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Abstract: Immobilization of brewing yeast onto a cellulose-
based carrier obtained from spent grains, a brewing by-
product, by acid/base treatment has been studied in a
continuously operating bubble-column reactor. The aim
of this work was to study the mechanisms of brewing
yeast immobilization onto spent grain particles through
the information on physicochemical surface properties of
brewing yeast and spent grain particles. Three mecha-
nisms of brewing yeast immobilization onto spent grains
carrier were proposed: cell-carrier adhesion, cell-cell at-
tachment, and cell adsorption (accumulation) inside natu-
ral shelters (carrier’s surface roughness). The possibility
of stable cell-carrier adhesion regarding the free energy of
interaction was proved and the relative importance of long-
range forces (Derjaguin-Landau-Verwey-Overbeek theory)
and interfacial free energies was discussed. As for the
cell-cell attachment leading to a multilayer yeast immobi-
lization, a physicochemical interaction through localized
hydrophobic regions on cell surface was hypothesized.
However, neither flocculation nor chain formation mecha-
nism can be excluded so far. The adsorption of brewing
yeast inside sufficiently large crevices (pores) was docu-
mented with photomicrographs. A positive effect of higher
dilution rate and increased hydrophobicity of base-treated
spent grains on the yeast immobilization rate has also
been found. B 2004 Wiley Periodicals, Inc.
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INTRODUCTION

Immobilization of microbial cells by retention on the sur-

face of a solid porous or nonporous support material is a

traditional immobilization method. While on porous car-

riers cells accumulate mainly due to steric retention, the

prevailing interactions between cells and nonporous sup-

ports are considered to have physicochemical character

(electrostatic, hydrophobic). Generally, an organism tends

to adhere to solid surfaces to minimize the free energy of

the system (Chamberlain, 1992). It should be stressed that

in biological systems the hydrophobic attraction is not lim-

ited only to hydrophobic surfaces, but it is quite common

also between a hydrophobic entity and a hydrophilic one

immersed in water (van Oss, 1995). The advantages of cell

adhesion to nonporous carriers consist in lower mass trans-

fer limitation of substrates and products due to direct con-

tact between cells and bulk liquid and also in the simplicity

of the immobilization. The main risk of this method is the

biofilm detachment induced by changes in cell environment

(Mozes and Rouxhet, 1990).

The retention of a microorganism by a collecting sur-

face (attachment, adhesion) and cell flocculation and ag-

glomeration are terms used to describe the change from a

dispersed cell suspension to an agglomerated state. Both

the mechanism of formation of stable multicellular asso-

ciations and that of a coherent cellular deposit on a solid

surface have many features in common. In general, the

mechanism leading to microbial aggregation starts when

two cells approach each other. When long-range attrac-

tive forces (van der Waals) overcome electrostatic repul-

sive forces, a weak reversible attachment between cells is

established as a result of a favorable energetic balance.

Adhesion can be further intensified through short-distance

forces as hydrophobic interactions, polar interactions, hy-

drogen bonds, and specific molecular interaction (Shankar

and Umesh-Kumar, 1994; Stratford, 1996; Akaiyama-Jibiki

et al., 1997; Boonaert et al., 1999).

The surface properties of microbial cells are involved

in various industrially important phenomena, e.g., brewing

yeast flocculation, acetic bacteria adhesion, and activated

sludge formation. Flocculation of brewing yeast is proba-

bly the most extensively studied system concerning cell

aggregates (Jin and Speers, 1998). There have been several

models proposed to explain this phenomenon; however, the

most widespread is based on calcium-dependent lectin-

mannan interactions (Miki et al., 1982). Later, the term

‘‘zymolectin,’’ labeling any lectin-like molecules on the
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surface of Saccharomyces cerevisiae, was introduced

(Speers et al., 1998), and these protein or glucoprotein

structures with a specific carbohydrate binding domain

enhancing cell flocculation were studied and isolated

(Javadekar et al., 2000; Jin et al., 2001). Other authors,

though, emphasize the role of the physicochemical pro-

perties (composition, charge, hydrophobicity) of the cell

surface (Bowen and Cooke, 1989; Mestdagh et al., 1990;

Smit et al., 1992; Dengis et al., 1995). Cell surface hy-

drophobicity has been considered by some authors as one

of the major factors responsible for the flocculation of

brewing yeast (Straver et al., 1993; Straver and Kijne,

1996) and flocculin, a hydrophobic proteinaceous cell sur-

face factor, was identified (Smit et al., 1992). However,

other studies contradicted the importance of hydrophobic

interactions (Suzzi et al., 1994; van Hamersveld et al.,

1994). Despite the extensive research that has been under-

taken, the molecular basis and the exact mechanism of

yeast flocculation is still not completely understood.

The brewing yeast used in this work under continuous

culture conditions adhered to the surface of a carrier made

of spent grains, a brewing byproduct (Brányik et al., 2001).

