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Abstract- This paper presents an approach of using Dif-
ferential Evolution (DE) to solve dynamic optimization
problems. Careful setting of parameters is necessary for
DE algorithms to successfully solve optimization prob-
lems. This paper describes DynDE, a multi-population
DE algorithm developed specifically to solve dynamic
optimization problems that doesn’t need any parame-
ter control strategy for the F or CR parameters. Ex-
perimental evidence has been gathered to show that this
new algorithm is capable of efficiently solving the mov-
ing peaks benchmark.

1 Introduction

We are often confronted with dynamic optimization prob-
lems in real life. Price fluctuations are one of the best known
causes of changes in optimization problems. The good news
is that, even though the situation doesn’t remain static for a
long time, the changes are slight. A very good solution con-
tinues to be a high quality one, even if it is no longer the
best one. And if the best solution is superseded, it was by
another good solution.

This paper is concerned with this class of problems:
where the function landscape suffers slight changes as
time progresses. The moving peaks benchmark (MPB)
[3] was developed to simulate these problems. The land-
scape changes every fixed number of function evaluations
by slightly moving the peaks and changing their height and
width.

This problem was approached by developing a variant of
Differential Evolution (DE) [7, 6, 4, 5]. To solve this spe-
cific problem, a multi-population version of the DE algo-
rithm was developed, with the goal of maintaining each of
the populations in one of the peaks. Thus, when the summit
of the peak moves, the population moves with it.

To be able to detect changes in the fitness landscape, the
best solution in each population is re-evaluated each itera-
tion and, if its fitness changed, the entire population is re-
evaluated.

Previous research indicated that, instead of reinitializ-
ing part of the population when the problem changes, it
is preferable to have some individuals in each population
following a diversity increasing scheme [1]. Thus, as a di-
versity preserving measure, instead of the normal DE rules
some of the individuals in the population either update their
positions stochastically around the best position of the pop-
ulation or introduce some form of entropy into the function-
ing of the schemes.

It is important to keep each of the populations on a dif-
ferent peak. For that, it is necessary to have a mechanism
that will detect when two populations are on the same peak
and that expels the less performing one [2, 1].

The DE algorithm makes use of three important parame-
ters: F, the weighting coefficient that is used to generate new
trial solutions; CR, the crossover probability that is used to
determine how much of a trial solution should be adopted
into a currently existing one; as well as the DE scheme that
defines how a given individual will interact with others. It
has been found [9] that the performance of the DE algorithm
on a given function is sensitive to the values of F and CR,
and furthermore that varying the values of F and CR during
the course of a run can improve performance [8].

To begin the study, comprehensive experiments were
performed to compare the behavior of the DE algorithm us-
ing fixed values for the F, CR and the scheme parameters. It
was recognized that these three parameters could be tuned
for the MPB to obtain highly efficient optimization perfor-
mance. However, this task is time consuming. It was real-
ized that using uniform random values from F and CR on
a per-individual and per-dimension basis respectively pro-
duced equally good results.

The results obtained show that DynDE is competitive
with some of the other approaches presented by other re-
searchers in the area [2, 1].

In an attempt to design an algorithm that would adapt
to the function being optimized, each individual was also
assigned it’s own DE scheme, chosen randomly at the be-
ginning of the run. This approach did not produce results
as good as using a specific scheme. However, there is no
need to fine-tune any parameter whatsoever and the results
are still of acceptable quality.

The organization of this paper is as follows. In section
2, an overview of the basic DE algorithm is given and var-
ious DE schemes are also described. Section 3 describes
the MPB and presents some of the approaches for dynamic
problems that were taken into consideration when creating
the DynDE algorithm. Section 4 describes the details of
DynDE. Section 5 presents the experimental results and an-
alyzes the results and conclusions follow in section 6.

2 The Differential Evolution Algorithm

In this section we present the DE algorithm and the different
schemes that are used.
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2.1 Differential Evolution

Differential Evolution is a population-based approach to
function optimization, whose main strategy is to generate
a new position for an individual by calculating vector dif-
ferences between other randomly selected members of the
population.

