
A note on Hölder regularity of invariant
distributions for horocycle flows
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Abstract

We show that the invariant distributions for the horocycle flow on compact
hyperbolic surfaces described by Flaminio and Forni [FF03] can be represented as
distributions on the ideal circle tensorized with absolutely continuous measures, and
use this information to derive their Hölder regularity.
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1 Introduction

Let Σ = Γ\H be a compact hyperbolic surface, where Γ is a discrete torsionless cocompact
subgroup of G = PSL(2,R), the orientation preserving isometry group of the hyperbolic
plane H. After having chosen a reference unit vector, the unit tangent bundle SΣ is
isomorphic to the homogeneous space Γ\G. Consider the one-parameters subgroups

A =

{
a (t) =

(
et/2 0
0 e−t/2

)
, t ∈ R

}
N =

{
n (h) =

(
1 h
0 1

)
, h ∈ R

}
of G. The geodesic and the (stable) horocycle flows on Γ\G are the right-actions Ra(t) :
Γg 7→ Γga (t) and Rn(h) : Γg 7→ Γgn (h), respectively.

Horocycle invariant distributions according to Flaminio and Forni. The
horocycle flow on the unit tangent bundle of a compact hyperbolic surface is a very
classical subject of study. Despite the fact that it is minimal and uniquely ergodic,
it happens to admits many invariant distributions [KR01]. Recently, L. Flaminio and
G. Forni [FF03] used representation theory to describe the space of horocycle invariant
distributions, characterizing their Sobolev regularity. Invariant distributions are a natural
tool in the the study of the cohomological equation for the flow, and their regularity plays
a role in the asymptotic of ergodic averages of smooth functions.

The first result obtained in their work is as follows. Let ∆Σ be the Laplace-Beltrami op-
erator on the compact Riemann surface Σ and spec(∆Σ) its spectrum, which is pure point
discrete with finite multiplicity. The standard unitary representation of G on L2(SΣ)
splits as a direct integral of irreducible representations: the principal and the comple-
mentary series, indexed by σ, where λσ = σ(1 − σ) ∈ spec(∆Σ), and the discrete series,
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indexed by n ∈ N. Let Hs(SΣ) be the Sobolev space of square integrable functions f
on SΣ with ∆s/2f ∈ L2(SΣ), where ∆ is a Laplacian, and let D′(SΣ) be the dual space
of D (SΣ), the space of C∞ functions with compact support on SΣ equipped with the
Schwartz topology. The Sobolev order of a distribution Φ ∈ D′(SΣ) is defined as the
infimum of those values of s such that Φ ∈ W−s(SΣ). A distribution Φ ∈ D′(SΣ) is
invariant under the horocycle flow if RnΦ = Φ for any n ∈ N .

Theorem 1.1 (Flaminio-Forni). The space I(SΣ) of horocycle invariant distribu-
tions decomposes as a direct sum

I(SΣ) =
(
⊕λ∈spec(∆Σ)Iλ

)
⊕ (⊕n∈NIn) ,

where:
• for λ = 0, the space I0 is spanned by the invariant volume
• for 0 < λ < 1/4 (complementary series), Iλ = Jσ+ ⊕ Jσ− where σ± are the

solutions of λ = σ(1 − σ); each subspace has dimension equal to the multiplicity of λ,
and its elements have Sobolev order 1−<(σ±).
• for λ ≥ 1/4 (principal series), Iλ = Jσ+ ⊕ Jσ− where σ± are the solutions of

λ = σ(1−σ); each subspace has dimension equal to the multiplicity of λ, and its elements
have Sobolev order 1/2.
• for n ∈ N (discrete series) the space In has dimension equal to twice the dimension

of the space of holomorphic sections of the n-th power κ(n) of the canonical line bun-
dle κ over Σ (which, according to the Riemann-Roch theorem, is dimO(Σ, κ) = g and
dimO(Σ, κ(n)) = (2n− 1)(g − 1) if n > 1, where g is the genus of Σ), and its elements
have Sobolev order n.

