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Abstract. In this work, an Extended Kalman Observer is applied to the on-line determination of biomass 
concentration in a high-cell density fed-batch fermentation of Escherichia coli. 
Although the importance of this fermentation process for the biopharmaceutical industry is widely 
recognized, there are still several difficulties associated with the design of monitoring and control algorithms 
that could improve the performance of the process by decreasing the production costs and increasing the 
yield. 
In this process, biomass concentration has an important role for model predictive control, estimation of 
specific growth rates, prevention of acetate accumulation and optimization of the production of recombinant 
proteins (regarding both productivity and moment of induction). However, nowadays it is still determined 
using off-line laboratory analysis, making it of limited use for control purposes.  
For the development of the Extended Kalman Observer, a dynamical mathematical model of the process was 
used, which includes balance equations for the main state variables (biomass, glucose, acetate, dissolved 
oxygen and carbon dioxide concentrations) together with a complex kinetic model describing the 3 main 
metabolic pathways of Escherichia coli. 
The observer applied in this work requires the on-line measurement of a subset of state variables (dissolved 
oxygen and carbon dioxide concentrations) together with broth weight and gaseous mass transfer rates. 
State-of-the-art sensors were used for measuring dissolved oxygen and carbon dioxide concentrations and 
gaseous transfer rates were determined on-line using commercial gas analysers. The calculations were 
performed on-line in a developed LabVIEW data acquisition and control system. 
The extended Kalman observer exhibited a good convergence to the real values of biomass concentration, 
with a very low quadratic difference between experimental and estimated data. Also, the sampling frequency 
for the measured variables is compatible with the existing experimental data. 
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1. Introduction 
 

Nowadays, the ability to accurately and automatically control bioprocesses at their optimal state is of 

enormous importance to many industries since it can contribute for decreasing the production costs and increase 

the yield, keeping the quality of the metabolic products. However, the main difficulties in the design of 

monitoring and control systems for biological processes lie in the lack of cheap and reliable sensors capable of 

providing direct and on-line measurements of the biological state variables, together with the significant model 

uncertainty and the non-linear and time-varying nature of the system. In fact, in many practical applications, only 

some of the state variables involved and critical for efficient control are available for on-line measurement. For 

example, the dissolved oxygen concentration and gaseous flow rates are available for on-line measurement while 

the biomass, products and substrates concentrations are often available via off-line analysis.  
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State observers, also called software sensors (Dochain, 2003), represent an interesting alternative and have 

received in recent years an increased attention since they allow on-line monitoring of state variables that are not 

measurable in real time (Assis and Filho, 2000; Valdés et al., 2003; Bernard and Gouzé, 2004, Bogaerts and 

Wouwer, 2004) using a model in conjunction with a limited set of state variable measurements. 

In the literature, two classes of state observers are usually found. The first class includes the classical 

observers, such as the Luenberger, the Kalman, and the non-linear observers, which are based on the perfect 

knowledge of both model structure and parameters. On the other hand, the uncertainty in the model parameters 

can generate a large bias in the estimation of unmeasured state(s). The asymptotic observers (Bastin and 

Docahin, 1990), which constitute the second class of observers, do not require the knowledge of the process 

kinetics. Nevertheless, a potential problem concerning these observers is the dependence of the estimation 

convergence rate on the operating conditions (Dochain, 2003). 

However, in spite of the well-developed theory behind some state observers, there are not many documented 

examples where those algorithms are applied to complex bioprocesses, described by dynamical models 

containing several balance equations and with complex kinetics. 

In this work, the high-cell density fed-batch fermentation of Escherichia coli is studied in terms of 

applicability of state observers for the estimation of biomass concentration. The importance of this process for 

the biopharmaceutical industry is widely recognized, as E. coli represents the organism of choice for the 

production of many recombinant proteins. However, several state variables are not easily measured on-line 

during this process, posing additional difficulties for the implementation of control algorithms. As an example, 

in spite of its important role for model predictive control, estimation of specific growth rates, prevention of 

acetate accumulation and optimization of the production of recombinant proteins (regarding both productivity 

and moment of induction), biomass concentration is nowadays very difficult to measure on-line for this 

fermentation process. 

