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Abstract 

We present and discuss a set of boundary conditions (BCs) to use in 3-dimensional, 

mesoscopic, finite element models of mid-infrared pulsed laser ablation of brittle materials. 

These models allow the study of the transient displacement and stress fields generated at 

micrometer scales during and after one laser pulse, where using conventional BCs may lead to 

some results without physical significance that can be considered an artefact of the 

calculations. The proposed BCs are tested and applied to a micrometer-scale continuous 

model of human dental enamel under CO2 radiation (10.6 µm, 0.35 µs pulse, sub-ablative 
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fluence), giving rise to the following results: the highest stress is obtained at the irradiated 

surface of the model, at the end of the laser pulse, but afterwards it decreases rapidly until it 

becomes significantly lower than the stress in a region 2.5 µm deep in the model; a thermally-

induced vibration in the material is predicted. This non-intuitive dynamics in stress- and 

displacement-distribution cannot be neglected and has to be considered in dynamic laser 

ablation models, since it may have serious implications in the mechanisms of ablation. 

 

keywords: mesoscopic modelling; laser ablation; enamel; finite elements; infrared laser; 

boundary conditions. 
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1. Introduction 

 

The ablation of ceramic materials using pulsed mid-infrared (IR) lasers has been used in 

industrial, research and medical environments for several years now. Despite the large amount 

of work which has been done with the aim of understanding the mechanisms of ablation, high 

level comprehension of these mechanisms does not exist yet, and neither do models with 

sufficient predictive ability to contribute to the optimization of existing procedures.  

Our group is developing general, dynamic 3-dimensional finite element (FE) models to 

understand the ablation mechanisms of ceramic composite materials by pulsed mid-infrared 

lasers.  These models include the structure of the material at mesoscopic scales, known to play 

an important role during ablation [1,2]. Therefore, the models represent micrometer-size 

pieces of the macroscopic object under laser radiation. In general, theoretical calculations 

contain the assumption that, for sufficiently large models, the bulk properties will be 

reproduced. However, the model properties approach the bulk ones rather slowly and they are 

not monotonic functions of model size. While the use of large models is conceptually 

desirable, it becomes computationally prohibitive. Therefore, one needs to use smaller models 

to attempt, at some level of approximation, to reproduce the properties for the entire system. 

This led us to the important problem of determining which boundary conditions (BCs) should 

be applied to the FE models so that one could effectively simulate a piece of material which is 

a part of a larger object. Appropriate BCs are determinant to obtain meaningful results; 

however, this problem has not been specifically addressed in the literature, to the best of our 

knowledge; authors doing computational and theoretical research on ablation either choose 

periodic BCs for their models, or assume an infinite or semi-infinite material [3,4]. Their 

models provided an important starting point for the elucidation of ablation mechanisms, but 

further work on the subject still needs to be done to fully understand the physics underlying 

laser ablation at mesoscopic scales. Developing easy-to-apply BCs for dynamic FE models 
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that adequately account for the finite size and constraints of the region of material being 

simulated, at the micrometer scale, is the purpose of this work. We have already done this in 

the context of our static stress FE models applied to the study of human dental enamel 

ablation [5,6]. Faced with the more complicated problem of applying BCs to a model intended 

to capture the dynamic processes taking place during ablation, we built on the general 

approach followed on the static model and developed a new set of BCs appropriate for 

dynamic models, which are presented and discussed in this paper. 

 

 

2. Model description 

 

 We are using ABAQUS 6.3 and 6.4 (commercial Finite Element software) to develop 

laser ablation models. Despite the large amount of experimental and theoretical work already 

done, the ablation of human dental enamel by pulsed CO2 lasers - a procedure of growing 

importance in dentistry - is not yet optimised (the ablation rates are lower than what is 

clinically desirable, and unwanted side effects such as cracking or over-heating of tissue may 

occur when higher fluences or repetition rates are used). This makes it an ideal system to 

address modelling questions such as BCs that should also be applied to ablation models of 

other ceramic materials by mid IR lasers. 

 The temperature field generated in enamel by absorption of radiation induces a stress 

field but, since the mechanical energy-dissipation processes in such a brittle material are 

normally not associated with plastic straining, the stress field does not generate heat. 

Therefore, the appropriate way to model the response of enamel to laser radiation of sub-

ablative intensity is to use sequential thermal stress analyses: first only the thermal problem is 

modelled (using transient heat transfer analysis) and the temperature field during and after one 

laser pulse is obtained. This temperature field then serves as input to the dynamic stress 



4 
 

analysis. Given the short duration of the laser pulse, it is reasonable to use the dynamic 

explicit algorithm for the stress analysis. 

