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Abstract

An n × n matrix is called an N -matrix if all its principal minors are negative. In
this paper, we are interested in the symmetric N -matrix completion problem, that
is, when a partial symmetric N -matrix has a symmetric N -matrix completion. Here,
we prove that a partial symmetric N -matrix has a symmetric N -matrix completion if
the graph of its specified entries is chordal. Furthermore, if this graph is not chordal,
then examples exist without symmetric N -matrix completions. Necessary and sufficient
conditions for the existence of a symmetric N -matrix completion of a partial symmetric
N -matrix whose associated graph is a cycle are given.
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1 Introduction

A partial matrix is a rectangular array in which some entries are specified, while the remaining
entries are free to be chosen from a certain set. A completion of a partial matrix is the
conventional matrix resulting from a particular choice of values for the unspecified entries.
A matrix completion problem asks for which partial matrices do there exist completions with
a certain desired property.

Given an n × n partial matriz A, if some rows and/or some columns of A are deleted,
the new partial matrix is called a submatrix of A. A submatrix of A is called a principal
submatrix if the deleted rows of A are indexed by some α ∈ {1, . . . , n} and the deleted
columns of A are also indexed by α. We say that a submatrix of A is fully specified if all of
its entries are specified.
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An n × n partial matrix is said to be combinatorially symmetric if the (i, j) entry is
specified if and only if the (j, i) entry is and non-combinatorially symmetric in other case.
A partial matrix is said to be symmetric if it is combinatorially symmetric and the entries
(i, j) and (j, i) are equal (when they are specified).

An n × n real matrix is called an N-matrix if all its principal minors are negative. This
class of matrices arises in the theory of global univalence of functions [3], in multivariate
analysis [6] and in linear complementary problems [4, 7]. In [8], N -matrices are also studied
in connection with Lemke’s algorithm for solving linear and convex quadratic programming
problems.

The submatrix of an n × n matrix A lying in rows α and columns β, α, β ⊆ {1, ..., n},
is denoted by A[α|β], and the principal submatrix A[α|α] is abbreviated to A[α]. It is often
convenient to indicate a submatrix via deletion, rather than inclusion, of rows or columns.
The notation is as follows: A[α′|β′] is the resulting submatrix of deleting the rows indicated
by α and the columns indicated by β. The principal submatrix A[α′|α′] is abbreviated to
A[α′].

Thus, a real n × n matrix A is an N -matrix if det A [α] < 0, for all α ⊆ {1, ..., n}. Note
that, obviously, the diagonal entries of an N -matrix are negative.

The following elementary results, presented in [5], are very useful in the study of N -
matrices.

Proposition 1.1 Let A = (aij) be an n × n N -matrix. Then

1. If P is a permutation matrix then PAP T is an N-matrix.

2. If D is a positive diagonal matrix then DA, AD are N-matrices.

3. If D is a nonsingular diagonal matrix then DAD−1 is an N-matrix.

4. aij �= 0 and sign(aij) = sign(aji), for all i, j ∈ {1, ..., n}.
5. If aii+1 > 0, i = 1, 2, . . . , n − 1, then A ∈ Sn, where

Sn =
{
A = (aij) | aij �= 0 and sign(aij) = (−1)i+j+1, for all i, j ∈ {1, ..., n}} .

6. Any principal submatrix of A is an N-matrix.

It is a known fact that any N -matrix is diagonally similar to an N -matrix in Sn. Moreover,
if A ∈ Sn is an n × n N -matrix and D = diag(1,−1, 1,−1, . . . , (−1)n, (−1)n+1), then DAD
is an N -matrix with all entries negative. Therefore, any N -matrix is diagonally similar to a
negative N -matrix.

The last property of Proposition 1.1 allows us to introduce the following definition.

Definition 1.1 A partial matrix is said to be a partial N-matrix if every fully specified
principal submatrix is an N-matrix.
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Example 1.1 Consider the following partial matrix

A =

⎡
⎢⎢⎣

? −1 −2 ?
−1 −2 7 ?

? ? −1 2
? 6 5 −1

⎤
⎥⎥⎦ .

Given that all the fully specified principal submatrices of A (A [{2}], A [{3}], A [{4}] and
A [{3, 4}]) are N -matrices, A is a partial N -matrix.

Here, we are interested in the symmetric N -matrix completion problem, that is, when a
partial symmetric N -matrix has a symmetric N -matrix completion?

We shall make use of the facts that N -matrices have no null entries and are sign-symmetric
(the entries in symmetric positions have the same sign). Note that, regarding the completion
problem, it would not make sense to study the existence of N -matrix completions of partial
N -matrices with some null entry or of non-sign-symmetric partial N -matrices.

Taking into account property (5) of Proposition 1.1, we define the set PSn of the n × n
partial matrices A = (aij) such that aij �= 0 and sign(aij) = (−1)i+j+1, for all i, j ∈ {1, ..., n}
such that the (i, j) entry is specified.