To carry out the on-line estimation of biomass concentration, the dissolved oxygen and carbon dioxide 

concentrations were measured with state-of-the-art sensors and gaseous transfer rates were determined on-line 

using a commercial gas analyser. This on-line information was used by the software sensors for the estimation of 

the remaining variables included in the mathematical model, which can be regarded as one step towards the 

complete characterization of the process. Simultaneously, the self-developed modular supervisory system 

facilitates the integration of different measurements, the on-line estimation of variables and the application of 

those measurements in control algorithms. 

This work is organized as follows: in the next section the dynamical model of E. coli fed-batch fermentation 

is described. The Extended Kalman Observer is presented in section 3. In section 4 material and methods are 

described. In section 5 the main results are discussed. Finally in section 6 conclusions are presented. 

 

2. Process Modelling 
 

The dynamics of a reaction network in a stirred tank bioreactor can be described by the following mass 

balance equations written in matrix form as (Bastin and Dochain, 1990): 
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( ) QFDtKr
dt
d

−+−= ξξξ ,         (1) 

in which ξ is a vector representing the n state components concentrations (ξ ∈ ℜ
n
, r is the growth rate vector 

corresponding to m reactions (r ∈ ℜ
m
), K is the matrix of yield coefficients (K ∈ ℜ

n×m
), F is the vector of feed 

rates and Q is the vector of gaseous outflow rates (F, Q ∈ ℜ
n
), D is the dilution rate (being D-1 the residence 

time). 

As previously presented (Rocha and Ferreira, 2004), during the aerobic growth of E. coli with glucose as the 

only added substrate, the microorganism can follow three main metabolic pathways: oxidative growth on 

glucose, fermentative growth on glucose, and oxidative growth on acetate, the corresponding dynamical model 

for fed-batch fermentation being represented as follows: 
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where X, S, A, O, and C represent biomass, glucose, acetate, dissolved oxygen, and dissolved carbon dioxide 

concentrations, respectively; µ1, µ2, and µ3 are the specific growth rates; ki are the yield (stoichiometric) 

coefficients; Fin and Sin are the substrate feed rate and the influent glucose concentration, respectively; W is the 

culture medium weight. CTR is the carbon dioxide transfer rate from liquid to gas phase, and OTR is the oxygen 

transfer rate from gas to liquid phase. 

The variation of the culture medium weight with the time is given by: 

 

F
dt

dW
=         (3) 

 

where F includes weight variations due to the substrate feed rate, the amount of culture removed or added during 

sampling, base and acid additions, evaporation and mass taken from the reactor due to gas exchanges, that can 

not be considered negligible in small-scale high-cell density reactors. 

However, the three metabolic pathways represented in the mathematical model do not occur simultaneously 

in the cell, originating four partial models corresponding to different metabolic regimens: 

- simultaneous oxidative and fermentative growth on glucose (µ1,µ2,>0)  

- oxidative growth on glucose (µ1>0) 

- oxidative growth on acetate and glucose simultaneously (µ1, µ3, >0) 

- oxidative growth on acetate (µ3>0)  
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3. Derivation of Observer 
 

The Kalman Observer is the optimal state estimator for a linear process if the system model and certain 

properties of the measures are available. When high nonlinearities are included in the mathematical model of the 

process, the extended version of the Kalman observer should be used (Biagiola and Figueroa, 2004). 

In order to obtain the Extended Kalman Observer (EKO), the following assumptions are made: (i) a full 

knowledge of the model is available: the structure of the reaction kinetics r(ξ,t) is completely known; also the 

numerical values of all the coefficients involved in the model (yield and kinetic coefficients) are given; and (ii) 

D, F and Q are known on-line, together with a q subset of state variables. 

This vector of state variables measured is denoted ξ1 and is related to the state of the system as follows: 

 

ξ1 = Lξ        (4) 

 

where the q×n matrix L is an elementary matrix which selects the measured components of ξ. On the other hand, 

the vector of unmeasured states is denoted ξ2, so that (ξ1,ξ2) constitutes a partition of ξ. 