Their proof is a direct computation in the context of harmonic analysis on Lie groups:
the cohomological equation traduces into a finite difference equation for the Fourier coef-
ficients of a distribution in each irreducible representation space. Moreover, they showed
the following “remarkable fact”: distributions in Jσ± or In, with the only exception of
those in I1/4 if 1/4 belongs to the spectum of the Laplacian, are also eigendistributions of
the geodesic flow, with Lyapunov coefficient equal to σ± − 1 and −n, respectively. This
amounts to saying that, in the absence of the eigenvalue 1/4, invariant distributions for
the horocycle flow coincide with what S. Helgason called “conical distributions” [He70].
The above theorem is then used to solve the cohomological equation, and the main results
obtained by Flaminio and Forni are: precise polynomial decay rate for ergodic averages,
with exponents controlled by the Sobolev orders of the invariant distributions, and failure
of the central limit theorem for the horocycle flow.

Statement of the results. The first purpose of this note is to read the horocycle
invariant distributions on the ideal boundary of the Poincaré disk, a standard program in
the theory of Fuchsian groups, first introduced by S.J. Patterson and heavily used by D.
Sullivan in the eighties. Namely, we will show how the invariant distributions described by
Flaminio and Forni can be represented as certain distributions on the ideal circle ∂H ' S1

tensorized with absolutely continuous measures.
Fix the Iwasawa decomposition KAN of PSL(2,R), where

K =

{
k(θ) =

(
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
, θ ∈ R/2πZ

}
is identified with the ideal circle ∂H by means of the visual map G ' SH → ∂H.
Consider the standard Lebesgue measure ` on the circle ∂H. Since G acts conformally on
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the circle, we can consider the Radon-Nikodym multiplicative cocycle ρg = dg−1`/d` for
g ∈ G. Given a complex number σ and the Fuchsian group Γ, we denote by ΓD′σ(S1) the
space of Γ-invariant conformal distributions with exponent σ, those distributions on the
circle such that

gφ = ρ−σg · φ
for any g ∈ Γ.

Below, we identify distributions on SΣ with Γ-invariant distributions on G = KAN ,
as explained in section 2, and the tensor products that follow are relative to the fixed
Iwasava decomposition of G.

Proposition 1.2 For σ± (1− σ±) ∈ spec(∆Σ)\ {1/4} , the map φ 7→ φ⊗eσ±tdt⊗dh
is a linear isomorphism of ΓD′σ±(S1) onto Jσ± .

For n ∈ N , the map φ 7→ φ⊗ e(1−n)tdt⊗ dh is a linear isomorphism of{
φ ∈Γ D′1−n(S1) with φ

(
eikθ
)

= 0 for |k| ≤ n− 1
}

onto In .

Those distributions in I1/4 can also be written as sums of distributions on the circle
tensorized with absolutely continuous measures. Let B1/2 denote the boundary map, the
inverse of the Poisson-Helgason transformation sending distributions on the circle into
eigenfunctions of the Laplacian on the unit disk with eigenvalue 1/4. Let P (z, θ) denotes
the Poisson kernel, where z ∈ H and θ ∈ ∂H.

Proposition 1.3 If 1/4 ∈ spec(∆Σ), the space I1/4 is spanned by

φ⊗ et/2dt⊗ dh and φ′ ⊗ et/2dt⊗ dh+ φ⊗ tet/2dt⊗ dh,

where φ ∈ ΓD′1/2(S1) and φ′ = −B1/2
(
φ
(
P (z, ·)1/2 logP (z, ·)

))
.

Conformal distributions are obtained via the Poisson-Helgason transformation applied
to eigenfunctions of the Laplacian and to holomorphic or antiholomorphic forms on the
surface. Since we assume that the surface is compact, Hölder regularity is then derived
using some classical harmonic analysis and recent results by J.-P. Otal generalizing the
Fatou lemma. This gives an Hölder regularity result for the invariant distributions of
Flaminio and Forni, which by the way corresponds to their Sobolev regularity.

For α ∈ [0, 1[ and n ∈ N, let Cα−n (S1) be the space of those distributions on the circle
which can be locally written as n-th distributional derivatives of α-Hölder functions. Let
C<α−n (S1) = ∩β<αCβ−n (S1). For n ∈ N, let CZyg−n be the space of those distributions
on the circle which can be locally written as n-th distributional derivatives of Zygmund
functions. Recall that the Zygmund condition is

sup
x, ε>0

|f (x+ ε) + f (x− ε)− 2f (x)|
ε

<∞.

It is folklore that Zygmund functions appear whenever something is ”morally” a limit for
α↗ 1 of objects that live in Cα (S1). We find no exception here.