In [5], it was shown that, in general, a partial N -matrix has no N -matrix completion and
that being permutation or diagonally similar to a matrix in PSn is a necessary condition
in order to obtain an N -matrix completion of a partial N -matrix. In our study we only
consider partial matrices belonging to PSn. However, when restricting our study of the
posed completion problem to this kind of partial matrices, we are implicitly analyzing the
problem for any partial N -matrix that is permutation or diagonally similar to a partial
matrix in PSn.

Graph theory plays an important role in the study of matrix completion problems. Given
an n × n partial matrix A, we consider its associated graph GA = (V,E), where the set of
vertices V is {1, ..., n} and {i, j}, i �= j, is an edge or arc if and only if the (i, j) entry
is specified. A directed graph is associated with a non-combinatorially symmetric partial
matrix and, when the partial matrix is combinatorially symmetric, an undirected graph can
be used.

A path in a graph is a sequence of edges {i1, i2}, {i2, i3}, ..., {ik−1, ik} in which all vertices
are distinct, except, possibly, the first and the last. A cycle is a closed path, that is, a
path in which the first and the last vertices coincide. A chord of a cycle {i1, i2}, {i2, i3}, ...,
{ik−1, ik}, {ik, i1} is an edge {is, it} not in the cycle (with 1 ≤ s, t ≤ k).

A graph is chordal if every cycle of length 4 or more has a chord or, equivalently, if it has
no minimal induced cycles of length 4 or more (see [1]).

A graph is connected if there is a path from any vertex to any other vertex. A connected
component of a graph is a maximal connected subgraph.

As we have said, in this paper we analyze the symmetric N -matrix completion problem.
Therefore, the main objects of our study are the partial symmetric N -matrices and, naturally,
we focus on the combinatorially symmetric partial N -matrices and work with undirected
graphs. We make the assumption throughout that all diagonal entries are prescribed and in
what associated graphs are concerned, we omit the loops.
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It is easy to prove that any 2 × 2 or 3 × 3 partial symmetric N -matrix with no zero
entries and sign-symmetric has symmetric N -matrix completions. In section 3 we prove that
a partial symmetric N -matrix has a symmetric N -matrix completion if its associated graph
is chordal. However, in section 4 we see that when the associated graph to the symmetric
partial N -matrix is not chordal there is not, in general, a symmetric N -matrix completion.
We give necessary and sufficient conditions for the existence of the desired completion when
the associated graph is a cycle.

2 Symmetric N-matrices

In this section we derive a simple and useful characterization of symmetric N -matrices.
We use the following result, known as the interlacing eigenvalues theorem for bordered

matrices (see [2]).

Theorem 2.1 Let B be an n × n Hermitian matrix, let y be a given complex n-vector, and
let b be a given real number. Let B̄ be the Hermitian (n+1)×(n+1) complex matrix obtained
by bordering B with y and b as follows:

B̄ =

[
B y
y∗ b

]
.

Let the eigenvalues of B and B̄ be denoted by {λi} and {λ̄i}, respectively, with λ1 ≤ . . . ≤ λn

and λ̄1 ≤ . . . ≤ λ̄n ≤ λ̄n+1. Then

λ̄1 ≤ λ1 ≤ λ̄2 ≤ λ2 ≤ . . . ≤ λn−1 ≤ λ̄n ≤ λn ≤ λ̄n+1.

The following results concerning Hermitian matrices with all leading principal minors
negative are very helpful in order to get the mentioned characterization of symmetric N -
matrices.

Lemma 2.1 Let A be an n × n Hermitian matrix, whose leading principal minors are neg-
ative. Then, each leading principal submatrix A[{1, . . . , i}], i = 1, . . . , n, has one negative
eigenvalue and the remaining eigenvalues, for i > 1, are positive.

Proof: Let A = (aij) and let λi1 ≤ . . . ≤ λii be the eigenvalues of the leading principal
submatrix A[{1, . . . , i}], i = 1, . . . , n. Note that λ11 = det A[{1}] < 0. By applying Theorem
2.1 to [

a11 a12

a12 a22

]
,

we can conclude that
λ21 ≤ λ11 ≤ λ22.

Hence, λ21 < 0 and since det A[{1, 2}] = λ21λ22 < 0, it follows that λ22 > 0.
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For i ≤ n assume that λi−11 < 0 and λi−1,2, . . . , λi−1,i−1 > 0. Observe that

A[{1, . . . , i}] =

[
A[{1, . . . , i − 1}] A[{1, . . . , i − 1}|{i}]

A[{i}|{1, . . . , i − 1}] aii

]
.

From Theorem 2.1, it follows that

λi1 ≤ λi−11 ≤ λi2 ≤ λi−12 ≤ . . . ≤ λii−1 ≤ λi−1i−1 ≤ λii.

By hypothesis, λi−11 < 0 and λi−12 > 0. Therefore, λi1 < 0 and λi3, . . . , λii > 0. Moreover,
since det A[{1, . . . , i}] = λi1 . . . λii < 0, λi2 > 0. Hence, A[{1, . . . , i}] has one negative
eigenvalue and all its remaining eigenvalues are positive, as was to be shown. �

Proposition 2.1 Let A be an n × n Hermitian matrix with all leading principal minors
negative and with all principal diagonal elements negative. Then, for all α ⊆ {1, . . . , n}, the
principal submatrix A[α] of A has one negative eigenvalue and the remaining eigenvalues, if
|α| > 1, are positive.