Given a functionf : Rn → R to be minimized, a DE
begins by randomly generatingp n-dimensional vectors.
These vectors (called individuals) form a population that
will evolve over the course of the algorithm’s run.

The algorithm then proceeds to manipulate the popu-
lation until a termination criterion is met. In situations
where the minimum value of the function being optimized
is known, the termination criterion can be that a vector is
generated whose evaluation under the objective function is
sufficiently close to the known minimum. In other situa-
tions, the termination condition can be that a fixed num-
ber of function evaluations have elapsed or no sufficient im-
provement is achieved.

The following is an outline of a variant of the DE al-
gorithm called DE/rand/1 (see subsection below) that uses
a binomial crossover [5]. For clarity, the computation of
the new trial vector has been shown separately from the
crossover operation that selects only some of the dimen-
sions of the trial vector.

1. Initialize the population.

2. Evaluate the population.

3. Generate a new population where each candidate in-
dividual is generated in parallel according to:

(i) Randomly select 3 distinct individualsr1, r2, r3

from the population that are different fromi.

(ii) Generate a trial vector based on the formula~t =
~xr1 + F · (~xr2 − ~xr3)

(iii) Incorporate coordinates of this vector with
probability CR, using at least one coordinate.

(iv) Evaluate the candidate.

(v) Use the candidate in the new generation if it is
at least as good as the current individual.

4. Loop to 3 unless the termination criterion is met.

F and CR are the control parameters. F guides the am-
plitude of the influence of the difference vector and CR the
amount of the candidate solution that is used.

2.2 DE Schemes

Various schemes are typically in use for DEs [4]. Each
scheme varies with respect to the number of other random
individuals that are used to construct a new trial vector, as
well as with respect to whether or not the current individual
or the global best individual will be used as part of that
computation. Six schemes are considered in this paper.
These are shown below along with the corresponding trial
vector generation formula.xj , 1 ≤ j ≤ 5 represent distinct
randomly selected individuals that are different from the

current individualxi andxb is the best individual.

DE/rand/1 ~x1 + F (~x2 − ~x3)
DE/rand/2 ~x1 + F (~x2 + ~x3 − ~x4 − ~x5)
DE/best/1 ~xb + F (~x2 − ~x3)
DE/best/2 ~xb + F (~x2 + ~x3 − ~x4 − ~x5)
DE/rand-to-best/1 ~x1 + λ(~xb − ~x1) + F (~x2 − ~x3)
DE/current-to-rand/1 ~xi + λ(~x1 − ~xi) + F (~x2 − ~x3)
DE/current-to-best/1 ~xi + λ(~xb − ~xi) + F (~x1 − ~x2)

3 Dynamic Problems

It is believed that dynamic problems are characterized by
small changes in the width, height and location of the peaks.
The fitness landscape changes slowly over time and the al-
gorithm is supposed to adapt to the new environment.

Th philosophy of the approach used in this paper is to
use several populations and to try to keep each population
on a different peak. Ideally, if one can have one population
per peak, when a peak moves the population is able to keep
up with the change. If another peak becomes the best then
the population that resides on that peak will quickly find
the best position and the online performance will not suffer
greatly because of this change.

3.1 Exclusion

The philosophy of the approach of using multiple popula-
tions to solve dynamic optimization problems is to have
each population on a different peak. There is the neces-
sity of ensuring that no two sub-populations share the same
peak.

A strategy calledexclusion[2, 1] was developed to en-
force this. At each iteration, the best individuals of each
population are compared spatially. If any of them are too
close to each other, i.e. if they have a separating distance
less than some predefined amountrexcl then only the popu-
lation with the highest performance is kept, and the other is
marked for re-initialization.