Corollary 1.4 The Hölder regularity of horocycle invariant distributions is as follows.
• If σ± (1− σ±) ∈ spec(∆Σ)\ {1/4}, the lifts to G ' KAN of distributions in Jσ±

are spanned by
φ⊗ eσ±tdt⊗ dh,

where φ ∈ ΓD′σ±(S1) ∩C<(σ±)−1 (S1).
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• The lifts to G ' KAN of distributions in I1/4 are spanned by

φ⊗ et/2dt⊗ dh and φ′ ⊗ et/2dt⊗ dh+ φ⊗ tet/2dt⊗ dh,

where φ ∈ ΓD′1/2(S1) ∩C1/2−1 (S1) and φ′ = −B1/2
(
φ
(
P (z, ·)1/2 logP (z, ·)

))
∈ C<1/2−1 (S1)

• The lifts to G ' KAN of distributions in In are spanned by

φ⊗ e(1−n)tdt⊗ dh,

where φ ∈ ΓD′1−n(S1) ∩ CZyg−(n+1) (S1).

The note is organized as follows. In section 2 we review basic hyperbolic geometry
to fix our notation and discuss the relation between conformal distributions and horocy-
cle invariant distributions. In section 3 we discuss our main tool, the Poisson-Helgason
transformation, and derive the Hölder regularity of conformal distributions for cocom-
pact Fuchsian groups. In section 4 we finish the proof of the above propositions and their
corollary.

Observations. The Hölder regularity of boundary values of classical modular forms
and of Maass forms has been investigated by W. Schmid [Sc00], for cocompact Fuchsian
groups and for arithmetically defined discrete subgroups of PSL(2,R), with different
methods. Our result slightly improves Schmid’s estimate for those distributions associated
to the discrete series, giving the answer CZyg−(n+1) (S1) instead of C<1−(n+1) (S1).

The Sobolev regularity of what we called conformal distributions has been investigated
by J.N. Bernstein and A. Reznikov [BR98], and by U. Bunke and M. Olbrich [BO00] in
the more general context of Kleinian groups in arbitrary dimensions.

2 Conformal distributions and horocycle flow

Here we provide a dictionary showing that two objects, invariant distributions for the
horocycle flow on SΣ and Γ-invariant distributional sections of certain line bundles on
the circle, are essentially the same thing. We start recalling some definitions and facts
about hyperbolic geometry.

Hyperbolic geometry and horocycle flow. Let H be the hyperbolic plane,
with constant sectional curvature −1, and let G = Isom+(H) be the group of its ori-
entation preserving isometries. One model of the hyperbolic plane is the unit disk
D = {z ∈ C s.t. |z| < 1} equipped with the Poincaré metric 2 |dz| /(1 − |z|2). In this
model isometries take the form

G ' PSU(1, 1) =

{
z 7→ eiθ

z − a
1− az

with θ ∈ R/2πZ, a ∈ D
}

The conformal map z 7→ (z−i)/(z+i) sends the upper half-planeH = {z ∈ C s.t. =(z) = y > 0}
conformally onto D. The Poincaré metric in H reads |dz| /y, and isometries read

G ' PSL(2,R) =

{
z 7→ az + b

cz + d
with a, b, c, d ∈ R, ad− bc = 1

}
The group G acts transitively on H and simply transitively on the unit tangent bundle
SH. An hyperbolic surface is a quotient Σ = Γ\H where Γ ' π1(Σ) is a discrete subgroup
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of G without torsion. The unit tangent bundle SΣ of Σ is naturally diffeomorphic to the
homogeneous space Γ \G.

In the unit ball model D for the hyperbolic space, geodesics are arcs of circles orthog-
onal to the boundary sphere S1. Given a point b ∈ S1, the horocycle centered at b and
passing through x ∈ H is the Euclidean circle Hb(x) tangent to S1 containing both b and
x. It is orthogonal to the family of geodesics ending at b.

A point b in the ideal boundary ∂H is an equivalence class of geodesics rays t 7→ xt
which are at a bounded distance from each other. In the unit disk model, the boundary
is naturally identified with the unit circle S1 = ∂D. Given a unit vector v ∈ SH, the
geodesic ray through v determines a point v+ ∈ ∂H, the end of the geodesic. The map
v 7→ v+ is called the visual map. The action of G extends to a conformal action on ∂H if
the unit circle is given the standard Euclidean structure.

