factors affecting a process 

and the output of that process (Box et al. 1978; Lynch 2003; Barros Neto et al. 1995). Factors 

are the variables under investigation that are set to a particular value (level) during 

the experiment. These variables may be quantitative or qualitative. Response 

variables are the results from the experimental run. An understanding of the 

relationship between the response variables and the factors is the desired 

outcome of the entire DOE effort. Once the relationship is understood the 

response variable can usually be optimized by setting the factors to their optimal 

levels.  

 Typical examples were this methodology can be applied are:  

• the development of new products and processes;  

• optimizing the quality and performance of an existing product and  

• optimizing existing manufacturing processes in several industrial areas, like 

chemicals, polymers, drugs and pharmaceuticals, foods and beverages, 

cosmetics, and so forth.  
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 The objective of statistical methods is to make a process as efficient as 

possible (Box et al. 1978).Thus, the optimization of a process or a product involves 

setting the factors so that the output becomes "as good as possible". Often this is 

done by changing one separate factor at a time until no further improvement is 

achieved. The One-Factor-At-a-Time approach (OFAT) is, however, very 

inefficient. As shown by the English statistician Ronald Fisher (Fisher 1925), 

changing one factor at a time does not give any information about the position of 

the optimum where there are interactions between factors, which occurs frequently 

(Fisher 1925; Anderson 2005). Then the OFAT approach gets blocked, usually far from 

the real optimum. However, the experimenter perceives that the optimum has 

been reached because changing one factor at a time does not lead to any further 

improvement.  

 In 1925, Ronald Fisher introduced the full factorial experiment to study the 

effect of multiple variables simultaneously, thus starting the development of 

methods of design of experiments. In his early applications, Fisher wanted to find 

out how much rain, water, fertilizer, sunshine, etc. were needed to produce the 

best crop. Since then, much development of the technique has taken place and 

these methods have been further refined by Box and Hunter (Box et al. 1978), 

Taguchi (Taguchi 1987), and others, so that today they comprise a tool box for 

virtually any optimization problem, and are in use in just about every industry 

(Anonymous 2005). 

  

  The DOE process consists of four primary phases: the planning phase, the 

screening phase, the optimization phase and the confirmation phase (Lynch 2003; 

Anderson 2005). The planning phase is often minimized by most experimenters 
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despite being a vital component to achieve the desired results from the DOE effort. 

The purpose of this phase is to clearly define the target and objectives of the 

experiment, obtain an understanding of all the potential variables and devise a 

conscious strategy on how to address them in experimentation. In DOE there are 

three potential objectives: maximize, minimize, hit a target and minimize variation. 

No variables should be omitted at this point, even if minimal impact on the analysis 

is anticipated. Once identified, it is important to classify all of the variables as 

controllable or uncontrollable and to define a conscious choice strategy for 

addressing each variable.  

 The second phase of the DOE process is the screening phase. The goal of 

the screening phase is simply to identify the variables (factors) that have a 

significant effect on the response. A secondary goal is efficiency. The screening 

process should be accomplished as cost effectively and quickly as possible. 

During the screening phase, the focus is not on the development of a 

mathematical model, but on understanding the few potentially significant variables 

that have an effect on the response. Screening design results often leads to 

further experimentation as the cause and effect relationship is progressively 

revealed.  

 The third phase of the DOE process is the optimization phase. The purpose 

of the optimization phase is to take the input from the screening phase and 

determine optimal factor level settings that generate the desired response. This 

can be accomplished by the development of a mathematical model or by means of 

using iterative approaches, such as simplex methods. Both approaches have 

advantages and disadvantages.  

 The final phase in the DOE process is the confirmation phase. The purpose 



 46

of the confirmation phase is to ensure that the results from the DOE analysis 

correlate with the actual process. This phase is critical to verify the effectiveness of 

the predictive power of the results and to ensure their reliability. This confirmation 

is typically performed by operating the process at the optimal factor level settings, 

suggested by the analysis and comparing the actual process response results with 

the predicted response from the analysis.  

 Thus, there are a number of DOE strategies that vary in complexity and 

nature. These strategies include full factorial and fractional factorial designs, 

response surface methodologies, simplex designs, among others. Carefully 

planned, statistically designed experiments offer clear advantages over traditional 

OFAT alternatives. These techniques are particularly useful tools for process 

validation, where the effects of various factors on the process must be determined. 

Not only is the DOE concept easily understood, but also the factorial experiment 

designs are easy to construct, efficient, and capable of determining interaction 

effects. Results are easy to interpret and lead to statistically justified conclusions. 

The designs can be configured to block out extraneous factors or expanded to 

cover response surface plotting. Those implementing a DOE strategy will find that 

computer software is an essential tool for developing and running factorial 

experiments.  

 

1.5.1 APPLICATIONS OF THE DOE STRATEGY TO TEXTILE PROCESSES 

 The DOE strategy has been widely used in evaluating the effects of several 

variables and in the optimization of several technological processes, such as 

immobilization and production of enzymes and production of food components, 
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among others; though this methodology is seldom implemented in textile 

processes. 

 Among the few published works on the use of DOE strategies in textile 

processes, some of them considered wool as the studied material. These works 

and the achievements they accomplished will be presented briefly bellow. 

 In a recent work performed by Tzanov et al. (2003b), the effects of the 

process variables (reaction time, enzyme and modifiers concentration) on the wool 

enzymatic dyeing were evaluated, using a 23 factorial design. According to the 

authors, the adopted statistical techniques demonstrated their usefulness in 

finding the optimal conditions for the process which renders laccase dyeing an 

economically attractive alternative to the conventional high water, dyes, auxiliaries 

and energy consuming acid dyeing of wool. 

 Also, Jovančić et al. (1993) studied the influence of Basolan DC on the 

changes in the mechanical and physico-chemical characteristics of wool fabric by 

means of a central composite design. According to their study, the minimum area 

shrinkage after washing and the least degradation of wool fibres were obtained 

with a Basolan DC concentration between 2.5 and 4% on the weight of wool.  

 In another study conducted by the previous author (Jovančić et al. 1998), the 

effect of several variables on the shrink resistance properties of wool, treated with 

the serine proteinase Bactosol SI, were investigated by means of a central 

rotatable design. The independent variables included the concentration of the 

enzyme, the pH of the treatment bath and the treatment time. Enzyme 

concentration and pH of the treatment bath had a significant effect on wool 

shrinkage and degree of whiteness. Treatment time also had a marked effect, 

particularly on the mechanical properties of the woollen knit fabric. The 
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optimization attained by the authors consisted in using a time of 90 minutes, an 

enzyme concentration of 4.9-7.2 g/L and pH values between 8.75 and 9.4 in the 

wool treatment process. 

 

 

1.6 PERSPECTIVE AND AIMS OF WORK  

 The classical antifelting treatments for wool assume a chlorine treatment 

with polymer deposition, which has many ecological drawbacks, as well as some 

handling and durability disadvantages. Although many attempts have been made 

to replace this process by an environmental friendly one, the unacceptable weight 

loss caused by proteolytic attack eliminates the potentiality of these enzymatic 

finishing methods.  

 The aim of the present work is to develop an enzyme-based antifelting 

treatment for wool. The specific objectives intend to increase the molecular size of 

proteases in order to reduce their diffusitivity on wool, thus controlling the 

proteolytic attack. The methods used for that purpose include increasing molecular 

size of proteases with normal crosslinking agents of proteins agents like 

glutaraldehyde and covalent attachment to soluble-insoluble polymers of high 

molecular mass.  

 This strategy represents a new approach for the study of the proteolytic 

finishing of wool, allowing to overcome some of the most important drawbacks that 

the previous attempts were facing, such as the penetration of protease inside the 

wool fibre and the controllability of the enzyme. 

 

 



 

 

 

 

 

CHAPTER 2   

 

TREATMENT OF WOOL FIBRES WITH SUBTILISIN AND SUBTILISIN-

PEG 

 

 

 

 

 

 

 

 

 

"The first principle is that you must not fool yourself… 

 and you are the easiest person to fool. " 

 

Richard Feynman (1918–1988),  

Nobel Prize in Physics, 1965 



 50

2. TREATMENT OF WOOL FIBRES WITH SUBTILISIN AND 

SUBTILISIN-PEG 

 

2.1 INTRODUCTION 

  

 The present chapter analyses and compares the behaviour of two 

proteases, native subtilisin and polyethylene glycol (PEG)-subtilisin (which differ 

essentially in their size), in the hydrolytic attack to wool fibres. As a control, to 

differentiate between the adsorption and diffusion of the enzymes, two water 

soluble proteins without catalytic activity, namely bovine serum albumin and 

carbonic anydrase, were used.  

 The effect of the pre-treatment on enhancing the enzyme adsorption into 

wool, prior to the enzymatic treatment, was also evaluated.  

 To monitor the penetration of enzymes inside the wool, several techniques 

were used; among them, fluorescence microscopy was performed to visualize 

enzyme distribution in the wool. 

 The major objective of this chapter was to understand the nature of 

enzyme-wool interactions which lead to wool degradation, and investigate the 

possibility of using a modified protease to develop an enzymatic process for wool 

finishing, which would be an environmental friendly alternative to the conventional 

chlorine treatments. 
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2.2 MATERIAL AND METHODS 

 

2.2.1 ENZYMES, PROTEINS AND REAGENTS 

 The enzymes used in this study were the proteases Subtilisin Carlsberg 

(Protease type VIII), (E.C.3.4.21.62) and PEG-Subtilisin, a subtilisin that was 

modified by covalent coupling to polyethylene glycol (6 mol PEG/ mol protein), all 

acquired from Sigma-Aldrich. The proteins bovine serum albumin (BSA), carbonic 

anydrase and the chemicals fluorescein isothiocyanate (FITC) were from Sigma. 

All other reagents used were of analytical grade.  

 

2.2.2 ENZYMATIC ACTIVITY ASSAY 

 The activity of proteases was measured at 37ºC by following the increase in 

absorbance at 660 nm with 0.65% casein solution in 50 mM phosphate buffer, pH 

7.5 as substrate. After incubation of 1 ml of diluted soluble enzyme (native or 

modified) for exactly 10 minutes at 37ºC with 5 ml of casein solution, the reaction 

was stopped by addition of 5 ml of 110 mM TCA solution in water, and the 

precipitate was removed by filtration and centrifugation. Then, 2 ml of filtrate were 

mixed with 5 ml of 500 mM Na2CO3 solution and 1 ml of two-fold diluted Folin´s 

reagent. After vigorous mixing, the colour was allowed to develop for 30 min at 

37ºC. The amino acids produced were analysed at 660 nm, taking DL-tyrosine as 

standard. One unit of activity is defined as the amount of enzyme that hydrolyses 

casein to produce equivalent colour to 1 µmol of tyrosine, per minute, at pH 7.5 

and 37ºC (colour by the Folin&Ciocalteu’s reagent). 
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2.2.3 PROTEIN CONCENTRATION 

 The total protein concentration was determined by a modification of the 

micro Lowry method (Lowry et al. 1951), using bovine serum albumin as standard and 

using Sigma test kit nº P 5656.  

 The possible interference of PEG in the estimation of the protein was 

analysed. For this purpose, standard solutions were prepared (BSA and BSA with 

1% PEG) with concentrations in the range of 0.1–0.5 mg/ml, and the absorbance 

was determined. No significant changes in the absorbance values occurred when 

PEG was present (data not shown). 

 

2.2.4 FITC LINKAGE TO PROTEINS 

 Enzymes were linked to FITC (100/1 w/w) in sodium carbonate buffer pH 

8.5. The mixture was dialyzed until no release of FITC was verified by 

spectroscopy. Wool samples were treated in this solution at 37ºC, 100 rpm, for 24 

hr. Wool fibres cross-sections were analyzed by a Transmission optic microscope 

(Olympus BH2) with magnification of 40 x.  

 

2.2.5 TENSILE STRENGTH 

 Tensile Strength Resistance was determined by using a tensile tester 

machine, accordingly to ASTM D5035-90. The samples were conditioned before 

testing in a standard atmosphere. The tensile strength resistance values are given 

as the mean of 10 replicates, together with the standard deviation (the coefficient 

of variation was bellow 10% for all cases).  



 53

 

2.2.6 FELTING AND PILLING 

 Felting and pilling were visually evaluated after repeated washing (3 times) 

at 50ºC, for 60 min and 20 rpm, using a liquor ratio of 1/20.   

 

2.2.7 SIZE-EXCLUSION CHROMATOGRAPHY (SEC) 

 The proteins size was determined by size-exclusion chromatography using 

a UV-detector at 280 nm and a Pharmacia Hi-Prep Sephacryl S-300 HR column 

(Amersham Pharmacia Biotech). The conditions of the assay were: room 

temperature; eluent: 50 mM phosphate, 100 mM KCl, pH 6.5 buffer; flow: 

2.5 ml/min and sample volume of 1 ml. Tiroglobulin (669 kDa), Apoferritin (443 

kDa), β-Amylase (200 kDa), Alcohol dehydrogenase (150 kDa), Bovine albumin 

(66 kDa) and Carbonic Anydrase (29 kDa) were used for calibration. 

 

2.2.8 ADSORPTION ON WOOL FIBRES 

 The adsorption experiments were performed in flasks each containing equal 

amounts of the sorbent material: 0.5 g of 100% woven merino wool fabric or 23 µm 

(mean diameter) wool yarns, subjected to the different pre-treatments described 

bellow. Volumes of phosphate buffer solution (pH 7.6, 0.01 M) and protein stock 

solution were added to the sorbent so that every flask contained the same total 

volume (50 mL) but different protein concentration. Then, the flasks were closed 

and rotated end-over-end for 7 days for the wool fabrics and for 24 hours for the 

wool yarns, at 37ºC and 90 rpm, in a shaking water bath. Several controls were 
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run simultaneously: a control test with wool without protein (C1), a control test with 

the highest concentration of protein without wool (C2) and a control test with the 

highest concentration of protein and 1 mM of antipain, a serine proteases inhibitor 

(C3). After incubation, wool fabrics or yarns were removed and washed. The 

remaining solution was centrifuged and the protein concentration in the 

supernatant and the amount of aminoacids produced in Tyrosine equivalents was 

measured. The adsorbed amount of protein was calculated from the difference in 

protein concentration before and after adsorption. All measurements were 

performed using at least duplicate samples.  

 

2.2.9 PRE-TREATMENTS PERFORMED ON WOOL FIBRES 

 The pre-treatment washings performed on wool were the following: 

• Surfactant Washing (S): wool was washed with Lutensol ON 30 (non-

ionic surfactant) 1 g/L, in a bath ratio 1:20, at pH 9.0 (Na2CO3 0.1 M e 

NaHCO3 0.1 M buffer), for 30 min, at 40ºC, on Rota-wash machine. After 

the washing procedure, the surfactant was removed from wool first with tap 

water, followed by distilled water.  

• Bleaching Washing (S+B): After the previous washing, wool was 

immersed in a bath (same bath ratio) with 1% (o.w.f.) H2O2, at pH 9.0 

(Na2CO3 0.1 M e NaHCO3 0.1 M buffer), for 1 hour at 55ºC, on Rota-Wash 

machine.  
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2.3 RESULTS AND DISCUSSION 

 

Proteases can catalyze the degradation of different components of a wool 

fibre, making reaction control difficult. Figure 2.1 shows damaged wool fibres 

caused by treatment with Subtilisin, the protease used in this study. It is also 

possible to see that the proteolytic attack is not uniform, due to the heterogeneity 

of the wool itself (Rippon 1992). 