This biocatalyst consisting of brewing yeast immobilized

onto a cellulose-based carrier obtained from spent grains,

containing mostly husks of the barley kernel, has been

successfully applied in primary fermentation of lager beer

(Brányik et al., 2002) and shows interesting features in

terms of carrier costs. In order to enable its application in

industrial-scale continuous beer fermentation, it is neces-

sary to understand the immobilization process increasing its

operational stability. Therefore, the goal of this study was

to characterize the yeast’s and the carrier’s physicochem-

ical surface properties and their changes in the course of the

continuous culture. The hypothesis that the physicochem-

ical interactions may lead to stable brewing yeast adhesion

to spent grain particles was examined.

MATERIALS AND METHODS

Microorganism and Medium

The brewing yeast Saccharomyces uvarum (carlsbergen-

sis), kindly supplied by a brewing company (UNICER,

Bebidas de Portugal, S. Mamede de Infesta, Portugal), was

cultivated for inoculation of the bubble-column reactor in

100 ml of synthetic medium under aerobic conditions on a

rotary shaker (120 rpm) at 30jC for 30 hr. The synthetic

medium contains (in g l�1) KH2PO4, 5.0; (NH4)2SO4, 2.0;

MgSO4.7H2O, 0.4; yeast extract, 1.0; glucose 10.0; and its

pH was adjusted to 5.0 using H2SO4.

Carrier Preparation From Spent Grains and
Continuous Culture Experiments

The acid/base-treated carrier was prepared from dry spent

grains (100 g) dispersed in 1,500 ml of 3% (v/v) HCl

solution at 60jC for 2.5 hr in order to hydrolyze the

residual starchy endosperm and embryo of the barley ker-

nel present in the spent grains. The mixture was then

cooled, washed with water, and dried. The remaining solids

(f30 g), mainly the husks of the barley grain, were par-

tially delignified by shaking (120 rpm) in 500 ml of 2%

(w/v) NaOH solution at 30jC for 24 hr. After being washed

several times with water until neutral pH and dried, the

carrier (f10 g) was ready to be used. The average surface

area of carrier particles was S = 0.59 mm2 as determined

by image analysis (Vicente et al., 1996). The base-treated

carrier was prepared from spent grains by the same pro-

cedure as described above without the acidic (HCl) hydrol-

ysis step.

All continuous experiments were carried out in a con-

tinuous bubble-column reactor (single tube) with a total

working volume of 440 ml (height-to-diameter ratio, 1.5).

The inlet and outlet were situated 1 and 11.5 cm above the

bottom of the reactor, respectively. The sedimentation bar-

rier (semicircle plan, 1.5 cm radius) reached 1 cm above

and 5 cm below the outlet. After placing the carrier (6–7 g

dry weight) in the reactor, 100 ml of precultured brewing

yeast suspension were added, after which the reactor was

filled with synthetic medium. The continuous feed was

started after 16 hr of batch growth always at a dilution rate

of 0.195 hr�1. In the first continuous experiment, the dilu-

tion rate (D1) was kept constant at 0.195 hr�1. During the

second type of continuous experiment, the dilution rate

profile (D2) started at 0.195 hr�1 and was increased after

30 hr to 0.375 hr�1, which was then maintained constant.

In the course of the third type of continuous culture, the

dilution rate profile (D3) was increased two times, first

after 30 hr from 0.195 to 0.375 hr�1 and subsequently at

55 hr from 0.375 to 0.66 hr�1, which was then kept con-

stant. The medium was supplied at the bottom of the re-

actor by means of a peristaltic pump (Watson Marlow

101 U/R, Falmouth, England). Sterile air was passed into

the bubble column at 0.9 l min�1 through a pipe with four

holes (1 mm diameter each). Under these conditions, the

carrier in the reactor was in continuous motion and did not

tend to settle.

Immobilized Biomass Determination

A sample containing approximately 0.4 g of dry biocat-

alyst (carrier + immobilized cells) was taken from the re-

actor. The bulk liquid was removed with a syringe and the

carrier was washed with 2 � 100 ml of distilled water in

order to remove the free cells captured between the carrier

particles. Then the biocatalyst was allowed to sediment

and the bulk liquid with the free cells and the loosely

bound cells liberated from the carrier were removed with

a syringe. The free biomass and the loosely bound cells

were not considered to be a part of the immobilized bio-

mass. The biocatalyst was then filtered and washed with

400 ml of distilled water on a paper filter in order to

remove the components of the medium from the sample.

BRÁNYIK ET AL.: BREWING YEAST IMMOBILIZATION ONTO SPENT GRAINS 85



Then the biocatalyst together with the biomass liberated

from the carrier during the washing was removed from

the filter, homogenized, and dried at 105jC for 12 hr.

An amount of approximately 0.2 g dry biocatalyst was

weighed into an Erlenmeyer flask with 50 ml of 3% (w/v)

NaOH solution and was shaken at 120 rpm for 24 hr.

During this time, the immobilized cells were completely

removed from the carrier, as was verified under the mi-

croscope. The cell-free carrier was filtered and after being

carefully washed on the filter with 400 ml of distilled

water was dried at 105jC for 5 hr. The amount of im-

mobilized yeast biomass was determined from the weight

difference before and after the treatment with caustic.