Let zn ∈ H be a sequence of points converging to b ∈ ∂H. The Busemann cocycle is
the function βb : H×H→ R defined as

βb(x, y) = lim
n→∞

d(x, zn)− d(y, zn),

where d denotes the hyperbolic distance. It satisfies the cocycle identity

βb(x, y) = βb(x, z) + βb(z, y)

for x, y, z ∈ H. Horocycles centered at b are level sets of βb(x, ·), hence the number
βb(x, y) is the signed distance between the horocycles centered at b and passing through
x and y. Also, the Busemann cocycle satisfies βg(b)(g (x) , g (y)) = βb(x, y) for any g ∈ G.

The Poisson kernel is the function P : H× ∂H→ R defined as

P (x, b) = e−βb(x,o),

where o ∈ H corresponds to the origin of the disk model. If σ is a complex number, the
σ-power of the Poisson kernel is an eigenfunction of the Laplace-Beltrami operator ∆ on
H, i.e. satisfies

∆P (z, b)σ + λσ · P (z, b)σ = 0,

with λσ = σ(1 − σ). This can be checked by observing that, in the upper half-plane
with b at infinity, the Poisson kernel is nothing but the function x + iy 7→ y, while the
Laplace-Beltrami operator is y2 times the Euclidean Laplacian.

It is a remarkable fact of hyperbolic geometry that

eβb(g
−1o,o) = P (g−1o, b) = ρg(b),

for any g ∈ G. There follows from the cocycle identity for β that

P (g−1x, b) = ρg(b) · P (x, g(b)),

for g ∈ G, x ∈ H and b ∈ ∂H.
In the unit tangent bundle, the geodesic flow reads v 7→ vt, where vt is the unit vector

at a distance t from v on the oriented geodesic line through v. The horocycle flow
corresponds to parallel translation of a vector v along the horosphere Hv+ (π (v)) passing
through π (v) and centered at v+, where π denotes the projection SH→H. In Iwasawa
coordinates (θ, t, h) 7→ g = k(θ)a (t)n (h) ∈ KAN , the horocyclic and geodesic flows
read

(θ, t, h)) 7→ (θ, t, h+ x) and (θ, t, h)) 7→ (θ, t+ s, e−sh),
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respectively. The corresponding flows on Γ \ G are the geodesic and horocycle flows on
(the unit tangent bundle of) the hyperbolic surface Γ \H.

The map v 7→ (v+, βv+(o, π(v))) induces a bijection between the space of horocycles
G/N and ∂H×R. Using the above identities, one sees that the left action of G on G/N
is conjugate to the Radon-Nikodym extension of the action of G on ∂H, the action on
∂H×R given by

(g, (θ, t)) 7→ (g (θ) , t− log ρg(θ)).

Conformal distributions. Let D(S1) be the space of C∞ functions on the circle
equipped with the Schwartz topology, and D′(S1) be its topological dual, the space of
distributions on the circle. If φ ∈ D′(S1) and f is a test function, we will use both
notations

φ(f) =

∫
f (θ) dφ (θ)

for the value of φ on f . If h ∈ D(S1), we denote by h · φ the distribution whose value on
the test function f is φ (h · f).

The group G acts conformally on the circle, hence acts on D′(S1) by push-forward,
the action beeing (g, φ) 7→ gφ where (gφ)(f) = φ(f ◦ g) if f is a test function. We get
new actions if we twist it with a power of the Radon-Nikodym cocycle. Given a complex
number σ, we denote by D′σ(S1) the space of distributions on the circle equipped with the
G-action (g, φ) 7→ (ρg ◦ g−1)

σ · gφ. Hence, given a Fuchsian group Γ, ΓD′σ(S1) will denote
the space of Γ-invariant conformal distributions with exponent σ, those distributions
φ ∈ D′(S1) such that

gφ = ρ−σg · φ,

for any g ∈ Γ. This generalizes Sullivan’s definition of conformal densities [Su79], which
deals with measures and where the “conformal exponent” σ is a real number (it happens
to be related to the Hausdorff dimension of the limit set of Γ, the support of his conformal
densities). For example, Lebesgue measure on the circle is the unique conformal density
with exponent 1 if the Fuchsian group Γ is cocompact.