 

Figure 2.1 – SEM microphotography showing damaged and undamaged wool 

fibres after treatment with Subtilisin, in pH 7.6 buffer, at 37ºC, for 3 days. 

 

2.3.1 EFFECT OF PRE-TREATMENT 

 The wool fibres surface is covered by a covalently bound fatty layer, being 

responsible for the strong hydrophobicity of wool which can be partially removed 

by alkaline pre-treatments. To test the effect of the pre-treatment on the adsorption 

of proteins into wool, merino wool fibres with mean diameter of 23 µm were 

employed. These yarns were subjected to two alkaline pre-treatments in order to 

enhance the protein penetration inside the fibre. Figure 2.2 shows that there are 
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no significant changes on wool surface after the pre-treatments performed 

(surfactant and bleaching washing).  

a)   b)  

Figure 2.2 – SEM microphotographs of the wool fibres after the alkaline pre-

treatments: a) surfactant washing, and b) surfactant and bleaching 

washing. 

 

 The protease was added at several concentrations to the pre-treated wool 

yarns, and the experimental adsorption data was fitted by non linear regression 

analysis to Langmuir model in order to draw the binding curves (Figure 2.3).  
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Figure 2.3 – Langmuir isotherm (—, solid line) and experimental data for the 

adsorption of free subtilisin on 23 µm wool yarns, subjected to a 

surfactant (S) or a bleaching washing (S+B).  

 

 The Langmuir model did not satisfactorily explain the behaviour of protein 
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adsorption. This was manifested in the poor agreement between the experimental 

data and simulated curves and also in the low values for the correlation 

coefficients (data not shown). This was already expected since the wool surface is 

very heterogeneous, and thus Langmuir model is inadequate to describe 

adsorption of proteins on this adsorbent.   

 Observing Figure 2.3 it is possible to see that the amount of adsorbed 

subtilisin was clearly higher for wool that was subjected to a surfactant washing 

and posterior bleaching. This fact indicates that this pre-treatment enables a 

higher penetration of proteases into wool and consequently a higher degradation 

level. The bleaching step with H2O2 is likely to promote a partial removal of the 

bounded fatty acid barrier of the epicuticle, probably more efficiently than the 

alkaline treatment with surfactant only. Schäfer (1994), when studying the diffusion 

of dyestuffs into keratin fibres found that dyestuffs may diffuse quicker into the 

cortex of bleached wool than into untreated wool because of the cleavage of 

cystine and the higher fibre swelling. Moreover, Pascual and Julia (2001) reported 

that the sorption of chitosan into wool was facilitated by an alkaline peroxide 

treatment. Thus one can conclude that a simple alkaline surfactant washing 

(scouring) is not enough to remove the fatty bounded layer, decreasing 

considerably the adsorption capacity on wool fibres, when comparing with the 

other treatment. 

 

2.3.2 EFFECT OF ENZYME SIZE 

 The subsequent studies were performed with 100% wool fabric subjected to 

an alkaline surfactant washing followed by bleaching. The enzymes used were the 



 58

native subtilisin and subtilisin-PEG, a commercial preparation acquired from 

Sigma. The protein concentrations used were low, so that the surface was never 

saturated with the enzyme. This study was performed using an enzyme 

concentration of 40 mg/L and for this reason a longer time had to be employed in 

order to better understand the differences in the behaviour of the two enzymes. 

Therefore, a study conducted for 168 hours was performed, where protein 

adsorption and tyrosine formation were monitored (Figure 2.4). 
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Figure 2.4 – Formation of Tyrosine (mM) (open symbols) and total protein (%) 

(closed symbols) for the enzymes Subtilisin (■,□ ) and Subtilisin-PEG (●,○). 

 

 The results (Figure 2.4) show that Subtilisin-PEG is not being adsorbed 

(only about 7% of protein adsorption was attained) while free Subtilisin had about 

50% of adsorption into wool fabric. The differences are also noticeable in the 

formation of Tyrosine equivalents. The subtilisin that was covalently coupled to 

PEG showed a very low release of aminoacids into media. Comparing to free 

subtilisin, the amount of aminoacids produced in tyrosine equivalents was much 
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higher, indicating wool fibre degradation by the enzyme. The control test run 

simultaneously with free subtilisin and the inhibitor antipain showed no adsorption 

and no tyrosine formation, confirming that the adsorption of the protease into wool 

was assisted by the enzymatic action.    

 This result was also confirmed by the determination of the fibres strength 

resistance using a dynamometer. The maximum tensile strength supported by the 

yarns was lower for free subtilisin, indicating higher fibre degradation (Figure 2.5).  
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Figure 2.5 - Maximum tensile strength (N) supported by wool yarns without 

treatment and yarns treated with the same enzyme units of free and 

modified subtilisin (CV was less than 10%). 

 

 To follow the diffusion of the enzymes into fabrics, they were fluorescently 

labelled with FITC. After covalently coupling the enzymes to a fluorescent dye 

(FITC), an extensive dialysis was performed until no release of free dye into 

solution was verified. Then, after enzymatic treatment, a microtome was used to 

cut thin layers of the fibre entrapped in a non-fluorescent resin. The figure below 

(Figure 2.6) shows that free subtilisin penetrates completely inside the fibre cortex 

while fluorescently labelled subtilisin-PEG only appears at the surface of some 

fibres (in the cuticle layer). A similar result was found by Nolte et al. (1996) when 



 60

studying the effect of Alcalase, a commercial protease, in wool tops in untreated 

and Hercosett-treated wool (wool that was treated by the application of a water-

soluble resin after chlorination). They found that after a 50 hours treatment, the 

fluorescently labelled alcalase had fully penetrated the untreated-fibre cortex, 

while it was retained only at or near the surface of Hercosett-treated fibres after an 

identical treatment process (Nolte et al. 1996). They explained this fact by the 

temporary barrier to the proteolytic attack provided by the polymer treatment. 

 

      

a)          b) 

Figure 2.6 – Fluorescence microphotographs of fibre cross-sections of wool 

treated with FITC-labelled Subtilisin (a) and Subtilsin-PEG (b).  

 

 To compare with the adsorption of the different size enzymes, the proteins 

BSA and Carbonic Anydrase, with average molecular weights of 66 kDa and 29 

kDa, respectively, were also tested for adsorption on wool at several 

concentrations. These two proteins showed no adsorption on wool, thus the 

isotherms could not be formulated. The following table presents the Langmuir 

parameters for all tested proteins. As already mentioned, the Langmuir model 

does not satisfactorily explain the behaviour of protein adsorption, but its 

parameters were used on a comparative basis, to check for differences in the 

adsorption and diffusion behaviour of the two enzymes. 
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Table 2.1 – Values for the relative molecular mass (Mr) and Langmuir parameters 

(Kd and Qmax), for the several enzymes and proteins tested for adsorption 

into wool fabrics 

Samples Mr* (kDa) Kd (g/L) Qmax (mg/g) 

Subtilisin ~ 20 93 ± 68 172 ± 89 

Sub-PEG ~ 110 --- < minimum conc. 

BSA ~ 66  --- < minimum conc. 

Carbonic Anydrase ~ 29 --- < minimum conc. 

*Mr are mean values, determined by SEC (Material and Methods section) 

 

 In the above table is possible to see that the proteins BSA and Carbonic 

Anydrase were not adsorbed on wool, no matter their size. As for the enzymes, 

subtilisin-PEG, the large enzyme, was also not adsorbed. Since wool treatments 

were performed using the same enzyme units in the bath treatment, it seems that 

the bigger size of Subtilisin-PEG is responsible for the limitation verified in the 

proteolytic attack. This could be explained by the restricted accessibility of this 

enzyme to wool. The large enzyme molecule is not able to enter in contact with 

substrate and to form the intermediate enzyme-substrate complex, because of 

steric constraints. It is known that proteases hydrolyze mainly the inside of the 

fibre rather than cuticle (Sawada and Ueda 2001). This fact is due to the high 

hydrophobicity of the external surface of wool on one hand and the fatty layer 

overlapping the cuticles, on the other. Thus, proteases degrade preferentially the 

intercellular cement, penetrating under favourable conditions relatively quickly into 

the fibre cortex (Nolte et al. 1996). In our study it seems that subtilisin-PEG hydrolyzed 

just the cuticle layer of wool fibre, explaining the low release of aminoacids and the 

higher tensile strength resistance of the fibre. To support this idea, wool fibre 
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samples treated with these two enzymes were washed for 3 consecutive cycles in 

a rota-wash machine and felting was evaluated visually. It seems that wool fibre 

treated with subtilisin-PEG felted less (Figure 2.7), highlighting the idea that it had 

its cuticle layer partially removed. 

 

Figure 2.7 - Visual damages on wool yarns after treatment in a Rota-wash 

machine. Samples: a) wool yarn treated with free Subtilisin and b) wool 

yarn treated with Subtilisin-PEG. 

 

 This fact could be very useful in wool finishing, where only the cuticle layer 

is intended to be hydrolyzed. The dimension of the protease is a self-limiting factor 

for the undesirable hydrolysis of wool fibre cortex, thus overcoming the major 

drawback of wool enzymatic finishing: the difficulty in controlling enzyme 

hydrolysis process.  

 

 

2.4 CONCLUSIONS 

 The adsorption of a native and a modified subtilisin on wool was studied. 

The alkaline peroxide pre-treatment improves the enzyme diffusion on wool. This 

diffusion seems to be facilitated by the hydrolytic attack, since proteins without 
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activity could not adsorb considerably on wool.  

 Subtilisin-PEG, the big protease, hydrolyzed just the cuticle layer of wool, 

fact that was confirmed by the lower release of aminoacids into media and the 

higher tensile strength and lower felting of the fibre. Thus, the production of 

diffusion-controlled enzymes might be a solution for a future enzymatic wool 

treatment process, which would be an environmental friendly alternative to the 

conventional chlorine treatments. 

 

 



 

 

 

 

 

CHAPTER 3   

 

CHEMICAL MODIFICATIONS ON PROTEINS USING 

GLUTARALDEHYDE 

 

 

 

 

 

 

 

 

 

 

"That's one small step for man;  

One giant leap for mankind." 

 

Neil Armstrong (1930- ) 

Apollo 11 astronaut  
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3. CHEMICAL MODIFICATIONS ON PROTEINS USING 

GLUTARALDEHYDE 

 

3.1 INTRODUCTION 

 In the previous chapter it was demonstrated that the production of diffusion-

controlled enzymes might be a promising solution for an enzymatic wool treatment 

process. Thus, the intent of the study described in this chapter was to create 

diffusion-controlled enzymes by crosslinking with the bifunctional compound 

glutaraldehyde (GTA). 

 This chapter describes the effect of crosslinking the enzyme Esperase 

(E.C. 3.4.21.62), a modified Subtilisin used for finishing in textile industry, and the 

proteins Bovine Serum Albumin and Casein with GTA on molecular weight 

increase. It was intended to investigate the behaviour of the mentioned proteins 

modified by glutaraldehyde, such as the formation of dimers and higher oligomers 

and the production of enzymatic aggregates with preserved activity. 

 Two common techniques of measuring molecular weight of proteins were 

used: SEC and SDS-PAGE. Furthermore, the degree of covalent modification of 

the amino groups was evaluated. 

 Glutaraldehyde, a bifunctional compound mainly used in chemical 

modifications of proteins and polymers, links covalently to the amine groups of 

lysine or hydroxylysine in the protein molecules (Cao et al. 2000). The chemical 

modification of proteins with crosslinking agents can be used for the reinforcement 

of the compact tertiary structures resulting in protein stabilisation against pH 

inactivation (Cao et al. 2000) and several approaches of chemical modification have 

also been used to increase the thermostability of proteases, like trypsin, α-
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chymotrypsin and subtilisin (He et al. 2000).  

 

 

3.2 MATERIAL AND METHODS 

 

3.2.1 ENZYME, PROTEINS AND REAGENTS 

 The enzyme used in this study was the protease Esperase, a modified 

subtilisin (E.C.3.4.21.62) (from Novozymes). The proteins bovine serum albumin 

and casein (from Sigma) were used as controls. All other reagents used were of 

analytical grade.  

 

3.2.2 PROCEDURE FOR THE PREPARATION OF BOVINE SERUM ALBUMIN 

AGGREGATES 

 A solution of 20 mg mL-1 of Albumin was prepared (A0) in 10 mM sodium 

acetate and 5 mM calcium acetate buffer pH 7.5. Aggregation of the molecules 

was induced by slow addition of glutaraldehyde (from Aldrich, 50% fresh solution 

in water) to the clear solution under gentle stirring at 4ºC for 2 hours. Several 

solutions were prepared containing 0.06% (v/v), 0.13% (v/v) and 0.25% (v/v) of 

glutaraldehyde in solution, and the samples were labelled as A0.06, A0.13 and 

A0.25, respectively.  

 

3.2.3 PROCEDURE FOR THE PREPARATION OF CASEIN AGGREGATES 

 A solution of 5 mg mL-1 of casein was prepared (C0) in 50 mM potassium 
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phosphate buffer pH 7.5. Aggregation of the molecules was induced by slow 

addition of glutaraldehyde (from Aldrich, 50% fresh solution in water) to the clear 

solution under gentle stirring at 4ºC for 2 hours. Several solutions were prepared 

containing 0.01% (v/v), 0.02% (v/v), 0.04% (v/v), 0.08% (v/v) and 0.25% (v/v) of 

glutaraldehyde in solution, and the samples were labelled as C0.01, C0.04, C0.08 

and C0.25, respectively.  

 

3.2.4 PROCEDURE FOR THE PREPARATION OF ENZYME AGGREGATES 

 The enzyme aggregates were prepared using a solution of 20 mg mL-1 of 

the enzyme Esperase and 50 µM antipain, a protease reversible inhibitor, in 

10 mM sodium acetate and 5 mM calcium acetate buffer pH 7.5 (E0). To the 

solution, 1 mM CaCl2 was also added. A fresh solution of 1% glutaraldehyde was 

added slowly under gentle stirring at 4ºC, until reaching the final concentrations of 

0.01% (v/v), 0.02% (v/v), 0.04% (v/v), 0.06% (v/v) and 0.20% (v/v), being the 

samples labelled as E0.01, E0.02, E0.04, E0.06 and E0.20. 

 

3.2.5 GEL ELECTROPHORESIS 

 To separate the proteins and to determine their molecular weights, SDS-

PAGE was carried out using the Hoefer miniVe system from Amersham 

Pharmacia Biotech. The resolving gels (10% acrylamide of about 1.5 mm 

thickness) were run at a constant voltage (120 V) and prepared according to the 

method originally described by Laemmli (Laemmli 1970). The current was stopped 

when the bromophenol blue dye marker had reached about 1 cm from the bottom 

of the gel. Following electrophoresis, to observe the protein-banding pattern on the 
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gel, staining was carried out either by using Coomassie blue or silver staining. 

Phosphorylase b (97 kDa), Albumin (66 kDa), Ovalbumin (45 kDa), Carbonic 

Anydrase (30 kDa), Trypsin inhibitor (20.1 kDa) and α– lactalbumin (14.4 kDa) 

were used for calibration. 

 

3.2.6 SIZE-EXCLUSION CHROMATOGRAPHY  

 The protein size was determined by size-exclusion chromatography, as 

previously described in section 2.2.7. 