Corrections of the biomass weight for the losses of car-

rier itself were carried out by blank experiments with

clean carrier.

Sedimentation Test

The outflow from the bubble-column rector was collected,

centrifuged, and washed twice with 250 mM NaCl solu-

tion, the pH of which has been adjusted to 3.0 by adding

150 Al l�1 concentrated HCl. A 24 ml volume of cell sus-

pension in 250 mM NaCl solution (f0.7 g l�1 dry cell

weight) was placed into a 25 ml graduated cylinder. In

order to verify whether the cell aggregate formation was

promoted by Ca2+ ions, 1 ml of 100 mM CaCl2 was added

and the cell suspension was thoroughly mixed by inversion

of the cylinder and the cells were then allowed to settle. In

the course of the sedimentation, samples of 200 Al were

taken at the 20 ml level and their absorbance at 620 nm was

immediately measured to obtain a sedimentation profile

(Domingues et al., 1999). The sedimentation properties of

the nonimmobilized yeast were expressed as the absorb-

ance of cell suspension after 30 min of sedimentation (A30)

related to the initial absorbance (A0): settled fraction (%) =

100 � [1 � (A30/A0)].

Microbial Adhesion to Hydrocarbons (MATH Tests)

Cell surface hydrophobicity of outflow cells was deter-

mined by the ability of yeast to adhere to xylenes (Rosen-

berg and Doyle, 1990). A suspension of nonimmobilized

yeast cells collected from the outflow of the reactor (1 ml,
f1.2 g l�1 dry cell weight) in 250 mM NaCl solution was

vortexed for 60 sec with 250 Al of xylenes and mixed

(Sigma Chemical, Steinheim, Germany). The high electro-

lyte concentration and acidic pH were used to avoid charge

interference between cells and solvent droplets (Busscher

et al., 1995; Briandet et al., 1999). Then the phases were

allowed to separate for 15 min before a sample of 200 Al

was carefully taken from the aqueous phase and the ab-

sorbance at 620 nm was measured (A). Cells in control

tubes without xylenes were quantified to determine the

initial absorbance of the suspension (A0). Yeast hydropho-

bicity was calculated by using the following equation:

adhesion to xylenes (%) = 100 � [1 � (A/A0)]. Every assay

was performed in triplicate.

Contact Angle Measurement

Either nonimmobilized cells from the reactor outflow or

immobilized cells (f0.5 g biocatalyst in dry state) re-

moved from the carrier by vigorous mixing (600 rpm, 2 cm

magnetic bar, 100 ml 250 mM NaCl) were harvested daily

by centrifugation (3,000g, 10 min) during the continuous

experiment and then washed with increasing concentra-

tions of ethanol (10%, 20%, and 50%). The optical density

of the final cell suspension in 50% ethanol was adjusted to

1.2 g l�1 dry cell weight. This suspension was immersed

into a sonication bath for 2 min in order to break cell

clusters. A solution of 20 g l�1 of agar and 10% of glyc-

erol was cast onto a microscope slide (75 � 25 mm). An

aliquot of 1 ml of the yeast suspension was spread uni-

formly over the solidified agar layer and was let dry at

25jC for approximately 60 min. Subsequently, four more

layers were added, each followed by a drying period of

60 min, then the cell layers were used for contact an-

gle measurement (Henriques et al., 2002). Previous to con-

tact angle measurements, base-treated carrier particles were

fixed on a microscopic slide by an adhesive tape. Contact

angles were measured by the sessile drop technique (drop

volume of f3 Al) on the cell lawns and carrier particles

using a contact angle apparatus (Kruss, Hamburg, Ger-

many). The measurements were performed at 25jC using

three different liquids: water, formamide, and a-bromo-

naphthalene. At least 20 readings of contact angles per

sample were carried out for each liquid. The total surface

tension (gtot) and its components (gLW, g+, g�, gAB), the

values of the free energy of interaction between cells and

water (�Gcwc
tot ) and its components (�Gcwc

LW , �Gcwc
AB ) and the

free energy of interaction between cells and carrier in water

(�Gcws
tot ) and its components (�Gcws

AB , �Gcws
LW ) were

calculated according to van Oss et al. (1988).

Nile Red Fluorescence in the Presence of Spent
Grain Particles

Acid/base- and base-treated carrier (0.02 g in dry state)

was mixed with 0.3 ml of 2 mM Nile red (Fluka, Buchs,

Switzerland) solution in methanol for UV spectroscopy

(Sigma Chemical) and was let dry for 4 hr at 30jC. Two-

dimensional fluorescence spectra in the range of excitation

wavelengths of 500–620 nm and emission wavelengths of

550–650 nm were determined with a Hitachi F-4500 fluo-

rescence spectrophotometer (Hitachi, Tokyo, Japan).

