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Using image analysis in the study of multiphase gas absorption
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Abstract

For the air–water–calcium alginate beads system, the effect of the presence of solids on the mass transfer characteristics in a bubble
column was experimentally studied.

Volumetric liquid side mass transfer coefficient,kLa, specific interfacial area,a, and hence liquid side mass transfer coefficient,kL,
were determined under different solid concentrations (0, 5, and 10 vol%), superficial gas velocities (up to 0.27 cm/s) and solid sizes (1.2
and 2.1 mm diameter). The bubble characteristics, namely the interfacial area, were obtained using an image analysis technique.

This technique proved to be a suitable and practical method to characterize mass transfer phenomena in bubble columns for the range of
operating conditions used. The solids affect negativelykLa, decreasing botha andkL, the effect being more pronounced for the smaller
particles. For these particles the variation ofkLa is due to the variation of its two components, while for larger particleskLa variation is
due, essentially, to changes inkL as no significant differences ina were observed.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Bubble columns are commonly used in industry as
gas–liquid and gas–liquid–solid contactors. Chemical or
biochemical reactive operations, as well as the separation
of mixtures by rectification, absorption, and wastewater pu-
rification, can serve as examples of their application (Hong
and Brauer, 1989). Bubble columns are also gaining in-
creasing importance in the field of biotechnology (Alvarez
et al., 2000).

In multiphase systems, appearing in mechanically agi-
tated reactors and bubble columns, gas–liquid mass transfer
is most frequently the rate determining step for the over-
all process. Therefore, the knowledge of gas–liquid mass
transfer rates characterized by volumetric liquid side mass
transfer coefficients (kLa) is required for a reliable design
of such reactors (Ozkan et al., 2000). Also a complete
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understanding of the effect of the operating parameters on
each component ofkLa—the liquid side mass transfer co-
efficient (kL) and the interfacial area (a)—is needed.

In three phase systems, the presence of solids is an im-
portant parameter that can have either a beneficial or un-
desirable influence on the mass transfer process. Thus, the
effect of solid characteristics such as size, loading and sur-
face properties on gas–liquid mass transfer has been a chal-
lenging task for researchers.Yagi and Yoshida (1974)ver-
ified that the effect of dead microorganisms on the liquid
phase mass transfer coefficientkL was negligible. However,
the presence of such substances caused remarkable change
in the bubble size distribution, and consequently decreased
the gas holdup, the specific gas–liquid interfacial areaa, and
the volumetric mass transfer coefficientkLa. Albal et al.
(1983)added glass beads and oil shale particles to water in
order to study the effect of solids concentration onkLa. The
solids concentration varied from 0 to 25–vol%. For low val-
ues (2–5 vol%) of the solids concentration,kLa increased by
about 10%–30% and then decreased with a further increase
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in the solids concentration.Sada et al. (1986)concluded that
the influence of fine suspended particles on bubble column
performance depends upon the particle size. More recently,
Freitas and Teixeira (2001)showed that the volumetric mass
transfer coefficient diminishes with the increase in solids
loading, especially for high airflow rates, due to an increase
in bubble coalescence. Reductions of 40% and 70% were
obtained with the introduction of 20% and 30% of solids,
respectively. Solid density also affectskLa.

Several methods exist for measuring the interfacial area in
gas–liquid systems, such as photographic, light attenuation,
ultrasonic attenuation, double-optical probes and chemical
absorption methods. But these methods are effective only
under specific conditions (Kiambi et al., 2001).

In this work, photographic and a subsequent image anal-
ysis technique was used to determine bubble characteristics
such as superficial area, size and shape. Volumetric mass
transfer coefficients were obtained for different gas flow
rates, solids loading and size. The effect of these variables
on the liquid side mass transfer coefficient (kL) and interfa-
cial area (a) was analyzed.

2. Experimental

2.1. Experimental Set-Up

In this work a bubble column was used as contact device.
This is a perspex cylindrical column of 84 mm internal di-
ameter, 3 mm thick and 600 mm high. A perspex rectangular
box covers the column. The space between the two columns
is filled with the liquid under study to avoid optical effects.
The gas first enters a gas chamber and then passes through
a sparger where bubbles are formed. The sparger consists
of 13 uniformly spaced needles with an inner diameter of
0.3 mm.The shape and size of the needles ensure the forma-
tion of small and well-defined bubbles. A complete scheme
of the experimental set-up is shown inFig. 1.