 

3.2.7 DEGREE OF COVALENT MODIFICATION 

 The method used for determining the modification of proteins at their amino 

groups is the modified assay of Morçöl (Morçöl et al. 1997) in which the primary 

amines on proteins react with the sodium salt of trinitrobenzenesulfonic acid 

(TNBS). Unmodified (or native) proteins were used as standards in the 

experiments. Modified proteins preparations and the protein standards were 

diluted in the concentration range of 1 mg/ml to 0.05 mg/ml in 0.1 M borate buffer 

containing 0.15 M NaCl, pH 8.0. Two ml of the samples were mixed with 50 µl of 

30 mM aqueous TNBS solution and the mixture was incubated for 30 min at room 

temperature. The blank for the assay consisted of 2 ml of buffer. The absorbances 

of modified and unmodified proteins were read against the blank at 420 nm and 

the data were plotted as a function of increasing protein concentration. The degree 

of covalent (irreversible) modification at amino groups was calculated using the 

formula: % covalent modification = [(A-B) / A] x 100, where A and B are the slopes 
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of the unmodified standard and modified protein, respectively, as determined from 

the absorbance data at 420 nm in the linear regime.  

 

3.2.8 ENZYME ASSAY AND PROTEIN CONCENTRATION 

 The activity of proteases was measured accordingly to the procedure 

described in section 2.2.2. 

 The total protein concentration was determined by the Bradford (Bradford 1976) 

method, using bovine serum albumin as standard. 

 

 

3.3 RESULTS AND DISCUSSION 

 To accomplish this study, two proteins were chosen as model proteins, by 

the fact that they are widespread and low cost, and being so, the ideal compounds 

for study. These proteins were a globular protein, Bovine Serum Albumin (BSA), 

having a molecular weight close to 66 kDa and a flexible protein, Casein (CAS), 

whose molecular weight is near 23 kDa. This milk protein was also chosen 

because it has a molecular weight close to the enzyme that was intended to study, 

the Esperase. 

 

3.3.1 PREPARATION OF CASEIN AGGREGATES 

 Casein aggregates formation was verified by the analysis of the 

chromatogram attained by SEC. The results are shown in Figure 3.1.  
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Figure 3.1 - Size-exclusion chromatography elution patterns of the native (C0) and 

modified Casein, on 50 mM potassium phosphate buffer pH 7.5. Modified 

samples were labelled as C0.01 – casein solution with 0.01% GTA (v/v); 

C0.04 – casein solution with 0.04% GTA (v/v) and C0.25 – casein solution 

with 0.25% GTA (v/v). The scale was modified from elution time (tE) to 

molecular mass (in Da) using the calibration equation: 

)62.103/)5.2((65159.185815.7 ××−= EtMrLog
. 

 

 As can be seen in Figure 3.1, after adding just 0.01% (v/v) GTA to the 

solution, an aggregate with high molecular mass is formed (curve C0.01 on 

chromatogram). This aggregate is about 40 fold the native casein size (C0). Adding 

higher concentrations of GTA does not change the chromatogram profile 

significantly, once this aggregate appears in the same chromatogram zone, very 

close to the column exclusion volume. It was expected that with the addition of low 

GTA concentrations, the formation of dimers or other oligomers of less Mr 

occurred. Instead, big agglomerates were formed. Because this was not expected 

to occur, complementary assays were performed using SDS-PAGE. In this 

technique, an anionic detergent is used (sodium dodecylsulphate - SDS), to 

disrupt secondary and tertiary structures of protein molecules, and weak 
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interactions among them.   

 As can be seen in Figure 3.2, defined multimers of casein are formed with 

increasing glutaraldehyde concentration. At the lowest concentration of 0.01% 

glutaraldehyde (lane B in Figure 3.2) it is possible to observe the formation of 

higher complexes that are trapped at the interface of the stacking gel and the 

running gel. The dominant band is shifted to a position corresponding to the 

trimeric form of casein. However, higher complexes appear as well, migrating 

slower in the gel. The dominant band starts to be smoother and it is possible to 

see the higher multimeric complexes trapped at the interface of the gels. On lane 

E (0.08 % GTA), all the casein complexes got trapped in the stacking gel. This 

pattern of crosslinking was not detected in size-exclusion chromatography, where 

all samples were presented as a multimeric complex of about 40 times the weight 

of casein.  This may be due to the action of SDS that disrupts aggregated proteins 

non-linked by covalent bonds, whereas in HPLC those formations are eluted in a 

non-disrupted form.  
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Figure 3.2 – SDS-PAGE of the samples of casein. Lanes: A - no addition of 

glutaraldehyde (native casein), B - casein with 0.01% (v/v) GTA, C -

 casein with 0.02% (v/v) GTA, D - casein with 0.04% (v/v) GTA, E- casein 

with 0.08% (v/v) GTA and STD – molecular mass markers. 

 

3.3.2 PREPARATION OF ALBUMIN AGGREGATES 

 In Figure 3.3 the chromatogram attained by SEC to BSA is presented. 

Analysing this figure it may be seen that with the addition of 0.06% (v/v) GTA to 

the protein solution, dimer formation occurs, this is, two unmodified Albumin 

molecules aggregate, having thus twice the molecular weight of native 

(unmodified) BSA. This molecular mass increase is gradual with increasing final 

GTA concentration in solution, seen in Figure 3.3 by the curve shifts towards 

higher molecular weights from A0.06 to A0.25. When 0.25% (v/v) of GTA is added to 

the solution (curve A0.25 on chromatogram), a big protein agglomerate is formed, 
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having about 20 fold the size of unmodified Albumin, and elutes near the exclusion 

column volume, determined by Blue Dextran. It is interesting to see that when this 

same concentration of GTA was added all at once (curve A0.25* on chromatogram), 

the chromatographic profile was very different, presenting two main inflexions of 

the curve. It is believed that the first peak corresponds to GTA that has not reacted 

with the protein. It is well known that this compound can promote self-

oligomerization, explaining the molecular mass near 1 kDa.  
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Figure 3.3 – Size-exclusion chromatography elution patterns of the native (A0) and 

modified Albumin on sodium and calcium acetate buffer pH 7.5. Modified 

samples were labelled as A0.06 – albumin solution with 0.06% GTA (v/v); 

A0.13 – albumin solution with 0.13% GTA (v/v) and A0.25 – albumin solution 

with 0.25% GTA (v/v). The scale was modified from elution time (tE) to 

molecular mass (in Da) using the calibration equation: 

)62.103/)5.2((65159.185815.7 ××−= EtMrLog
. 

 

 In the second inflexion of the curve it is possible to see the peak of free 

BSA and its dimers (that is, BSA increased twice). This data leads us to the 

assumption that GTA reacts promptly with free lysine groups of proteins and, when 
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in excess, it partially polymerises to give oligomers. For this reason, to attain 

protein oligomers of high molecular weight it is advisable to add the bifunctional 

reagent slowly, in small amounts. The mechanism of multimers formation may be 

a two-step process, first by the reaction of a monomer or oligomer with the 

crosslinker and second, by the reaction of this oligomer/monomer containing a 

crosslinker with a monomer lacking a crosslinker (a “free” monomer). This reaction 

may be a covalent linking type or just an electrostatic one. When GTA is added all 

at once, it links to all available lysine groups and then, perhaps by some 

phenomenon of steric hindrance, it polymerises to give GTA oligomers.  

 

3.3.3 PREPARATION OF ENZYME AGGREGATES 

 Similar experiments were conducted with Esperase, a commercial Subtilisin 

from Novozymes. In the chromatographic study performed with Esperase, the 

GTA concentrations were kept below 0.20% (v/v), in order to keep the enzyme 

active (data not shown). 

 In Figure 3.4 the chromatographic profile for Esperase modification by GTA 

is presented. Analysing this Figure, it is seen that no increase in molecular weight 

occurs, despite the use of antipain, a protease inhibitor, to prevent auto 

proteolysis.  
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Figure 3.4 - Size-exclusion chromatography elution patterns of the native (E0) and 

modified Esperase on sodium and calcium acetate buffer pH 7.5. Modified 

samples were labelled as E0.01 – esperase solution with 0.01% GTA (v/v); 

E0.04 – esperase solution with 0.04% GTA (v/v) and E0.20 – esperase 

solution with 0.20% GTA (v/v). The scale was modified from elution time 

(tE) to molecular mass (in Da) using the calibration equation: 

)062.98/)0.2((43295.155643.7 ××−= EtMrLog
. 

 

 The low concentration of GTA added in order to maintain enzyme active 

may have had influence on the poor enzymatic aggregation verified. Another 

plausible explanation is that Esperase, being a commercial preparation, contains 

other compounds used as stabilisers that may have reacted preferentially with 

GTA. The amount of total protein present in the enzymatic preparation is in the 

order of 7%, a value considered normal when compared to other commercial 

preparations, but indicative of the high amount of stabilisers and/or additives in 

solution. It is, therefore, important that all amines or other compounds that may 

react with GTA should be removed prior to aggregation, in order to enhance the 

efficiency of GTA crosslinking. 
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3.3.4 EXTENT OF CROSSLINKING 

 In Figure 3.5, the degrees of covalent modification of amino groups, 

calculated by the modified TNBS method, are presented for both proteins and 

Esperase. The correlation coefficients of the plots were 0.98 or higher for both 

native and modified proteins. 
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Figure 3.5 – Extent of crosslinking of BSA, Casein and Esperase as a function of 

glutaraldehyde (GTA) concentration. 

 

 In case of Casein, with low amounts of GTA (0.01% v/v), the degree of 

covalent modification was 74 ± 4%. Adding more GTA had only a slight effect on 

this degree, confirming the results of SEC and SDS-PAGE. For BSA, this increase 

in the crosslinking degree was less pronounced, and with 0.25% (v/v) of GTA 

added, it presented the value of 69 ± 3%. When the concentration of GTA 

doubled, this value ranged 80 ± 1%, and was still increasing. Once again, this test 

confirmed the results attained by SEC, showing that aggregates formation with 

BSA is a slower process that with casein. 

 Values in the same magnitude were also obtained by Bigi et al. (2001) who 
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found that with 0.25% GTA, the degree of crosslinking on gelatine films was about 

85% and increased to near 100% when GTA concentrations above 1% were used. 

 For Esperase, it may be seen that the degree of covalent modification of 

amino groups using the bifunctional reagent glutaraldehyde occurs in a much 

slower way. With 0.25% (v/v) of GTA added to the enzymatic solution, the degree 

of covalent modification achieved for Esperase was 61 ± 2%, this value being 16% 

less than that attained for Casein. The maximum crosslinking degree achieved for 

Esperase was 66 ± 2%, when 1.00% (v/v) GTA was used. This crosslinking 

degree was attained in the enzymatic preparation, which contains about 7% of 

protein (i.e. enzyme), so it may correspond to the modification of other amino 

groups present in solution or other substances that may have reacted with GTA. 

 The number of available amino groups able to interact with GTA in each 

tested protein was investigated (Table 3.1). The proteins Albumin and Casein 

have 60 and 26 free amino groups, respectively, able to link covalently to 

glutaraldehyde (these free amino groups are originated from the ε–amino groups 

of lysine residues and a terminal α–amino group).   

 

Table 3.1 – Content of Lysine residues in the proteins tested (from Protein Data 

Bank, PDB) 
PROTEIN LYSINE RESIDUES 

Esperase (P29600) 5 

Casein (P02663) 25 

Bovine Serum Albumin (CAA76847) 59 

 

 With regard to the protease Esperase, it has only 5 available lysine residues 

(see Table 3.1). This fact, by itself, explains the poor aggregation verified with this 

enzyme. The problem of the non-accessibility of amino groups to attack by 
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glutaraldehyde should not be a valid explanation since the ionised side-chains, like 

those of Lys and Asp, tend to be on the exterior of the enzymes and able to 

interact with the solvent (Price and Stevens 1999). 

 

 

3.4 CONCLUSIONS 

 The results presented confirm that the number of free lysine groups is a key 

issue in the formation of soluble aggregates when the bifunctional reagent used for 

crosslinking is glutaraldehyde. In proteins with a high amount of free lysine 

residues, glutaraldehyde crosslinking constitutes an effective way of multimers 

formation. The different reactivity of glutaraldehyde on BSA and Casein can be 

associated with the specific conformation of each protein. Casein is a relatively 

small protein with a flexible open structure, and thus the access of GTA to its 

lysine residues is facilitated comparing to BSA, a globular protein, which has 

restricted accessibility of lysine residues for reaction.  

 It was found that the increase in Mr was gradual with increasing final 

glutaraldehyde concentration in the solution. Interestingly, the way in which GTA 

was added was also important. It was verified that to attain protein oligomers of 

high molecular mass it is advisable to add the bifunctional reagent slowly and in 

small amounts. The explanation for this may reside in the fact that GTA reacts 

promptly with the available lysine residues, and then, perhaps by some 

phenomenon of steric hindrance, it self polymerises to give GTA oligomers. 

 SDS-PAGE confirmed the aggregate formation attained in chromatography. 

It also showed that despite the formation of dimers and trimers, it is not always 

possible to see their existence by chromatography because they elute in a non-
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disrupted form, which means, in the same elution time. Note that this 

chromatographic study was conducted without the addition of SDS to the elution 

buffer. 

 The modified TNBS method also confirmed the results of SEC and SDS-

PAGE, showing the quick agglomerate formation for casein, even with low 

amounts of GTA. 

 For Esperase, TNBS method showed a much slower reaction between GTA 

and enzyme. Actually, maximum covalent modification of amino groups attained 

for Esperase was 66%, when a high concentration of GTA was used (1% v/v). It is 

thought that this value may correspond to the covalent modification of amino 

groups of other compounds eventually present in the enzymatic solution. It was 

seen that GTA concentrations above 0.20% promoted high losses of enzymatic 

activity. For this reason, the chromatographic study performed with the enzyme 

used concentrations below that value. This study revealed that no agglomerate 

formation was found for Esperase using this bifunctional compound. A valid 

explanation for this fact should be the low amount of lysine groups available for 

crosslinking in Esperase.  

 These chromatographic results show that glutaraldehyde in not an 

adequate crosslinker for this enzymatic class. Other bifunctional compounds, able 

to interact with other enzyme reactive groups should be used, to increase its 

molecular mass to the desired values. 

 

 

 



 

 

 

 

 

 

CHAPTER 4   

 

THE USE OF REVERSIBLY WATER-SOLUBLE IMMOBILIZED 

PROTEASES FOR WOOL TREATMENT 

 

 

 

 

 

 

 

 

"The art of discovery consists in seeing what everyone else has seen 

 and then thinking what nobody else has thought" 

 

A. Szent Györgyi (1893-1986), 

 Nobel Prize for Physiology or Medicine, 1937  
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4. THE USE OF REVERSIBLY WATER-SOLUBLE IMMOBILIZED 

PROTEASES FOR WOOL TREATMENT  

 

4.1 INTRODUCTION 

 The immobilization of proteases on solid supports by covalent attachment 

can offer several advantages over the free enzyme including easy handling, 

recovery from the reaction medium and reuse and/or operation in continuous 

reactors (Ferreira et al. 2003). Though, the proper interaction of the enzyme with a 

solid substrate like wool would only occur if the enzyme is in a soluble state. This 

heterogeneous enzymatic system would be more effective and interesting from an 

industrial point of view if one could recover the enzyme after the treatment. 

Recently, the use of soluble-insoluble matrices for enzyme immobilization is being 

studied, due to the many advantages of this system (Rodrigues et al. 2002; Sardar et al. 

2000; Arasaratnam et al. 2000). One of these such matrices is Eudragit S-100 which is a 

polymer that can be reversibly made soluble-insoluble by changing the pH, thus 

making possible the recycling of the enzymes, a major advantage over other 

methods which use soluble enzymatic matrices. 