Zeta Potential Measurement

The electrophoretic mobility of the yeast from the reactor

outflow was determined with a Zeta-Meter System 3.0

(Zeta-Meter). Cells were harvested by centrifugation and

then resuspended in 10 mM KNO3 to a concentration of
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0.85 g l�1 dry cell weight. The pH was adjusted with HNO3

(Dengis et al., 1995). The acid/base-treated carrier (0.5 g

in dry state) was triturated in a mortar and then suspended

in 100 ml of 10 mM KNO3. The suspension of carrier

particles was filtered through a polyester mesh (Estal mono

PE 18, Seidengazefabrik AG Thal, Switzerland) with mesh

openings of 18 � 18 Am and the pH was adjusted with

HNO3. Either the cell suspension or the carrier particles

suspension was filled into the electrophoresis cell and after

at least 40 electrophoretic mobility readings the average

zeta potential was calculated.

Holocellulose Determination

The carrier made of spent grains (f5 g) was soaked in

water (160 ml). Acetic acid (10 drops) and 1.5 g sodium

chlorite (Acros Organics, Geel, Belgium) were added and

the mixture was kept at 80–90jC for 1 hr. The addition of

acetic acid and sodium chlorite and heating was repeated

three times. The isolated white holocellulose (a combina-

tion of cellulose and hemicellulose) was filtered, washed

with water and acetone, and weighed after drying at 105jC.

Scanning Electron Microscopy

A sample of the biocatalyst (f0.2 g in dry state) was

washed with 50 ml of distilled water and then with 20 ml of

ethanol with increasing concentration (10%, 25%, 50%,

75%, 90%, and 100%). Finally, the sample was dried for

several days in an exsiccator. The carrier with immobilized

yeast was coated with a thin gold layer by vacuum evap-

oration and subsequently the observations by scanning elec-

tron microscopy (SEM) were performed.

RESULTS

Several continuous experiments in a bubble-column reactor

have been carried out at different dilution rate (D) profiles

in order to study the rate of the yeast immobilization onto

different carrier particles, the stability of the yeast biofilm,

and the changes in the yeast surface properties during the

continuous experiment.

Yeast Immobilization Onto Spent Grains

The immobilization of the brewing yeast onto carrier par-

ticles prepared from spent grains, both by acid/base and

base treatment, was characterized by an initial slow yeast

accumulation rate (lag phase) followed by an exponential

phase of biomass accumulation (Fig. 1). The time cor-

responding to the beginning of the exponential phase of

the immobilized biomass accumulation (Texp) was obtained

by plotting on a semilog scale the variation of immobilized

biomass vs. time and determining the time corresponding to

the intersection of this line with an immobilized biomass

load of Xim = 0.02 gIB gC
�1 (where IB is the dry immobilized

biomass weight and C the dry carrier weight), as it was

experimentally observed that the exponential biomass ac-

cumulation onto the support occurred only at biomass loads

higher than that value (Fig. 1).

Figure 2. The development of the immobilized biomass, Xim (gIB gC
�1)

on the surface of two carriers prepared by acid/base and base treatment of

the spent grains at dilution rate D1 = 0.195 hr�1.

Figure 1. A: The development of the immobilized biomass, Xim (gIB

gC
�1), on the surface of the acid/base-treated carrier during continuous

experiments at different dilution rate profiles: Xim
1 (closed triangle) at D1,

constant dilution rate (0.195 hr�1); Xim
2 (open circle) at D2, one-step

increase (at 30 hr the D increased from 0.195 to 0.375 hr�1); Xim
3 (closed

circle) at D3, two-step increase (at 30 hr the D increased from 0.195 to

0.375 hr�1 and at 55 hr from 0.375 to 0.66 hr�1). B: Logarithmically

plotted Xim
1,2,3 at D1,2,3. Texp;1,2,3, start of the exponential yeast accumula-

tion phase.
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The exponential phase of the yeast biomass accumu-

lation can be described by

dXim

dt
¼ mXim ð1Þ

where m is overall yeast accumulation rate coefficient

(hr�1). Continuous experiments with acid/base-treated spent

grains at three different dilution rate profiles (D1, D2, D3)

were carried out (Fig. 1). The dilution rate profile D2 speeded

up the onset of the exponential biomass accumulation rate

compared to D1 profile, as can be seen from the smaller

value of Texp;2. An increase in the rate of yeast accumula-

tion from m1 = 0.029 F 0.005 to m2 = 0.039 F 0.007 hr�1

was also observed. The dilution rate profile D3 did not re-

sult in increased Texp;3 and m3 in comparison with D2.

Figure 5. Adhesion of yeast from reactor outflow to hydrophobic xy-

lenes (MATH test) before and after the beginning of the exponential

accumulation phase of the immobilized biomass (Texp) at different max-

imum dilution rate profiles (D1, D2, D3).

Figure 4. Settled fraction of the yeast at different time after the start of

the continuous reactor operation. Cells obtained from reactor outflow at

different dilution rate profiles (D1, D2, D3).

