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Abstract In Genetic and Evolutionary Algorithms (GEAs) one is faced
with a given number of parameters, whose possible values are coded in
a binary alphabet. With Order Based Representations (OBRs) the ge-
netic information is kept by the order of the genes and not by its value.
The application of OBRs to the Traveling Salesman Problem (TSP) is a
well known technique to the GEA community. In this work one intends
to show that this coding scheme can be used as an indirect representa-
tion, where the chromosome is the input for the decoder. The behavior
of the GEA’s operators is compared under benchmarks taken from the
Combinatorial Optimization arena.
Keywords: Genetic and Evolutionary Algorithms, Order Based Repre-
sentations.

1 Introduction

For a considerable number of researchers, the term Genetic and Evolutionary
Algorithm (GEA) is strongly related with the use of binary representations;
i.e., the solution to a given problem is typically coded, from a 0/1 alphabet.
In fact, this was the representation John Holland proposed in his pioneering
work on the field[4], and its use has been supported by numerous studies. In
terms of the schema theorem, one can justify the binary alphabet by noticing
that a minimal alphabet maximizes the number of hyper-plane partitions made
available for the schema processing[12]. Furthermore, one can point that the use
of an universal representation, in conjunction with simple operators, makes a
domain independent approach, easier to implement and to address theoretically.

However, some authors have referred advantages in the use of other kinds of
representations. It has been argued that the use of alphabets that are closer to the
problem’s data structures, allows for the definition of richer genetic operators[1].
This has been the case of real-valued representations, now being considered to
be more efficient in numerical optimization[6]. When, back in the 1980’s, some
researchers aimed at tackling the Traveling Salesman Problem (TSP) by using
GEAs, it became clear that the binary representations had serious difficulties
when handling heavily constrained problems. In 1985, Goldberg and Lingle[2],
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proposed a different representation, the Order Based Representation (OBR) that
was based on the relative order of the genes in the chromosome. In this approach,
each individual has a genotype that is made of a permutation of a set of values,
given by a fixed alphabet. In the case of the TSP, the alphabet is the set of nodes
of the particular instance being solved. The results obtained were substantially
better, and they lead to numerous studies in this area. The main problem to be
solved was the need to develop a whole new set of operators. Several researchers
gave their contribution to this task, developing new operators, and evaluating
their performance, namely in the TSP[11][5]. Some of the newly defined operators
were designed to work with general purpose OBR individuals, while others were
designed with the TSP in mind.

In this work, one argues that OBR is a feasible coding scheme, not only
for the TSP, but also as an indirect representation used in solving different
combinatorial optimization problems, namely those of Scheduling, Knapsacking
and Graph Coloring. In this approach, an individual does not directly encode a
solution, but instead it defines a strategy to reach one, so it depends on the work
of a decoder, that takes the genotype and, by using a given heuristic procedure,
arrives at the solution. Typically, the heuristic is a greedy method; i.e., it takes
the genes in the given order, and at each point builds the best solution possible.
One’s purpose is to evaluate the order based GEA and to make a comparison
of several genetic operators, both in solving the TSP and the afore mentioned
problems. The aim is to uncover regularities in the results beyond the obvious
and substantial differences in the problem’s structures and data.

The paper is organized as follows: it starts with a description of the basic
concepts of GEAs and the practical work so far developed; next, the problems to
be addressed are defined as well as their software structure; finally, some results
are presented and discussed.

2 Genetic and Evolutionary Algorithms

2.1 Basic Concepts

In this work the term Genetic and Evolutionary Algorithm (GEA) is used to
name a family of computational procedures that share a set of common features:

– there are a number of potential solutions (individuals) to a problem, evolving
simultaneously (a population);

– each individual represents a solution to a problem, which is coded by a string
(chromosome) of symbols (genes), taken from a well defined alphabet;

– the individuals are evaluated; i.e., to each of them is assigned a numeric
value (fitness), that stands for their quality, in solving the problem;

– the solutions to the problem can be recombined and/or changed in some
way, by using genetic operators (eg. crossover, mutation), in order to create
new solutions (reproduction);

– the process is evolutionary; i.e., it is based on the Darwinian process of natu-
ral selection, where the fittest individuals have greater chances of surviving;

– its major structure is the one outlined in the pseudo-code of Figure 1.



