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Abstract

In this paper, we consider the product of matrices PAQ, where A is
von Neumann regular and there exist P ′ and Q′ such that
P ′PA = A = AQQ′. We give necessary and sufficient conditions in
order to PAQ be Moore-Penrose invertible, extending known charac-
terizations. Finally, an application is given to matrices over separative
regular rings.

1 Introduction

Let R be an arbitrary ring with unity 1, Mm×n (R) be the set of m × n
matrices and Mm (R) the ring of m × m matrices over R. Let * be an
involution, see [8], on the matrices over R. Given an m×n matrix A over R,
A is (von Neumann) regular if there exists an n×m matrix A− such that

AA−A = A.

The set of von Neumann inverses of A will be denoted by A {1}. That is,

A {1} = {X ∈Mn×m (R) : AXA = A} .
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A is said to be Moore-Penrose invertible with respect to * if there exists a
(unique) n×m matrix A† such that:

AA†A = A,

A†AA† = A†,(
AA†

)∗
= AA†,(

A†A
)∗

= A†A.

Also, if m = n, then the group inverse of A exists if there is a (unique) A#

such that

AA#A = A,

A#AA# = A#,

AA# = A#A.

In this paper, we give an alternative proof of the main result from [6],
as well as a more general formula for the computation of the Moore-Penrose
inverse of a matrix, extending results from [9], [6] and [3]. As an applica-
tion we derive the Moore-Penrose inverse of matrices over separative regular
rings, using recent results that appear in [1].

2 Results

The following lemma was proved in [7] and will provide a simpler and shorter
proof of [6, Theorem 1] in the next theorem.

Lemma 1. Let A ∈ Mm×n (R) be a regular matrix and B ∈ Mm (R) such
that AX = B is a consistent matrix equation. Then the following conditions
are equivalent:

1. Γ = BAA− + Im −AA− is an invertible matrix for one and hence all
choices of A− ∈ A {1} .

2. Ω = A−BA + In −A−A is an invertible matrix for one and hence all
choices of A− ∈ A {1} .

Moreover,
Ω−1 = A−AA−Γ−1A + In −A−A

and also
Γ−1 = AΩ−1A−AA− + Im −AA−.
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Theorem 2. Let T be an m × n matrix over R. The following conditions
are equivalent:

1. T is von Neumann regular and TT ∗TT− + Im − TT− is invertible.

2. T is von Neumann regular and T−TT ∗T + In − T−T is invertible.

3. The Moore-Penrose inverse T † exists w.r.t.*.

In that case, besides the expressions for T † in [6],

T † = T ∗ (
TT ∗TT− + Im − TT−)∗−1

=
(
T−TT ∗T + In − T−T

)∗−1
T ∗.

Proof. (1) ⇔ (2) follows from Lemma 1, taking B = TT ∗.
(3) ⇒ (1) Let T † and T−, respectively, be the Moore-Penrose inverse

and a von Neumann inverse of T. Note that

T †∗T † (
TT ∗TT−)

= T †∗T ∗T †∗T ∗TT−

= T †∗T ∗TT−

= TT †TT−

= TT−

and (
TT ∗TT−)

TT †T †∗T− = TT ∗TT †T †∗T−

= TT ∗T †∗T ∗T †∗T−

= TT ∗T †∗T−

= TT †TT−

= TT−.

Therefore,

Im =
(
T †∗T †TT− + Im − TT−

) (
TT ∗TT− + Im − TT−)

=
(
TT ∗TT− + Im − TT−) (

TT †T †∗T− + Im − TT−
)

and TT ∗TT− + Im − TT− is invertible.
(1) ⇒ (3) Let U = TT ∗TT−+ Im−TT− and V = T−TT ∗T + In−T−T.

Assume U is invertible, and consequently V invertible. As

UT = TT ∗T = TV

3



then
TT ∗ (

TV −1
)

= T =
(
U−1T

)
T ∗T,

and therefore T is Moore-Penrose invertible (see [8, Lemma 3]) with

T † =
(
TV −1

)∗
T

(
U−1T

)∗
=

(
U−1T

)∗
T

(
U−1T

)∗
=

(
U−1TT ∗U−1T

)∗
=

(
U−1TT ∗U−1TT−T

)∗
=

(
U−1TT ∗TT−U−1T

)∗
=

(
TT−U−1T

)∗
=

(
U−1T

)∗
.

since UT = TV , U commutes with TT− and U−1TT ∗T = T. As U−1T =
TV −1,

T † =
(
TV −1

)∗
.