The setting of the exclusion radiusrexcl is performed
according to a rule of thumb: assuming that all peaks are
evenly distributed in the search space, the linear diameter of
the basin of attraction will be used as an indicator. Assum-
ing that we haved dimensions with rangesX andp peaks,
rexcl is given by half of the diameter:

rexcl =
X

2p
1
d

(1)

3.2 Increasing the Diversity

Maintaining diversity is especially important for dynamic
optimization problems since the optimum of such a function
changes over time and if the population is clustered in a tight
region, the individuals may not be able to detect a change in
the function landscape.

One of the commonly used procedures for maintaining
diversity is to re-initialize the population once a change is
detected. However, this procedure introduces a severe loss



of information. A more sensible approach would be to re-
evaluate the individuals and to introduce more diversity so
that each sub-population can be spread around the area that
encompasses the possible change.

3.2.1 Quantum Individuals

Blackwell and Branke [1] suggest having individuals that do
not follow the same rules as the others and that are simply
generated in the general area of the best individual. They
developed the idea of quantum particles, analogous to parti-
cles in quantum mechanics, whose positions are probabilis-
tically defined. The individual is generated inside a ball cen-
tered on the global best position.

The stochastic generation of a point inside a ball centered
at the global best position~pg of radiusrcloud is computed
as follows:

(i) Generatexi ∼ N [0, 1] for 1 ≤ i ≤ d.

(ii) Compute the distance of the point to the origindist =√∑i=d
i=1 x2

i .

(iii) Determine the actual radius that is going to be used
r = U [0, rcloud].

(iv) The new point will be~pg + r~xi

dist .

It should be noted that this method has a higher probability
of generating points near the best than at the limit ofrcloud.
Besides, this probability increases with dimensionalityd.

3.2.2 Brownian Individuals

This idea is quite similar to the one of Quantum individuals.
The advantage is that it is simpler. Instead of generating the
points inside a ball, we use a Gaussian hyper-parallelepiped.
What we do is to generate the new point around the best in-
dividual in the sub-population by adding on each coordinate
a random variable sampled from the normal distribution.

The stochastic generation of a Brownian individual cen-
tered at the global best position~pg with standard deviation
σ is given by:

~pg + ~N (0, σ) (2)

3.2.3 Entropic Differential Evolution

This idea is inspired by the previous one. Instead of creating
a completely different way of generating new solutions for
some individuals in the population, the goal is to simply
introduce some added entropy to the way the new solutions
are generated by DE.

Once a change is detected, a vector~r ∼ ~N (0, σ) is added
to the individual of the next generation. Thus, after the
scheme has been applied and the individual~x is about to be
inserted in the next generation, the individual~x + ~N (0, σ)
is inserted instead.

4 DynDE

This paper proposes a new multi-population DE that can
use dynamic F and CR parameters, as well as an individual-
based DE scheme. One of the ideas presented in section 3.2
is included to deal with the dynamic nature of the problem.

F and CR may be set to fixed values, or may be randomly
selected from the uniform distribution. A new strategy is
to allow each individual to use its own scheme. When a
new trial individual is being computed, the scheme of the
individual is used to determine how many other individuals
to select and how to interact with them.

4.1 Differential Evolution Individuals

When updating a particlei, this new DynDE algorithm op-
erates as follows:

(i) If dynamic CR is being used, selectCR ∼ U [0, 1].

(ii) Randomly select2 ≤ m ≤ 5 distinct individuals
r1, . . . , rm from the population that are different from
i, according to i’s scheme.

(iii) Generate a trial vector based on the appropriate for-
mula for individuali’s scheme. If dynamic F is being
used, selectF ∼ U [0, 1] for use in the formula for
each dimension of each individual.

(iv) Incorporate coordinates of the trial vector into the vec-
tor i from the original population with probability CR,
using at least one coordinate.

(v) Evaluate the trial candidate.

(vi) Use the trial candidate in the new generation if it is
at least as good as the current individuali. Otherwise
copyi into the new population.

If using entropy, step (vi) adds~N (0, σ) to the individual
(trial candidate or current individual) that is being copied
into the new generation.

4.2 The Algorithm

The DynDE algorithm is the following:

1. Initialize the populations, assigning each individual a
DE scheme, possibly at random.

2. Evaluate the populations.

3. Compare the distances between the best elements of
each population. If any two are withinrexcl of each
other, mark the population with the worse solution for
re-initialization.