Conformal distributions and horocycle invariant distributions. By a standard
argument (distributions are local objects, and we have partitions of unit), to an invariant

distribution Φ̃ for the horocyclic flow on Γ\G there corresponds a Γ-invariant distribution
Φ on the space of horocycles G/N ' KA. Namely, we have a linear isomorphism

N -invariant Φ̃ ∈ D′ (Γ\G) → Γ-invariant Φ ∈ D′ (G/N) .

If, moreover, Φ̃ is an eigendistribution for the geodesic flow with Lyapunov exponent σ−1,
then the corresponding distribution on the space of horocycles KA ' S1 × R is of the
form

Φ = φ⊗ eσtdt,

where t is the geodesic arc-lenght and φ ∈ D′ (S1) (because the Lebesgue measure is
the unique translational invariant Borel measure on the line, modulo constant factors).
Finally, Γ-invariance of Φ implies that φ belongs to ΓD′σ(S1).

On the other hand, given a distribution φ ∈Γ D′σ(S1), one checks that φ ⊗ eσtdt is a
Γ-invariant distribution on S1×R w.r.t. the Radon-Nikodym action, hence a Γ-invariant
distribution on the space of stable horocycles. Then

Φ = φ⊗ eσtdt⊗ dh
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is a Γ-invariant distribution on G wich descends to a distribution on Γ\G (which we
denote with the same symbol for economy) invariant by the horocycle flow. Using the
Fubini theorem (which holds true for the tensor product of a distribution and a measure,
as explained by L. Schwartz in his “Théorie des distributions”) one checks that

Ra(t)Φ = et(1−σ)Φ,

i.e. Φ̃ has Lyapounov characteristic exponent σ − 1 w.r.t. the geodesic flow.

3 Poisson-Helgason transform and conformal distri-

butions

Here we collect some standard and recent facts about the Poisson-Helgason transform, and
derive the Hölder regularity of conformal distributions for cocompact Fuchsian groups.

Poisson-Helgason transform. Let A(S1) denote the space of analytic functions on
(some open neighbourhood of) the circle, equipped with the topology of uniform conver-
gence on compact anuli around the circle. It is a Fréchet space, and its topological dual
A′(S1) is called the space of analytic functionals (or hyperfunctions).

For λ ∈ R, we denote by Eλ (D) the space of λ-harmonic functions on the disk, those
C∞ functions f on the disk such that ∆Df +λf = 0. Also, Ebounded

λ (D) denotes the space
of those λ-harmonic functions which are bounded, and Eexp

λσ
(D) denotes the space of those

λ-harmonic functions which have exponential growth w.r.t. the hyperbolic metric in the
disk, i.e. satisfy the bound |f(z)| ≤ C · ec·d(o,z) for some c, C > 0.

Let σ ∈ C. The Poisson-Helgason transform is the map

Pσ : A′(S1)→ Eλσ (D) ,

defined as

(Pσφ) (z) = φ (P (z, ·)σ) =

∫
S1

P (z, b)σφ (db) ,

where λσ = σ(1− σ). It has been shown by Helgason [He70] [He72] [He81] that

Theorem 3.1 (Helgason). Pσ is a bijection of A′(S1) onto Eλσ (D), provided that
σ 6= 0,−1,−2,−3, ...

The above map is indeed an homeomorphism of FS-spaces, if A′(S1) is given the
strong topology and Eλσ (D) the usual Fréchet topology as a closed subspace of C∞ (D),
see [KK78]. In the following we call Bσ : Eλσ (D)→ A′σ(S1) the boundary map, the inverse
of the Poisson-Helgason transform.

J.B. Lewis characterized those eigenfunctions of the Laplacian that are images of
distributions on the circle [Le78] [He81], proving that the restriction Pσ : D′(S1) →
Eexp
λσ

(D) is a bijection, this time provided that σ /∈ 1
2
Z\ {1}. The case σ = 1 is the classical

Poisson formula relating harmonic functions on the disk to their boundary values.
A recent result by Otal [Ot98] generalizes the Fatou lemma to eigenfunctions of the

Laplacian.
Let 0 < δ ≤ 1. To any distribution φ ∈ Cδ−1(S1) one can associate a δ-Hölder

continuous function h : R→ C such that h (θ + 2π) = h (θ) + c, for any θ ∈ R and some
constant c, and such that φ is locally the distributional derivative Dh of h. This function
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h is unique modulo a constant addend. The space Λδ of equivalence classes h+C of such
functions can be given the structure of a Banach space if the norm ‖h‖δ is defined as the

smallest H such that |h (θ)− h (θ′)| ≤ H · |θ − θ′|δ for any θ and θ′ with |θ − θ′| ≤ 2π.
This makes Cδ−1(S1) ' Λδ a Banach space. Ebounded

λ (D) is given the L∞ Banach space
structure.