 In this chapter, the covalent immobilization of a commercial protease to the 

soluble-insoluble polymer Eudragit S-100, by carbodiimide coupling is described. 

The stability and activity of the enzymatic conjugate under various storage and 

operational conditions was evaluated and compared with the native enzyme. Wool 

enzymatic treatment with both free and immobilized enzyme was studied. Some 

physical tests on wool fabrics were performed afterwards to compare the 

treatments and evaluate the wool quality. The viability of this enzymatic wool bio-

finishing process using the reversibly soluble protease was investigated. 
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4.2 MATERIAL AND METHODS 

 

4.2.1 ENZYME AND REAGENTS 

 The enzyme used in this study was the alkaline protease Esperase (kindly 

supplied by Novozymes) (E.C.3.4.21.62). Eudragit S-100 was a generous gift from 

Degussa-Hüls, S.A., Barcelona. Carbodiimide hydrochloride (EDC) and 

ethanolamine were purchased from Sigma (St. Louis, USA). All other chemicals 

used were of analytical grade.  

 

4.2.2 ENZYME ASSAY AND PROTEIN CONCENTRATION  

 The activity of Esperase was measured accordingly to the procedure 

described in section 2.2.2. 

 The total protein concentration was determined as described previously in 

section 2.2.3. 

 

4.2.3 EFFECT OF PH AND TEMPERATURE ON ENZYME ACTIVITY 

 The effect of temperature and pH on the activity of native and immobilized 

Esperase was tested. The enzymes were incubated at different temperatures 

(from 20º to 100ºC, in 0.3 M Tris-Cl buffer containing 0.03 M CaCl2, pH 7.6) and 

pH solutions (from 4 to 12, using Britton-Robinson buffer with µ=0.3 M at 37ºC). 

The residual activity was then measured according to the method described in 

section 2.2.2. 
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4.2.4 STABILITY MEASUREMENTS 

 The free and the immobilized enzyme were placed in the refrigerator for 

storage stability at 4ºC and kept at room temperature for storage stability at 

ca. 20ºC (RT). The remaining activity was measured after several days of 

incubation. 

 To measure operational stability, the native and immobilized Esperase were 

placed in a water bath at 37ºC or 60ºC and 90 rpm of stirring and the remaining 

activity was measured at 37ºC (normal temperature of the activity method), after 

several hours of incubation at the working temperature. At 37ºC, the operational 

stability was determined at two different pH’s: 7.6 and 10.0. 

 The stabilization factor (SF) was calculated as the ratio between the half-life 

of the immobilized enzyme and that of the corresponding soluble enzyme.  

 

4.2.5 REUSABILITY 

 The initial activity of the immobilized enzyme was measured and the 

conjugate was then subjected to 5 cycles of repeated use. After each run the 

immobilized enzyme was recovered by lowering the pH to 4.5, centrifugation, 

alternative washing of the precipitated polymer with acetate buffer pH 4.5 and 

phosphate buffer pH 7.2 and re-dissolution in Tris-Cl buffer, pH 7.6. The activity 

was measured after the 1st, 3rd and 5th cycles. 
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4.2.6 IMMOBILIZATION METHOD 

 The protease was covalently linked to Eudragit S-100 by carbodiimide 

coupling using a solution of 2.5% (w/v) of Eudragit S-100 in phosphate buffer 

pH 7.2 with 0.28 M of NaCl. The pH was raised to 11.3 by the addition of a NaOH 

solution and then reduced to pH 7.2 with an HCl solution. To the polymer, a 0.2% 

(w/v) carbodiimide solution was added while mixing for 10 min. Then the enzyme 

was added (1%, in v/v). This solution was kept under stirring for 1 hour at room 

temperature and then was mixed with 0.05% (v/v) of an ethanolamine solution 

(0.45 g/mL) for 1 hour at room temperature. The pH of the mixture was reduced to 

4.5 with acetic acid. Precipitated eudragit-enzyme was separated by centrifugation 

(13000 x g, 10 min) and washed alternatively with 0.01 M acetate buffer containing 

0.14 M NaCl (pH 4.5) and 0.02 M phosphate buffer containing 0.14 M NaCl 

(pH 7.2). Washing was carried out by precipitation at pH 4.5, resuspending in the 

respective buffers mixing for 10 min, and reprecipitation. Finally, the eudragit-

enzyme precipitate was redissolved in 100 mL of 0.3 M Tris-Cl buffer containing 

0.03 M CaCl2 (pH 7.6).   

 

4.2.7 GEL ELECTROPHORESIS  

 To determine the molecular weights of the proteins, SDS-PAGE was carried 

out according to the procedure described previously in section 3.2.5. 

Phosphorylase b (97 kDa), Albumin (66 kDa), Ovalbumin (45 kDa), and Trypsin 

inhibitor (20.1 kDa) were used for calibration. 
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4.2.8 WOOL PRE-TREATMENTS AND ENZYMATIC TREATMENTS 

 Woven 100% wool fabrics (Albano Antunes Morgado Lda, Portugal) were 

subjected to a surfactant (scouring) or a surfactant and peroxide washing 

(bleaching) in order to enhance the proteolytic attack. Wool was washed with 1 g/L 

non-ionic surfactant Lutensol ON 30 (BASF, Germany), in a bath ratio 1:20, at 

pH 9.0 (Na2CO3 0.1 M and NaHCO3 0.1 M buffer), for 30 min, at 40ºC, in a Rota-

wash machine (MKII Series 7227, Shirley Developments Ltd, England). After the 

washing procedure, the surfactant was removed from fabric first with tap water, 

followed by distilled water. For the bleaching step, the wool fabrics were 

afterwards immersed in a bath (same bath ratio) with 1% (o.w.f.) H2O2, at pH 9.0 

(Na2CO3 0.1 M and NaHCO3 0.1 M buffer), for 1 hour at 55ºC, in a Rota-Wash 

machine. Finally, the wool fabrics were abundantly washed with distilled water and 

allowed to air dry. 

 The enzymatic treatment for the weight loss determination was performed 

using 7.2 g of wool fabric in 100 mL of 0.3 M Tris-Cl buffer with 0.03 M CaCl2, 

pH 7.6 (bath ratio 1:14). The native or modified Esperase was added in order to 

have approximately 100 U of enzyme activity in the final solution. Treatments were 

conducted at 37ºC, 90 rpm of stirring, for 72 hours. Wool fabrics were then 

subjected to 3 machine washing cycles, according to standard EN 26330. The final 

weight loss was measured after the machine washings.  

 For the tensile strength and shrinkage tests, the enzymatic treatment was 

performed at 65ºC, 40 rpm of stirring, during 4 hours, using a liquor ratio of 8.5 g 

wool fabric in 400 mL of 0.02 M sodium tetraborate buffer, pH 8.5. Enzyme was 

added in increasing amounts of activity to the bath treatment. 
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4.2.9 WEIGHT LOSS 

 Wool fabrics were conditioned at 100ºC for 2 hours, desiccated and 

weighted until constant weight (considered as differences between successive 

weights inferior to 1 mg). Assays were performed in duplicate. 

 

4.2.10 TENSILE STRENGHT RESISTANCE AND DIMENSIONAL STABILITY 

 Tensile strength test was carried out using SDL tensile tester equipped with 

a load cell maximum capacity of 2 kgf. Also, 100 mm/min of test speed, 10 mm of 

gauge length and 71.4 Tex of linear density was applied. The measurement of 

area shrinkage of fabric after washing was according to Woolmark method TM 31.  

 

 

4.3 RESULTS AND DISCUSSION 

 Enzymatic wool finishing using proteases is a complex process to 

implement at an industrial level due to several factors, like wool heterogeneity 

(wool varies with animal, source, feeding, etc...) and the difficulty in controlling the 

enzyme hydrolysis. Thus, by immobilizing the enzymes in soluble matrices, one 

could overcome some of these problems, making process control feasible and 

easy (Silva and Cavaco-Paulo 2003). 

 Wool fabrics were subjected to treatments with the native and the modified 

protease Esperase, and some physical tests were performed to evaluate changes 

or improvements in wool fabric quality. Also, the physical-chemical properties of 

the native/modified enzyme were studied.  
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4.3.1 EFFECT OF PH AND TEMPERATURE ON ENZYME ACTIVITY 

 Figure 4.1 shows the effect of reaction pH and temperature on the relative 

activity of the immobilized and native Esperase. As shown in Figure 4.1a), 

maximum enzyme activity was observed in the alkaline region, as expected for 

proteases from Bacillus sp. (Banerjee et al. 1999). The optimal pH is shifted from about 

9.5 to 10.5 pH units upon immobilization. In earlier studies, an increase in optimum 

pH was observed with papain immobilized on an enteric polymer (Fujimura et al. 1987), 

chymotrypsin immobilized on Eudragit S-100 (Sharma et al. 2003), and an alkaline 

protease immobilized on vermiculite (Chellapandian 1998). This change in optimum pH 

is usually explained by an alteration in the microenvironment of the enzyme due to 

immobilization or support. Sharma (Sharma et al. 2003) explained this pH shift toward 

the alkaline region by the anionic nature of the matrix.  
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Figure 4.1 – Effect of reaction pH (a) and temperature (b) on the relative activity of 

free and immobilized Esperase.  

 

 The activity of free and immobilized Esperase in Eudragit S-100 increased 

up to 70ºC and then decreased with further increases in temperature (Figure 4.1b). 

Normally an increase in temperature increases enzyme activity up to a maximum 
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level and thereafter a decline in activity is observed due to the denaturation of the 

protein. So, the optimum temperature for Esperase was found to be around 70ºC 

for both enzymatic forms. Therefore, the chemical coupling of the enzyme to the 

smart polymer seems not to change its temperature profile. Similar results were 

obtained with an alkaline protease immobilized on vermiculite (Chellapandian 1998).  

 

4.3.2 OPERATIONAL AND STORAGE STABILITIES OF THE ENZYME 

 The thermal stability of enzymes is one of the most important features for 

the application of the biocatalyst from a commercial point of view. This parameter 

was evaluated at 4ºC, room temperature, 37ºC and 60ºC. Table 4.1 summarize 

the results attained.  

 

Table 4.1 – Half-life times (t1/2) for the native and modified Esperase at several 

temperatures 
Enzyme Temperature Free Immobilized SFa) 

4ºC 140 ± 33 days 770 ± 260 days 5.5 

RT 8 ± 1 days 54 ± 10 days 6.8 

37ºC (pH 7.6) 1.4 ± 0.2 days 19 ± 2 days 13.6 

37ºC (pH 10) 5.0 ± 0.6 days 17 ± 2 days 3.4 

Esperase 

60ºC 0.58 ± 0.04 hours 7.3 ± 0.5 hours 12.6 

 a) Stabilization factor (SF) as a ratio of half-life times. 

 

 It is interesting to note that there was a significant decrease in inactivation 

of the immobilized enzyme when compared to the free enzyme. The stabilization 

factor was considerably high, ranging from 3.4 to 13.6.  

 At 4ºC (storage stability on refrigerator) the enzyme is quite stable (t1/2 for 

native Esperase is 140 days). Upon immobilization, the enzyme saw its half-life 
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time increased about 5 fold. At room temperature, the proteases stability 

decreases considerably, as expected. Again, the immobilization brought high 

increases in t1/2 (stabilization factor is 6.8). 

 At 37ºC, the half-life time for the native and immobilized Esperase was 

evaluated at pH 7.6 and 10.0. It was observed that Esperase was significantly 

more stable at pH 10.0 than at pH 7.6. This result confirms the alkaline nature of 

this enzyme. The immobilized Esperase presented a considerably higher stability 

at pH 7.6 (the stabilization factor is 13.6, confirming that the pH shift verified to the 

alkaline side is a result of the nature of the matrix). At pH 10.0, the increase in the 

stabilization factor was smaller, as already expected, given that this is the enzyme 

optimum pH and thus no considerable changes will arise at this pH. 

 The operational stability at 60ºC was greatly improved upon immobilization. 

After 0.6 hours at this temperature native Esperase had only half of its initial 

activity, while modified Esperase still retained around 98% of its initial activity (t1/2 

at 60ºC is 7.3 hours).  

 Thus, in this work, it may be seen that the thermal inactivation of 

immobilized Esperase is much lower than that of native Esperase, both at low and 

high temperatures. The improved stability of immobilized enzymes over their 

soluble counterparts may be related to the prevention of autolysis (it is known that 

immobilization of proteases is able to reduce autolysis (Sharma et al. 2003) and 

thermal denaturation (He et al. 2000; Ferreira et al. 2003). The immobilization of the 

enzyme causes an increase in enzyme rigidity, which is commonly reflected by an 

increase in stability towards denaturation by raising the temperature. In 

conclusion, the immobilized proteases present an improved thermal stability over 

its soluble counterparts and may be attractive biocatalysts for industrial purposes.  
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4.3.3 KINETICS OF ENZYME REACTIONS 

 The catalytic activity of the soluble and immobilized Esperase was 

accessed using casein as the substrate. In all the cases, Michaelis-Menten 

kinetics was observed and its parameters were determined, in order to evaluate 

the substrate specificity of the immobilized preparations. To that purpose, the 

enzymes (free and immobilized) were incubated with increasing concentrations of 

the substrate. This high molecular weight substrate was used to a better 

understanding and representation of the interactions among the proteases and 

wool (a big substrate).  
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Figure 4.2 – Changes in enzyme activity at different substrate (casein) 

concentrations. 

 

 The Michaelis-Menten parameters for the native and immobilized enzyme, 

at 37ºC, were attained by the hyperbolic regression and are listed in Table 4.2. 

The Vmax values decreased upon immobilization (from 8.2 to 4.0 U/mL) while KM 

values increased upon immobilization (from 4.2 to 5.2 mg/mL). Increases in KM 
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values upon immobilization have been frequently reported when the matrix is 

insoluble (Zhou and Chen 2001) or soluble (Zacchigna et al. 1998), but also with these smart 

polymers. An increase in KM values was observed when trypsin was coupled to 

eudragit S-100 (Arasaratnam et al. 2000), and when xylanase was immobilized on the 

same polymer, increases in KM values from 3.6 mg/ml to 5,0 mg/ml for the 

substrate xylan were verified (Sardar et al. 2000).   

 Comparison of the KM value for a given free and immobilized enzyme 

provides information about the interaction between enzyme and its support. An 

increase in KM once an enzyme has been immobilized indicates that the 

immobilized enzyme has an apparent lower affinity for its substrate than that of the 

free enzyme, which may be caused by the steric hindrance of the active site by the 

support, or the loss of enzyme flexibility necessary for substrate binding. So, the 

Vmax value of immobilized enzyme is lower than that of the free enzyme. 

 

Table 4.2 – Kinetic parameters for casein hydrolysis with free and immobilized 

Esperase (determined by hyperbolic regression) 

Esperase 
Enzyme 

Vmax (U/mL) KM (mg/mL) 

Free 8.2 ± 1.7 4.2 ± 1.7 

Immobilized 4.0 ± 0.7 5.2 ± 1.6 

 

4.3.4 MOLECULAR WEIGHT DETERMINATION 

 To evaluate the molecular weight of the enzymatic preparations, an SDS-

PAGE electrophoresis was carried out. The gel attained by this procedure is 

shown below (Figure 4.3). The immobilized Esperase presents a big diffuse band 

of high molecular weight, which stays at the beginning of the resolving gel. This 
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band presents a molecular weight above 97 kDa (the highest standard). Also, on 

this sample, the band of the free enzyme is still present, showing that some 

enzyme may be merely adsorbed to eudragit. Some studies report that this non 

covalently bounded enzyme can be removed with additional washing steps using 

surfactants like Triton X-100 (Rodrigues et al. 2002; Arasaratnam et al. 2000; Silva et al. 2005). 