2

Remark. Assume Mm×n (R) is ∗-regular, that is, every matrix A over R
is regular (or equivalently, R is a regular ring) and

A∗A = 0 ⇒ A = 0

holds. This implication is equivalent to A is ∗-cancellable, i.e.,

A∗AB = A∗AC ⇒ AB = AC,

B′AA∗ = C ′AA∗ ⇒ B′A = C ′A,

where B,B′, C, C ′ have appropriate sizes. In this case, and by a result
of R. Puystjens and D.W. Robinson (see [8, Lemma 3]), all matrices
over R are Moore-Penrose invertible. So, for any T belonging to a
∗-regular Mm×n (R) and for every choice of T− ∈ T {1} ,

U = TT ∗TT− + Im − TT−,

V = T−TT ∗T + In − T−T

are invertible matrices.

Theorem 3. Let A ∈ Mm×n (R) with von Neumann inverse A−. Let P ∈
Mp×m (R) and Q ∈Mn×q (R) . The following conditions are equivalent:
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1. Ũ = AQQ∗A∗P ∗PAA− + Im −AA− is invertible.

2. Ṽ = A−AQQ∗A∗P ∗PA + In −A−A is invertible.

3. (PAQ)† exists w.r.t. * and there exist P ′, Q′ such that P ′PA = A =
AQQ′.

Moreover,

(PAQ)† =
(
PŨ−1AQ

)∗
=

(
PAṼ −1Q

)∗
.

Proof. (1) ⇔ (2).
If Ũ is invertible then AQQ∗A∗P ∗AA− is invertible in the ring AA−MmAA−.
That is, there exists X ∈ AA−MmAA− for which

AQQ∗A∗P ∗PAA−X = AA− = XAQQ∗A∗P ∗PAA−.

Then

A−AQQ∗A∗P ∗PA
(
A−XA

)
= A−A = A−XAQQ∗A∗P ∗PA

which implies A−XA ∈ A−AMnA−A is an inverse of A−AQQ∗A∗P ∗PA in
A−AMnA−A. Therefore, A−AQQ∗A∗P ∗PA + In + A−A is an invertible
matrix.

(3) ⇒ (1).
In the first place, we remark that

PAQ (PAQ)∗+I−PAQ (PAQ)† = PAQ (PAQ)∗ PAQ (PAQ)†+I−PAQ (PAQ)†

has inverse
((PAQ)∗)† (PAQ)† + I − PAQ (PAQ)† .

As (PAQ)† is in particular a von Neumann inverse of PAQ, then

PAQ (PAQ)∗ PAQ (PAQ)− + I − PAQ (PAQ)−

is invertible for any choice of (PAQ)− ∈ PAQ{1}.
It is clear that Q′A−P ′ is a von Neumann inverse of PAQ. As (PAQ)†

exists, then

PAQ (PAQ)∗ PAQ
(
Q′A−P ′) + Ip − PAQ

(
Q′A−P ′)
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is invertible, i.e.,

K = PAQQ∗A∗P ∗PAA−P ′ + Ip − PAA−P ′

is invertible. Setting E = PAA−P ′, and since E2 = E and K is invertible,
then

W = PAQQ∗A∗P ∗PAA−P ′

= EKE

is invertible in the ring EMp (R) E. So, there exists a X ∈ EMp (R) E such
that

E = WX, (1)
E = XW. (2)

By (1), and as EX = X,

PAA−P ′ = E

= WX

= WEX

=
(
WPAA−)

P ′X

=
(
PAQQ∗A∗P ∗PAA−)

P ′X.

Multiplying on the left by P ′ and on the right by PAA−, we have(
AQQ∗A∗P ∗PAA−)

P ′XPAA− = AA−

and therefore[(
AA−)

AQQ∗A∗P ∗P
(
AA−)] [(

AA−)
P ′XP

(
AA−)]

= AA− (3)

By (2), and as XE = X,

PAA−P ′ = E

= XW

= XEW

= XPAA−P ′W

= XP
(
AQQ∗A∗P ∗PAA−P ′) .

Multiplying on the left by AA−P ′ and on the right by PAA−,[(
AA−)

P ′XP
(
AA−)] [(

AA−)
AQQ∗A∗P ∗P

(
AA−)]

= AA−. (4)
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Combining (3) and (4), it follows that AQQ∗A∗P ∗PAA− is invertible in the
ring AA−Mm (R) AA− and therefore AQQ∗A∗P ∗PAA− + Im −AA− is an
invertible matrix.