Figure 3. Photomicrographs (SEM) of carrier particles with yeast cells. A: White bar, 100 Am (Xim = 0.06 gIBgC
�1). B: White bar, 50 Am (Xim =

0.42 gIBgC
�1). C: White bar, 100 Am (Xim = 0.42 gIBgC

�1). D: White bar, 10 Am (Xim = 0.06 gIBgC
�1).
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The yeast biomass accumulation on the surface of carrier

particles prepared by acid/base and base-only treatment of

the spent grains was compared at the dilution rate D1 =

0.195 hr�1. In the case of the less wettable base-treated

carrier, the onset of the exponential yeast accumulation

phase (Texp) and the overall yeast accumulation coefficient

(m1;base = 0.035 F 0.005 hr�1) was approximately 4 hr

shorter and f17% higher, respectively (Fig. 2).

Microscopic observations (SEM) of the biocatalyst at

different stages of the colonization revealed a gradual yeast

biofilm formation. Initially, local biomass accumulations

were observed on the surface of the carrier while other

large zones were not colonized by yeast cells (Fig. 3A).

Further accumulation of the immobilized biomass led to

formation of a yeast biofilm of different thickness (Fig. 3B

and C). A detailed observation of the brewing yeast on the

surface of the carrier show cells of different age, ranging

from budding cells to mother cells with several scars

(Fig. 3D).

Surface Characteristics of Brewing Yeast Cells

Microscopic observations of the reactor outflow showed an

increasing number of cell clusters appearing after the onset

of the exponential cell immobilization phase (Texp) while

sedimentation tests revealed an increase in the sedimenta-

tion of the nonimmobilized yeast at the same time (Fig. 4).

For example, in the experiments at the dilution rate profile

D2 and D3, there was a sudden increase of the sedimenta-

tion of nonimmobilized yeast between 75 and 100 hr of

reactor operation (Fig. 4). Approximately at the same time

(Texp), biomass immobilization entered into the exponential

phase. In the case of D1, the increase in sedimentation as

well as Texp was slightly postponed (Figs. 1 and 4). The

addition of CaCl2 had no effect on the sedimentation rate of

the cell suspensions.

MATH tests based on partitioning of cells between water

and xylene phase have been carried out in order to evaluate

the changes of the relative surface hydrophobicity of the

nonimmobilized cells during the continuous experiments.

The average values of at least 5 MATH tests carried out

before and after Texp at different dilution rates showed

an almost uniform 30% increase of nonimmobilized cell’s

surface hydrophobicity (Fig. 5). Observations under the

optical microscope (�150 magnification) revealed an ac-

cumulation of the yeast cells on the surface of the xy-

lene droplets.

The contact angles of water and a-bromonaphthalene

were very similar to those obtained for wine yeast (Vernhet

and Bellon-Fontaine, 1995) and rank the brewing yeast

strain among strongly hydrophilic. The contact angles of

a-bromonaphthalene decreased in the order nonimmobi-

lized cells before Texp > nonimmobilized cells after Texp >

immobilized cells (Table I).

The total surface tension (gtot) of the brewing yeast sur-

face and its components calculated from contact angles

clearly place the brewing yeast among cells with hydro-

philic surfaces. These are characterized with gLW g 40 mJ

m�2, g+ g 0 mJ m�2, and g� > 28 mJ m�2 (van Oss, 1995),

which is in accordance with surface tension components of

the brewing yeast under the conditions of continuous cul-

ture (Table II). Among surface tension components, gLW

(Lifshitz-van der Waals interaction) and g� (the electron-

donor parameter of the surface tension component) are the

most important for cell surface interactions.

The higher value obtained for g� as compared to g+ is

not surprising since the zeta potential measurements also

showed a negative surface charge of the yeast cells (Fig. 6).

At pH values from 3.0 to 5.0 and ionic strength of 10 mM,

the zeta potential covers a range of �11 to �15 mV. This

Table II. Surface tension and free energy of interaction between brewing yeast (immobilized or nonimmobilized) immersed in water (cwc), between

base-treated carrier particles in water (sws), and between cell and base-treated carrier in water (cws).*

Surface tensiona and free energy of interactionb (mJ m�2)

Yeast/carrier (interacting system) gLW gAB gtot �GLW �GAB �Gtot

NIC before Texp (cwc) 37.7 19.0 56.7 �4.4 35.5 31.1

NIC after Texp (cwc) 40.3 15.9 56.1 �5.7 37.1 31.4

IC (cwc) 40.9 15.0 55.9 �6.0 37.5 31.5

BTC (sws) 40.9 0.6 41.5 �6.0 �51.6 �57.6

IC and BTC in water (cws) �6.0 1.8 �4.2

*NIC, nonimmobilized cells; Texp, start of the exponential biomass accumulation phase; IC, immobilized cells; BTC, base-treated carrier.
aApolar (gLW) and polar (gAB) components of the total surface tension (gtot).
bApolar (�GLW) and polar (�GAB) component of the total free energy of interaction (�Gtot ).