Theorem 3.2 (Otal). The map h 7→ Pσ (Dh) is a topological isomorphism of Λ<(σ)

onto Ebounded
λσ

(D), provided that 0 < < (σ) ≤ 1.

In our language, Otal’s theorem says that the restriction Pσ : C<(σ)−1(S1)→ Ebounded
λσ

(D)
is a topological isomorphism.

Since the Laplacian is isometry-invariant, G acts on left on Eλσ (D) according to
(g, f) 7→ f ◦ g−1. Using the identities involving the Poisson kernel and the Radon-
Nikodym derivative of elements of G on the boundary circle, we obtain via the Poisson-
Helgason transformation Pσ an action on the left of G on D′(S1) which is given by
(g, φ) 7→ (ρg ◦ g−1)

σ · gφ. We record this fact as

Proposition 3.3 Pσ is a topological G-isomorphism of D′σ(S1) ∩ C<(σ)−1(S1) onto
Ebounded
λ (D), provided that 0 < < (σ) ≤ 1.

Nonsimple points and boundary values of holomorphic forms. The values σ =
0,−1,−2,−3, ... correspond to ”nonsimple” points, where the restriction Pσ : L2 (S1)→
C∞ (D) is not one-to-one. The fact is that, for such values of σ, distributions in D′σ(S1)
are not related to eigenfunctions of the Laplacian but to holomorphic forms.

Let Holexp
n (D) denote the space of holomorphic symmetric n-forms ω = f(z)dzn on

the disk with f ∈ Holexp (D). We define a map Bn : Holexp
n (D) → D′(S1) as follows: to

the form ω = f(z)dzn we associate the distribution

φω = Bn(f) = B1(zn · f).

Observe that if
∑

k≥0 akz
k is the Taylor series of f , then the distribution φω is given by the

Fourier representation
∑

k≥n ak−ne
ikθ. In particular, φω has vanishing Fourier coefficients

for k < n. The above map intertwines the natural left G-action on n-forms, given by
(g, ω) 7→ (g−1)∗ω, with the left G-action on distributions given by

(g, φ) 7→
(
g′ ◦ g−1

)1−n · gφ.

Indeed, if ω = f(z)dzn and f extends to a C∞ function on the circle, then the distribution
φω coincides with the boundary value ψω (θ) = ei2πnθ ·f(ei2πθ) of znf (z), in the sense that
its value on the test function h is

φω (h) =

∫
h (θ)ψω (θ) dθ.

There follows that

ψ(g−1)∗ω(θ) = lim
z→eiθ

zn · ((g−1)′(z))n · f(g−1(z))

=
(
ρg ◦ g−1

)−n · (ψω ◦ g−1
)

(θ) ,

which means that
φ(g−1)∗ω =

(
ρg ◦ g−1

)1−n · gφω.

We record this fact as the following.
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Proposition 3.4 For n = 1, 2, 3, ... , Bn is a G-map of Holexp
n (D) into D′1−n(S1).

Conformal distributions for compact surfaces. Now, consider the compact
Riemann surface Σ = Γ\H. Take an eigenfunction of the Laplacian on Σ, with eigenvalue
λ. Then its lift f on the unit disk is a bounded Γ-invariant element of Eλσ (D), and its
boundary value

φσ± = Bσ± (f) ,

with σ± roots of λσ = σ(1 − σ), belongs to ΓD′σ(S1). The converse is also true, hence,
since we know that the eigenvalues of the Laplacian on the compact surface have σ± ∈
]0, 1] ∪ {1/2 + iR}, a region where Otal theorem applies, we can state the following.

Proposition 3.5 For σ 6= 0,−1,−2,−3, ... , there is a bijection between
i) eigenvalues λ = σ(1− σ) of the Laplacian on Σ, and
ii) Γ-invariant conformal distributions with exponent σ belonging to C<(σ)−1(S1).

