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Abstract

In this paper, we consider the product of matrices PAQ, where A is
von Neumann regular and there exist P’ and @’ such that
P'PA = A= AQQ'. We give necessary and sufficient conditions in
order to PAQ be Moore-Penrose invertible, extending known charac-
terizations. Finally, an application is given to matrices over separative
regular rings.

1 Introduction

Let R be an arbitrary ring with unity 1, My, xn (R) be the set of m x n
matrices and M,, (R) the ring of m x m matrices over R. Let * be an
involution, see [8], on the matrices over R. Given an m x n matrix A over R,
A is (von Neumann) regular if there exists an n x m matrix A~ such that

AATA = A
The set of von Neumann inverses of A will be denoted by A {1}. That is,

A{1} ={X € Mpxm (R) : AXA= A}.
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A is said to be Moore-Penrose invertible with respect to * if there exists a
(unique) n x m matrix A such that:

AATA = A,

ATAAT = Af,
(AAT)* — AAl
(ATA)* — AlA

Also, if m = n, then the group inverse of A exists if there is a (unique) A%
such that

AATA = A,
ATAAT = AF,
AAT = AT A.

In this paper, we give an alternative proof of the main result from [6],
as well as a more general formula for the computation of the Moore-Penrose
inverse of a matrix, extending results from [9], [6] and [3]. As an applica-
tion we derive the Moore-Penrose inverse of matrices over separative regular
rings, using recent results that appear in [1].

2 Results

The following lemma was proved in [7] and will provide a simpler and shorter
proof of [6, Theorem 1] in the next theorem.

Lemma 1. Let A € My,xn (R) be a regular matriz and B € My, (R) such
that AX = B is a consistent matriz equation. Then the following conditions
are equivalent:

1. I'=BAA™ + I, — AA™ is an invertible matriz for one and hence all
choices of A~ € A{1}.

2. Q=A"BA+ I, — A™ A is an invertible matrix for one and hence all
choices of A= € A{1}.

Moreover,
QO l=A"AAT 'A+1,-AA

and also

' = AQ YA AA~ + 1, — AA™.



Theorem 2. Let T be an m X n matriz over R. The following conditions
are equivalent:

1. T is von Neumann reqular and TT*TT~ + I, —TT~ 1is invertible.
2. T is von Neumann regular and T~TT*T + I, — T~T is invertible.

3. The Moore-Penrose inverse TT exists w.r.t. *.

In that case, besides the expressions for TT in [6],

™ = T(TTTT + 1, —TT™)""

— (T"TT"T+1L,-TT) "1
Proof. (1) & (2) follows from Lemma 1, taking B = T'T™.
(3) = (1) Let TT and T, respectively, be the Moore-Penrose inverse
and a von Neumann inverse of T'. Note that
T (TTTTT) = TUTTHTTT
= T TT
= TT'TT"
= TT~
and
(rT*TT7) TT'THT = TT*TT'T™T
= TT*THT*T™T~
= TT*T™T~
= TT'TT
= TT".
Therefore,
Ly = (TVT'TT™ 4 Ly = TT7) (TT°TT™ + I, — TT")
= (IT*TT™ + L = TT7) (TT'THT™ 4 1, — TT7)

and TT*TT~ + I, — TT is invertible.
=@ Let U=TT*TT  + 1, - TT  and V =T"TT*T+1,-T"T.
Assume U is invertible, and consequently V' invertible. As

UTr=TT"T =TV



then
TT*(TV™') =T = (U'T) T*T,

and therefore T' is Moore-Penrose invertible (see [8, Lemma 3]) with
" = (v )T (UT)”
(u=tr) T (Ut
(u-trrruTtT)”
= (U 'rTuTtrTT)
(
(

since UT = TV, U commutes with 7T~ and U 'TT*T = T. As U~'T =
TV,

T = (TVv-1)".
Od

Remark. Assume M,y (R) is *-regular, that is, every matrix A over R
is regular (or equivalently, R is a regular ring) and

A"A=0=A=0
holds. This implication is equivalent to A is *-cancellable, i.e.,

A*AB = A*AC = AB = AC,

B'AA* = C'AA* = B'A=C'A,
where B, B’, C, C' have appropriate sizes. In this case, and by a result
of R. Puystjens and D.W. Robinson (see [8, Lemma 3]), all matrices

over R are Moore-Penrose invertible. So, for any 7' belonging to a
s-regular M, (R) and for every choice of T~ € T {1},

u = T7"177" + 1, —TT™,
V = T"TT"T+1,-TT

are invertible matrices.

Theorem 3. Let A € Myyxn (R) with von Neumann inverse A~. Let P €
Mpxm (R) and Q € My xq (R). The following conditions are equivalent:



1. U= AQQ*A*P*PAA~ + I, — AA~ is invertible.
2. V=A"AQQ*A*P*PA+ I, — A~ A is invertible.

3. (PAQ)' emists w.r.t. * and there exist P, Q' such that P’ PA = A =
AQQ.