To produce calcium alginate beads, first a 2% (w/v)
sodium alginate solution was prepared dissolving sodium
alginate in water at a temperature higher than 70◦C, under
strong agitation. This mixture is then dropped into a 2%
(w/v) calcium chloride solution using a peristaltic pump,
the calcium alginate beads being formed by ion exchange
Ca2+ ↔ Na+ (Freitas, 2002). A slightly different and more
complex set-up was used on the preparation of the smaller
beads (Jourdain, 2002). A 0.45 mm outer diameter needle
was used to drop the sodium alginate solution and an elec-
tric impulse generator working at 9 kV was connected to the
chamber to promote very small drops that result in smaller
beads.

2.2. Mass transfer experiments

Oxygen mass transfer runs were performed in two- and
three-phase systems. Air and water were used as the gas

and liquid phases, respectively, and calcium alginate beads
(with a mean diameter,dp, of 1.2 and 2.1 mm, and a den-
sity of 1023 kg/m3) were the solid phase. The experiments
were performed for several superficial gas velocities (up to
0.27 cm/s), and different solid concentrations (0, 5, 10 vol %)
were tested.

Initially the liquid is deoxygenated by bubbling nitrogen.
When the dissolved oxygen concentration is zero, dry air
is fed into the column. At this moment the oxygen transfer
process from air bubbles to the liquid begins and continues
until O2 concentration in the liquid phase reaches saturation.
Dissolved oxygen concentration values are directly recorded
on a PC, through a data acquisition board, and the dissolved
oxygen concentration variation with time,t, is obtained. The
mass balance for oxygen in the liquid medium is written as:

dC

dt
= kLa

(
C∗ − C

)
, (1)

wherekLa is the volumetric mass transfer coefficient, and
C* andC are, respectively, the oxygen solubility and the
oxygen concentration in the liquid.

Considering the liquid phase homogeneous andC0 the
oxygen concentration att = 0, the integration of the last
equation leads to

ln
(
C∗ − C

) = ln
(
C∗ − C0

) − kLat . (2)

The volumetric mass transfer coefficient can now be de-
termined by plotting ln(C∗ − C) against time. ThekLa re-
sults were not influenced by the dynamics of the oxygen
electrode since, for all runs, it was verified that its response
time was much smaller than the mass transfer time of the
system.

2.3. Image analysis experiments

In order to obtain the characteristics of the bubbles, im-
ages were grabbed with a monochrome video digital cam-
era (Sony XCD-X700), which was connected to a Matrox
Meteor-II/1394 board. Sets of images (1024×768 Pixels)
were recorded for varying gas velocities, solids loadings and
sizes, for the same conditions used in mass transfer experi-
ments. The most suitable lightning system was found to be
backlight through a diffusing glass (Fig. 1). Then, the images
were automatically treated, analyzed and several object de-
scriptors obtained for each bubble using a program running
under Visilog� 5.4 software (Noésis, les Ulis, France).

The image treatment consists in the procedure described
below and illustrated inFig. 2 (for air–water–calcium al-
ginate 1 vol% system and a superficial gas velocity of
0.09 cm/s). It is based on the fact that alginate particles have
a higher grey level than bubbles, although it is lower than
for the background.

• Find the first peak in the histogram of the original grey-
level image. This peak corresponds to the grey level of
the bubbles.
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Fig. 1. Experimental set-up (1: N2, 2: Air, 3: Rotameter, 4: Manometer, 5: Humidifier, 6: Digital camera, 7: Bubble column, 8: O2 probe, 9: O2 conc.
meter, 10: Thermostatic bath, 11: Diffuser glass, 12: Halogen lamp, 13: PC).
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Fig. 2. Experimental set-up (1: N2, 2: Air, 3: Rotameter, 4: Manometer, 5: Humidifier, 6: Digital camera, 7: Bubble column, 8: O2 probe, 9: O2 conc.
meter, 10: Thermostatic bath, 11: Diffuser glass, 12: Halogen lamp, 13: PC).

• Segment the grey-level image with the previous grey level
as limit. Only the bubbles are selected and solids are elim-
inated.

• Hole fill: all the holes inside objects are filled.
• Border kill: all the objects touching the frame of the image

are eliminated.
• Noise elimination applying a sequence of erosions and

reconstruction. Reconstruction retrieves the original

shape of the retained objects after a series of erosions that
eliminates undesirable small objects.

• Labeling the image. All the objects are detected and iden-
tified.

• Ultimate searches for the ultimate eroded set. This enables
to count the number of convex objects, even if some of
them are touching each other, as long as the pseudo-center
of each object is outside other objects.
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Fig. 3. Concavities of an object.