Proof: The proof is by induction on n. For n < 3, the result is trivially true. Consider
n > 2 and assume that the result is true for n − 1.

Let λ1 ≤ . . . ≤ λn be the eigenvalues of A = (aij).
Given a subset α of {1, . . . , n}, we denote by λα1 ≤ . . . ≤ λα|α| the eigenvalues of the

principal submatrix A[α].
Let α ⊆ {1, . . . , n}. We consider the following three cases:

(a) α ⊆ {1, . . . , n − 1}
Observe that A[{1, . . . , n− 1}] is an (n− 1)× (n− 1) Hermitian matrix, whose leading
principal minors are negative and whose principal diagonal entries are negative. By
the induction hypothesis, all its principal submatrices have one negative eigenvalue and
the others, in case they exist, are positive. In particular,

(
A[{1, . . . , n− 1}])[α] = A[α]

has one negative eigenvalue and the remaining, if |α| > 1, are positive.

(b) α ⊆ {2, . . . , n}
We know, from the previous case, that, for 2 ≤ k ≤ n − 1, the principal submatrix
A[{2, . . . , k}] of A has one negative eigenvalue and the remaining, if k > 2, are positive.
Consider the principal submatrix A[{2, . . . , n}] of A. It is clear that A is similar to

B =

[
A[{2, . . . , n}] A[{2, . . . , n}|{1}]

A[{1}|{2, . . . , n}] a11

]

and, therefore, the spectrum of B is exactly the spectrum of A. By applying Theorem
2.1, we can conclude that

λ1 ≤ λ{2,...,n}1 ≤ λ2 ≤ λ{2,...,n}2 ≤ . . . ≤ λn−1 ≤ λ{2,...,n}n−1 ≤ λn.
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From Lemma 2.1, it follows that λ{2,...,n}2, . . . , λ{2,...,n}n−1 > 0. By applying Theorem
2.1 to

A[{2, . . . , n}] =

[
A[{2, . . . , n − 1}] A[{2, . . . , n − 1}|{n}]

A[{n}|{2, . . . , n − 1}] ann

]
,

we can assure that
λ{2,...,n}1 ≤ λ{2,...,n−1}1,

which implies, taking into account case (a), λ{2,...,n}1 < 0. We have just proved that
A[{2, . . . , n}] is an (n− 1)× (n− 1) Hermitian matrix, whose leading principal minors
are negative and whose principal diagonal entries are negative. From the induction
hypothesis, it follows that all its principal submatrices have one negative eigenvalue
and the remaining are positive. Thus A[α] has one negative eigenvalue and all the
others, if |α| > 1, are positive.

(c) 1, n ∈ α

If |α| = n, then A[α] = A and the result follows from Lemma 2.1.

Consider the case in which |α| = n−1. In this case, α = {i}′, for some i ∈ {2, . . . , n−1}.
Note that A is permutation similar to

[
A[α] A[α|{i}]

A[{i}|α] aii

]

and, therefore, the eigenvalues of this matrix are λ1 ≤ . . . ≤ λn. From Theorem 2.1, it
follows that

λ1 ≤ λα1 ≤ λ2 ≤ λα2 ≤ . . . ≤ λn−1 ≤ λαn−1 ≤ λn.

From Lemma 2.1, we know, then, λα2, . . . , λαn−1 > 0. By applying Theorem 2.1 to

A[α] =

[
A[α − {n}] A[α − {n}|{n}]

A[{n}|α − {n}] ann

]
,

we can assure that
λα1 ≤ λα−{n}1.

We have seen, in case (a), that λα−{n}1 < 0. Thus, λα1 < 0. Then, the result is true
when |α| = n − 1.

We will now handle the case |α| = k, with 2 ≤ k ≤ n − 2. Assume that, for any
β ⊆ {1, . . . , n} such that 1, n ∈ β and |β| = k + 1, A[β] has one negative eigenvalue
and all the remaining are positive.

It is obvious that, given any j ∈ {2, . . . , n−1} such that j /∈ α, the principal submatrix
A[α ∪ {j}] is similar to [

A[α] A[α|{j}]
A[{j}|α] ajj

]
.
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From Theorem 2.1, it follows that

λα∪{j}1 ≤ λα1 ≤ λα∪{j}2 ≤ λα2 ≤ . . . ≤ λα∪{j}k ≤ λαk ≤ λα∪{j}k+1.

By hypothesis, taking into account that |α ∪ {j}| = k + 1 and that 1, n ∈ α ∪ {j},
λα∪{j}2 > 0 and thus λα2, . . . , λαk > 0. Finally, observe that

A[α] =

[
A[α − {n}] A[α − {n}|{n}]

A[{n}|α − {n}] ann

]
.

Then, by applying Theorem 2.1, we can assert that

λα−{n}1 ≤ λα1.