(1) ⇒ (3) If Ũ = AQQ∗A∗P ∗PAA− + Im − AA− is invertible, then as
AA−Ũ = AQQ∗A∗P ∗PAA−,

A = AA−A

= AA−Ũ Ũ−1A

= AQ
(
Q∗A∗P ∗PAA−Ũ−1A

)
and we take Q′ = Q∗A∗P ∗PAA−Ũ−1A. Moreover, since ŨA = AQQ∗A∗P ∗PA
and Ũ is invertible,

A =
(
Ũ−1AQQ∗A∗P ∗

)
PA

and we can take P ′ = Ũ−1AQQ∗A∗P ∗. To show that (PAQ)† exists it is
sufficient to show that

PAQ (PAQ)∗ PAQ (PAQ)− + Ip − PAQ (PAQ)−

is invertible for one choice of (PAQ)− , in this case for (PAQ)− = Q′A−P ′.
As Ũ is invertible in the ring Mm (R) then AA−ŨAA− is invertible in the
ring AA−Mm (R) AA−. So, there exists a X in AA−Mm (R) AA− such that

X
(
AA−)

Ũ
(
AA−)

=
(
AA−)

Ũ
(
AA−)

X = AA−.

So, [(
AA−)

X
(
AA−)] [(

AA−)
AQQ∗A∗P ∗P

(
AA−)]

= AA−,

and since AA− = (AA−)2 = (AA−) P ′P (AA−) = P ′PAA− and A = P ′PA,
it follows that[(

AA−P ′) PAA−XP ′ (PAA−P ′)] [(
PAA−P ′) PAQQ∗A∗P ∗ (

PAA−)]
= AA−.

Multiplying on the left by P and on the right by P ′,[(
PAA−P ′) PAA−XP ′ (PAA−P ′)] [(

PAA−P ′) PAQQ∗A∗P ∗ (
PAA−P ′)] = PAA−P ′.

Analogously, as[(
AA−)

AQQ∗A∗P ∗P
(
AA−)] [(

AA−)
X

(
AA−)]

= AA−

then[(
AA−P ′) PAQQ∗A∗P ∗ (

PAA−P ′)] [(
PAA−P ′) PAA−XP ′ (PAA−)]

= AA−,
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and multiplying on the left by P and on the right by P ′,[(
PAA−P ′) PAQQ∗A∗P ∗ (

PAA−P ′)] [(
PAA−P ′) PAA−XP ′ (PAA−P ′)] = PAA−P ′.

Therefore, (
PAA−P ′) PAQQ∗A∗P ∗ (

PAA−P ′)
is invertible in the ring (PAA−P ′)Mp (R) (PAA−P ′) and consequently(

PAA−P ′) PAQQ∗A∗P ∗ (
PAA−P ′) + Ip − PAA−P ′

is an invertible matrix. That is,

PAQ (PAQ)∗ PAQ
(
Q′A−P ′) + Ip − PAQ

(
Q′A−P ′)

is an invertible matrix.
Let U = PAQ (PAQ)∗ PAQ (Q′A−P ′)+Ip−PAQ (Q′A−P ′) . As UPAA− =

PAA−Ũ and the invertibility of Ũ implies the invertibility of U, then

U−1PAA− = PAA−Ũ−1.

Furthermore, and since AA− commutes with Ũ , then AA−Ũ−1 = Ũ−1AA−.
So,

(PAQ)† =
(
U−1PAA−AQ

)∗
=

(
PAA−Ũ−1AQ

)∗
=

(
PŨ−1AQ

)∗
.

In addition, ŨA = AṼ and thus AṼ −1 = Ũ−1A. So,

(PAQ)† =
(
PAṼ −1Q

)∗
. 2

Remark. Using the same notation of the previous proof, it is known (see
[6]) that if U (and therefore V ) is invertible then PAQ is Moore-
Penrose invertible with

(PAQ)† = (PAQ)∗ (UU∗)−1 (PAQ (PAQ)∗) .

As UPAA− = PAA−Ũ and the invertibility of Ũ implies the invert-
ibility of U, then

U−1PAA− = PAA−Ũ−1.
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Furthermore, and since AA− commutes with Ũ , then AA−Ũ−1 =
Ũ−1AA−. So,

(PAQ)† = Q∗A∗P ∗U∗−1U−1PAQ (PAQ)∗

= Q∗A∗Ũ∗−1
(
A−)∗

A∗P ∗PAA−Ũ−1AQ (PAQ)∗

= Q∗A∗Ũ∗−1P ∗PŨ−1AQ (PAQ)∗

= (AQ)∗
(
PŨ−1

)∗
PŨ−1AQ (PAQ)∗

=
(
PŨ−1AQ

)∗
PŨ−1AQ (PAQ)∗ .

