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Abstract

Air pollution control problems can be formulated as a semi-infinite
programming (SIP) problem and we describe three main approaches.
The first consists in optimizing an objective function while the pollution
level in a given region is kept bellow a given threshold. In the second
approach the maximum pollution level in a given region is computed and
in the third an air pollution abatement problem is considered. These
formulation allow to obtain the best control parameters and the maxima
pollution positions, where the sampling stations should be placed.

To illustrate this idea, the (SIP)AMPL modeling language was used
to code three academic problems. The SIPAMPL software package in-
cludes an interface to connect AMPL to any SIP solver, in particular to
the NSIPS solver. Numerical results are shown with the discretization
method, implemented in the NSIPS solver and it proved to be efficient
in solving the proposed problems.

Keywords: Air pollution control, semi-infinite programming, SIPAMPL
database, NSIPS solver.

1. Introduction

Many engineering problems, such as robot trajectory planning, optimal
signal sets, production planning, and digital filter design can be posed as semi-
infinite programming (SIP) problems (see [6] for many application of SIP). Air
pollution control has also deserved some attention in the SIP context [6, 7]. In
this paper we describe how air pollution control problems can be formulated as
semi-infinite programming problems. Three examples were coded in a modeling
language (SIPAMPL [15]) and solved with a general SIP solver (NSIPS [16]),
illustrating the potential of these formulations.
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Several models for air pollution control problems have been proposed in
the last decades (see [10]). These models predict the amount of pollution in a
space, where some weather conditions are assumed.

We use a Gaussian model to provide estimates of pollution in a region
where mean weather conditions are assumed (see [10]). One of the proposed
problem consists of optimizing an objective function (minimum stack height)
while the air pollution is kept bellow a given threshold. Other proposed problem
consists in computing the maximum air pollution attained in a given region
and another is an air pollution abatement problem where reduction in the air
pollution emissions is to be minimized while air pollution is kept below a given
threshold.

We start in section 2 by describing SIP and the used notation. Section 3
presents the air pollution control problem and Section 4 the three academic ex-
amples coded in (SIP)AMPL. Numerical results with the discretization method,
available in the NSIPS solver, are shown in Section 5 and we conclude in Section
6.

2. Semi-infinite programming

Semi-infinite programming problems can be described in the following
mathematical form

min
u∈Rn

f(u)

s.t. gi(u, v) ≤ 0, i = 1, . . . , m

ulb ≤ u ≤ uub

∀v ∈ R ⊂ Rp,

(1)

where f(u) is the objective function, gi(u, v), i = 1, . . . , m are the infinite
constraint functions and ulb, uub are the lower and upper bounds on u.

Problem (1) can be stated in a more general form, by including finite
(constraints only depending on u) equality and inequality constraints, but this
definition just suit our purpose.

These problems are called semi-infinite programming problems due to
the constraints gi(u, v) ≤ 0, i = 1, . . . ,m. We can think of R as an infinite
index set and therefore (1) is a problem with finitely many variables over an
infinite set of constraints.

Herein, the set R is assumed to be a cartesian product of intervals
([α1, β1]× · · · × [αp, βp]).

A natural way to solve the SIP problem (1) is to replace the infinite
set R by a finite one. There are several ways of doing this. Discretization
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methods, exchange methods, reduction methods (see [6], for a more detailed
explanation), dual methods ([14]) and transcribed methods ([12, 13]) are the
major classes.

In discretization methods the infinite set R is replaced by a sequence of
subsets R0 ⊂ R1 ⊂ · · · ⊂ RN ⊂ R (usually the subsets Rk, k = 0, . . . ,N are
grids of points). In each iteration, some points in the subset Rk are chosen and
used in the constraints to form a finite subproblem. The solution to the SIP
problem is approximated by the solution on the final subset RN , and it may
not be a stationary point for SIP.