This test confirms the higher molecular weight of the immobilized Esperase over 

the soluble form. 

 

 

Figure 4.3 – SDS/PAGE of the native and modified Esperase. Lane 1, modified 

Esperase, Lane 2, native Esperase, Lane 3, Eudragit alone and Lane 4, 

molecular-mass markers. 

 

4.3.5 REUSABILITY OF ENZYMATIC PREPARATIONS 

 The reusability of the alkaline protease immobilized on Eudragit S-100 has 

also been studied because of its importance for repeated use in industrial 

processes. The decrease in activity on repeated use of immobilized Esperase is 
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given in Figure 4.4. The Eudragit-Esperase conjugate retained 72% of its original 

activity after five cycles of repeated uses, showing a high stability.   
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Figure 4.4 – Retained activity of the immobilized Esperase (in %) after several 

cycles of repeated use (initial activity was taken as 100%). 

 

4.3.6 WOOL TREATMENTS 

 Prior to the enzymatic treatments, the wool fabric was subjected to a 

washing procedure using surfactant (scouring) or surfactant and hydrogen 

peroxide (bleaching), in order to improve the contact of the enzyme with its 

substrate (wool). The fabrics were then treated with the native and immobilized 

Esperase. Two enzymatic treatments were performed: one in harsh conditions, for 

weight loss determination, at 37ºC, pH 7.6 for 72 hours followed by 3 machine 

washing cycles and one in smoother conditions for the tensile strength and 

shrinkage tests at 65ºC, pH 8.5 during 4 hours.  

 In the following figure, the weight losses caused by the enzymatic treatment 

on wool fabrics are shown. For each enzyme (native or immobilized), the 

combined effect of the enzymatic treatment together with the pre-treatment 

(bleaching) was evaluated after the 3 consecutive machine washing cycles.  
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Figure 4.5 – Percentage final weight loss of the wool fabrics subjected to the pre-

treatment and the enzymatic treatment, followed by 3 machine washing 

cycles. Control is wool without any wet treatment, followed by 3 machine 

washing cycles (En - native Esperase and Ei - immobilized Esperase). 

 

 The fabrics were treated using the same enzyme units in the water bath. 

This means that the effect of the enzymes is directly related and compared. Wool 

fabric treated with free Esperase and subjected to 3 washing cycles presents the 

worst weight loss (about 37% when enzymatic treatment was applied after 

bleaching and about 17% when no pre-treatment was used). The immobilized 

enzyme did considerably less damage to the wool fabric (the weight losses are in 

the order of 4% and 7%, respectively, for the same conditions). Also, the damage 

caused by the pre-treatment alone is insignificant (weight loss less than 2%) and 

can be neglected.  

 This test also confirms that the pre-treatment makes the substrate (wool) 

more accessible to the proteolytic attack, since the weight losses verified were 

always higher for the wool fabrics that were pre-treated before the enzymatic 
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treatment. In the case of native Esperase, this difference is more than double. The 

fabric was extremely degraded after this treatment in severe conditions, but it was 

our intent to verify if a harsh treatment would completely degrade the fabric. 

Interestingly, using the exact same treatment conditions and the same activity 

units of immobilized Esperase, the final weight loss was only in the order of 7%, 

which is a really significant difference. This confirms the viability in using this 

immobilized protease for the purpose of wool finishing, using adequate treatment 

conditions in a way that the desired effects are achieved.  

 

 The wool fabrics were also subjected to tensile strength and shrinkage 

tests, after a moderate enzymatic treatment. Figure 4.6 shows the results of these 

parameters on wool fabrics treated with increasing amounts of enzyme activity. 
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Figure 4.6 – Effect of enzyme treatment with native or modified Esperase on 

scoured wool fabrics with increasing amounts of enzyme (measured as 

total enzyme units in the bath treatment). 
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 Analysing the figure above it is possible to see that when 3.6 U of activity 

were used in the wool enzymatic treatment, an area shrinkage of about 5% was 

achieved, both for free and immobilized Esperase. This means a reduction to 

about half of the initial shrinkage. The main differences, however, were verified in 

the fabric resistance, since with the immobilized Esperase the resistance was still 

92% of the original one, while the native enzyme promoted a loss of about 25% in 

the original tensile strength of the wool fabric. The more native enzyme added to 

the bath treatment, the more intensive is the tensile strength loss of the fabric. This 

fact is not verified in the fabric treated with the immobilized form (an almost vertical 

line is observed). This means that when treating wool with the immobilized 

Esperase, by the proper choice of treatment conditions, one can achieve good 

levels of shrink resistance without considerably damaging the fabric. The weight 

loss was in the order of 3% for the wool treated with immobilized Esperase (data 

not shown). 

 

 It seems that, even when the immobilized enzymes were used to treat wool, 

some of the fibres presented degradation, explaining the fabrics shrinkage and 

weight loss. This confirmation was attained by SEM microscopy of wool fabrics 

after the severe treatment, which shows that some of the fibres treated with 

immobilized Esperase are degraded (see Figure 4.7). Nevertheless, this 

degradation was significantly inferior to that verified with the free enzymes, 

meaning that the impact of degradation can be controlled by the conditions of 

treatment. The explanation for this degradation may lie in the fact that there is still 

free enzyme in the immobilized matrices. This noncovalently bounded enzyme can 

be removed by additional washing steps prior to the wool enzymatic treatment, as 
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already referred. The fibers that were not degraded presented their cuticle layer 

removed, thus they have their properties improved.  

 

 a)  b) 

 c)  d) 

Figure 4.7 - SEM microphotographs of wool fabrics after the treatments: a) 

Control; b) Bleaching; c) Free Esperase; d) Immobilised Esperase. All 

the enzymatic treatments were performed using the same enzyme units 

in the bath (about 100 U). 

 

 

4.4 CONCLUSIONS 

 A commercial available alkaline protease was coupled to eudragit S-100, a 

polymer that can be made soluble-insoluble, by covalent binding using 

carbodiimide. The optimum pH of the immobilized enzyme was shifted to a higher 

value, but the optimum temperature was unchanged. The operational and storage 

stability of Esperase was considerably improved by immobilization. The decrease 

in the Michaelis-Menten parameters indicate the existence of steric hindrance 

effects, but since the conjugate is considerably more stable and shows a high 

reusability, the immobilized preparations are interesting from an industrial point of 

view. The wool fabrics treated with immobilized Esperase showed a lower weight 
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loss and a considerably higher tensile strength resistance than the fabrics treated 

with the native enzyme.  

 Besides the simplicity of this immobilization method, these enzyme 

conjugates are a promising approach for wool bio-finishing processes, since they 

can remove wool cuticles, improving wool properties and can overcome the wool 

finishing problems with soluble proteases and the environmental problems with the 

wool chemical treatments. Furthermore, the polymer used has several attractive 

features which favour its use as an immobilization matrix for enzymes. It is non-

toxic (enteric polymer), water soluble, recoverable from solution by altering pH, 

economical and commercially available (Kumar and Gupta 1998). This process needs to 

be further characterized to a complete understanding and optimization.   

 

 

 

 

 



 

 

 

 

 

 

CHAPTER 5   

 

OPTIMIZATION OF A SERINE PROTEASE COUPLING TO EUDRAGIT 

S-100 BY EXPERIMENTAL DESIGN TECHNIQUES 

 

 

 

 

 

 

 

 

 

"My goal is simple. It is a complete understanding of the 

Universe, why it is as it is and why it exists at all. " 

 

Stephen Hawking (1942– ),  

Physicist and Mathematician 
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5. OPTIMIZATION OF A SERINE PROTEASE COUPLING TO 

EUDRAGIT S-100 BY EXPERIMENTAL DESIGN TECHNIQUES  

 

5.1 INTRODUCTION 

 In the preliminary tests performed by the research group, the coupling of a 

commercial protease (Protex Multiplus L) to Eudragit S-100 by the carbodiimide 

method for the purpose of wool finishing, provided a preparation with a low activity 

yield and low stability. Thus, the immobilization protocol needed to be optimized 

for this specific enzyme, creating a more attractive conjugate for industrial 

application. Some studies report the coupling optimization of several enzymes to 

Eudragit S-100, using however, the one-factor-at-a-time approach (Rodrigues et al. 

2002; Tyagi et al. 1998; Arasaratnam et al. 2000).  

 Two-level factorial designs are ideal for identifying the few vital variables 

that significantly affect the process, and have been applied successfully to study 

and optimize a different number of biocatalytic and bioseparation processes (Silva 

and Roberto 1999; Serralha et al. 2004; Moyo et al. 2003; Cortez et al. 2004; Mayerhoff et al. 2004). 

 In this chapter a full factorial design was adopted to study the influence of 

four different variables, namely polymer concentration, carbodiimide concentration, 

time of reaction and blocking agent concentration, on the coupling of a serine 

protease into a soluble-insoluble polymer (Eudragit S-100). The major advantage 

of studying the influence of several parameters by means of factorial design 

methodology is to distinguish possible interactions among factors, which would not 

be possible by classical experimental methods, like the one-factor-at-a-time 

approach (Box et al. 1978). 
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5.2 MATERIAL AND METHODS 

 

5.2.1 ENZYME AND REAGENTS 

 The enzyme used in this study was the alkaline serine protease Protex 

Multiplus L, a modified subtilisin (E.C.3.4.21.62) kindly supplied by Genencor. 

Eudragit S-100 (MW 135000 composed by 1:2 copolymer of methacrylic acid and 

methyl methacrylate) is a commercial product from Rhöm Pharma (Darmstadt, 

Germany). Carbodiimide hydrochloride (EDC) and ethanolamine were purchased 

from Sigma (St. Louis, USA). All other chemicals used were of analytical grade.  

 

5.2.2 IMMOBILIZATION METHOD 

 The protease was covalently linked to Eudragit S-100 by the carbodiimide 

coupling by following a protocol based on Arasaratnam (Arasaratnam et al. 2000). A 

solution (% in w/v) of Eudragit S-100 in phosphate buffer pH 7.2 with 0.28 M of 

NaCl was used. Its pH was raised to 11 by the addition of a NaOH solution and 

then reduced to pH 7.2 with an HCl solution. To the polymer, a carbodiimide 

solution (% in w/v) was added while mixing for 10 min. Then a volume of 1% (in 

v/v) of the enzyme was added. This solution was kept under stirring for 1-5 hours 

at room temperature and then was mixed with a blocking solution (ethanolamine 

0.45 g/mL) (% in v/v) for 1 hour at room temperature. The pH of the mixture was 

reduced to 4.5 with acetic acid. Precipitated eudragit-enzyme was separated by 

centrifugation (13000 x g, 10 min) and washed alternatively with 0.01 M acetate 

buffer containing 0.14 M NaCl (pH 4.5), 0.02 M phosphate buffer containing 
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0.14 M NaCl (pH 7.2) and washed twice with 0.15 M Tris-3 g/L Triton X-100 buffer 

containing 0.015 M CaCl2 (pH 7.6). Washing was carried out by precipitation at pH 

4.5, re-suspending in the respective buffers mixing for 10 min, and re-precipitation. 

Finally, the eudragit-enzyme precipitate was redissolved in 100 mL of 0.3 M Tris 

buffer containing 0.03 M CaCl2 (pH 7.6).   

 

5.2.3 EXPERIMENTAL DESIGN 

 Four variables, which were expected to have effect on the protease 

coupling to Eudragit, were identified by a preliminary search of literature. The 

range and the levels of the variables investigated in this study are given in 

Table 5.1 and were chosen to encompass the range in literature. The variables 

considered for the design were: eudragit concentration (A), carbodiimide 

concentration (B), contact time (C) and ethanolamine concentration (D) and their 

influence was evaluated according to a 24 full factorial design with 4 repetitions at 

the central point (Table 5.2). For statistical calculations, the variables were coded 

according to Eq. (5.1): 

   
Xi
XXixi

∆
−

=
0        (5.1) 

where xi  is the independent variable coded value, Xi  the independent variable 

real value, 0X  the independent variable real value on the center point and Xi∆  is 

the step change value. The runs were conducted randomly. 
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Table 5.1 – Factor levels used according to the 24 factorial design 

Levels 
Variables 

-1 0 +1 

A: Eudragit (% w/v) 0.5 1.5 2.5 

B: Carbodiimide (% w/v) 0.2 0.6 1.0 

C: Time (hr) 1 3 5 

D: Blocking agent (% 0.050 0.325 0.600 

 

 

 The “Design expert” version 5.0 (Stat-Ease Inc., Minneapolis, USA) was 

used for regression and graphical analyses of the data obtained. The conjugate 

activity (CA), the operational stability at 60ºC (OS) and the remaining activity after 

5 cycles of repeated use of the enzymes (R5) where taken as the responses of the 

design experiments. The statistical significance of the regression coefficients was 

determined by Student’s t-test and that of the model equation was determined by 

Fischer’s test. The proportion of variance explained by the model obtained was 

given by the multiple coefficient of determination, R2. The optimum conditions were 

obtained by the graphical analysis using “design-expert” program.  

 

5.2.4 ENZYME ASSAY AND PROTEIN CONCENTRATION 

 The activity of proteases was measured according to the procedure 

described previously in section 2.2.2. The total protein concentration was 

determined by the procedure described in section 2.2.3.  
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5.2.5 GEL ELECTROPHORESIS 

 SDS-PAGE was carried out according to the procedure described in section 

3.2.5.  

 

5.2.6 OPERATIONAL STABILITY AT 60°C  

 The native and immobilized enzymes were placed in a water bath at 60°C 

and 100 rpm of stirring and the remaining activity was measured after 5 hours of 

incubation at this temperature. 

 

5.2.7 REUSABILITY 

 The initial activity of the immobilized enzymes was measured. They were 

then subjected to 5 cycles of precipitation/dissolution and the activity was 

measured again. The cycles consisted in precipitating the polymer by lowering the 

pH to 4.5, centrifugation, alternative washing of the precipitated polymer with 

acetate buffer pH 4.5 and phosphate buffer pH 7.2 and re-dissolution in Tris-Cl 

buffer, pH 7.6. The activity was measured after the 1st, 3rd and 5th cycles. 

 

 

5.3 RESULTS AND DISCUSSION 

A commercial protease was coupled to Eudragit S-100 after incubation of 

the polymer solution with a carbodiimide (EDC) for carboxyl group activation. The 

enzyme concentration was kept constant during the study and the amount of 

polymer added was varied. The carbodiimide and blocking agent concentration 
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and the coupling time were also varied. The activity of the final polymer conjugate 

containing the immobilized protease was measured at pH 7.6. At this pH, Eudragit 

S-100 is in a soluble form. Table 5.2 shows the designed experimental matrix and 

its results. 