Since α − {n} ⊆ {1, . . . , n − 1}, we know, from case (a), that λα−{n}1 < 0 and,
consequently, λα1 < 0, as was to be shown. �

In light of the proceeding results, we have the following characterization of symmetric
N -matrices.

Theorem 2.2 Let A be a symmetric matrix with negative principal diagonal entries. Then,
A is an N-matrix if and only if its leading principal minors are negative.

Proof: It is obvious that the leading principal minors of an N -matrix are negative. Con-
versely, assume that all leading principal minors are negative. From Proposition 2.1, each
principal submatrix of A has one negative eigenvalue and the remaining, if the submatrix is
of order greater than 1, are positive. Thus, the determinant of each principal submatrix is
negative and, consequently, A is a symmetric N -matrix. �

3 Chordal graphs

In this section, we focus the posed completion problem on partial matrices whose associated
graphs are chordal graphs. In order to get started, we recall some rich graph theory concepts.
See [1] for further information.

A graph is said to be complete if it includes all possible edges between its vertices. A
clique in a graph G = (V, E) is simply a set of vertices that induces a complete subgraph,
i.e., a subset S of V such that the edge set of the induced subgraph of S is the set of all
edges in E that have both ends in S. We denote by Kp a clique on p vertices. A clique
whose vertices are not a proper subset of a clique is a maximal clique.

A useful property of chordal graphs is that they have a tree-like structure in which their
maximal cliques play the role of vertices. If G1 is the clique Kq and G2 is any chordal graph
containing the clique Kp, p < q, the resulting graph of identifying the copy of Kp in G1 with
that in G2 is called a clique sum of G1 and G2 (along Kp). It is easy to see that the clique
sum of G1 and G2 along Kp is also chordal (see [1]).
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It is a known fact that a graph is chordal if and only if it may be sequentially built from
complete graphs by identifying a clique of the graph built so far with a clique of the next
complete graph to be added.

The cliques that are used to build chordal graphs are the maximal cliques of the resulting
chordal graph and the cliques along which the summing takes place (that is, the cliques of
identification) are the so-called minimal vertex separators of the resulting chordal graph.

If the maximum number of vertices in a minimal vertex separator is p, then the chordal
graph is said to be p-chordal.

Lemma 3.1 Let A be a partial symmetric N-matrix, the graph of whose specified entries is
p-chordal with two maximal cliques. Then there exists a symmetric N-matrix completion of
A.

Proof: We may assume, without loss of generality, that A is partitioned as follows

A =

⎡
⎣ A11 A12 X

AT
12 A22 A23

Y AT
23 A33

⎤
⎦ ,

where the unspecified entries are exactly the entries of X and Y , all totally prescribed
principal submatrices are symmetric N -matrices and Aii is an ni × ni matrix, i = 1, 2, 3.
Being A22 an invertible matrix, we can consider the zeros in the inverse completion

Ac =

⎡
⎣ A11 A12 A12A

−1
22 A23

AT
12 A22 A23

AT
23A

−1
22 AT

12 AT
23 A33

⎤
⎦

and easily one can show that

det Ac =

det

[
A11 A12

AT
12 A22

]
det

[
A22 A23

AT
23 A33

]

det A22

.

Therefore, det Ac < 0.
In order to show that Ac is a symmetric N -matrix, we only need to prove, by Theorem

2.2, that det Ac[{1, . . . , k}] < 0, for all k ∈ {n1 + n2 + 1, . . . , n}. Observe that, given
k ∈ {n1 + n2 + 1, . . . , n},

Ac[{1, . . . , k}] =

⎡
⎣ A11 A12 A12A

−1
22 Ā23

AT
12 A22 Ā23

ĀT
23A

−1
22 AT

12 ĀT
23 Ā33

⎤
⎦ ,

where Ā23 = A23[{n1 + 1, . . . , n2}|{n1 + n2 + 1, . . . , k}] and Ā33 = A33[{n1 + n2 + 1, . . . , k}].
It can be shown that

det Ac[{1, . . . , k}] =

det

[
A11 A12

AT
12 A22

]
det

[
A22 Ā23

ĀT
23 Ā33

]

det A22

< 0,
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which completes the proof. �

We can extend this result in the following way.

Theorem 3.1 Let G be a connected undirected chordal graph. Then any partial symmetric
N-matrix, the graph of whose specified entries is G, has a symmetric N-matrix completion.

Proof: It is clear that G is p-chordal, for some p.The proof is by induction on the number k
of maximal cliques in G. The case k = 2 is handled in Lemma 3.1. Suppose, now, that the
result is true for a connected chordal graph with k− 1 maximal cliques. Consider a minimal
vertex separator of G with p vertices. This clique Kp is, therefore, the intersection of two
maximal cliques of G. Let G1 be the clique sum of those two maximal cliques along Kp.
By applying Lemma 3.1 to the principal submatrix A1 of A, whose associated graph is G1,
we obtain a symmetric N -matrix completion A1c of A1. By replacing, in A, the principal
submatrix A1 by its completion A1c , we obtain a partial symmetric N -matrix, the graph
of whose specified entries is chordal with k − 1 maximal cliques. The induction hypothesis
guarantees the existence of the desired completion of A. �

We say that a partial matrix A is a block diagonal partial matrix if it admits a partition
of the form

A =

⎡
⎢⎢⎢⎣

A1 ? . . . ?
? A2 . . . ?
...