A general class of state observers for nonlinear systems of the form of Eq. (1) is as follows: 

 

( ) ( )[ ]11
ˆ,ˆˆ,ˆ  

ˆ
ξξξξξ

ξ
−Ω+−+−= tQFDtKr

dt
d

        (5) 

 

where ξ̂ denotes the on-line estimate of ξ, and ( )ˆΩ ξ, t  is an n×q gain matrix depending on ξ̂ . The state 

observer design problem is then reduced to that of a reasonable choice of the gain matrix ( )ˆΩ ξ, t . To solve this 

problem, the observation error is introduced at this point, ξξ ˆ−=e , and its dynamics deduced (Bastin and 

Dochain, 1990). Considering a linearized tangent approximation of the dynamical model of the observation error 

around e=0 will give: 

 

( ) ( )ˆ ˆde M L e
dt

ξ ξ⎡ ⎤= −Ω⎣ ⎦
        (6) 

 

with: 

 

( ) ( )
ˆ

,ˆ
N

r t
M K DI

ξ ξ

ξ
ξ

ξ
=

⎡ ⎤∂
≡ −⎢ ⎥∂⎣ ⎦

        (7) 

 

where IN is the n×n identity matrix. 
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Considering that the model of Eq. (1) is exponentially observable, the design of the EKO is then reduced to 

the quadratic optimisation problem of finding the matrix ( )ˆΩ ξ, t  that minimises the mean square observation 

error taking into account the constraint of the linear tangent error model (Eqs. 6 and 7). The solution of this 

optimisation problem is given by: 

 

( ) ( ) TLtRt ,ˆ,ˆ ξξ =Ω         (8) 

 

where the n×n square symmetric matrix ( )ˆR ξ, t  is generated by the Riccati equation: 

 

( ) ( )ˆ ˆ, ,T TdR RL LR RM t M t R
dt

ξ ξ= − + +         (9) 

 

For the fed-batch E. coli fermentation considered in this work, the exponential observability condition 

(Bastin and Dochain, 1990) was studied for 9 different combinations of measured and estimated variables for 

checking the applicability of the EKO for this particular process and it can be concluded that the EKO can be 

applied to E. coli fed-batch fermentation in a limited number of situations. However, it is clear that, with state-

of-the-art sensors for measuring dissolved oxygen and carbon dioxide, it is possible to estimate on-line biomass 

and other state variables, if the cells do not exhibit only the oxidative growth on acetate or the oxidative growth 

on glucose regimens. 

Taking the example of measuring on-line the state variables O and C, the following state partition is chosen: 

[ ]COT =1ξ  and [ ]ASXT =2ξ . The matrix L is as follows: 
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The matrix ( ) ( )ˆ ˆ ˆ ˆ ˆˆ , , , ,ξ =M M X S A O C  is given by Eq. (7), where: 
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The observer is then written from Eqs. (1) and (5) with the last term of Eq. (5) defined as: 
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The gain ˆ ˆ ˆ ˆˆ( , , , , )X S A O CΩ  is calculated from Eq. (8) as follows: 
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with the matrix R defined as: 
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The only tuning parameters for this observer are the initial values of the elements of this matrix, necessary 

for the numerical solution of Eq. (9). 

It should be remarked that the performance of the EKO is highly dependent on the accuracy of the process 

model, requiring a large design effort. Moreover, numerical problems and convergence difficulties may exist due 

to approximations associated with model linearization. However, it is a useful algorithm for many practical 

estimation problems. 

The performance of the observer was evaluated by calculating the quadratic difference between experimental 

and estimated data, according to the following equation: 

 
2

np
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ξ ξ
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where np is the number of experimental points and ξexp and ξest are experimental and estimated values of the state 

variable ξ. 
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4. Materials and Methods 
 

4.1. Fermentation conditions 

The experimental conditions for the fermentation process are described elsewhere (Rocha and Ferreira, 

2002).  

The gas transfer rates are calculated from gas analysis data obtained with a Tandem gas analyser (Adaptive 

Biosystems, UK) connected to the exhaust gas line of the fermenter and also to the inlet aeration line. 