 

Table 5.2 - Values for conjugate activity (CA), operational stability at 60ºC (OS) 

and reusability (R5), according to the 24 factorial design  

Variables Responses 

Assay 
A B C D 

CA 
(U/mL) 

OS 
(%) 

R5 (%) 

1 -1 -1 -1 -1 3.69 51.2 13.7 

2 +1 -1 -1 -1 4.70 49.8 72.0 

3 -1 +1 -1 -1 1.08 58.3 36.8 

4 +1 +1 -1 -1 2.60 55.0 67.5 

5 -1 -1 +1 -1 3.28 56.0 22.8 

6 +1 -1 +1 -1 4.33 51.7 76.0 

7 -1 +1 +1 -1 0.77 37.2 44.3 

8 +1 +1 +1 -1 1.61 82.5 63.4 

9 -1 -1 -1 +1 2.92 60.6 16.5 

10 +1 -1 -1 +1 4.22 58.6 78.0 

11 -1 +1 -1 +1 0.46 75.3 60.2 

12 +1 +1 -1 +1 1.25 137.5 75.7 

13 -1 -1 +1 +1 2.67 50.0 19.3 

14 +1 -1 +1 +1 3.93 56.2 75.5 

15 -1 +1 +1 +1 0.46 83.3 55.6 

16 +1 +1 +1 +1 1.19 105.6 85.0 

17 0 0 0 0 1.92 74.3 55.0 

18 0 0 0 0 1.97 77.4 49.6 

19 0 0 0 0 2.04 59.8 44.2 

20 0 0 0 0 2.17 62.5 44.0 

 

 

After the immobilization procedure according to the variations of the factors 

imposed by the design, the immobilized samples of Protex Multiplus L were 
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analysed using a gel electrophoresis, to verify the formation of macromolecular 

aggregates and if there were major differences in their molecular weights. Figure 

5.1 shows the results of the SDS-PAGE performed. In this technique, an anionic 

detergent is used (sodium dodecylsulphate-SDS) to disrupt secondary and tertiary 

structures of protein molecules and weak interactions among them, thus retaining 

only the primary amino acid structure of the protein. It is possible to see that in 

some of the assays the bands of native enzyme are clearly marked (A1, A3, A8, 

A13-A16) while in others these bands are faded (A4-A7, A9-A11) or not present 

(A2, A12), indicating less native enzyme or no native enzyme at all in the 

conjugate. These differences in the protein-banding pattern cannot be attributed to 

the concentration of protein in the immobilized enzymes since high protein yields, 

measured as the ratio between conjugate and initial protein amount (data not 

shown), were attained. Assay 2 had, for instance, a protein yield of 73% and lacks 

the band of native enzyme. Since the SDS-PAGE was performed on the 

immobilized samples after being subjected to an extensive washing step using 

high salt concentrations and surfactant, the merely adsorbed protein was washed 

out and thus it may be concluded that the enzyme was in this case covalently 

crosslinked to the polymer. Several authors have reported that different salts and 

surfactants remove protein non-covalently bound to Eudragit polymers (Tyagi et al. 

1998; Arasaratnam et al. 2000). In assays 1 and 3 there is still native enzyme in the 

conjugate that was desorbed by the SDS-PAGE procedure, given that the 

intermolecular forces that bind the protein to the polymer are very weak (Dourado et 

al. 2002).  

In all the immobilized samples it is possible to observe the presence of high 

complexes that are trapped at the interface of the stacking gel and the running gel. 
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These high complexes might correspond to the enzyme covalently crosslinked to 

the polymer that could not enter the 10% acrilamide gel, being trapped at the 

interface. Figure 5.1 also shows that all immobilized samples had different banding 

pattern suggesting that all the factors considered were significant to the study. 

 
Figure 5.1 – SDS-PAGE electrophoresis of the immobilized enzymes according to 

the statistical design. Lanes: STD - molecular mass markers, nProt -

 native Protex Multiplus L, A1 to A16 - assays nº1 to nº16, in the statistical 

standard order (see Table 5.2). 

 

 The statistical analyses for each of the response variables evaluated, 

namely conjugate activity (CA), operational stability at 60°C (OS), and reusability 

(R5), are summarized in Table 5.3. All the four factors studied seem to have played 

a critical role in the protease immobilization. Table 5.2 shows that the maximum 

values attained for conjugate activity (above 3,9 U/ml) are found on assays 2, 6, 

10 and 14. These assays also have high values for the operational stability at 

60°C (above 50%) and reusability (above 72%). These four assays have in 

common the upper level for eudragit concentration and the lower level for 

carbodiimide concentration, indicating a tendency in these factors for the 

maximization of these three responses. The Students t-test in Table 5.3 confirms 
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the higher significance of these two factors on the responses CA and R5, 

comparing with the other two factors studied. 

 According to the Student’s t-test results, the concentration of Eudragit, 

Carbodiimide and Blocking agent presented a significant effect (more than 95% 

confidence level) for all responses tested. The other factor studied, Time (factor 

C), showed no significance at less than 95% confidence level for the responses 

Stability and Reusability and it was the less significant effect to the response 

Activity. 

Table 5.3 - Estimated coefficients, standard errors and Student’s t-test for 

conjugate activity (CA), operational stability at 60ºC (OS) and reusability 

(R5), using the 24  full factorial design  

CA 

(U/ml) 

OS 

(%) 

R5 

(%) 
Factors 

Coefficient Standard 
error 

t 

value 
Coefficient Standard 

error 

t 

Value 
Coefficient Standard 

error 

t 

value 

Intercept 2.45 ± 0.048 --- 66.80 ± 3.18 --- 53.89 ± 1.23 --- 

A: Eudragit 0.53 ± 0.048 11.10a 7.81 ± 3.18 2.46d 20.24 ± 1.23 16.47a 

B: Carbodiimide -1.27 ± 0.048 -26.54a 12.54 ± 3.18 3.94c 7.17 ± 1.23 5.83b 

C: Time -0.17 ± 0.048 -3.50c -1.49 ± 3.18 -0.47 1.34 ± 1.23 1.09 

D: Blocking agent -0.31 ± 0.048 -6.48b 11.59 ± 3.18 3.65c 4.33 ± 1.23 3.52c 

AB -0.046 ± 0.048 -0.97 8.00 ± 3.18 2.52d -8.41 ± 1.23 -6.84b 

AC -0.046 ± 0.048 -0.97 0.87 ± 3.18 0.28 -0.51 ± 1.23 -0.41 

AD -0.021 ± 0.048 -0.44 3.27 ± 3.18 1.03 0.081 ± 1.23 0.066 

BC -0.0025 ± 0.048 -0.052 -0.70 ± 3.18 -0.22 -0.33 ± 1.23 -0.27 

BD -0.027 ± 0.048 -0.57 9.50 ± 3.18 2.99d 3.73 ± 1.23 3.04d 

CD 0.093 ± 0.048 1.93 -3.13 ± 3.18 -0.98 -0.72 ± 1.23 -0.58 

Center point -0.42 ± 0.11 -3.95c 1.70 ± 7.11 0.24 -5.69 ± 2.75 2.75 
a p < 0.0001    b( 0.0001 < p < 0.001)   c (0.001 < p < 0.01)    d (0.01 < p < 0.05) 
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5.3.1 EFFECT OF PARAMETERS IN CONJUGATE ACTIVITY 

 Analysing the response CA (remaining activity of the prepared immobilized 

conjugates), it was seen that all the four main factors had statistical significance at 

less than 99.5% of confidence level. Nevertheless, the effect of Time on conjugate 

activity (p=0.0037) is considerably lower than the other effects (p<0.0001). The 

Eudragit concentration has a positive effect, meaning that its increase maximizes 

the overall response, while the other 3 effects have a negative effect, meaning that 

they should be decreased in order to maximize the retained activity of the 

conjugate. No interaction effects were significant at less than 95% confidence 

level, so the linear mathematical model proposed for this response, in actual 

terms, is: 

     CA (U/mL) = 4.17 + 0.53*A - 3.17*B – 0.084*C – 1.13*D    (5.2) 

 This model presents an R2 of 0.98 with an adjusted R2 of 0.98 in good 

agreement with the predicted R2 (0.97) and it was significant at a confidence level 

less than 99.99% (p<0.0001). 

 Although this model presented curvature significant at less than 99.85% 

(p<0.0015), showing that the area studied should be extended to perform a correct 

analysis, our goal was to study the influence of these parameters on the three 

responses (Activity, Stability and Reusability) and to maximize them in this range, 

so the model was accepted, and its ANOVA table is shown in Table 5.4. Another 

proof of our model, as it can be seen from the ANOVA table, is that it presents no 

lack of fit and its significance (p<0.0001) is much higher than the curvature’s 

probability level (p=0.0015), having also the residuals distributed along a well 
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randomized straight line.  

 

Table 5.4 – Analysis of variance (ANOVA) for the representative model of 

conjugate activity, in the area studied 

Source SS d.f. MS F value p 

Model 32.31 4 8.08 218.35 < 0.0001 

Curvature 0.57 1 0.57 15.44 0.0015 

Residual 0.52 14 0.037   

    Lack of Fit 
0.48 11 0.044 3.73 0.1530 

    Pure error 
0.035 3 0.012   

Total 33.40 19    

  R2 = 0.98; C.V. = 8.14% 

SS = sum of squares; d.f. = degrees of freedom; MS = mean square 

 

 In all the assays performed, the activity yield expressed by the conjugate 

was below 45% (achieved for assay 2), even though most of the protein added 

was coupled (no protein or enzyme activity were detected in the washings). These 

results are in agreement with the results previously published by other authors 

(Fujimura et al. 1987; Arasartnam et al. 2000). The reduction in the activity expressed could 

be due to either enzyme denaturation by the coupling conditions or to the 

intermolecular binding between the enzyme molecules and Eudragit S-100, 

causing steric hindrance effects. Since the activity was detected using a high 

molecular weight substrate (casein), the steric effects are more obvious, 

explaining the low conjugate activities. Arasaratnam et al. (2000) showed that the 

covalent coupling of trypsin to Eudragit S-100 resulted in pronounced steric 

hindrance when acting toward the high-molecular weight substrate, even when the 

enzyme molecules remained catalytically active. However, for low molecular 

weight substrates this effect was not evident.  
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 The contour plot for the activity in the area studied (Figure 5.2) confirms the 

linearity of the model and clearly shows that is possible to increase the final 

conjugate activity by decreasing carbodiimide and increasing Eudragit 

concentration.  

 The molar ratios of Protex Multiplus L coupled to Eudragit ranged from 0.36 

to 1.80 (enzyme:polymer). The lower molar ratio was attained for the maximum 

concentration of Eudragit (corresponding to 62 mg Protex/g Eudragit) while the 

molar ratio of 1.80 was attained for the lower level of Eudragit (corresponding to 

308 mg Protex/g Eudragit) since the enzyme was added in a fixed amount. To 

these high molar ratios, crowding of the molecules on the polymer might have 

happened. This can partially explain the higher activities of the conjugate when 

Eudragit was in the maximum amount, since the enzyme:polymer ratio was 

smaller, meaning a higher number of multivalent interactions with polymer 

backbone per molecule of enzyme (Rodrigues et al. 2002). Dourado (Dourado et al. 2002) 

found that the clustering effect between Eudragit and cellulase existed when the 

molar ratio (enzyme:polymer) went beyond 1.  
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Figure 5.2 – Contour plot showing the effect of Eudragit and carbodiimide 

concentration on the final activity of the conjugate. The other factors were 

kept at the central level. 

 

 

5.3.2 EFFECT OF PARAMETERS IN CONJUGATE STABILITY 

 For the operational stability, measured after keeping the immobilized 

enzymes for 5 hours at 60ºC, it was seen that the factor A and the interaction AB 

showed statistical significance at a confidence level of 95% and the factors B, D 

and the interaction BD at a confidence level of 99%. These factors were then 

included in the representative linear model, in actual terms, for this response: 

     OS (%) = 57.42 – 4.19*A – 26.72*B – 9.68*D + 20.00*AB + 86.36*BD        (5.3) 

 The statistical significance of the first-order model equation was evaluated 

by the F-test (ANOVA), which revealed that this regression is statistically 

significant (p=0.0001) at a confidence level of 99.99% (Table 5.5). In addition, the 
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model did not show lack of fit and had a correlation coefficient (R2) that explains 

83% of the variability in the response.  

 

Table 5.5 – Analysis of variance (ANOVA) to the representative model of 

operational stability at 60ºC, in the area studied 

Source SS d.f. MS F value p 

Model 8107.91 5 1621.58 12.57  0.0001 

Curvature 9.25 1 9.25 0.072 0.7931 

Residual 1676.49 13 128.96   

       Lack of Fit 
1451.95 10 145.20 1.94 0.3191 

       Pure error 
224.54 3 74.85   

Total 9793.65 19    

  R2 = 0.83; C.V. = 16.91% 

SS = sum of squares; d.f. = degrees of freedom; MS = mean square 

 

 Analyzing the contour plot obtained for this response (Figure 5.3), it is 

possible to see, by the linear horizontal shape of the curve, that when the 

parameter carbodiimide concentration is in the lower level there is no interaction 

effect among eudragit and carbodiimide. But when this parameter is in the upper 

level, the interaction effect among them becomes significant, and the higher 

values for the activity after 5 hours at 60°C are attained using the upper level of 

these two factors.  
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Figure 5.3 – Contour plot showing the effect of Eudragit and carbodiimide 

concentration on the operational stability of the conjugate at 60ºC. The 

other factors were kept at the central level. 

 

 The operational stability of the native enzyme after 5 hours at 60°C was 

only 30%. Thus, the conjugate is much more stable at this high temperature. This 

stabilizing effect caused by the immobilization into Eudragit polymers has been 

reported by several authors (Sardar et al. 2000; Sharma et al. 2003; Fujimura et al. 1987). 

Enhanced stability seems to depend on the rigid conformation of the enzyme 

modified by water-soluble carbodiimide and/or by covalent binding to the polymer 

(Fujimura et al. 1987). It is important to refer that in the case of proteases, 

immobilization is known to reduce autolysis. So, a useful outcome of 

immobilization is thus enhanced storage stability of the enzyme (Sharma et al. 2003). 
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5.3.3 EFFECT OF PARAMETERS IN CONJUGATE REUSABILITY 

The response reusability (R5), which measures the activity of the 

immobilized preparation after 5 cycles of precipitation/dissolution, was evaluated. 

Figure 5.4 shows that the reusability was higher when using the higher 

concentration of Eudragit in the immobilization procedure. When using the lower 

concentration of Eudragit, the reutilization factor after 5 repeated cycles of 

reutilization varies greatly from 60% (assay 11) to 14% (assay 1). Therefore, at the 

lower level of eudragit concentration a strong interaction effect between eudragit 

and carbodiimide exists, being the higher values for R5 attained when 

carbodiimide is at its maximum level. This variation was not observed when 2.5% 

of Eudragit was used on the immobilization procedure. These last assays were 

then considered to be covalently crosslinked. It is known that non-covalently 

bound enzyme is easily lost in repeated reaction cycles and Arasaratnam 

(Arasaratnam et al. 2000) found that when trypsin was immobilized to Eudragit S-100 in 

the absence of EDC, only 2% of the activity was retained after the 3rd cycle. 

 The serine alkaline protease Protex Multiplus L has a pI around 9 and 

coupling to Eudragit S-100 was performed at pH 7.6. At this pH the protein is 

positively charged and the polymer has an opposite charge. It is then likely that 

hydrophobic interactions do not play a major role in Protex adsorption to Eudragit, 

favouring the covalent crosslinking (Rodrigues et al. 2002). Also, the immobilization 

procedure was performed in the presence of high salt concentrations (0.14 M 

NaCl) to cut down adsorption due to electrostatic interactions (Tyagi et al. 1998). 
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Figure 5.4 – Effect of Eudragit concentration on the remaining activity (in %) of the 

conjugate after several cycles of precipitation/dissolution (initial activity 

was taken as 100%). 