This has been already been observed by M. Pollicott in [Po89]. The only improvement
above is that we claim that eigenvalues of the Laplacian correspond to distributions, and
not just to analytic functionals, and moreover have a definite Hölder regularity.

One may wonder what about the excluded exponents, the nonpositive integers, and
the answer is as follow. For n = 1, 2, 3, ..., let ω = f(z)dzn be the lift on the unit disk of
a holomorphic n-form on Σ. The form ω is bounded on the quotient, hence its coefficient
f grows like the derivatives (g′)n with g ∈ Γ because a foundamental domain for Γ is
compact. This implies that we control the growth of f as

sup
z∈D

(1− |z|)n · |f(z)| <∞

and, in particular, f has exponential growth. There follows from proposition 3.4 that the
distribution

φω = B1(zn · f)

belongs to ΓD′1−n(S1) and has Fourier coefficients φ
(
e−ikθ

)
= 0 for k < n.. The growth

condition for f implies that there exists a holomorphic function h in the disk such that

zp · f(z) =

(
iz
∂

∂z

)n−1

h(z)

and
sup
z∈D

(1− |z|) · |h(z)| <∞

(this is essentially theorem 5.5 in [Du70], since multiplication by z does not change the
asymptotic behaviour). A classical theorem by Zygmund ([Zy59], Theorem 5.3 in [Du70])
then says that there exists a holomorphic function k, continuous in the closed disk, such
that k(eiθ) ∈ Λ∗ and k′′ = h. There follows that the distribution φω is locally the (n+ 1)-
derivative of a Zygmund function on the circle. Hence we have the following

Proposition 3.6 For n = 1, 2, 3, ... , there are bijections between
i) the space of holomorphic symmetric n-forms on Σ, and
ii) the space of Γ-invariant conformal distributions with exponent 1−n and vanishing

Fourier coefficients for k < n belonging to CZyg−(n+1).

An analogous statement holds for anti-holomorphic forms.
The above result shows that the cohomology of holomorphic symmetric n-forms on Σ

corresponds to certain distributions of the circle with definite regularity and invariance
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properties under the Fuchsian group. The case n = 1 has been discovered by A. Haeflinger
and Li Banghe [HB83] (they were interested in foliations, hence in invariant currents for
their holonomy), and has been recently rediscovered and generalized by J. Lott [Lo00].

Observation: conformal distribution and Perron-Frobenius operator. In
tha same paper [Po89], Pollicott states a correspondence between the spectrum of the
Laplacian on the surface and those complex values of σ, different from 0,−1,−2,−3, ...,
for which 1 is an eigenvalue of a Perron-Frobenius type operator Lσ, related to the Bowen-
Series symbolic representation of the action of Γ on the circle. What Pollicott observed is
that there is a bijection between eigenvectors of the dual operator L∗σ with eigenvalue 1 and
what we called Γ-invariant conformal distributions on the circle with exponent σ, hence
eigenvalues of the Laplacian via the Poisson-Helgason transform. Our last proposition
3.6 shows that also those values σ = 0,−1,−2,−3, ... for which 1 is an eigenvalue of L∗σ
have a geometrical meaning, and are related to the cohomology of the holomorphic and
anti-holomorphic n-forms on the surface, where n = 1− σ.

4 Proof of Proposition 1.2, Proposition 1.3 and Corol-

lary 1.4

Here we finally use the informations collected in the previous sections and conclude the
proofs of the results stated in the introduction. Namely, we show how to produce a two-
dimensional space of horocycle invariant distributions on SΣ for each eigenfunction of the
Laplacian on Σ, and a one-dimensional space of horocycle invariant distributions on SΣ
for each holomorphic and anti-holomorphic form on Σ, and check their regularity. We
divide the check into three cases.

Principal and complementary series, eigenvalue λ 6= 1/4. Take an eigenfunction
of the Laplacian on Σ, with eigenvalue λ 6= 1/4. Its lift f on the unit disk is a Γ-invariant
element of Ebounded

λ (D), because the surface is compact. Let σ± denotes the two roots of
λ = σ(1−σ). The Poisson-Helgason inverse transform gives the two Γ-invariant conformal
distributions φσ± = Bσ±(f) with exponent σ±. Note that σ± have real part 1/2 if λ belongs
to the principal series, and σ± ∈ (0, 1)\ {1/2} if λ belongs to the complementary series.
Since 0 < < (σ) ≤ 1, according to Otal’s proposition 3.2 φσ± is locally the distributional
derivative of a <(σ±)-Hölder function on the circle. Then φσ± ⊗ eσ±tdt is a Γ-invariant
distribution on G/N and φσ±⊗eσ±tdt⊗dh descends to an horocycle invariant distribution
on Γ\G which is an eigendistribution of the geodesic flow with Lyapunov coefficient σ±−1.