Moreover,

(PAQ)T = (Pﬁ—lAQ)*
- (PAf/*lQ)*.
Proof. (1) < (2).

If U is invertible then AQQ*A*P*AA~ is invertible in the ring AA~ M., AA™.
That is, there exists X € AA~M,, AA~ for which

AQQ*A*P*PAA™X = AA™ = XAQQ*A*P*PAA™.
Then
ATAQQTA*P*PA (A*XA) =ATA=A"XAQQ A*P*PA

which implies AT XA € A—AM,A™ A is an inverse of A-AQQ*A*P*PA in
A" AM, A7 A. Therefore, A—AQQ*A*P*PA + I, + A~ A is an invertible
matrix.

(3) = (1).
In the first place, we remark that

PAQ (PAQ) +I—PAQ (PAQ)" = PAQ (PAQ)* PAQ (PAQ) +1—-PAQ (PAQ)!

has inverse

(PAQ)")' (PAQ)" +1 - PAQ(PAQ)'.
As (PAQ)Jr is in particular a von Neumann inverse of PAQ), then
PAQ (PAQ)" PAQ (PAQ)” +1— PAQ (PAQ)”

is invertible for any choice of (PAQ)™ € PAQ{1}.
It is clear that Q’A~ P’ is a von Neumann inverse of PAQ. As (PAQ)
exists, then

PAQ (PAQ)" PAQ (Q'A™P') + I, — PAQ (Q'A™P')



is invertible, i.e.,

K = PAQQ*A*P*PAA™P' + I, — PAA™P'

is invertible. Setting E = PAA~P’, and since E? = E and K is invertible,

then

W =

PAQQ*A*P*PAA™P'
EKE

is invertible in the ring EM,, (R) E. So, there exists a X € EM,, (R) E such

that

By (1), and as EX = X,

PAA™P =

Multiplying on the left by P’

E = WX,
E = XW.
E

WX

WEX
(WPAA™) P'X

(PAQQ*A*P*PAA™) P'X.

and on the right by PAA™, we have

(AQQ*A*P*PAA™) P’XPAA™ = AA~

and therefore

[(AA7) AQQR*A*P*P (AA7)] [(AA™) P'XP (AA7)] = AA™

By (2), and as XFE = X,
PAA™P =

E
XW

XEW

XPAA~P'W

XP (AQQ*A*P*PAA™P').

Multiplying on the left by AA~ P’ and on the right by PAA™,

[(AA7) P'XP (AA7)] [(AA™) AQQ*A*P*P (AA™)] = AA~.
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Combining (3) and (4), it follows that AQQ*A*P*PAA™ is invertible in the
ring AA~ M,, (R) AA~ and therefore AQQ*A*P*PAA~ + I, — AA™ is an
invertible matrix._
(1) = 3) U = AQQ*A*P*PAA™ + I, — AA™ is invertible, then as
AA~U = AQQ*A*P*PAA-,
A = AATA

= AATUU'A

— AQ (Q*A*P*PAA—ﬁ—lA)
and we take Q' = Q*A*P*PAA~U ' A. Moreover, since UA = AQQ*A*P*PA
and U is invertible,

A= (ﬁ*lAQQ*A*P*) PA

and we can take P’ = ﬁ_lAQQ*A*P*. To show that (PAQ)T exists it is
sufficient to show that

PAQ (PAQ)* PAQ (PAQ)™ + I, — PAQ (PAQ)~

is invertible for one choice of (PAQ)™ , in this case for (PAQ)™ = Q"A~P".
As U is invertible in the ring M, (R) then AA"UAA™ is invertible in the
ring AA~ M,,, (R) AA™. So, there exists a X in AA~M,,, (R) AA~ such that

X (AA7)U (AA7) = (AA™) U (AA7) X = A4~

w [(AA7) X (AA7)] [(AA™) AQQ A*P*P (AA™)] = AA~,

and since AA~ = (AA™)? = (AA") P'P(AA~) = P'PAA~ and A = P'PA,
it follows that

[(AA~P') PAA=XP' (PAA™P')] [(PAA™P') PAQQ*A*P* (PAA™)] = AA™.
Multiplying on the left by P and on the right by P,
[(PAA™P") PAAXP' (PAA™P")] [(PAA™P') PAQQ*A*P* (PAA™P')] = PAA™P".
Analogously, as

[(AA7) AQQ*A*P*P (AA7)] [(AA™) X (AA7)] = AA™
then

[(AA™P") PAQQ*A*P* (PAA™P")| [(PAA™P') PAA"XP' (PAA™)] = AA™,
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and multiplying on the left by P and on the right by P/,
[(PAA™P') PAQQ*A*P* (PAA™P')] [(PAA™P') PAAXP' (PAA™P')] = PAA™P'.
Therefore,
(PAA™P') PAQQ*A*P* (PAA™ P')
is invertible in the ring (PAA~P’) M, (R) (PAA~P’) and consequently
(PAA™P') PAQQ*A*P* (PAAP') + I, — PAA™ P/
is an invertible matrix. That is,