 

 

The Student t-test confirms the interaction effect between A and B (Table 

5.6). The reusability response presents therefore A, B and the interaction among 

them as significant factors at 99.5% confidence level. The model attained for R5, in 

actual terms is: 

R5 (%) = - 6.14 + 32.85*A + 49.45*B – 21.02*AB    (5.4) 

 The analysis of variance (ANOVA, Table 5.6) demonstrates that the model 

is highly significant (p<0.0001) and the R2 value, being the measure of the 

goodness of the fit, indicates that 92% of the total variation is explained by the 

model. It presents no curvature and no lack of fit as significant factors.  
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Table 5.6 – Analysis of variance (ANOVA) to the representative model of 

reusability, in the range studied 

Source SS d.f. MS F value p 

Model 8509.85 3 2836.62 56.03 < 0.0001 

Curvature 103.74 1 103.74 2.05 0.1728 

Residual 759.36 15 50.62   

     Lack of Fit 
677.52 12 56.46 2.07 0.2999 

     Pure error 
81.84 3 27.28   

Total 9372.95 19    

  R2 = 0.92; C.V. = 13.49% 

SS = sum of squares; d.f. = degrees of freedom; MS = mean square 

 

 The contour plot attained for reusability (Figure 5.5) confirms the existence 

of an interaction effect at the lower levels of A and B, while at the upper level of 

Eudragit, the concentration of carbodiimide is not affecting this response.  

 

Figure 5.5 – Contour plot showing the effect of Eudragit and carbodiimide 

concentration on the reusability of the conjugate. The other factors were 

kept at the central level. 
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Since it was intended to optimize the immobilization procedure in order to 

maximize all the analyzed responses, the graphical optimization of the statistical 

program Design-expert was performed. The method basically consists of 

overlaying the curves of the models according to the criteria imposed (Silva and 

Roberto 2001). Based on the three models obtained, a graphical optimization was 

conducted using a statistical program (Design-expert), defining the optimal 

working conditions to attain high conjugate activity, operational stability at 60°C 

and reusability. The criteria imposed to the enzyme conjugates were: (a) the 

activity should be no less than 3 U/mL, (b) the operational stability at 60°C should 

be more than 50% and (c) the reusability after the 5th cycle should be above 65%.  

 

Figure 5.6 – The optimum region by overlay plots of the three responses 

evaluated (activity, operational stability and reusability) as a function of 

eudragit and carbodiimide concentration. The other factors were kept at 

the lower level. 

 

The overlay plot attained (Figure 5.6) shows a non-shaded area where all 
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concentration were kept at its lower levels (C=1 hour and D=0.05% v/v) by 

economical reasons, since they exerted less statistical influence in the responses 

tested than the Eudragit or carbodiimide concentrations.  

 

Thus, a point was chosen on the graph, which was assigned as optimum 

point corresponding to 2.5% (w/v) of Eudragit (coded level +1) and 0.2% (w/v) of 

carbodiimide (coded level -1). As previously stated, for economical reasons, the 

time and blocking agent were set at their lower values. These settings were the 

same described by assay 2 of the experimental statistical design. Under these 

conditions, the models attained predict the following values for the responses, 

together with the experimental error in the 95% confidence interval:  

 Conjugate Activity (CA): 4.7 U/mL [4.50 – 4.96] 

 Operational Stability (OS): 52 % [36.97 – 67.01] 

Reusability (R5): 75 % [67.79 – 82.96] 

The values attained in assay 2 are in good agreement with the predicted 

values for the analyzed responses, validating the mathematical linear models 

attained. 

 

Regarding the native enzyme, used as control, the following parameters 

were attained for the immobilization of the commercial alkaline serine protease 

Protex Multiplus L to Eudragit S-100 in the optimum conditions defined: 
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Table 5.7 – Coupling of Protex Multiplus L to Eudragit S-100, after activation by 

carbodiimidea 

Sample 
Protein, 
mg/ml 

Activity, 
U/ml 

Specific Activity, 
U/mg 

ηprotein
b, 

% 

ηactivity
b, 

% 

Native enzyme 0.77 10.35 13.44 100 100 

Eudragit-Protex conjugate 0.56c 4.70 8.39 73 45 
a each experiment was done in duplicate. The difference in the individual readings was less than 5%. 
b ηProtein is the protein coupling yield and ηactivity is the activity yield of Eudragit-Protex conjugate. 
c protein measured directly on the conjugate after re-dissolving using a solution of Eudragit S-100 that 

followed the same protocol without adding protease as a blank. 

 

The specific activity was lower after immobilization, confirming the 

existence of steric hindrance effects. This was expected since multivalent 

interactions between the enzyme molecule and the polymer after coupling may 

induce structural rearrangements on the protein molecule. This steric crowding 

phenomenon has been observed in many earlier studies (Arasaratnam et al. 2000; 

Dourado et al. 2002; Sardar et al. 2000).  

Interestingly, the specific activity was always higher to the lower levels of 

carbodiimide used in the coupling procedure (see Figure 5.7). This result is 

reinforcing the idea that a clustering effect is occurring: when more carbodiimide is 

added, more intermolecular cross links are formed, which may avoid the approach 

of the macromolecular substrate to the enzyme active site. This phenomenon is 

likely to be more pronounced with a macromolecular substrate like casein. 
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Figure 5.7 – Effect of carbodiimide concentration (% w/v) on the specific activity of 

the conjugate. The numbers refer to the number of the assay in the 

statistical standard order (Table 5.2). 

 

 

5.4 CONCLUSIONS 

 

Information about several parameters that influence the immobilization of 

proteases into reversibly soluble/insoluble polymers and their interactions can be 

obtained by the factorial methodology, requiring a limited number of experiments, 

when compared with classical methods. Using the methodology of experimental 

factorial design it was possible to determine optimum coupling conditions for a 

serine protease to Eudragit S-100 and obtain a very stable covalently crosslinked 

conjugate with high activity and reusability. This optimized conjugate could be 

attained using lower concentrations of the coupling and blocking agents and less 
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time of coupling, meaning economical advantages over the previous coupling 

procedure. More importantly, the non-specific adsorption was eliminated, which 

represents an improvement in the carbodiimide coupling to Eudragit S-100.  

 All of the four factors studied have played a critical role in the protease 

coupling. Response surface methodology was used as an optimisation strategy to 

attain a conjugate with high activity yield and operational stability at 60°C. Under 

optimised conditions (Eudragit, 2.5% w/v, carbodiimide, 0.2% w/v, coupling time,1 

h and blocking agent concentration, 0.05%), the conjugate activity yield was about 

45% and its operational stability at 60°C increased of 1.7 times. After reusing the 

conjugate for 5 cycles, the remaining activity was still 72% of the initial value when 

compared to the native enzyme. Several tests confirmed that the enzyme was 

covalently crosslinked to eudragit.  

This stable biocatalyst can be used for the hydrolysis of macromolecular or 

insoluble substrates, since it is reversibly soluble-insoluble, eliminating the mass 

transfer limitations in heterogeneous systems. In addition, the convenient handling 

of the enzyme preparations, the easy separation of the enzyme from the product 

and the re-use of the enzyme provides a number of cost advantages, which are 

often an essential pre-requisite for establishing an economically viable enzyme-

catalyzed process.  

 

 

 

 

 

 



 

 

 

 

 

 

CHAPTER 6   

 

GENERAL DISCUSSION 

 

 

 

 

 

 

 

 

 

 

 

"The whole of science is nothing more  

than a refinement of everyday thinking." 

 

Albert Einstein (1879-1955)  

German physicist 
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6. GENERAL DISCUSSION 

 

 Total easy care is a concept that wool finishers in particular must address 

and solve over the next few years. Total easy care must confer ease of 

maintenance and impart high performance to wool garments. In the future the 

necessity to obtain total easy care wool i.e. machine washability plus tumble 

dryability, to compete with other fibres will become more pressing. The most 

commonly used method to confer dimensional stability to wool articles is the 

chlorine-Hercosett, which has various drawbacks as previously reported. Several 

enzymatic methods have been attempted to replace this hazardous chemical 

finishing treatment, without great success.  

 Our work also used proteolytic enzymes, but modified ones, in order to 

avoid their penetration inside the fibre, which is the major obstacle to the 

implementation of an enzyme finishing process, due to the high undesirable weight 

loss caused.  

 The work done and presented in this thesis is one small step towards the 

study and implementation of an environmental friendly process for wool bio-

finishing using proteases. Each chapter presents the discussion of the respective 

results and conclusions. However, there are some aspects that deserve to be 

pointed out, since that only now is it possible to make an overall analysis of the 

work.  

 First of all, it was necessary to prove the concept underlying this thesis. Due 

to the fact that the immobilization of enzymes by covalent coupling is often 

accompanied by steric hindrance effects, the investigated approach was uncertain. 
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The fact that the proteases were bigger in size could implicate steric hindrance 

effects of such a magnitude that the proteases would not be able to interact with 

wool, hydrolysing its cuticle. Thus, chapter 2 intended to be a starting point for our 

work, proving that the concept could work properly. In the study described in that 

chapter, two commercial proteases were acquired, with different molecular weights 

and their hydrolytic behaviour towards wool fibres was analysed and compared. 

Native subtilisin (with average Mr close to 20 kDa) and subtilisin-PEG (with 

average Mr close to 110 kDa) were used to study the adsorption into wool fibres, 

after different pre-treatments. It was observed that:  

• The penetration of protein (measured as the maximum adsorption capacity 

in g protein/g wool) was higher when the wool was previously subjected to a 

surfactant washing and bleaching. It is believed that this treatment is more 

effective in removing the bounded fatty acid barrier of the epicuticle. Thus, 

as already pointed out by several authors, the proteolytic treatment is 

enhanced by wool pre-treatments such as the surfactant washing and 

bleaching.  

• Secondly, it was verified that subtilisin-PEG showed little absorption (only 

about 7%) while native subtilisin showed 50% adsorption into wool. Also, 

native subtilisin produced a high amount of released aminoacids (indicating 

wool fibre degradation) and its tensile strength was lower, comparing with 

subtilisin-PEG. 

• Furthermore, by using fluorescence techniques, it was possible to follow the 

diffusion of the proteases inside wool and conclude that their diffusion was 

dependent on their size. The native subtilisin penetrated completely into 

wool fibre cortex while the modified enzyme, with a bigger size, was 
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retained at the surface, in the cuticle layer. It was also observed that 

proteins without proteolytic action do not adsorb on wool, due to its 

hydrophobic nature.  

 This chapter allowed for an important conclusion: it is possible to control the 

hydrolysis process on wool, by using enzymes with an adequate size and thus 

retaining activity on the wool surface.  

 The subsequent chapters (3 and 4) present some of the techniques 

attempted to modify the proteases in order to achieve the desired results. The 

modifications performed were mainly by covalent coupling the enzymes to several 

matrices, thus increasing their size. Since wool is a solid substrate, the interaction 

of wool with the enzyme would only occur if the enzyme was in the soluble state. 

So, the need for soluble conjugates was a priority. 

 The first attempt (chapter 3) was by coupling the proteases to a known and 

extensively studied bifunctional reagent, glutaraldehyde. This bifunctional reagent 

proved to be very effective in crosslinking proteins possessing a high amount of 

Lysine residues, which are usually accessible for reaction since they tend to be at 

the exterior of the protein.   

• It was detected that the Mr of the proteins was gradual increasing with the 

increase of final glutaraldehyde concentration and that its addition should 

be done slowly and in small amounts. 

• The method of covalent crosslinking using the bifunctional reagent 

glutaraldehyde was not effective for increasing the proteases molecular 

weight, either due to the low amount of free lysine residues available in the 

studied protease for crosslinking or to the presence of other amines in the 

commercial preparation that might have reacted preferentially with this 
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compound.  

 

 Several other approaches for creating soluble enzymatic conjugates were 

attempted (described in the international patent – Appendix A), using soluble 

polymers, like PVA or PEG. The covalent coupling of the proteases to soluble-

insoluble polymers was studied as the enzymatic conjugate would be much more 

interesting from an industrial point of view if one could recover the enzyme after 

the treatment, allowing for reuse and continuous operation.  

 Thus, chapter 4 describes the covalent coupling of Esperase, a commercial 

protease to a soluble-insoluble polymer of high molecular weight (Eudragit S-100). 

This conjugate exhibited the following characteristics: 

• When comparing to the native enzyme, the immobilized form presented a 

lower specific activity towards high molecular weight substrates, but a 

higher thermal stability at all temperatures tested. It also exhibited a good 

storage stability and reusability, which makes this enzyme conjugate quite 

interesting from an industrial point of view.  

• Wool fabrics treated with the immobilized serine protease using harsh 

conditions and subjected to several machine washings, presented a 

significantly lower weight loss than wool treated with the native enzyme, in 

the same conditions. Using a moderate enzymatic treatment, a reduction to 

about half of the initial area shrinkage was attained, both for free and 

immobilized enzymes. However, wool fabric treated with the immobilized 

protease presented 92% of the original tensile strength resistance while that 

treated with native enzyme kept only 75% of its initial resistance.  

• An enzyme conjugated to such a carrier may be used as a catalyst in its 
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soluble form and then be recovered via the insoluble state, overcoming the 

problem of the non accessibility of the enzyme to the macromolecular 

substrate, wool. It also eliminates the need for an enzyme-denaturising step 

in any enzymatic wool-processing with this enzyme. It is known that 

adsorbed proteases are not easily rinsed from treated wool fibres and that 

the enzyme retained in the fibre continues to catalyse hydrolysis of the 

protein substrate under normal storage or use conditions (Nolte 1996). Thus, 

this immobilization method ensures removal of all the covalently linked 

protease, protecting the fibre from progressive deterioration.  

 

 Although this method proved to be very effective for wool finishing, the 

presence of native enzyme in the conjugate was a drawback. Thus, the 

immobilization method needed to be optimized, in order to understand the effects 

of each variable in the coupling procedure and of their interactions, and to remove 

the non-covalently bounded enzyme. Chapter 5 relates the optimization of the 

coupling of the protease to the polymer, Eudragit S-100, by using experimental 

design techniques. This optimization strategy allowed for an enzyme conjugate 

wherein the enzyme was covalently cross linked to the polymer, with high activity 

yield and high operational stability at 60ºC. These statistical techniques proved to 

be useful in understanding the effects of several variables affecting a process and 

of their interactions, while allowing for optimization with few assays.  

 

 



 

 

 

 

 

 

CHAPTER 7   

 

CONCLUSIONS AND FUTURE PERSPECTIVES 

 

 

 

 

 

 

 

 

 

 

"The future belongs to those who believe 

 in the beauty of their dreams."  

 

Eleanor Roosevelt (1884-1962) 

Mrs. Franklin D. Roosevelt 
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7.1 CONCLUSIONS 

 

 The results presented in this thesis prove that modified proteases attained 

by the described immobilization method, using a soluble-insoluble polymer of high 

molecular weight, can be a promising alternative for wool bio-finishing processes 

at an industrial level, since it is an effective way of removing wool scales and can 

be an environmental friendly option to the conventional chlorine treatments. This 

process needs to be further characterized for its complete understanding and 

optimization. 