Table I. Average contact angles and respective standard deviations ob-

tained with three test liquids over a lawn of brewing yeast (nonimmobi-

lized or immobilized) and on the surface of base-treated carrier particles.*

Contact angle(j)

Yeast/carrier Water Formamide a-bromonaphthalene

NIC before Texp 7.2 F 1.6 8.8 F 1.5 32.4 F 2.4

NIC after Texp 9.5 F 1.5 9.5 F 1.4 24.7 F 2.3

Immobilized cells 10.4 F 1.6 10.5 F 0.8 23.2 F 1.0

Base-treated carrier 80 F 10 58 F 4 23 F 3

*NIC, nonimmobilized cells; Texp, start of the exponential biomass

accumulation phase.
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electron-donor nature of the yeast cell surface may arise

from the negatively charged phosphate and carboxyl groups

(Rose, 1984).

Surface Characteristics of Spent Grain Particles

The contact angle measurements on the surface of solid

particles required a sufficiently large and flat area that

would not absorb the drop of the test liquid. While the

measurements on acid/base-treated carrier failed due to

the highly wettable character of the carrier, in the case of

the base-treated spent grains, there was a portion of suf-

ficiently large and hydrophobic carrier particles allowing

the placing of the test drop. The average contact angles and

the calculated surface tensions and Gibbs free energies of

interaction of the base-treated spent grain particles are

presented in Tables I and II.

The zeta potential of the acid/base-treated spent grain

particles was measured after filtering the triturated carrier

powder, suspended in 10 mM KNO3, through a polyester

mesh with mesh size of 18 � 18 Am. The carrier particles,

smaller than 30 Am in diameter, had a negative zeta potential

in the studied pH range (3.0–5.0). The zeta potential of the

acid/base-treated carrier particles was lower than that of the

brewing yeast under the same conditions (Fig. 6).

Nile red is a hydrophobic dye, the fluorescent properties

of which highly depend on the polarity of the probe en-

vironment (Krishna, 1999). It acts as a hydrophobic probe

in which the fluorescence maxima exhibit a spectral blue

shift to shorter wavelengths, proportional to the hydro-

phobicity of the environment (Greenspan and Fowler,

1985). The spectral shift of excitation/emission maximum

(EX/EM) of Nile red in contact with acid/base- and base-

treated spent grains was 603/645 and 591/640 nm, re-

spectively, indicating the more hydrophobic (less wettable)

character of the base-treated spent grains carrier. The max-

imum excitation and emission band width of the two-

dimensional fluorescence peak of Nile red deposited on

the surface of carrier particles was approximately 80 and

60 nm, respectively.

DISCUSSION

Although some of the experiments (MATH and sedimenta-

tion tests) were performed only with nonimmobilized cells,

it can be assumed that the changes in surface properties

and morphology of the nonimmobilized yeast during the

continuous culture experiments reflect, to a certain extent,

the properties of the whole microbial population in the sys-

tem (both immobilized and nonimmobilized cells). In fact,

the knowledge of the difference between the surface pro-

perties of the nonimmobilized cells at the beginning of the

continuous culture (characterized by a low immobilized

biomass load, Xim) and at a later stage (displaying higher

values of Xim) can help explain the mechanism of both cell-

cell attachment and cell-carrier adhesion. This hypothesis is

based on the dynamic character of the continuous culture

with the immobilized cell system under study, where oppo-

site processes such as cell adhesion/release, adsorption/

desorption, and attachment/detachment take place (Peyton

and Characklis, 1995).

The surface properties and morphology of the brewing

yeast population in continuous culture cannot be considered

constant in time. The increasing number of cell aggregates

throughout the continuous culture, as observed by sedimen-

tation tests (Fig. 4), can be explained both by the selective

pressure in the continuous reactor and by the occasional

detachment of the yeast biofilm from the carrier particles.

The selective pressure was created by the sedimentation

barrier of the reactor’s outflow, retaining rather the large

cell clusters than the single cells, and by the cell-carrier

interaction favoring the retention of the cells with surface

properties advantageous for immobilization.

Cell-Carrier Adhesion

Immobilized brewing yeast were found on flat and open

zones of carrier particles (Fig. 3C) where they could not

receive protection against fluid flow as in the shelters

(Fig. 3A and B). This implies the existence of the adhesion

of free cells to carrier particles driven by interfacial inter-

actions. Generally, the phenomenon of microbial adhesion

to solid surfaces results from an interplay between electro-

static and nonelectrostatic interactions (Mozes et al., 1987).

The Derjaguin-Landau-Verwey-Overbeek (DLVO)

theory allows the computation of the interaction potential

energy between a spherical particle (cell) and a flat plate

(spent grains) approaching each other by taking into con-

sideration the dispersion and the electrostatic interactions

(van Loosdrecht et al., 1989; Bhattacharjee and Elimelech,

1997). This approach was applied here, using a cell radius

of 3 Am, dielectric constant of 78.5 (pure water), an esti-

mated Hamaker constant of 0.8 kT for biological particles

in water (Nir, 1977; van Hamersveld et al., 1994), ionic

strength of 10 mM, and zeta potentials of cells (�12 mV)

and spent grain particles (�5 mV) at the pH of the con-

tinuous fermentation (f3.4). The small potential energy

barrier between a brewing yeast cell and a spent grain

Figure 6. Values of zeta potential as a function of pH for brewing

yeast (open circle) and acid/base-treated carrier particles (closed circle) in

10 mM KNO3.
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particle (9 kT) at 3 nm indicates the possibility of the cap-

ture of the cell in close contact with the carrier (Fig. 7). At

ionic strengths higher than 10 mM, e.g., real microbial cul-

ture media (Boonaert et al., 1999), there would be no po-

tential energy barrier between cells and carrier at all (data

not shown).