...
...

? ? . . . Ak

⎤
⎥⎥⎥⎦ ,

where ? denotes a rectangular array of unspecified entries and each Ai is a partial matrix,
i = 1, . . . , k.

Note that if A is a partial matrix whose associated graph G is not connected, then A
is a block diagonal partial matrix and each graph associated to each one of those diagonal
blocks is one of the connected components of G.

Let A be a partial symmetric N -matrix, the graph of whose prescribed entries is a non-
connected graph G. In the following theorem, we prove that if each principal submatrix of
A associated with each connected component of G admits symmetric N -matrix completion,
then so does A.

Theorem 3.2 If a partial symmetric N-matrix A is permutation similar to a block diagonal
partial matrix in which each diagonal block has a symmetric N-matrix completion, then A
has a symmetric N-matrix completion.

Proof: The proof is similar to that of Theorem 3.2 of [5]. In fact, the proof presented for
that theorem can be easily adapted in order to get only partial symmetric N -matrices. �

4 Cycles

As we will see in this section, a partial symmetric N -matrix, whose associated graph is a cycle
(and therefore is not chordal), does not admit, in general, a symmetric N -matrix completion.
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Keeping this in mind, we direct our study to find necessary and sufficient conditions for the
existence of symmetric N -matrix completions of that type of partial symmetric N -matrices.

Example 4.1 The following example demonstrates that there exists a partial symmetric
N -matrix, the graph of whose specified entries is a cycle, which has no symmetric N -matrix
completion.

Consider the partial symmetric N -matrix

A =

⎡
⎢⎢⎣

−1 −1.1 x −5
−1.1 −1 −1.1 y

x −1.1 −1 −1.1
−5 y −1.1 −1

⎤
⎥⎥⎦ .

Note that
det A[{2, 3, 4}] < 0 ⇐⇒ −1.42 < y < −1

and
det A[{1, 2, 4}] < 0 ⇐⇒ −5.5 −

√
5.04 < y < −5.5 +

√
5.04 ≈ −3.255.

Hence, there is no symmetric N -matrix completion of A.

Given a partial symmetric N -matrix, we can assume, without loss of generality that all
principal diagonal elements are equal to −1. In fact, given an n × n partial symmetric N -
matrix A = (aij) and the diagonal matrix D = diag(

√|a11|,
√|a22|, . . . ,

√|ann|), DAD is a
partial symmetric N -matrix with −1’s in the principal diagonal.

In the following lemma, necessary and sufficient conditions for the existence of a symmet-
ric N -matrix completion of a partial symmetric N -matrix, permutation or diagonally similar
to a partial symmetric N -matrix in PS4, whose associated graph is a cycle, are given.

Lemma 4.1 Let A be the following partial symmetric N-matrix

A =

⎡
⎢⎢⎣

−1 −a12 ? −a14

−a12 −1 −a23 ?
? −a23 −1 −a34

−a14 ? −a34 −1

⎤
⎥⎥⎦ ,

where ? denotes an unspecified entry and a12, a14, a23, a34 > 0. Then, there exists a symmetric
N-matrix completion of A if and only if

|a12a23 − a34a14| <
√

(a2
12 − 1)(a2

23 − 1) +
√

(a2
34 − 1)(a2

14 − 1).

Proof: Observe that the associated graph of A is a cycle of length 4 and consider the partial
matrix Ax obtained from A by specifying the entries (1, 3) and (3, 1) with −x, with x ∈ R.
It is easy to check that the graph associated to

Ax =

⎡
⎢⎢⎣

−1 −a12 −x −a14

−a12 −1 −a23 ?
−x −a23 −1 −a34

−a14 ? −a34 −1

⎤
⎥⎥⎦
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is a 2-chordal graph. If there exists an x in R such that Ax is a partial symmetric N -matrix,
then, from Lemma 3.1, it follows that there exists a symmetric N -matrix completion C of Ax.
Note that C is also a completion of A. Therefore, we can assert that A admits a symmetric
N -matrix completion if and only if there exists x ∈ R such that Ax is a partial symmetric
N -matrix.

Hence, A admits symmetric N -matrix completions if and only if there exists x such that
det Ax[{1, 2, 3}] < 0 and det Ax[{1, 3, 4}] < 0, that is, if and only if there exists x such that

|x − a12a23| <
√

(a2
12 − 1)(a2

23 − 1) (1)

and

|x − a34a14| <
√

(a2
34 − 1)(a2

14 − 1). (2)

By simple manipulation of these equations, it is easily shown that there exists x that verifies
(1) and (2) if and only if

|a12a23 − a34a14| <
√

(a2
12 − 1)(a2

23 − 1) +
√

(a2
34 − 1)(a2

14 − 1).