PAQ (PAQ)" PAQ (Q'A™P') + I, — PAQ (Q'A™P')

is an invertible matrix.
Let U = PAQ (PAQ)" PAQ (Q'A"P")+I,—PAQ (Q’A™P') . AsUPAA™ =
PAA™U and the invertibility of U implies the invertibility of U, then

U 'PAA~ = PAA UL

Furthermore, and since AA™ commutes with U , then AA U1 =U1AA".
So,

(PAQ)! = (UT'PAA™AQ)"
_ (PAA—ﬁ—lAQ)*
- <P(7*1AQ)* .
In addition, UA = AV and thus AV~ = U~ A. So,
(PAQ) = (PAXN/‘IQ)*. 0

Remark. Using the same notation of the previous proof, it is known (see
[6]) that if U (and therefore V') is invertible then PAQ is Moore-
Penrose invertible with

(PAQ)" = (PAQ)* (UU*)! (PAQ (PAQ)").

As UPAA~ = PAA-U and the invertibility of U implies the invert-
ibility of U, then B
U 'PAA™ = PAA U



Furthermore, and since AA™ commutes with U , then AAUL =
U TAA~. So,

(PAQ)' = Q*A*P*U* W 'PAQ (PAQ)*
= QAU (A7) A*P*PAA"U'AQ (PAQ)”
= Q*A'U*'P*PU'AQ (PAQ)*
— (4Q) (Pﬁ—l)* PULAQ (PAQ)"
_ (Pﬁ*lAQ)* PULAQ (PAQ)".
In addition, UA = AV and thus AV =U"1A4. So,

(PAQ)! = (PA17_1Q>* PAV-1Q (PAQ)*.

Theorem 4. If PAQ is a matrixz product for which there exist matrices P’
and Q' such that PPPA = A = AQQ’, then the Moore-Penrose inverse of
PAQ exists if and only if (PA)I’3 and (AQ)1’4 exist, in which case

(PAQ)! = (AQ)™* A (PA)

Proof.
Assume, in the first place, (PA)"® and (AQ)'* exist. Then

*
’

4Q = 4Q (AQ)"* AQ = AQ (AQ)" ((4Q)™*)

and hence y
PAQ = PAQ(PAQ)" (P')" ((4Q)™*) .
Analogously,
PA=PA(PA)' PA= ((PA)L?’)* (PA)* PA
and hence

PAQ = ((PA)1’3)* (Q)" (PAQ)* PAQ.
We therefore have,
(PAQ)" = (AQ)"* P'PAQQ (PA)"® = (AQ)"* A(PA)"*.

Conversely, assume (PAQ)T exists. By one hand,
PAQ = PAQ (PAQ)" ((PAQ)")
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which implies AQ = AQ (AQ)" X is a consistent matrix equation on X. We
will show that X* € AQ {1,4}. Indeed it is a von Neumann inverse of AQ
as

AQ = AQX*AQ (AQ)* X = AQX*AQ,

and the idempotent X*AQ is symmetric since

X*AQ = X*AQX*AQ
= X*AQX*AQ(AQ)" X
= X*AQ(AQ)* X.

Similar arguments show that (PA)"? exists if (PAQ)" exists. O

3 Matrices over separative regular rings

Throughout this section, R is a separative regular ring, i.e., for any finitely
generated projective R-modules A and B, the following cancellation property
holds:

APA=ZAeB=ZB®B=A=B8B.

A recent result states that every square matrix over a separative regular ring
admits a diagonal reduction, i.e., is equivalent to a diagonal matrix (see [1,
Theorem 2.5]). This means that for square matrices over separative regular
rings the Moore-Penrose inverse can be characterized by [6, Theorem 2].

For nonsquare matrices over separative regular rings the characterization
of the Moore-Penrose inverse can now be done in the following way:

Let Apxn € Muxn (R), with m < n. Then we can complete it to
a square matrix by adding zeros, and it follows from [1] that there exist
invertible matrices P, ) and a diagonal matrix D such that

{ Amxn ] ~ PDO. (5)

O(n—m)xn

Therefore

We are now in the conditions of Theorem 3 since P’ = P~} [ ém }
(n—m)xm

is a matrix such that

P'([ Im Opx(n—m) | P) D =D.
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T

mxXn

We therefore can apply Theorem 3 to the factorization (6). That is, A
exists if and only if

DQ[ Ahsm Onx(nem) | PDD™ 4+ I, — DD~

is invertible for one and hence all choices of von Neumann inverses D~ of
D.
For the case n < m, the outline of the application is analogous.
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