However, the DLVO theory counts only with long-range

forces and does not allow predictions of interaction energy

to be made at short distances. Therefore, an approach based

on a balance of cell-liquid, carrier-liquid, and cell-carrier

interfacial free energies was used to estimate whether the

physicochemical surface properties of cells and carrier

would lead to adhesion. It was found that the carrier con-

tains hydrophobic particles, namely, among the base-

treated carrier, showing very negative values of the free

energy of interaction between two carrier surfaces (s) in

water (w): �Gsws
tot = �57.6 mJ m�2 (Table II). It can be

assumed that the outmost waxy layer of the barley husks

and/or lignin, a common part of natural cellulosic mate-

rials, might serve as a hydrophobic interaction site for yeast

adhesion. In consequence of this, the total free energy of

interaction (�Gcws
tot ) between the brewing yeast (c) and the

base-treated carrier particles (s) in the presence of water

(w) is negative (�Gcws
tot = �4.2 mJ m�2), and thus the ad-

hesion is likely to occur. Since the overall free energy of

the polar acid-base interactions in the cell-water-carrier

(cws) system is close to zero (�Gcws
AB = 1.8 mJ m�2), the

apolar van der Waals interactions (�Gcws
LW = �6.0 mJ m�2)

will strengthen the cell-carrier adhesion (Table II). These

results are in accordance with the adhesion of wine yeast to

apolar surfaces (polycarbonate, polystyrene) with surface

tensions very similar to those of the hydrophobic zones on

spent grain particles (Vernhet and Bellon-Fontaine, 1995).

Bakers’ yeast attachment to plastics and mat formation,

requiring a fungal cell surface glycoprotein encoded by

FLO11 gene, is also indicating the role of hydrophobic

interactions. The Saccharomyces cerevisiae FLO11 bakers’

yeast strain was found more hydrophobic than the strain

poorly adhering to polystyrene and lacking the FLO11 gene

(Reynolds and Fink, 2001).

Considering the prevailing apolar character of the cell-

carrier interaction, the yeast adhesion rate to the more

hydrophobic base-treated carrier should be higher than to

the acid/base-treated carrier. Indeed, the adhesion rate of

yeast to the less wettable base-treated carrier was higher

(Fig. 2), but on the other hand, the hydrophobic character

of the base-treated carrier resulted in its floating and sub-

sequent partial washout from the reactor. Therefore, the

surface properties of the carrier made of spent grains have

to be optimized in terms of biomass load and solid-phase

dispersion in water phase. In other words, the equilibrium

between the carrier’s hydrophobic (cell adhesion sites) and

hydrophilic (wettable) properties should be maintained by

shortening the acidic hydrolysis of the spent grains. The

resulting simplified preparation procedure, consisting only

of the base treatment, will have also an attractive eco-

nomic feature.

Although the surface tension values of the base-treated

carrier (Table II) cannot be regarded as an average value

for the overall carrier surface, they proved the presence of

very hydrophobic areas and moieties on the surface of the

spent grains. In view of the natural character of the carrier,

having nonhomogeneous surface properties and chemical

composition (containing 90% w/w of holocellulose), a sim-

ilarly nonhomogeneous immobilized biomass distribution

can be expected, especially at the beginning of the expo-

nential biomass accumulation phase (Texp).

Cell-Carrier Adsorption

Apart from the physicochemical interactions between yeast

cell and carrier particle surfaces, the spatial retention of

yeasts in various shelters (crevices, pores, tangled threads)

on the carrier surface can result in local biomass accu-

mulations (Fig. 3A and B). The roughness elements of the

carrier provide shelter for cells from the shear forces ex-

erted by fluid flow and also increase the total surface area

available for colonization. A necessary condition for such

immobilization is a sufficient pore size (diameter) allowing

the intrusion of the microbe (Messing and Oppermann,

1979). As it can be seen from the size of the crevices and

from the degree of colonization, the brewing yeast could

easily reach the inside of a sufficiently large crevice where

they multiplied and filled the sheltered zone (Fig. 3A). The

forced contact of growing cells inside the pores could also

lead to cell aggregation. However, to what extent does this

mechanism contribute to the total biomass immobilization

remains to be determined.