After the image treatment, several size and shape descrip-
tors can be determined for each bubble: the projected area
(Ap) from which equivalent diameter(Deq= 2

√
Ap/�) can

be calculated; the Feret diameters distribution, from which
Feret diameter maximum (Fmax) and minimum (Fmin) are
obtained (the Feret diameter is the smallest distance between
two parallel tangents to the object, the tangent position be-
ing defined by the angle between them and the horizontal
axis); elongation (Fmax/Fmin) is also determined; the con-
vex bounding polygon of each object is calculated and the
concavity index (CI= Aobj/Acb) is obtained, where Aobj

and Acb are the surfaces of the object and of the convex
bounding polygon, respectively (Fig. 3) (Pons et al., 1997).

It was found that CI> 0.99 was a good criterion to dis-
tinguish between isolated and overlapping bubbles: over-
lapping induces concavities in the object and decreases the
concavity index.

The change in size due to the depth of view was experi-
mentally studied. It was found that the error in the calcula-
tion of the superficial area of the bubbles was less than 2%.

3. Results and discussion

3.1. Mass transfer

Fig. 4shows howkLa varies with superficial gas velocity,
uG, and solid loading, for calcium alginate beads of 1.2 mm
diameter (alg.I). It can be seen from this figure thatkLa

increases with superficial gas velocity and decreases with
the solid concentration. Further, it seems that the solid ef-
fect becomes independent from solid loading for higher gas
velocities.

Zahradnik et al. (1992)studied the effect of some oper-
ating variables on hydrodynamics and mass transfer charac-
teristics of multi-stage three-phase slurry reactors and found
that the increasing concentration of solid particles (in the
range 0–5 wt%) reduced thekLa values.Freitas and Teix-
eira (2001)working with a three-phase internal loop airlift
reactor noticed a similar behavior for the effect of solids.

Similar experiments were performed using calcium algi-
nate beads with a 2.1 mm size (alg.II). In this case,kLa also
increases with superficial gas velocity (Fig. 5). The effect
of the solids increases with the superficial gas velocity and
is independent from solids concentration. The results shown
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Fig. 4. Dependence ofkLa on superficial gas velocity for different calcium
alginate concentrations (dp = 1.2 mm).
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Fig. 5. Dependence ofkLa on superficial gas velocity for different calcium
alginate concentrations (dp = 2.1 mm).

in Figs. 4 and 5seem to make evident that the smaller par-
ticles have a stronger effect onkLa. These results are repro-
ducible with an average relative error of 5%. Moreover,kLa

for 2.1 mm particles exhibits similar values (for the smaller
solid loading) or higher than those obtained for 1.2 mm.

For glass spheres under 1 mm diameter in a fluidized bed,
Zheng et al. (1995)found thatkLa increases with gas ve-
locity and decreases with solid concentration and increasing
particle size.

For particles above 1 mm the effect of particle size onkLa

changes.Kim and Kim (1990)reported that, in that range,
kLa increases with an increase in particle size. Above 3 mm
size, kLa is, besides, higher than in the situation without
particles. The dependence of the mass transfer characteristics
on particle size is also highlighted byPatwari et al. (1986)
andSchumpe et al. (1989).

In order to evaluate the effect of studied parameters on
a andkL separately, the interfacial area was determined by
image analysis, as already described.

3.2. Bubble characteristics

The shape of the bubbles is influenced by superficial gas
velocity, concentration and size of solids. In the range of used
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Fig. 6. Fmax/Fmin ratio for the different experimental conditions.

superficial gas velocities, the bubbles are oblate spheroids
being more or less elongated according to the operating con-
ditions. Fig. 6 shows theFmax/Fmin ratio, which gives the
bubble shape. The concentration of solids is the parameter
with the strongest effect on the bubble shape. The presence
of solids makes the bubbles more rounded, the effect being
more pronounced for the higher solids loading and for the
smaller particles, where the bubble sphericity goes near to 1.

Reese et al. (1996)studied the bubble characteristics in
three-phase systems used for pulp and paper processing.
They reported that the bubbles in a pulp slurry system are
more flattened than in the pure liquid. In this case, however,
the concentration of the particles is much smaller (from 0
to 0.25%) and the particles are fibers of varying size, shape
and thickness, giving rise to a very different situation from
that presented in this work.

Fig. 7 shows images of bubbles for different superficial
gas velocities and solids loading, for the smaller solid size
tested. These images confirm the conclusions referred above.

For all runs, several average bubble descriptors were ob-
tained by image analysis, namely the projected area and the
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0 5 10

Fig. 7. Bubble examples for different superficial gas velocities and solid concentrations (dp = 1.2 mm).

Feret diameters. According to bubble characteristics, these
were classified as elongated or flattened spheroids, and the
respective superficial area and volume calculated according
to the equations listed inTable 1(Pereira, 1997), where 2r1
corresponds to the maximum Feret diameter and 2r2 to the
minimum Feret diameter.