 

 

4.2. Hardware and software 

On-line OTR and CTR calculations were performed through a C script imbedded in a LabVIEW (version 

7.0) program that also acquired data from the fermenter Digital Control Unit. 

The model simulations were performed by solving the differential equations of Eq. (2) using the MATLAB 

version 6 subroutine ODE23s. The implementation of the observers using both experimental and simulated data 

was conducted using the Euler integration method. The observability of the model, together with most of the 

mathematical operations behind the design of the state observers was performed using the Symbolic Math 

toolbox running in MATLAB 6. 

 

5. Results and Discussion 
 

In order to study the robustness of the developed observer algorithm, simulated “real” values of the state 

variables, obtained by integration of the differential equation of Eq. (2), were used. These “real” values were 

then corrupted with white noise, according to the standard deviations typically found in this process at the 

authors’ lab, originating “experimental” values. Then, the observer algorithm was used to obtain the “estimated” 

variables from the “experimental” data corresponding to the measured variables. Figure 1 presents a simulation 

result where the state variables (biomass, glucose and acetate) are well estimated, in spite of the introduction of 

noise, showing the robustness of the EKO. 

The EKO was validated using experimental data. Although the objective of this work was to estimate the 

biomass concentration, the extended Kalman observer exhibited not only a good performance with a very low 

quadratic difference (Eq. 15) between experimental and estimated data for biomass (1.84) but also a satisfactory 

performance for the estimation of both glucose and acetate concentrations, giving quadratic differences between 

experimental and estimated data of 105.99 and 11.71, respectively. 

Figure 2 shows the on-line data used to estimate the biomass, glucose and acetate concentrations (Figure 3). 

The variables measured on-line were O, C, CTR, OTR, Fin and W, while the estimated variables were X, S and 

A. Figure 3 shows a good agreement between the estimated values and off-line measurements obtained for 

biomass, glucose and acetate. 
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Fig. 1. Performance of the EKO regarding the time evolution of relevant variables in a fed-batch fermentation of 

E. coli. 
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Fig. 2. State observation in a fed-batch fermentation of E. coli: on-line data. 
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A 20 h-1 sampling frequency for the measured variables allowed the observer algorithm to converge, which is 

compatible with the existing experimental acquisition data. This sampling frequency is also adequate if other 

sensors, like the developed FIA system (Rocha and Ferreira, 2002), are used to measure on-line other state 

variables, like acetate. 

Moreover, although in most applications of this type of observers the tuning parameters (the initial values of 

the Riccati equation) represent a very time-consuming task, in this work zero initial values for all the tuning 

parameters allowed the convergence and stability of the EKO.  

0 2 4 6 8 10 12
0
2
4
6
8

10
12

Time [h]

Bi
om

as
ss

 [g
/k

g]

0 2 4 6 8 10 12
0

2

4

6

8

Time [h]

G
lu

co
se

 [g
/k

g]

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

Time [h]

A
ce

ta
te

 [g
/k

g]

experimental data estimated values
 

Fig. 3. State observation in a fed-batch fermentation of E. coli: estimated variables. 

 

6. Conclusions 
 

During a fed-batch E. coli fermentation process, variables such as biomass concentration are determined 

using off-line laboratory analysis, making them of limited use for control purposes. However, these variables can 

be on-line estimated using software sensors. 
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In this work, an Extended Kalman Observer algorithm was applied to the estimation of biomass, and its 

performance and flexibility was evaluated. The developed algorithm only requires on-line measurements of 

dissolved oxygen and carbon dioxide, together with the gaseous transfer rates, which represent common 

measurements both in industrial and academic facilities. The sampling frequency required is also compatible 

with most existing data acquisition systems. 

In a first stage, the robustness of the algorithm regarding noise in the measured variables was checked with 

numerical simulations. The experimental validation was then performed, and a good agreement between 

estimated and experimental data was obtained, shown by the low quadratic error calculated.  

Additionally, good results were obtained for the estimation of glucose and acetate concentrations, showing 

the flexibility of the method. 
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