�

The last result can be extended for n > 4, as the following lemmas and propositions
illustrate. We are going to distinguish two cases: when n is even and when it is odd.

Lemma 4.2 Let A be the following 6 × 6 partial symmetric N-matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 −a12 ? ? ? −a16

−a12 −1 −a23 ? ? ?
? −a23 −1 −a34 ? ?
? ? −a34 −1 −a45 ?
? ? ? −a45 −1 −a56

−a16 ? ? ? −a56 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where ? denotes an unspecified entry and all aij are positive. Then, there exists a symmetric
N-matrix completion of A if and only if the system of inequalities

|a12a23 − x0a16| <
√

(a2
12 − 1)(a2

23 − 1) +
√

(x2
0 − 1)(a2

16 − 1),

|a34a45 − a56x0| <
√

(a2
34 − 1)(a2

45 − 1) +
√

(a2
56 − 1)(x2

0 − 1),

has a solution.

Proof: The associated graph of A is a cycle of lenght n = 6. Given a positive real number
x0, consider de partial matrix Ax obtained from A by completing the entries (3, 6) and (6, 3)
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with −x0. Ax has the following form

Ax =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 −a12 ? ? ? −a16

−a12 −1 −a23 ? ? ?
? −a23 −1 −a34 ? −x0

? ? −a34 −1 −a45 ?
? ? ? −a45 −1 −a56

−a16 ? −x0 ? −a56 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Consider the principal submatrices Ax[{1, 2, 3, 6}] and Ax[{3, 4, 5, 6}] of Ax. Observe that
the graph associated to each one of these principal submatrices is a cycle of length 4.

If there exists x0 such that the principal submatrices Ax[{1, 2, 3, 6}] and Ax[{3, 4, 5, 6}]
of Ax admit symmetric N -matrix completions C1 and C2, respectively, one can build a new
partial symmetric N -matrix Āx obtained from Ax by completing each one of those subma-
trices with the respective symmetric N -matrix completion. Note that the graph associated
to Āx is a 2-chordal graph. From Lemma 3.1, it follows that Āx has a symmetric N -matrix
completion C. Obviously, C is also a completion of A.

Therefore, we can conclude that A has a symmetric N -matrix completion if and only if
there exists x0 such that the principal submatrices Ax[{1, 2, 3, 6}] and Ax[{3, 4, 5, 6}] of Ax

are completable partial symmetric N -matrices. By applying the previous lemma, we can
assert that A admits a symmetric N -matrix completion if and only if the referred system of
inequalities has a solution. �

We can extend this result for partial matrices of size n × n, n > 6 and even, whose
associated graph is a cycle.

Proposition 4.1 Let A be the following n × n (with n = 2p, p ≥ 4) partial symmetric
N-matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 −a12 ? . . . ? −a1n

−a12 −1 −a23 . . . ? ?
? −a23 −1 . . . ? ?
...

...
...

...
...

? ? ? . . . −1 −an−1n

−a1n ? ? . . . −an−1n −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where ? denotes an unspecified entry and all aij are positive. Then, there exists a symmetric
N-matrix completion of A if and only if the system of inequalities

|a12a23 − x0a1n| <
√

(a2
12 − 1)(a2

23 − 1) +
√

(x2
0 − 1)(a2

1n − 1),

|app+1ap+1p+2 − ap+2p+3xp−3| <
√

(a2
pp+1 − 1)(a2

p+1p+2 − 1) +
√

(a2
p+2p+3 − 1)(x2

p−3 − 1),

|ak+3k+4xk+1 − an−1−kn−kxk| <
√

(a2
k+3k+4 − 1)(x2

k+1 − 1) +

+
√

(a2
n−1−kn−k − 1)(x2

k − 1), k = 0, . . . , p − 4,

has a solution.
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Proof: The associated graph of A is a cycle of length n = 2p. Given a positive real (p− 2)-
vector x = (x0, . . . , xp−3), consider the partial matrix Ax obtained from A by completing the
entries (k + 3, n − k), (n − k, k + 3) with −xk, k = 0, . . . , p − 3. Ax has the following form

Ax =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −a12 ? ? . . . ? −a1n

−a12 −1 −a23 ? . . . ? ?
? −a23 −1 −a34 . . . ? −x0

? ? −a34 −1 . . . −x1 ?
...

...
...

...
...

...
? ? ? −x1 . . . −1 −an−1n

−a1n ? −x0 ? . . . −an−1n −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Consider the principal submatrices Ax[{1, 2, 3, n}], Ax[{p, p + 1, p + 2, p + 3}], Ax[{k + 3, k +
4, n− 1− k, n− k}] (k = 0, . . . , p− 4) of Ax. Observe that the graph associated to each one
of these principal submatrices is a cycle of length 4.