In exchange methods approximated solutions to the following problems
are computed, for a given approximation to the SIP solution u ∈ Rn

max
v∈R

gi(u, v), i = 1, . . . ,m. (2)

The computed approximated solutions are used to obtain a new approx-
imation to the SIP solution (by solving the corresponding finite subproblem)
and the process is repeated until a good approximation to the SIP solution is
found.

In reduction methods all the global and some local maxima for the prob-
lems (2) are obtained. The finite subproblem is then solved with the solutions
found to problems (2).

The dual methods solve the SIP problem by considering the dual problem
where the infinite number of Lagrange multipliers is represented by a function,
which is approximated by a piecewise linear polynomial.

In the constraint transcription methods, the inequality infinite constraints
are transcribed to equality finite constraints using integration over the set R.

3. Air pollution control

The reader is pointed to [10] for a background reading in air pollution
control.

Considering a coordinate system where the origin is at ground level. The
X and Y -axis extends horizontally and are perpendicular to each other. The
Z-axis extends vertically perpendicular with the X and Y -axis (see Figure 1).
Let a and b be the x and y coordinates, respectively, of the pollution emission
point. We assume that the stack pollution emission occurs at some height H
above the ground (z = 0).

Assuming that the plume spread has a Gaussian distribution, the con-
centration, C, of gas or aerosols (particles less than about 20 microns diameter)
at position x, y, and z from a continuous source with an effective emission
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Figure 1: Coordinate system and notation.

height, H, is given by
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where Q (gs−1) is the uniform emission rate of pollutants, U (ms−1) is the
mean wind speed affecting the plume and σy (m) and σz (m) are the standard
deviations of plume concentration distributed in the horizontal and vertical
planes, respectively. Y is given by

Y = (x− a) sin(θ) + (y − b) cos(θ), (4)

where θ (rad) is the mean wind direction (0 ≤ θ ≤ 2π). Equation (4) makes a
change of coordinates of the pollution emission point in the mean wind direc-
tion.

In equation (3) the variable x does not appear explicitly in the formula,
but the σy and σz depend on the X variable given by

X = (x− a) cos(θ)− (y − b) sin(θ).
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The effective emission height is the sum of the physical stack height, h
(m), and the plume rise, ∆H (m). The plume rise considered here is given by
the Holland equation (see [17])

∆H =
Vod

U
(

1.5 + 2.68
To − Te

To
d

)
,

where d (m) is the internal stack diameter, Vo (ms−1) is the stack gas exit
velocity, To (K) is the gas temperature and Te (K) is the environment temper-
ature.

Assuming that we have n pollution sources distributed in a region, be-
ing Ci the contribution of source i for the total concentration, three major
formulations can be derived.

Being the gas chemical inert, the minimization of the stack height u =
(h1, . . . , hn), while keeping the pollution level below some threshold C0 in a
given area R, at ground level, can be formulated as the SIP

min
u∈Rn

n∑

i=1

cihi

s.t. g(u, v ≡ (x, y)) ≡
n∑

i=1

Ci(x, y, 0,Hi) ≤ C0

∀v ∈ R ⊂ R2,

(5)

where ci, i = 1, . . . , n, are construction costs associated with the stack height.
Note that the objective function must not be a linear function. In fact we can
use any nonlinear function of the hi, i = 1, . . . , n, variables.

Computing the maximum air pollution concentration (l∗) in a given re-
gion can be done by solving the following SIP problem.

min
l∈R

l

s.t. g(v ≡ (x, y)) ≡
n∑

i=1

Ci(x, y, 0,Hi) ≤ l

∀v ∈ R ⊂ R2.

(6)

The points v∗ ∈ R where g(v∗) = l∗ are global maximizers that make the
infinite constraint active and are the positions where the sampling stations
should be placed.

Another formulation can be proposed where the minimum production
cost (minimum cost with cleaning) is to be obtained while the air pollution
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is kept bellow a given threshold in a given region. Let u = (r1, . . . , rn) be a
percentage of the pollution reduction factor. The problem can be posed as

min
u∈Rn

n∑

i=1

piri

s.t. g(u, v ≡ (x, y)) ≡
n∑

i=1

(1− ri)Ci(x, y, 0,Hi) ≤ C0

∀v ∈ R ⊂ R2,

(7)

where pi, i = 1, . . . , n, is what one pays for the reduction on source i (cleaning
or not producing). Again, the same comments applies to the linear objective
function.