In addition, ŨA = AṼ and thus AṼ −1 = Ũ−1A. So,

(PAQ)† =
(
PAṼ −1Q

)∗
PAṼ −1Q (PAQ)∗ .

Theorem 4. If PAQ is a matrix product for which there exist matrices P ′

and Q′ such that P ′PA = A = AQQ′, then the Moore-Penrose inverse of
PAQ exists if and only if (PA)1,3 and (AQ)1,4 exist, in which case

(PAQ)† = (AQ)1,4 A (PA)1,3 .

Proof.
Assume, in the first place, (PA)1,3 and (AQ)1,4 exist. Then

AQ = AQ (AQ)1,4 AQ = AQ (AQ)∗
(
(AQ)1,4

)∗
,

and hence
PAQ = PAQ (PAQ)∗

(
P ′)∗ (

(AQ)1,4
)∗

.

Analogously,

PA = PA (PA)1,3 PA =
(
(PA)1,3

)∗
(PA)∗ PA

and hence
PAQ =

(
(PA)1,3

)∗ (
Q′)∗ (PAQ)∗ PAQ.

We therefore have,

(PAQ)† = (AQ)1,4 P ′PAQQ′ (PA)1,3 = (AQ)1,4 A (PA)1,3 .

Conversely, assume (PAQ)† exists. By one hand,

PAQ = PAQ (PAQ)∗
(
(PAQ)†

)∗
9



which implies AQ = AQ (AQ)∗ X is a consistent matrix equation on X. We
will show that X∗ ∈ AQ {1, 4} . Indeed it is a von Neumann inverse of AQ
as

AQ = AQX∗AQ (AQ)∗ X = AQX∗AQ,

and the idempotent X∗AQ is symmetric since

X∗AQ = X∗AQX∗AQ

= X∗AQX∗AQ (AQ)∗ X

= X∗AQ (AQ)∗ X.

Similar arguments show that (PA)1,3 exists if (PAQ)† exists. 2

3 Matrices over separative regular rings

Throughout this section, R is a separative regular ring, i.e., for any finitely
generated projective R-modules A and B, the following cancellation property
holds:

A⊕A ∼= A⊕B ∼= B ⊕B ⇒ A ∼= B.

A recent result states that every square matrix over a separative regular ring
admits a diagonal reduction, i.e., is equivalent to a diagonal matrix (see [1,
Theorem 2.5]). This means that for square matrices over separative regular
rings the Moore-Penrose inverse can be characterized by [6, Theorem 2].

For nonsquare matrices over separative regular rings the characterization
of the Moore-Penrose inverse can now be done in the following way:

Let Am×n ∈ Mm×n (R) , with m < n. Then we can complete it to
a square matrix by adding zeros, and it follows from [1] that there exist
invertible matrices P,Q and a diagonal matrix D such that[

Am×n

0(n−m)×n

]
= PDQ. (5)

Therefore
Am×n =

([
Im 0m×(n−m)

]
P

)
DQ. (6)

We are now in the conditions of Theorem 3 since P ′ = P−1

[
Im

0(n−m)×m

]
is a matrix such that

P ′ ([ Im 0m×(n−m)

]
P

)
D = D.
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We therefore can apply Theorem 3 to the factorization (6). That is, A†
m×n

exists if and only if

DQ
[

A∗
n×m 0n×(n−m)

]
PDD− + In −DD−

is invertible for one and hence all choices of von Neumann inverses D− of
D.

For the case n < m, the outline of the application is analogous.

Acknowledgment
I want to thank Professor R. Puystjens for comments and for suggesting

the application to matrices over separative regular rings.

References

[1] P. Ara, K.R. Goodearl, K.C. O’Meara and E. Pardo. Diagonalization
of matrices over regular rings. Linear Algebra and Its Applications,
265:147-163, 1997.

[2] S.L. Campbell and C.D. Meyer, Jr. Generalized Inverses of Linear
Transformations, Dover, 1979.

[3] M.C. Gouveia and R. Puystjens. About the group inverse and the
Moore-Penrose inverse of a product. Linear Algebra and Its Applica-
tions, 150:361-369, 1991.

[4] R.E. Hartwig, More on the Souriau-Frame algorithm and the Drazin
inverse. SIAM J. Appl. Math., 31(1):42-46, 1976.

[5] D. Huylebrouck, R. Puystjens and J. van Geel. The Moore-Penrose
inverse of a matrix over a semi-simple artinian ring. Linear and Multi-
linear Algebra, 16:239-246, 1984
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