If there exists x such that the principal submatrices Ax[{1, 2, 3, n}], Ax[{p, p+1, p+2, p+
3}], Ax[{k + 3, k + 4, n − 1 − k, n − k}] (k = 0, . . . , p − 4) of Ax admit symmetric N -matrix
completions C1, C2, C3, . . . , Cp−1, respectively, one can build a new partial symmetric N -
matrix Āx obtained from Ax by completing each one of those submatrices with the respective
symmetric N -matrix completion. Note that the graph associated to Āx is a 2-chordal graph.
From Theorem 3.1, it follows that Āx has a symmetric N -matrix completion C. Obviously,
C is also a completion of A.

Therefore, we can conclude that A has a symmetric N -matrix completion if and only if
there exists x such that the principal submatrices Ax[{1, 2, 3, n}], Ax[{p, p + 1, p + 2, p + 3}],
Ax[{k +3, k +4, n−1−k, n−k}] (k = 0, . . . , p−4) of Ax are completable partial symmetric
N -matrices. By applying Lemma 4.1, we can assert that A admits a symmetric N -matrix
completion if and only if the referred system has a solution. �

In analogous way to case n even, we can establish to following results.

Lemma 4.3 Let A be the following 5 × 5 partial symmetric N-matrix

A =

⎡
⎢⎢⎢⎢⎣

−1 −a12 ? ? −a15

−a12 −1 −a23 ? ?
? −a23 −1 −a34 ?
? ? −a34 −1 −a45

−a15 ? ? −a45 −1

⎤
⎥⎥⎥⎥⎦ ,

where ? denotes an unspecified entry and all aij are positive. Then, there exists a symmetric
N-matrix completion of A if and only if the system of inequalities

|x0 − a12a15| <
√

(a2
12 − 1)(a2

15 − 1),

|a23a34 − a45x0| <
√

(a2
23 − 1)(a2

34 − 1) +
√

(a2
45 − 1)(x2

0 − 1),

has a solution.

13



Proof: Note that the associated graph of matrix A is a cycle of length n = 5. Given a
positive real number x0, consider the partial matrix Ax obtained from A by completing the
entries (2, 5) and (5, 2) with −x0. Then Ax has the following form

Ax =

⎡
⎢⎢⎢⎢⎣

−1 −a12 ? ? −a15

−a12 −1 −a23 ? −x0

? −a23 −1 −a34 ?
? ? −a34 −1 −a45

−a15 −x0 ? −a45 −1

⎤
⎥⎥⎥⎥⎦ ,

Consider the fully specified principal submatrix Ax[{1, 2, 5}] and the principal submatrix
Ax[{2, 3, 4, 5}], whose associated graph is a cycle of length 4.

If there exists x0 such that the principal submatrix Ax[{1, 2, 5}] is a symmetric N-matrix
and the principal submatrix Ax[{2, 3, 4, 5}] admits symmetric N-matrix completion C1, one
can build a new partial symmetric N-matrix Āx obtained from Ax by completing the subma-
trix Ax[{2, 3, 4, 5}] with its symmetric N-matrix completion. Note that the graph associated
to Āx is a 2-chordal graph. From Lemma 3.1, it follows that Āx has a symmetric N-matrix
completion C. Obviously, C is also a completion of matrix A.

Therefore, we can conclude that A has a symmetric N-matrix completion if and only if
there exists x0 such that the principal submatrix Ax[{1, 2, 5}] is a symmetric N-matrix and
the principal submatrix Ax[{2, 3, 4, 5}] is a completable partial symmetric N-matrix. Then,
by applying Lemma 4.1, we can assert that A admits a symmetric N-matric completion if
and only if the referred system of inequalities has a solution. �

Now, in the following proposition, we extend this result for partial matrices of size n×n,
n > 5 and odd, whose associated graph is a cycle.

Proposition 4.2 Let A be the following n × n (with n = 2p + 1, p ≥ 3) partial symmetric
N-matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 −a12 ? . . . ? −a1n

−a12 −1 −a23 . . . ? ?
? −a23 −1 . . . ? ?
...

...
...

...
...

? ? ? . . . −1 −an−1n

−a1n ? ? . . . −an−1n −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where ? denotes an unspecified entry and all aij are positive. Then, there exists a symmetric
N-matrix completion of A if and only if the system of inequalities

|x0 − a12a1n| <
√

(a2
12 − 1)(a2

1n − 1),

|app+1ap+1p+2 − ap+2p+3xp−2| <
√

(a2
pp+1 − 1)(a2

p+1p+2 − 1) +
√

(a2
p+2p+3 − 1)(x2

p−2 − 1),

|ak+2k+3xk+1 − an−1−kn−kxk| <
√

(a2
k+2k+3 − 1)(x2

k+1 − 1) +

+
√

(a2
n−1−kn−k − 1)(x2

k − 1), k = 0, . . . , p − 3,
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has a solution.