BEGIN
Initialize time (t = 0).
Generate and evaluate the individuals in the initial population (P0).
WHILE NOT (termination criteria) DO

Select from Pt, a number of individuals for reproduction.
Apply to those individuals the genetic operators to breed the offspring.
Evaluate the offspring.
Select the offspring to insert into the next population (Pt+1).
Select the survivors from Pt to be reinserted into Pt+1.
Increase current time (t = t + 1).

END

Figure1. Structure of a GEA

2.2 Order Based Representations

In an individual’s Order Based Representation (OBR), the genetic information
is based on the order of the genes, that take values from a fixed set of values,
with the constraint take each one is unique and such that every value in the set
is on the chromosome; i.e., the chromosome is a permutation of the symbols in
a given alphabet. The constraint on non-duplicates justifies the development of
a whole new class of genetic operators, namely the crossover and the mutation
ones.

A crossover operator is defined to take two individuals as input (the an-
cestors) and return two different ones (the offspring). In this study a number
of different crossover operators, designed to work with OBR individuals, were
used:

– Order Preserving Crossover (OPX)
The OPX family emphasizes the relative order of the genes from both par-
ents. The algorithm works by selecting a random cutting point and then
taking all genes, from the beginning to the cutting point, from one parent.
The other parent is used to fill in the remaining genes, by preserving their
relative order. The process can be generalized to n cutting points, although
only values of one (OPX1) and two (OPX2) were considered.

– Uniform Order Preserving Crossover (UOPX)
This operator has some similarities with the previous one. It works with a
randomly generated binary mask. In all positions marked with 1, the off-
spring takes the gene from the first parent, in the same position. The second
parent is used to fill in the gaps, preserving the relative order of the nodes[1].

– Partially Matched Crossover (PMX)
Under the PMX[2] two crossing points are randomly chosen, defining a
matching section on the string, used to effect a cross between the two parents,
through position-to-position exchange operations.

– Cycle Crossover (CYCX)
Cycle crossover[9] performs recombination under the constraint that each
gene in a certain position must come from one parent or the other.



– EDGe Crossover (EDGX)
The EDGX is based on the principle of maintaining all possible pairs of
adjacent genes on the chromosome. It was specially designed for the TSP[11].
The algorithm works by collecting the neighborhood information, for each
gene, in a table of adjacencies, from both ancestors.

– Maximum Preservative Crossover (MPX)
The MPX operator was designed by Mühlenbein[7] with the purpose to tackle
the TSP by preserving, in the offspring, sub-tours contained in the two par-
ents.

– SCHleuter Crossover (SCHX)
The SCHX[10] is a variation of the MPX, with some features similar to the
OPX ones, and also contemplating the inversion of partial tours.

A mutation, typically induces a small change to the genotype of an ances-
tor, returning one offspring. A parameter is defined, called Mutation Rate (MR),
which sets the probability under which a mutation operator is applied, to a par-
ticular position of the genotype. In this work, four different mutation operators
were considered:

– ADJacent swap (ADJ) - It consists of a swap of positions among the selected
gene and the next one on the string;

– Non-ADJacent swap (NADJ) - Swaps positions between the current gene
and a different one at a random position on the string;

– K-PERMutation (KPERM) - Given a parameter k it scrambles a sub-list of
size k, starting at the current position on the string;

– INVersion (INV) - Given a parameter k it inverts a partial sub-list of size
k, starting at the current position on the string.

2.3 The Genetic and Evolutionary Programming Environment

The Genetic and Evolutionary Programming Environment (GEPE) was built
with the purpose to increment the productivity when developing applications
with GEAs[8]. It takes advantage on the features of the object-oriented paradigm,
identifying a common background in the existing approaches, allowing for mod-
ularity and incremental development.

The framework developed is made of four main blocks (Figure 2), namely
the individuals, the populations, the GEAs and the evaluation module. Each of
these modules is materialized by an hierarchy of classes, that are built in a way
that the common attributes and behaviors are defined in the root classes, and
a process of specialization is followed when one walks to the leafs, redefining or
adding new attributes and/or behaviors.

At the individual’s level, the root is an abstract class with a template field
that contains its genotype; i.e., its genetic information. In this way, one sets
the doings for any kind of representational scheme, simply by assignment of the
template with the necessary data type (Figure 3). To implement, under this
framework, the OBR individuals, one considers that any alphabet of cardinality
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n can be represented by integers from 1 to n. In this way, the template field is
instantiated with the integer type. A subclass OBRIndiv is created, where one
defines the set of crossover and mutation operators described.
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At the population and GEA levels, similar strategies are followed, allowing for
the easy definition of default behaviors, but also for the possibility of redefining
the parameters, such as the selection methods, the re-insertion parameters, or
the structure of the overall algorithm.