We will use these major formulation to solve three academic examples
of air control problems.

4. Examples of air pollution control problems

In this section we describe three examples with data collected from the
literature on air pollution control.

These problems were coded in the (SIP)AMPL modeling language for-
mat and are publicly available in the SIPAMPL problems database. AMPL1

[2] is a modeling language for mathematical programming problems (other well
known modeling language is GAMS [1]). AMPL provides an interface which al-
lows a wide variety of solvers to access problems coded in the AMPL language.
Together with the simple and powerful modeling language, AMPL also pro-
vides automatic differentiation. Since AMPL is limited to finite programming,
SIPAMPL [15] was developed to allow the codification of SIP problems.

SIPAMPL stands for SIP with AMPL. The SIPAMPL package includes
a database of more than 160 SIP problems, an interface to allow the connection
of any SIP solver to AMPL, an interface that allows MATLAB [8] to use the
SIP problems available in the database and a select tool for query the database
for SIP problems with specific characteristics.

4.1. Minimal stack height

An air pollution control problem was proposed in [17], to show the reli-
ability of an optimization procedure, in obtaining the global maximum of the
sulfur dioxide concentration in a given region. The proposed problem data will
be used herein in minimizing the total stack height while the pollutant (sulfur
dioxide) is kept bellow a given threshold.

1http://www.ampl.com
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The problem consists of an region with ten stacks. The environment
temperature (Te) is 283K and the gas emission temperature is 413K. Wind
speed (U) of 5.64ms−1 and wind direction (θ) of 3.996rad are considered. The
stack and emission data for the ten stacks is given in Table 1.

The stack height in Table 1 was used as an initial guess for the SIP
formulation and a squared region of 40km is considered (R = [−20000, 20000]×
[−20000, 20000])

Source ai bi hi di Qi (Vo)i

(m) (m) (m) (m) (gs−1) (ms−1)
1 -3000 -2500 183 8.0 2882.6 19.245
2 -2600 -300 183 8.0 2882.6 19.245
3 -1100 -1700 160 7.6 2391.3 17.690
4 1000 -2500 160 7.6 2391.3 17.690
5 1000 2200 152.4 6.3 2173.9 23.404
6 2700 1000 152.4 6.3 2173.9 23.404
7 3000 -1600 121.9 4.3 1173.9 27.128
8 -2000 2500 121.9 4.3 1173.9 27.128
9 0 0 91.4 5.0 1304.3 22.293
10 1500 -1600 91.4 5.0 1304.3 22.293

Table 1: Stack and emission data

This problem is coded in the (SIP)AMPL format and is publicly available
in the SIPAMPL database (file vaz1.mod).

4.2. Maximum attained pollution and sampling stations planning

An example in computing the maximum pollution (l∗) level is achieved
by solving the SIP problem (6) with Hi fixed. Hypothetical source data from
[4] is used to illustrate this technique. The source data is shown in Table 2. The
region considered was R = [0, 24140] × [0, 24140] (a square of approximately
15 miles). The environment air temperature was 284K, with a wind speed of
5ms−1 and direction of 3.927rad (225o). The same weather stability as in the
maximum stack height example were used.

This problem is also coded in the (SIP)AMPL format and is publicly
available in the SIPAMPL database (file vaz2.mod).