 

 Therefore, the innovative aspects of this thesis are: 

 - the feasibility of controlling the hydrolytic action of the enzymatic treatment 

by the use of an immobilized protease; 

 - the possibility of recovering the enzyme for posterior treatments which 

allows for important cost savings in industrial implementation; 

 - the development of a promising environmental friendly alternative to the 

conventional chlorine-Hercosett shrink-resist treatment of wool. 
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7.2 FUTURE PERSPECTIVES 

  

 Further studies will contribute to the understanding of the mechanism of the 

proteolytic attack and will completely elucidate the factors that affect this reaction, 

like the smallest proteases molecular weight needed to avoid their penetration 

inside the wool fibre. Thus, it is our intent to: 

• Continue this study, upgrading the protease modification technology from 

laboratory to a large-scale process, allowing for a new green industrial 

process to be developed and implemented for the enzymatic treatment of 

protein fibres, which would represent a major technological breakthrough.  

• Find the optimal process parameters for the anti-felting treatment of wool, 

where weight loss, shrinkage and tensile strength will be minimized. 

• Develop new formulations for industrial and domestic wool carpet cleaning 

and garment washing. The stability of the soluble-insoluble enzymatic 

conjugates on detergents (compatibility with detergents components as 

surfactants, perfumes and bleaches), their performance on cleaning stains 

and the possible damages inflicted on wool in domestic washing will be 

investigated. 

• Produce new modified proteases with reduced diffusing ability in wool. It is 

our intent to test other soluble-insoluble polymers available for 

immobilization, like the PNIPAAm (poly(N-isopropylacrylamide), a thermo-

responsive polymer, and also to test the potentialities of engineered 

proteases with high molecular weight. It is desirable that these enzyme 

conjugates be separated by molecular weight fractions, in order to evaluate 

and better understand the potential of the several conjugates on wool bio-
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finishing. 

• Develop bio-scouring processes (using an enzymatic cocktail of cellulases, 

pectinases, lipases, xylanases, hemicellulases and this modified protease) 

to achieve significant improvements in scouring efficiency, whiteness and 

dyeability of wool, which would reduce the chemical use and costs of the 

conventional scouring method.  

• Develop low temperature dyeing processes for wool fibres by pre-treatment 

with the new modified protease. 
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APPENDIX A   

 

TREATMENT OF ANIMAL HAIR FIBERS WITH MODIFIED PROTEASES 

 

 

 

 

 

 

 

 

 

"Science knows no country, because knowledge belongs to humanity,  

and is the torch which illuminates the world."  

 

Louis Pasteur (1822-1895) 

French chemist biologist, 

and founder of microbiology 
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DESCRIPTION 

 

" TREATMENT OF ANIMAL HAIR FIBERS WITH MODIFIED PROTEASES " 

 

Field of the invention 

 The cuticle layer of animal hair fibers presents a scale structure when 

observed by microscopy. The felting or shrinkage of these fabrics is due to the 

overlapping of these scales that surround the cortex (inner part of the fiber), in wet 

processes with high mechanical agitation. The removal of the cuticle layer allows 

for elimination of the tendency of the protein fibers of animal origin to shrink. One 

possibility of anti-felt treatment would be the application of proteolytic treatments 

for the removal of the cuticle layer. This kind of treatment has been extensively 

studied since the beginning of the XX century, but without great achievements. 

The reasons for this are primarily due to the following factors: 

- The hair fibers of animal origin have a very variable composition, which 

depends on origin, race, climate and animal feeding. This diversity of animal fibers 

induces several susceptibilities to the proteolytic treatments. 

- Higher aggressive treatments to induce a uniform anti-felting behaviour to 

all the fibers, cause by consequence unacceptable strength loss. 



 152

- Recent studies indicate that the lack of reproducibility of the proteolytic 

treatments and the degradations caused by such treatments are due to the 

diffusion of the enzymes inside the animal fibers. 

 

 

 

 

Background to the invention  

The most commonly used method to confer dimensional stability to articles 

made from animal hair fibers is the INS/CSIRO Chlorine/Hercosett, which 

comprises a strong acid chlorine treatment, followed by the application of a 

polymer resin. This process results in an increased degree of shrinking resistance, 

but has a number of drawbacks: poor handle, limited durability, difficulties in 

dyeing and, more importantly today, it generates environmentally damaging waste.   

  

 

Several authors have suggested some methods to reduce the shrinkage of 

animal fibers, like wool, for instance, which do not result in release of damaging 

substances to the environment. Among such processes, there are the enzymatic 

ones, as well as benign chemical processes such as low-temperature plasma 

treatments. Plasma treatment is a dry process, which involves treating wool fiber 

material with electric gas discharges (so-called plasma). At present, there are 

obstacles (costs, compatibility and capacity) to large-scale commercialisation of a 

plasma treatment process. 
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Several enzymatic methods have been used on wool treatments. The 

patent JP-A 51099196 describes a process to treat wool fabrics with alkaline 

proteases. The patent JP-A 3213574 describes a method for the treatment of wool 

with transglutaminase or a solution having this enzyme. The patent US 6051033 

describes a method of wool or wool fibers treatment with a proteolytic enzyme and 

tranglutaminase. WO 98/27264 describes a method to reduce the shrinking of 

wool that comprises the contact of fiber samples with a solution of peroxidase or 

oxidase under the adequate conditions for the enzymatic reaction with wool. The 

patent US 6099588 relates a method to improve the shrink resistance that may 

result in improvements in handle, appearance and felting, among others, by the 

application of proteolytic enzymes in an aqueous solution, after a treatment with 

an alkaline solution having alcohol. 

The patent US 5.529.928 refers to a process to attain wool with anti-felt 

finishing, soft handle and with shrink resistance using an initial chemical oxidation 

followed by a treatment with protease and warming. The patent EP 134267 uses a 

similar process, treating the fiber with proteolytic enzymes in the presence of salt, 

after the initial oxidative treatment. The patent EP 3.58386 describes a method of 

wool treatment that comprises a proteolytic treatment and one of, or both, an 

oxidative treatment (such as NaOCl) and treatment with polymer. 

The necessity of establishing environmentally friendly (Eco-friendly) 

methods with better performances than the industrial processes currently used, 

drives the need to create new processes that give a good shrink resistance, 

softness, appearance and anti-pilling behaviour. Therefore, a new methodology of 

enzymatic treatment of animal hair fibers is presented here. 
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Summary of the invention 

This invention relates to a new enzymatic process of animal hair fiber 

treatment, in which the proteases are chemically modified in order to increase their 

molecular weight and therefore reduce their diffusion inside the fiber. The cuticle 

will be the only accessible part to the proteolytic attack, which allows for the 

improvement of one or more wool properties, including their felting and shrinking, 

without damaging the fiber’s interior. 

The methodologies used to increase the molecular weight of the enzymes 

are based on the utilisation of a soluble polymer with hydroxyl groups or others 

(carboxylic groups), activated with γ–aminopropiltrietoxisylane, carbodiimide 

and/or glutaraldehyde. The glutaraldehyde molecules may link afterwards, 

covalently, to another polymer chain, forming a polymeric net, or to an available 

protein NH2 group. 

   

Detailed description and Examples 

The method consists in the treatment of the proteic material with a solution 

of modified proteolytic enzymes. Commercially available proteases from Sigma 

and Genencor (Subtilisin kind) were used.  

Immobilisation was performed using soluble and/or soluble-insoluble 

polymers. Polyvinyl alcohol (Sigma), of medium average molecular weight 70000–

100000, polyethylenglycol (Sigma) of 10000 of average molecular weight and a 

copolymer of methacrylic acid-methyl methacrylate of 135000 of average 

molecular weight, were used. As coupling agents, glutaraldehyde (Aldrich), γ–

aminopropiltrietoxisylane, carbodiimide  and/or Borax (Sigma) were used.  

The polymer at 6% (w/v) solution in distilled water was dissolved with 
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warming and stirring, activated, and then was added to a 2% (v/v) glutaraldehyde 

solution. This solution was kept under stirring at room temperature, for 2 hours. 

After this time, the solution was dialysed in 0.1 M pH 5.0 acetate buffer for 24 

hours and then in 0.05 M pH 3.95 acetate buffer for 20 hours.  

The enzymatic preparation in the desired concentration was added to the 

resulting solution, together with PEG (1.25%) and Borax (0.05 µg/mL) on 0.1 M pH 

5.0 acetate buffer, and left under stirring for 8 hours at room temperature. This 

solution was kept at 4ºC until use. The immobilisation procedure did not bring any 

significant activity lost.  

The soluble-insoluble polymer at 2% (w/v) solution in distilled water was 

dissolved with pH control and stirring, activated with carbodiimide, and then was 

added to a 2% (v/v) protease solution. This solution was kept under stirring at 

room temperature for 3 hours. After this time, the polymer-enzyme solution was 

washed by performing several cycles of precipitation-centrifugation, and was 

finally dissolved in 0.3 M Tris-Cl buffer pH 7.6. This solution was kept at 4ºC until 

use. It was verified that the immobilisation procedure brought a deviation of pH 

optima to higher alkaline values, while temperature profile was not affected.  

 

Description of Preferred Embodiments: 

 The following examples illustrate the invention.  

 

Example 1: 

Treatment of pure wool fabric with proteases: 

Samples of pure merino wool fabric (like animal hair fiber) with about 

12 cm x 12 cm (of about 3 grams, each), were placed in a recipient with a solution 
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of chemically modified proteases, or not, using a bath relation of 1/20 (w/v). The 

treatment was performed at 37ºC, for periods of time ranging from 4 to 48 hours. 

Samples were removed from the solution, washed and air-dried. They were then 

subjected to tests to evaluate eventual damage caused during the treatment.  

To evaluate the quality of the fabric and the degree of damage caused in 

the wool treatment process, a qualitative test based on Garner (Garner W., Textile 

Laboratory Manual, vol. 5 - Fibres, 3rd Edition, 1967) was used. It was verified that 

the modified proteases did not induce fiber degradation when compared with free 

proteases. The control treatment itself (10 mM pH 7.5 acetate buffer) presents a 

level of fiber degradation superior to that presented by the fibers treated with 

modified enzymes. 

The tendency of the fabrics to shrink was verified by washing the fabrics 

(11 x 6 cm) three times in distilled water having 50 µL of a wetting agent for 60 

minutes, at 50ºC and 20 rpm. The shrinkage was measured by the variation of the 

specimen dimensions. It was verified that only the fabrics enzymatically treated did 

not induce a significant shrinkage.  

A panel of 5 technicians evaluated the handle and appearance of the wool 

fabric, verifying an increase in the properties of the protease treated fabrics 

relatively to the control fabric.   

 

Example 2: 

Treatment of pure wool yarns with proteases: 

Similar studies were conducted in yarns of merino wool using the following 

parameters: samples of pure wool yarn were placed in a recipient with a 

chemically modified proteases solution, or not, in a bath ratio of 1/20 (w/v). The 
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treatment was conducted at 37ºC, for periods of time ranging from 4 to 48 hours. 

The samples were removed from solution, washed and air-dried. They were then 

subjected to test to evaluate eventual damage caused during treatment.  

To evaluate the yarn quality and the degree of damage caused in the 

treatment process of this fiber, a qualitative test based on Garner (Garner W., 

Textile Laboratory Manual, vol. 5 - Fibres, 3rd Edition, 1967) was used. It was 

verified that the modified protease treatment does not induce degradation when 

compared with free protease treatment. The control treatment (10 mM pH 7.5 

acetate buffer) presented a superior degradation level than that presented by the 

fibers treated with the modified enzymes.  

Tensile strength tests were performed on wool yarns, and it was verified 

that only the yarns treated with free proteases induced a significant strength loss.  

The tendency to shrink was verified by repeated washing of wool yarns, 

three times in distilled water having 50 µL of a wetting agent for 60 minutes, at 

50ºC and 20 rpm. Shrinkage was quantified by the visual verification of yarn 

felting. It was verified that only enzymatically treated yarns did not induce felting. 

A panel of 5 technicians evaluated the yarns appearance and verified a 

better look in the yarns treated with proteases, compared to the control yarns. 

 

 

 

Example 3: 

Treatment of pure wool fabrics with soluble-insoluble proteases: 

Samples of pure merino wool fabric (like animal hair fiber) with about 

15 cm x 15 cm and with about 8 cm x 20 cm, were placed in a recipient with a 
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solution of chemically modified proteases, or not, using a bath relation of 1/20 

(w/v). The treatment was performed at 37ºC, for periods of time ranging from 12 to 

72 hours. Samples were removed from the solution, washed and air-dried. They 

were then subjected to tests to evaluate eventual damages caused by treatment.  

The storage stability of enzyme preparations was evaluated and it was 

verified that room temperature storage of these enzymes was possible, with no 

lost of activity for more than 3 months. An increase of half-life time was observed 

in the immobilised enzymes at all the conditions tested (4º, 20º, 37º and 60ºC). 

Tensile strength tests were performed on wool rectangular fabrics, and it 

was verified that the fabrics treated with free proteases induced a significant 

strength loss (keeping only 30-40% of its initial resistance) while that treated with 

the immobilised proteases kept about 80% of its resistance. 

The fabrics weight loss was also evaluated and for the free protease 

treatment it was very high, reaching 36% when wool was pre-treated prior to 

enzymatic treatment and was only 5% with the immobilised protease in the same 

conditions. 

The tendency to shrink was verified by repeated washing (three times) of 

wool fabrics, in a domestic washing machine, at 40ºC and with 2 g/L of a 

commercial detergent, for approximately 50 minutes. The shrinkage was 

measured by the variation of the specimen dimensions. It was verified that the 

fabrics treated with free enzyme presented a significant shrinkage (14%), 

comparing to that presented by the fabrics treated with the immobilised enzymes 

(6%). 

The fiber damage was also evaluated by SEM microscopy, where it was 

possible to verify that the treatment with the immobilised enzymes seems to 
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damage just the cortex layer of the yarn, or to a less extent, the whole wool fiber.  

 

 

 

CLAIMS 

 

1. A method of treating fibers of animal origin (wool from sheep, cashmere, rabbit, 

mohair, llama, goat, camel, among others) comprising the contact of fiber with a 

solution of modified proteases linked, or not, to other substances, in order to 

increase its molecular weight and reduce its diffusion inside the fiber. The intention 

being that the cuticle of the fiber be the only accessible part to the proteases 

attack, thus allowing an increase of the resistance to shrinkage and anti-felt 

finishing, in comparison with the untreated material.  

 

2. The method, accordingly to claim 1, characterised by comprising the treatment 

of the fibers simultaneously with a proteolytic enzyme and transglutaminase.  

 

3. A method, as defined in claim 1, wherein said proteolytic enzyme is of bacterial 

origin. 

 

4. The method of claim 1, wherein the proteolytic enzyme is a serine protease. 

 

5. A method, as defined in claim 4, wherein the serine protease is a Subtilisin. 

 

6. The method of claim 1, wherein the amount of protease used per kg of wool, 
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fiber, or hair, is in the range of 1 to 1000 g.  

 

7. The method of claim 1, wherein the transglutaminase is derived from 

Streptoverticillium sp. 

 

8. The method of claim 1, wherein a treatment bath with recoverable and reusable 

proteases solution is used, thus lowering the costs of treatment and the effluent 

production, with concomitant savings in water consumption. 

 

9. The method of claim 1, wherein soluble polymers in aqueous solutions are 

used, like polyvinyl alcohol (and/or polymers with hydroxyl groups), as support in 

the chemical modification of proteases, without restrictions. 

 

10. The method of claim 1, wherein soluble-insoluble polymers in aqueous 

solutions are used, like methacrylic acid-methyl methacrylate copolymers (and/or 

polymers with carboxyl groups), as support in the chemical modification of 

proteases, without restrictions. 

 

11. The method of claim 1, wherein the reusable proteases in aqueous solutions 

are used as cleaning additives to treat wool material, like carpets and rugs, without 

restrictions. 

 

 

 