 The laser beam was considered perpendicular to the top and bottom surfaces of the model. 

The intensity of the beam inside the tissue is given by 

 

  )/2exp().exp(),( 22
0 wrzIzrI −−= µ , (1) 

 

where z is the depth inside the tissue, I0 is the intensity of radiation at the surface of the target, 

µ is the absorption coefficient of the tissue, w is the beam radius and r is the radial distance 

from the centre of the laser spot [7]. The heat deposited per unit area and time, S(r,z), over a 

slice of material of thickness dz is given by 
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The laser parameters used in the simulation can be found in Table I; the total simulation time 

is 10 µs. 

Before enamel ablation can be modelled, we need to define two sets of BCs, one for the 

thermal simulations and one for the stress simulations. 

 

2.1 Boundary Conditions for stress analyses 

 Let us first consider the problem of determining the most appropriate BCs for the stress 

analyses. Periodic BCs are not appropriate to laser ablation modelling because in this case the 

material can only expand up. Making the nodes at the lateral and bottom surfaces of the model 

entirely fix is also not appropriate because it renders lateral expansion impossible. However, 

we expect that a modified version of this second method will lead to more appropriate BCs. 
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The modification consists of surrounding a small enamel model (named model Small) with a 

layer of another material (named Restrain-layer), which makes the transition between the 

fixed nodes and the centre of the model. The Restrain-layer must have properties that allow 

the centre of the model to expand while accounting for the constraining effect and expansion 

of the bulk. 

 In order to determine which values of the Restrain-layer properties are appropriate, it is 

necessary to compare the results obtained using model Small with a reference. Given the 

impossibility of comparing these results with experimental data (to the best of our knowledge, 

the necessary information is not available), the only possible way to assess the adequacy of 

the proposed BCs is resorting to modelling. Therefore, we decided to create a larger enamel 

model (named model Large) which would be the reference against which we would compare 

the results from model Small. Model Large (dimensions 65 * 65 * 20 µm3) represents a single 

piece of human dental enamel, in which the nodes of the lateral and bottom surfaces are fix. 

Despite the fact that dental enamel has a microstructure, we did not include it in any of the 

models considered in this paper. As a result, the elements in model Large are assigned the 

material properties of hydroxyapatite (the main component of dental enamel), with the 

exception of the absorption coefficient, which is relative to human dental enamel (see Table 

II). Model Small (dimensions 19 * 19 * 20 µm3) is more complex: it has a central region (the 

Core of the model) made of enamel, and an outer-layer made of a different material, the 

already mentioned Restrain-layer. The lateral and bottom nodes of model Small are also fix. 

Since models Large and Small have the same height, only a lateral Restrain-layer is 

considered for model Small (see Fig. 1). The Restrain-layer effectively provides the BCs for 

the Core of model Small so that, by adjusting the material properties of the Restrain-layer, the 

Core can effectively reproduce the dynamic temperature, displacement and stress fields at the 

centre of model Large. 
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 The mechanical properties of the Restrain-layer must have values such that nodes in 

surface B experience the same stress and displacement as nodes in surface A (see Fig. 1). In 

order to estimate these values, we assumed that enamel (a brittle material) obeys a linear-

elastic stress-strain relationship until it fractures. For a bar, this relationship is 

 

 �

�∆= Eσ  (3) 

 

where σ is the stress, E is the Young’s modulus of the material, ∆� is the elongation suffered 

by the bar and � is the initial length of the bar. The Restrain-layer also obeys this relationship, 

because there is no physical reason to use more complex material models for this layer. 

 By applying eq. 3 to models Large and Small (see Fig. 1), and considering that 

∆�enamel(surface A) = ∆�Restrain-layer(surface B) and σenamel(surface A) = σRestrain-layer(surface B), we obtain an 

expression to estimate ERestrain-layer: 

 

 enamel

layerstrain
enamellayerstrain EE

�

� −
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Re  (4) 

 

 The Restrain-layer must also account for the thermal expansion which the region it 

replaces undergoes and its effect on the central part of the model. The thermal expansion 

coefficient, α, of a bar is given by 
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where ∆T is the change in temperature. By applying Eq. 5 to models Large and Small, and 

considering that  ∆�enamel(surface A) = ∆�Restrain-layer(surface B) and that ∆Tenamel = ∆TRestrain-layer, we 

obtain an expression to estimate  αRestrain-Layer: 

 

  
layerstrain

enamelenamel
layerstrain

−
− =

Re
Re

.
�

�αα  (6) 

 

 Only the thermal expansion coefficients along the X and Y directions (αRestrain-layer,xx and 

αRestrain-layer,yy) are scaled according to Eq. 6 because no Restrain-layer is used at the bottom of 

model Small. 