4.3. Air pollution abatement

In [3] the authors describe an example of policy abatement in air pol-
lution that uses the Sutton equation for the expected pollution concentration.
A slightly different problem was used latter in a paper from Van Honstede [7]
and is already available in the SIPAMPL database included in the Watson set
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Source ai bi hi di Qi (Vo)i (To)i

(m) (m) (m) (m) (gs−1) (ms−1) (K)
1 9190 6300 61.0 2.6 191.1 6.1 600
2 9190 6300 63.6 2.9 47.7 4.8 600
3 9190 6300 30.5 0.9 21.1 29.2 811
4 9190 6300 38.1 1.7 14.2 9.2 727
5 9190 6300 38.1 2.1 7.0 7.0 727
6 9190 6300 21.9 2.0 59.2 4.3 616
7 9190 6300 61.0 2.1 87.2 5.2 616
8 8520 7840 36.6 2.7 25.3 11.9 477
9 8520 7840 36.6 2.0 101.0 16.0 477
10 8520 7840 18.0 2.6 41.6 9.0 727
11 8050 7680 35.7 2.4 222.7 5.7 477
12 8050 7680 45.7 1.9 20.1 2.4 727
13 8050 7680 50.3 1.5 20.1 1.6 727
14 8050 7680 35.1 1.6 20.1 1.5 727
15 8050 7680 34.7 1.5 20.0 1.6 727
16 9190 6300 30.0 2.2 24.7 9.0 727
17 5770 10810 76.3 3.0 67.5 10.7 473
18 5620 9820 82.0 4.4 66.7 12.9 603
19 4600 9500 113.0 5.2 63.7 9.3 546
20 8230 8870 31.0 1.6 6.3 5.0 460
21 8750 5880 50.0 2.2 36.2 7.0 460
22 11240 4560 50.0 2.5 28.8 7.0 460
23 6140 8780 31.0 1.6 8.4 5.0 460
24 14330 6200 42.6 4.6 172.4 13.4 616
25 14330 6200 42.6 3.7 171.3 16.1 616

Table 2: Stack and emission data for the maximum pollution level

of problems (see [9]).

In a certain city there are three plants P1, P2 and P3, emitting the
amounts e1, e2 and e3, with 0 ≤ ei ≤ 2, (i = 1, 2, 3) of a certain pollutant. The
city ordinance states that the expected pollution must not exceed a standard
C0 under the most common weather conditions, i.e., a steady westerly wind
(θ = 0 in the Gaussian model) of constant speed U . The city would also like to
know where to place the sampling stations and their number in order to check
compliance with the ordinance. Assuming that the revenue is proportional to
the emission rate and that the total revenue of the three plants is a linear
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combination of the emissions, the optimization problem is

max
e1,e2,e3∈R

2e1 + 4e2 + e3

s.t.

3∑

i=1

eiC(x, y, 0,Hi) ≤ C0

0 ≤ ei ≤ 2, i = 1, 2, 3
∀(x, y) ∈ [−1, 4]× [−1, 4].

By setting ri = 2 − ei, i = 1, 2, 3, the previous maximization problem
can be rewritten as a minimization problem, yielding

min
r1,r2,r3∈R

2r1 + 4r2 + r3

s.t.

3∑

i=1

(1− ri)C(x, y, 0,Hi) ≤ C0

0 ≤ ri ≤ 2, i = 1, 2, 3
∀(x, y) ∈ [−1, 4]× [−1, 4].

Instead of the Sutton, the Gaussian expression is used to formulate this
problem. Using the equivalence between the Sutton (n = 1, Cx = Cy = 1) and
Gaussion expressions (see [3]) we have,

σx = σy =

{√
x
2 for x > 0

0 otherwise,

and we consider C = 0 whenever σx or σy are zero.

A wind speed of U =
(

1
2π

)2
ms−1, emission rate Q = 1gs−1 and C0 = 1

2
were considered. The effective stack heights and coordinates are given in Table
3 (no plume rise is considered).

Source ai bi hi

1 0 1 1
2 0 0 1
3 2 -1

√
2

Table 3: Stack data for vaz3.mod

The file vaz3.mod in the SIPAMPL database refers to this example.
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5. Numerical results

The numerical results were obtained on a Pentium III at 450Mhz with
128MB of RAM and a Linux Operating System (Red Hat 5.2) with AMPL
Student Version 19991027 (Linux 2.0.18).