Cell-Cell Attachment

Besides the cell accumulations in carrier roughnesses, mul-

tilayers of cells were found also on flat particles and carrier

Figure 7. Variation of the interaction free energy (GDLVO) as a function

of the separation distance between two cells (cell/cell) and between a cell

and a flat surface of the spent grains (cell/carrier), calculated according to

DLVO theory: cell radius 3 Am; Hamaker constant 0.8 kT. A, cell zeta

potential �12 mV/ionic strength 10 mM; B, �15 mV/10 mM; C, �12 mV/

100 mM; D, cell, carrier zeta potential �12, �5 mV/10 mM.
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threads (Fig. 3C). Therefore, the existence of collisions

between free cells and cells already immobilized on car-

rier particles leading to stable cell-cell attachment can

be assumed. The DLVO theory was used to calculate the

changes of the interaction energy (GDLVO) on the separa-

tion distance between the cell surfaces (Boonaert et al.,

1999). The probability of an attachment after a collision

of two cells is characterized by the height of the potential

barrier. The results show that the cells may be retained in

a secondary potential minimum at the distance of 11 nm

from the carrier surface (Fig. 7). However, such retention

may be reversible due to the small depth of the mini-

mum (van Loosdrecht et al., 1989). The probability of cell-

cell attachment in the primary minimum is enhanced by

changes in the reaction environment (ethanol formation,

decrease of pH, high ionic strength) occurring during the

continuous fermentation and leading to suppression of

the electrostatic repulsion between cells (Stratford, 1992;

Dengis et al., 1995). The decrease of the cells’ zeta po-

tential, from �15 mV at pH 5.0 to �12 mV at pH 3.4

(Fig. 6), diminished the potential barrier separating the

cells (Fig. 7). Using an ionic strength (100 mM) common

for microbial culture media (Boonaert et al., 1999) in the

calculations, there was no more potential barrier to be

overcome (Fig. 7).

However, the free energy of interaction between two

hydrophilic brewing yeast cells (c) in water (w), calculated

from the contact angle of various liquids, does not imply

a stable cell-cell attachment (�Gcws
tot = f31 mJ m�2),

which is in an apparent contradiction with the microscopic

observations. Therefore, as an explanation of cell-cell

attachment, three mechanisms can be hypothesized, i.e.,

hydrophobic interactions through spatially limited hydro-

phobic areas on the cell surface (Gallardo-Moreno et al.,

2002), flocculation, and chain formation.

The involvement of the spatially localized hydrophobic

interactions in cell attachment is supported by the fact that

the relative hydrophobicity of the yeast increased with time

(MATH test) and that the �Gcws
LW value for yeast cells in this

study, from �4.4 to �6.0 mJ m�2 (Table II), was more

negative than for brewing yeast in batch culture f�0.5 mJ

m�2 (Azeredo et al., 1997). However, the presence of such

regions have not yet been confirmed.

The multilayer cell immobilization on the spent grain

particles can also be regarded as a flocculation. The fol-

lowing mechanism can then be considered. Since the elec-

trostatic repulsion will not hinder the cell approach, at least

to the secondary minimum at 11 nm, lectins, macromo-

lecular chains, or other cell surface appendages carrying a

receptor can bind with each other, thus provoking floc-

culation. However, flocculation is a phenomenon that

has been mostly studied in batch system while the mul-

tilayer cell immobilization onto spent grains occurs in a

continuous culture. The cell physiology in these two sys-

tems is rather different, e.g., no distinct stationary phase

during continuous growth, so the term ‘‘flocculation’’

cannot be automatically applied for the immobilization of

brewing yeast onto spent grains. Assays for zymolectin

would provide further information on whether the mecha-

nism of the multilayer brewing yeast immobilization onto

spent grains carrier is based only on physicochemical

forces or specific (biochemical) interactions also contribute

to immobilization.

CONCLUSIONS

Three mechanisms of brewing yeast immobilization onto

spent grains carrier can be concluded from the presented

results: cell-carrier adhesion, cell-cell attachment, and cell

adsorption (accumulation) inside natural shelters on the

carrier’s surface.

The physicochemical aspects of brewing yeast adhesion

to carrier particles obtained from spent grains were eval-

uated by two approaches. The calculations based on the

DLVO theory showed no significant potential energy bar-

rier that would prevent the cell deposition on the surface

of the carrier. The energy balance of interfacial interactions

also predicted the possibility of a spontaneous cell-carrier

adhesion strengthened by hydrophobic (apolar) interactions.

However, both of the approaches require simplifying as-

sumptions and estimations. Therefore, it is imperative to

avoid quantitative conclusions and to consider only trends

obtained in the data.

As for the cell-cell attachment, the interpretation of the

physicochemical interactions is more ambiguous. Although

the DLVO theory allows close contact between cells, the

interfacial interaction energy does not predict stable cel-

lular adhesion. Therefore, other mechanisms such as floc-

culation, adhesion through spatially limited hydrophobic

areas on the cell surface, and forced contact in shelters can

also be hypothesized.

The carriers’ surface roughness also contributes to the to-

tal biomass immobilization. The brewing yeasts are mech-

anically retained inside the shelter zones (crevices, pores,

tangled threads) on the surface of spent grain particles

where they can further multiply.
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