 

2.2 Boundary conditions for thermal analyses 

 Model Large represents a piece of material which is thermally insulated from its 

surroundings by the lateral and bottom surfaces; the top surface is in contact with the 

atmosphere, but heat losses by radiation and convection during 10 µs will be small. The 

temperature gradient and, consequently, the heat transfer along XY in models Large and 

Small will be negligible. For these reasons, both models Small and Large have adiabatic BCs 

during the thermal analysis.  

 

2.2  Applying thermal and stress boundary conditions to the dental enamel model 

 Having developed a methodology for obtaining appropriate BCs for the stress and thermal 

analyses, we proceeded to apply them to an enamel model, named Dental, which represents a 

small piece of enamel part of a human tooth (dimensions 23 * 23 * 35 µm3, 187765 elements) 

under CO2 laser radiation. Our objective is to study the temporal evolution of the stress and 

displacement fields in this model.  
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 Because the region of the tooth in which we are interested is surrounded by material in 

all directions except at the top, model Dental must have a Lateral Restrain-layer, with 

thickness �Lateral Restrain-layer = 2.8 µm  and a Bottom Restrain-layer, with thickness �Bottom Restrain-

layer = 0.6 µm, corresponding to the bottom layer of elements (images are not shown) . 

To estimate ELateral Restrain-layer, we used eq. 4 and assumed that model Dental was 

laterally surrounded by 6 mm of enamel; αLateral Restrain-layer,xx and α Lateral Restrain-layer,yy were 

estimated using Eq. 6 and assuming that the radius of the area undergoing expansion around 

our model was 0.2 mm, which corresponds to the laser beam radius (see Table I).  

 The bottom part of the model does not undergo any significant temperature rise during the 

simulation time, so αBottom Restrain-layer can be set to 0. When estimating EBottom Restrain-layer, we 

assumed that beneath the simulated region were 6 mm of dentine (E = 15 GPa). 

In order to account for heat losses to the bulk of the tooth, the bottom layer of 

elements was given a large density during the thermal analysis, thus acting like a heat sink. 

All material properties are given in Table II. 

 

3. Results and discussion 

 The temperature distribution at all instants during the simulated 10 µs is similar in all 

studied models. The maximum temperature reached (at the end of the laser pulse) is 160 ºC, at 

the top surface. Temperature decreases with depth. The only noticeable temperature gradients 

occur in direction OZ (see Fig. 2). 

The equivalent Von Mises stress (VMS) fields obtained at the end of 10 µs in model 

Large and model Small are presented in Fig. 1. The VMS is a useful quantity to which resort 

when analysing results, because it combines the 9 components of the stress tensor at each 

element into a single scalar. Using the BCs described in section 2, the areas at the centre of 

models Large and Small show similar VMS. The stress and displacement magnitude as a 

function of time for two elements and two nodes at the XY centre of both models is shown on 
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Fig. 3; one of the elements/nodes is located at the irradiated surface; the other is inside the 

model (see Fig. 1, regions A1, A2, B1, B2). The dynamic evolution of the stress and 

displacement values at the centre of model Small is qualitatively identical and quantitatively 

very similar to model Large. The displacement magnitude of all the nodes that were compared 

between both models differs less than 10 %. The difference in the VMS between both models 

is, in the regions of interest, less than 20%; this difference tends to increase with depth, which 

indicates that care must be used when interpreting results from regions deep inside the model, 

particularly from a quantitative perspective. The characteristic frequency of the displacement 

magnitude in model Small is 9.3 MHz, very close to the one in model Large (10.5 MHz). 

Natural frequency extraction analyses confirmed that these are the most important natural 

frequencies of vibration of both structures.   

 The results obtained with model Small indicate that the BCs applied to this model with 

appropriate Restrain-Layer properties allow it to replicate the results obtained with model 

Large, while remaining simple in conception and easy to apply to any model of the nature of 

those presented here, with linear material behaviour (such as illustrated in Eqs. 3 and 5). 