The discretization method available in the NSIPS [16] software package
is the only one to solve problems with more than one infinite variable and
therefore was the selected one. The default options were considered, except
for the method and disc h. method selects the used method and was set to
disc hett, which changes the default method to the Hettich version of the
discretization method. disc h changes the space (and consequently the number
of points used) in the initial grid.

5.1. Minimum stack height

In this example NSIPS was used with the option disc h=1000.

Numerical results are shown in Table 4. Two threshold values for the
pollution level and two lower limits on the stack height are considered, orig-
inating three different instances of the problem. In the first one a limit of
7.7114 × 10−4 is considered (C0 = 7.7114 × 10−4gm−3) while the lower limit
on the stack height is zero (hi ≥ 0, i = 1, . . . , n). Numerical results are shown
in the first column of Table 4 and three stack have height equal to zero. Por-
tuguese legislation2 imposes a minimum stack height of 10m. The stack height
can only be inferior to 10m if some legal3 requirements are met. One way to
prove that the requirements are met is by simulation, using a proper model, of
the air pollution dispersion. In instance 2 the same limit C0 is considered while
the lower limit on the stack height is 10m (hi ≥ 10, i = 1, . . . , n). Instance 3
considers the Portuguese4 limit on sulfur dioxide C0 = 1.25× 10−4gm−3.

The constraint contour, at the solution found, are presented in Figure 2.
The contour was obtained with the MATLAB interface to SIPAMPL [11].

5.2. Maximum pollution level and sampling stations position

The same grid spacing of the previous formulation was used in the dis-
cretization method.

The results found by the discretization method was l∗ = 1.81068 ×
10−3gm−3. The constraint maximum was attained at (x, y) = (8500, 7000)
(the only active point for the constraint in the final grid). While this point is
a good position where the sampling station should be placed, other local max-
ima of the constraint could be considered, as it can be seen in the constraint

2Decree law number 352/90 from 9 November 1990.
3Decree law number 286/93 from 12 March 1993.
4Decree law number 111/2002 from 16 April 2002.
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Instance 1 Instance 2 Instance 3
h1 0.00 10.00 196.93
h2 78.26 69.09 380.06
h3 0.00 10.00 403.12
h4 153.17 152.64 428.38
h5 80.90 71.27 344.81
h6 0.00 10.00 274.58
h7 13.52 13.52 402.83
h8 161.78 161.87 396.82
h9 141.73 141.63 415.58

h10 15.05 15.05 423.99
Total 644.40 655.06 3667.10

Table 4: Numerical results for minimum stack height problem

contour figure.

The contour of the vaz2 problem constraint is presented in Figure 3.

5.3. Air pollution abatement

The numerical result found by the discretization method is
r∗ = (0.987, 0.951, 0.943) with the option disc h set to 0.05. The constraint
maxima (active constraints) were attained at (x, y)1 = (1.100, 0.125), (x, y)2 =
(1.100, 0.100) and (x, y)3 = (3.675,−0.625), where sampling stations should be
placed to check the compliance with the ordinance.

The contour of the air pollution abatement problem constraint is pre-
sented in Figure 4.

6. Conclusions

Air pollution control problems can be posed as semi-infinite program-
ming problems and efficiently solve by available software. In these problems an
objective function is to be optimized while a given threshold for the pollution,
in a given region, is to be attained. In the present paper the plume spread was
assumed to have a Gaussian distribution under mean weather conditions. The
Holland equation was used, in two academic examples, to compute the plume
rise.

The formulation of air pollution control problems as SIP allows a great
degree of freedom, since new objective and constraints can be easily introduced.
The codification of the proposed problems in the (SIP)AMPL modeling lan-
guage makes them publicly available to the research community, either to test
other objectives and/or new constraints, or as SIP test problems.
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Figure 2: Constraint contour of minimum stack height
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Figure 3: Maximum pollution level contour
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Figure 4: Air pollution abatement contour

In the presented examples, stack and emission data was collected from
literature ([3, 17]) to illustrate the proposed approach.

The discretization method implemented in the NSIPS solver was used
to solve the coded problems and proved to be efficient.
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