3.3. Interfacial area and liquid side mass transfer
coefficient

The specific interfacial area,a, is calculated using the
following equation:

a = NbAsup

VL

, (3)

whereNb is the number of bubbles in the column at a cer-
tain instant,Asup is the mean superficial area of the bubbles
and VL is the liquid volume. The bubbles superficial area
and volume are determined by the method described in the
previous section. The rise velocity of bubbles is calculated
from Wesselingh and Bollen (1999)and is used for deter-
mine Nb. Figs. 8 and 9show the results for the two solid
sizes used. The results are reproducible with an average rel-
ative error of 4%.

As foreseen (Kim and Kim, 1990; Vasquez et al., 2000;
Quicker et al., 1984), interfacial area increases with super-
ficial gas velocity. Even as bubbles become larger, since the
number of bubbles formed increases, and in this bubble size
range the rise velocity is nearly constant, the total superficial
area also increases. On the other hand the solids effect is not
constant. For the smaller particles one notices a significant
decrease of interfacial area at the higher solids loading. This
may be due to an increase of bubble coalescence leading to
a decrease in total superficial area (Zahradnik et al., 1992;
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Table 1
Superficial area and volume of elongated and flattened spheroids

Spheroid Superficial area Volume

Elongated Asup= 2�r2
2 + 2�r2

1 sin−1
(

r2
r1

)
V = 4

3�r1r2
2

Flattened Asup= 2�r2
1 + �r1r2 ln r1+r2

r1−r2
V = 4

3�r2
1r2
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Fig. 8. Interfacial area for the smaller solid size (dp = 1.2 mm).
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Fig. 9. Interfacial area for the larger solid size (dp = 2.1 mm).

Kim and Kim, 1990; Patwari et al., 1986). Yagi and Yoshida
(1974)reported a similar effect in systems containing dead
yeast cells. Both for the larger, as well as for the smaller par-
ticles at reduced concentration, the solid effect on the occur-
rence of the bubble coalescence phenomenon is negligible.

Liquid side mass transfer coefficient,kL, can now be cal-
culated from the values ofkLa anda previously determined.
Figs. 10 and 11present the results for the two solid sizes
studied.kL values reflect the previously reported values of
kLa anda. One notices a conjugate effect of the solid size
and concentration onkL. The more pronounced effect oc-
curs for the smaller particles and at higher concentrations.

Taking into account the previous analyses, one can exam-
ine howa andkL contribute to thekLa behavior.

For the smaller particles, thekLa variation is due to the
simultaneous variation ofa and kL in the same direction.
The presence of solids lowers the interfacial area and the
mass transfer coefficient, the effect being more pronounced
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Fig. 10. Liquid side mass transfer coefficient for the smaller solid size
(dp = 1.2 mm).
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Fig. 11. Liquid side mass transfer coefficient for the larger solid size
(dp = 2.1 mm).

at the higher solid concentration. For higher superficial gas
velocities the solid concentration seems to have a less sig-
nificant effect.

For the larger particles, thekLa variation is almost only
due to thekL variation, which shows a negligible dependence
on solids concentration. The effect of solids on interfacial
area is negligible, and the effect on mass transfer coefficient
seems to be more pronounced as the gas velocity increases.

4. Conclusions

An image analysis technique was used to study the bub-
ble characteristics, namely shape and size, in two phase and
three phase systems. In the range of operating conditions
used (superficial gas velocity and solids loading), this tech-
nique shows to be suitable and practical, as the calculated
values of the specific interfacial area reproducible.

The solids present a negative effect onkLa, volumetric
liquid side mass transfer coefficient. This effect depends on
the solid concentration for the smaller particles, while for
the larger particles that is not evident. The effect of particle
size onkLa is significant for the higher solid concentration,
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but for the smaller solid concentration particle size has no
remarkable effect.

The bubble shape is also affected by the presence of the
solid phase. The bubbles become more rounded as solid
concentration increases and solid size decreases.

The effect of the solid phase onkLa was separated in its
components,a andkL. The image analysis results show that,
for the higher solid concentration and the smaller particle
size, the solids decrease the total interfacial area, while for
the other situations no significant effect occurs. This suggests
the occurrence of bubble coalescence phenomena in the first
case.

CalculatingkL from the experimental values ofa and
kLa, one can conclude thatkL increases with superficial gas
velocity and is affected negatively by the presence of solids.
The effect of solid concentration is important for the smaller
particles.

Finally one can infer that thekLa variation is due to the
simultaneous variations ofa andkL in the same direction for
smaller particles, while for the larger particles that variation
is almost only due to thekL variation.
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