Fig. 4 shows the VMS and the displacement magnitude as a function of time for two 

elements and two nodes at the XY centre of model Dental, one located at the free surface and 

the other located at a depth of 2.5 µm. The displacement graphs suggest that heating and 

consequent dilation of the material cause it to vibrate after the laser pulse, with a 

characteristic frequency of around 0.4 MHz, and with amplitudes comparable to the total 

average displacement that the nodes underwent. However, this does not seem to translate into 

a stress wave of equivalent frequency. Since the model does not include energy dissipation 

mechanisms, further work is necessary to ascertain the timescale in which this vibration will 

attenuate. The VMS at the element located inside the model rises steeply during the laser 

pulse, but afterwards remains approximately constant. The VMS at the surface element, on 

the other hand, reaches a maximum right after the end of the laser pulse, and afterwards 
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decreases, becoming lower than the stress at the middle element when t  > 4 µs. This 

exponential decrease is much steeper than the exponential decrease of the temperature with 

time. These non-intuitive results are consequence of the complex 3D stress-state of the 

simulated structure, and suggest that FE models with discretization above the micrometer 

scale will not be able to capture the stress and displacement states that occur at this scale. 

Further models with similar BCs and accounting for the mesostructure of the material will be 

developed to assess the implications of local stress and displacements such as those reported 

here to the ablation mechanisms. 

 

4. Conclusions 

In this work we addressed the important issue of developing and testing a new approach to 

apply BCs for micrometer-scale FE ablation models of brittle materials by mid-IR lasers. Our 

results indicate that these BCs represent an accurate and yet simple way of simulating the 

response of a small piece of material which is a part of a larger object to laser irradiation, 

without the need to simulate the response of the entire larger object, and still accurately 

capturing the dynamics of the displacement and stress fields in the material.  

Applying these BCs to a continuous model of human dental enamel under CO2 pulsed 

radiation allowed us to study the dynamic displacement and stress fields generated inside the 

material during and after one laser pulse, and to obtain simulation results which are not 

intuitively obvious. These results suggest that the highest values of stress occur at the surface, 

at the end of the laser pulse, but they decrease rapidly to significantly lower values than those 

found at the depth of just a few microns inside the material. Also, even though the laser pulse 

duration is too long to allow stress confinement effects, the laser still induces a vibration in 

the material.  

Since most ceramic materials have mesoscopic structure, it is of significant importance to 

apply the proposed BCs to dynamic models of ablation by mid-IR lasers of such brittle 
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materials which include this mesostructure, in order to assess its role during ablation. These 

currently inexistent models will help to further understand the ablation mechanisms in 

ceramic materials as well as to optimize existing experimental procedures. 
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Table I: Laser parameters. Notice that I0 is below the ablation threshold of enamel. 

 
 

Type of laser CO2 (10.6 µm) 
Pulse duration  (µs) 0.35 
Maximum absorbed 
intensity, I0  (J.m-2.s-1) 1.2 × 1010 

Number of pulses 1 
Laser beam radius (mm) 0.2 
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Table II: Material properties 
 

  Model Small Model Dental 

 Enamel Restrain-layer 
Lateral  

Restrain-layer 
Bottom 
Restrain-layer 

Absorption 
coefficient      
(cm-1) 

 825 [8] 825 825 825 

Density         
(kg.m-3) 3.1 × 103 3.1 × 103 3.1 × 103 

Therm. anal.: 
3.1 × 106 

Stress anal.:   
3.1 × 103 

Thermal 
conductivity     
(J.s-1.m-1.ºC-1) 

1.3 [9] 1.3  1.3 1.3 

Specific heat 
(J.kg-1.ºC-1) 880 [9] 880 880 880 

Young’s modulus 
(N.m-2)  1.1 × 1011  [10] 1.0 × 1010 5 × 107 1.5 × 106 

Poisson’s ratio 0.28 [11] 0.28 0.28 0.28 

Expansion 
coefficient (ºC-1) 1.6 × 10-5  [12] 

αxx = 1.8 × 10-4 

αyy = 1.8 × 10-4
 

αzz = 1.6 × 10-5 

αxx = 1 × 10-3 

αyy = 1 × 10-3 

αzz = 1.6 × 10-5 

0 
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Fig. 1 –  Von Mises stress (N/cm2) for a) model Large (204323 nodes, 192296 elements) and 

b) model Small (21141 nodes, 18928 elements), for t = 10 µs. Regions A1, A2, B1 and B2 

identify the location of the elements and nodes mentioned in Fig. 3. Only half the model is 

shown in each image. 

Fig. 2 – Temperature distribution for model Large, at the end of the laser pulse (t = 0.35 µs). 

Fig. 3 –  Von Mises stress and displacement magnitude as a function of time for elements and 

nodes (shown in Fig. 1) located at the XY centre of models Large and Small. 

Fig. 4 - Von Mises stress and displacement magnitude as a function of time for two 

elements/nodes at the XY centre of model Dental, located at the free surface and at a depth of 

2.5 µm. 
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figure 1b 
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