We observe that, according to Flaminio and Forni, this distribution has Sobolev order
1−<(σ±).

Eigenvalue 1/4. Let f be an eigenfunction of the Laplacian on Σ with eigenvalue
1/4. Here we have only one root of the equation 1/4 = σ(1−σ), hence just one distribution

φ1/2 = B1/2 (f) ∈Γ D′1/2(S1).

This gives rise to the first horocycle invariant distribution

Φ1/2 = φ1/2 ⊗ et/2dt⊗ dh

on SΣ, whose regularity is treated as above.
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The second invariant distribution is then obtained deriving formally the function σ 7→
φ⊗ eσtdt at the point σ = 1/2, with f fixed. This yelds the distribution

φ′1/2 ⊗ et/2dt+ φ1/2 ⊗ tet/2dt,

where we set
φ′1/2 = −B1/2

(
φ1/2

(
P (z, ·)1/2 logP (z, ·)

))
.

Some “miracle” happens (indeed, λ = 1/4 is a very particular point in the spectrum of
the Laplacian on the unit disk). The point is that both P (z, ·)1/2 and P (z, ·)1/2 logP (z, ·)
are eigenfunctions of the Laplacian, with eigenvalue 1/4 (as can be seen observing that in
the upper half-plane they read y1/2 and y1/2 log y), hence the above formulas make sense.
Using the intertwining property of B1/2 and the invariance of φ1/2, one checks that, for
any g ∈ Γ, (

ρg ◦ g−1
)
· gφ′1/2 = φ′1/2 −

(
log ρg ◦ g−1

)
· φ1/2,

since, letting
f ′(z) = φ1/2

(
P (z, ·)1/2 logP (z, ·)

)
,

one get
f ′
(
g−1(z)

)
= f ′(z) + φ1/2

(
ρg · P (z, ·)1/2

)
.

A computation then shows that φ′1/2 ⊗ et/2dt+ φ1/2 ⊗ tet/2dt is a Γ-invariant distribution
on the space of horocycles. There follows that

Φ′1/2 =
(
φ′1/2 ⊗ et/2dt+ φ1/2 ⊗ tet/2dt

)
⊗ dh

is a second horocycle invariant distribution on SΣ.
While f is bounded, the best we can say of the function f ′ is that it has sub-exponential

growth, together with its gradient (an easy check, since |logP (z, θ)| is bounded by the
hyperbolic distance d (o, z), and f (z) = φ1/2

(
P (z, ·)1/2

)
is bounded). The proof of propo-

sition 2 in [Ot98] can be rewritten almost verbatim, and produces a function H on the
circle, Hölder with exponent 1/2 − ε for any ε > 0, such that f ′ = P1/2 (DH). There
follows that the distribution φ′1/2 belongs to C<1/2−1 (S1).

Observe that the action of the geodesic flow on the linear space spanned by the dis-
tributions Φ1/2 and Φ′1/2 is

Ra(t)Φ1/2 = et/2Φ1/2,

Ra(t)Φ
′
1/2 = et/2Φ′1/2 − tet/2Φ1/2,

hence only Φ1/2 is a conical distribution, as already noted by Flaminio and Forni in their
paper.

Discrete series. Let ω = f(z)dzn be the lift on the unit disk of a holomorphic n-form
on Σ. There follows from proposition 3.4 that the distribution

φω = B1(zn · f)

belongs to ΓD′1−n(S1), hence Φω = φω ⊗ e(1−n)tdt ⊗ dh descends to distribution on SΣ
invariant by the horocycle flow. Observe, also, that the Lyapunov exponent of Φω w.r.t.
the geodesic flow is −n. The proof of proposition 3.6 shows that φω belong to CZyg−(n+1).

The case of anti-holomorphic forms is analogous.
To compare this regularity with the result by Flaminio and Forni, we observe that

φω lies in the Sobolev space H−n−ε(S1) for all ε > 0, since Zygmund functions are in
H1−ε(S1) for all ε > 0.
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