The last of the modules in the system is the evaluation one, where the pro-
grammer defines the decoding procedure; i.e., how to reach a solution to a given
problem, starting with the chromosome, and how to assign a fitness to the solu-
tion. This module makes the connection between the GEA and the problem to
solve.

In GEPE the concept of genetic operator was generalized, to allow for m

individuals as input, and n individuals as output. For each application, the user



supplies a table of operators to be used, among the feasible ones. To each operator
it is associated a selection’s value (probability), in order to generate offspring.

3 Problem Formulation

3.1 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is stated as a n-dimensional cost matrix
of values dij , where the purpose of the exercise is to obtain a permutation of
these values, such that the sum of the costs dij , for any i and j, being i the
precedent of j in the sequence, is minimal. More formally, one has:

Minimize :
∑n

i=1

∑n

j=1
dijxij (1)

Subject to :
∑n

j=1
xij = 1, ∀i (2)

∑n

i=1
xij = 1, ∀j (3)

xij ∈ {0, 1}, ∀i, j (4)
∑

i,j∈S xij < |S|, ∀S ⊂ V, S 6= ∅ (5)

When dij = dji, ∀i, j one is faced with a Symmetric TSP (STSP); the inverse
problem is said to be an Asymmetric TSP (ATSP).

3.2 The Knapsacking Problem

The 0/1 Knapsacking problem deals with a set of n objects, characterized by a
given weight (Wi) and profit (Pi)[6]. One aims to select a subset of those objects,
in a way to maximize the sum of its profits, but preventing the sum of its weights
to exceed a given capacity C. More formally one has:

Maximize :
∑n

i=1
xiPi

Restrictions :
∑n

i=1
xiWi ≤ C

xi ∈ {0, 1}, ∀i

3.3 The Scheduling Problem

Scheduling problems are concerned with decision-making processes that produce
plans, allotting the work to be done and the time for it. Part of the scheduling
problems can be described in terms of the Job Shop Scheduling Problem (JSSP),
where one has a set J of n tasks, a set M of m machines, and a set O of
operations. For each operation op ∈ O there is a task jop ∈ J to which a machine
mop ∈ M is conjuncted, where task jop will be processed, in a given time top ∈ <.
There is also a temporary binary ordering relation that decomposes the set O

in a group of partially ordered sets according to the tasks; i.e., if x → y then



jx → jy, and there is not a z different from x or y, such that x → z or z → y.
Electing as objective the minimization of the time elapsed with the processing of
all tasks, the problem consists on seeking an initial time sop for each operation
op, such that the function max(sop + top) and op ∈ O is minimized, taking into
attention the invariants:

(i) top ∈ O, ∀op ∈ O

(ii) sx − sy ≥ ty, if y → x, and x, y ∈ O

(iii) (si − sj ≥ tj) ∨ (sj − si ≥ ti) if mi = mj , and i, j ∈ O

3.4 The Graph Coloring Problem

Consider a graph, with a numerical weight associated with each node; given
n different colors, the Graph Coloring problem consists in achieving the highest
score by assigning to each node of the graph one color from the set. It is required
that no pair of connected nodes can have the same color. The total score of a
feasible solution is the sum of the weights for the colored nodes.

4 The Implementation

The GEAs designed to solve each of the given problems were implemented under
the GEPE framework, and used OBR. The differences in the approaches were
at the evaluation module level. In the TSP case the decoding of the solution is
quite straightforward, once the order of the genes corresponds to the order of
the nodes in the solution. The fitness is the sum of the costs, for each edge in
the solution. In the other problems, the strategy used is an indirect one. The
genotype is used as an order by which the different items are taken, and an
heuristic procedure is used to create the solution based on that information.

In the Knapsacking problem, each gene represents an object, and one builds
a solution by getting them into it, according to the order in the chromosome.
The fitness is gotten by the sum of the objects profits in the solution. The Graph
Coloring problem uses a similar strategy, once the nodes are colored according a
predefined order, assuring that no connected nodes receive the same color, and
evaluate the solution by summing the weights of the colored nodes. In terms of
the JSSP, the chromosome represents a sequence of orders. The heuristic thus
takes the orders in the sequence and schedules them in the best way possible;
i.e., allocates one order at a time without violating any of the constraints, and
minimizing the time it takes to be finished. The fitness is the total time necessary
for the completion of a given portfolio.