Proof: Let x = (x0, . . . , xp−2) be a positive real vector. Consider the partial matrix Ax

obtained from A by completing the entries (k+2, n−k), (n−k, k+2) with −xk, k = 0, . . . , p−
2. By a similar reasoning to the one presented in Proposition 4.1, from Theorem 3.1, it follows
that A admits a symmetric N -matrix completion if and only if there exists x such that the
principal submatrices Ax[{1, 2, n}], Ax[{p, p+1, p+2, p+3}], Ax[{k+2, k+3, n−1−k, n−k}]
(k = 0, . . . , p − 3) of Ax are completable partial symmetric N -matrices. Notice that the
graph associated to Ax[{1, 2, n}] is complete and the graphs of the specified entries of the
remaining listed principal submatrices are 4-cycles. Therefore, by applying Lemma 4.1, A
has a symmetric N -matrix completion if and only if the referred system of inequalities has
a solution. �

It is obvious that checking if the necessary and sufficient conditions given in the previous
propositions are verified for a certain n×n partial symmetric N -matrix, the graph of whose
specified entries is an n-cycle, can be quite hard for a large n. In light of this, we present
the following sufficient conditions.

Lemma 4.4 Let A be the following partial symmetric N-matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 −a12 ? . . . ? −a1n

−a12 −1 −a23 . . . ? ?
? −a23 −1 . . . ? ?
...

...
...

...
...

? ? ? . . . −1 −an−1n

−a1n ? ? . . . −an−1n −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where ? denotes an unspecified entry and all aij are positive. If

∣∣∣an−2n−1an−1n − a1n

a12a23 · · · an−3n−2

∣∣∣ <
√

(a2
n−2n−1 − 1)(a2

n−1n − 1) (3)

or
∣∣∣a12a23 − a1n

a34a45 · · · an−1n

∣∣∣ <
√

(a2
12 − 1)(a2

23 − 1), (4)

there exists a symmetric N-matrix completion of A.

Proof: The proof follows by induction on n.
Firstly consider the case n = 4. If |a23a34 − a14a

−1
12 | <

√
(a2

23 − 1)(a2
34 − 1), consider the

partial matrix

Ā =

⎡
⎢⎢⎣

−1 −a12 ? −a14

−a12 −1 −a23 −a14a
−1
12

? −a23 −1 −a34

−a14 −a14a
−1
12 −a34 −1

⎤
⎥⎥⎦ .
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It is easy to see that det Ā[{1, 2, 4}] < 0. By Theorem 2.2, it suffices to show that
det Ā[{2, 3, 4}] < 0 in order to guarantee that Ā is a partial symmetric N -matrix. It can
easily be verified that Ā[{2, 3, 4}] < 0 if and only if |a23a34 − a14a

−1
12 | <

√
(a2

23 − 1)(a2
34 − 1).

Since the associated graph of Ā is 2-chordal, by Lemma 3.1 there exists a symmetric N -
matrix completion of Ā, and hence of A.

In case |a12a23 − a14a
−1
34 | <

√
(a2

12 − 1)(a2
23 − 1), consider the partial matrix

Ã =

⎡
⎢⎢⎣

−1 −a12 −a14a
−1
34 −a14

−a12 −1 −a23 ?
−a14a

−1
34 −a23 −1 −a34

−a14 ? −a34 −1

⎤
⎥⎥⎦ .

Analogously to the previous case, one can prove that Ã, and thus A, has a symmetric N -
matrix completion whenever |a12a23 − a14a

−1
34 | <

√
(a2

12 − 1)(a2
23 − 1).

Suppose, now, the result is true for n − 1.
If |an−2n−1an−1n−a1n(a12a23 · · · an−3n−2)

−1| <
√

(a2
n−2n−1 − 1)(a2

n−1n − 1), it follows that

a1na
−1
12 > a23 · · · an−3n−2

(
an−2n−1an−1n−

√
(a2

n−2n−1 − 1)(a2
n−1n − 1)

)
. Since a23 · · · an−3n−2 >

1 and an−2n−1an−1n − √
(a2

n−2n−1 − 1)(a2
n−1n − 1) ≥ 1, we can assert that

Ā =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 −a12 ? . . . ? −a1n

−a12 −1 −a23 . . . ? −a1na−1
12

? −a23 −1 . . . ? ?
...

...
...

...
...

? ? ? . . . −1 −an−1n

−a1n −a1na
−1
12 ? . . . −an−1n −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is a partial symmetric N -matrix. Notice that C = Ā[{2, 3, . . . , n}] is a partial symmetric
N -matrix, satisfying condition (3), the graph of whose specified entries is a cycle. By the
induction hypothesis, there exists a symmetric N -matrix completion Cc of C. Let ¯̄A be the
partial matrix obtained from Ā by completing C as Cc.

¯̄A is a partial symmetric N -matrix,
the graph of whose specified entries is 2-chordal. Lemma 3.1 allows us to conclude that ¯̄A
and, consequently, A admit a symmetric N -matrix completion.

If |a12a23 − a1n(a34 · · · an−1n)−1| <
√

(a2
12 − 1)(a2

23 − 1), consider the partial matrix

Ā =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 −a12 ? . . . −a1na
−1
n−1n −a1n

−a12 −1 −a23 . . . ? ?
? −a23 −1 . . . ? ?
...

...
...

...
...

−a1na
−1
n−1n ? ? . . . −1 −an−1n

−a1n ? ? . . . −an−1n −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

A similar reasoning to that presented in the previous case allows us to conclude the proof.
�
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