5 Results

For each of the problems referred to above, it was selected a representative in-
stance. In the TSP case, the STSP and ATSP variants were considered, taken



from TSPLIB[3]. The Graph Coloring instance was taken from [1]. The Knap-
sacking and Scheduling instances were generated using stochastic simulators. In
the former case, one used the concepts from [6] and created an instance with
200 objects, with an average capacity and a weakly correlation between profits
and weights. In the latter, the instance of the JSSP was a typical portfolio of 50
orders, in an environment of 5 machines.

Each run was defined to have two genetic operators: one of crossover and
one of mutation. The crossover operator was responsible for generating 75%
of the offspring, while the mutation one generated the remaining 25% (with a
mutation rate of 5% per gene). The results for each pair crossover/mutation were
obtained by averaging the best result obtained in 20 runs, with random initial
populations. In the TSP and JSSP problems one run the GEA for 1000 iterations
with populations of 200 individuals, while on the other ones the number of
generations was 500, and the population size 100.

In tables 1 to 5 one shows the results so far obtained. It is easy to reach an
immediate conclusion: the crossover operators designed with the TSP in mind
don’t behave well in the other problems. This is something one should expect
to happen. On the other hand, the UOPX, a general purpose operator, seems
to behave remarkably well in all cases, and also when combined with all the
mutation operators, which is a proof of its robustness. One of the reasons for
such success can probably be found in the way this operator deals with the
maintenance of the genetic diversity, once it is quite disruptive, and prevents
excessively homogeneous populations.

Table1. Experimental results for the STSP-Eil51’s problem

Crossover Mutation Operator
Operator ADJ NADJ K-PERM INV

OPX1 762.8 567.0 658.7 676.6

OPX2 569.1 517.8 540.2 531.2

UOPX 475.3 466.3 464.9 462.3

PMX 570.8 573.0 582.3 634.8

CYCX 864.9 604.0 725.0 806.4

EDGX 459.6 467.5 457.1 499.6

SCHX 469.4 580.0 500.5 517.2

MPX 482.8 470.0 473.5 500.6

6 Conclusions and Future Work

When one looks at the Nature, the kind of genetic representation used is highly
indirect; i.e., it relies heavily on the embryogenetic mechanisms that translate
from an abstract quaternary alphabet into the diversity of life one may observe.
In the computational counterpart, one believes that the trend is to increase on



Table2. Experimental results for the ATSP-ft53’s problem

Crossover Mutation Operator
Operator ADJ NADJ K-PERM INV

OPX1 12821.6 9974.8 12875.0 10619.2

OPX2 9600.5 8985,0 9352.6 9264.5

UOPX 8500.2 8625.1 8210.8 9412.8

PMX 9857.0 9466.1 9915.1 12757.2

CYCX 14187.1 10615.9 13653.7 11959.5

EDGX 8528.8 8586.0 8361.4 8684.3

SCHX 8756.0 10632.2 10834.2 10931.5

MPX 8445.7 8133.5 8349.0 8541.4

Table3. Experimental results for the Knapsacking problem

Crossover Mutation Operator
Operator ADJ NADJ K-PERM INV

OPX1 11585.5 12601.3 11869.8 11881.1

OPX2 12778.5 12881.3 12831.6 12840.7

UOPX 12966.2 12972.2 12964.9 12962.4

PMX 12818.2 12853.7 12622.9 12585.1

CYCX 12788.5 12816.0 12799.1 12790.1

EDGX 11582.4 11698.2 11448.3 11578.8

SCHX 12480.6 12574.0 12451.4 12439.7

MPX 11754.4 11786.2 11572.1 11581.4

the complexity of the decoders and keeping the representations simple. The com-
plexity of the systems must emerge from the combination of a simple evolutionary
process, with general purpose operators, with a set of decoding procedures, giv-
ing by straightforward heuristic methods. This work showed that, although the
structure of the problems may change, one could find a set of genetic operators
with a good level of performance.

In the future one intends to work on several other problems (eg. vehicle
routing, clustering problems) in order to further generalize these results. The
work on embryogenesis within GEAs is also a topic under study.
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