4. For each population perform either step 5 or 6.

5. If the population was marked for re-initialization, per-
form it.

6. Generate a new population where each candidate in-
dividual i is generated in parallel according to its
type: differential evolution, entropy differential evo-
lution, Quantum or Brownian.



7. Loop to 2 unless the termination criterion is met.

5 Experiments

5.1 The Moving Peaks Benchmark

Branke [3] defined a set of benchmark dynamic optimiza-
tion problems with real world characteristics that can be
used to test the performance of evolutionary algorithms.
Each problem consists of a set of peaks, of varying heights
and widths that periodically move in a random direction by
a fixed amounts (the change severity). The movement is
correlated by a given0 ≤ λ ≤ 1 where 0 means uncor-
related and 1 correlated. The peaks change position every
given number of iterations, called a time span.

In order to measure performance of an algorithm on
these problems, ‘offline error’ is used. Offline error is de-
fined as the average of the errors of the best points evaluated
during each time span. Offline error is the measure that will
be used to evaluate performance in this paper.

The suite consists of 3 functions, known as scenarios
1, 2 and 3. This paper uses scenario 2 exclusively for ex-
perimentation; the detailed parameter settings for this sce-
nario are shown in Table 1. Software implementations of
the benchmark have been made available [3].

Parameter Scenario 2

Num. Peaks 10
Dimensions 5
Peak heights [30,70]
Peak widths [1.0,12.0]
Change cycle 5000
Change severity 1
Height severity 7.0
Width severity 1.0
Correlation coefficientλ [0.0, 1.0]

Table 1: Dynamic Moving Peaks Function

5.2 Experiments and Results

As the scenario used has 10 peaks, a dimensionality of 5
and the dynamic range of 100, the exclusion radius was set
to rexcl = 31.5 according to equation 1.

The radius used for the Quantum individuals was set to
rcloud = 1. This setting used information about the change
severitys of the scenario. All experiments used exclusion.
The experiments were conducted by allowing the algorithm
to run for 500,000 function evaluations.

5.2.1 The Effect of F, CR and Scheme

A first experiment was conducted in order to see the effect
of different settings of F, CR and scheme on the DynDE
algorithm. Each different experimental condition involved
selecting a DE scheme, and fixed values for F and CR.

The range for the choice of DE scheme and the fixed
values used for F and CR are given below.

• scheme∈ {DE/rand/1, DE/rand/2, DE/best/1, DE/best/2,
DE/rand-to-best/1, DE/current-to-rand/1}

• F ∈ {k/10 : k ∈ N ∧ k ≤ 10}
• CR ∈ {k/10 : k ∈ N ∧ k ≤ 10}

Each DynDE run was performed using 10 populations
of 5 DE individuals and 5 quantum individuals (we will use
the notation 5+5 from now on). Due to the large amount of
time and computational power required to perform the ex-
periments, each experimental condition was repeated only
50 times. The results of the 10 best parameter configura-
tions are presented in table 2.

F CR Scheme Error

0.4 0.6 Best/2 1.78± 0.100
0.3 0.5 Best/2 1.83± 0.130
0.3 0.3 Best/2 1.86± 0.127
0.3 0.4 Best/2 1.87± 0.144
0.2 0.2 Best/2 1.89± 0.124
0.4 0.5 Best/1 1.93± 0.125
0.3 0.7 Best/2 1.97± 0.163
0.5 0.5 Best/1 2.04± 0.166
0.4 0.4 Best/1 2.05± 0.153
0.4 0.4 Best/2 2.08± 0.146

Table 2: Top 10 results of experiments with fixed parame-
ters for configuration 5+5. The error is the confidence inter-
val of 50 trials.

Figure 1 helps with visualizing the effect of varying F
and CR on offline performance when using the DE/best/2
scheme and a 5+5 configuration.
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Figure 1: Effect of varying F and CR on offline performance
(DE/best/2 scheme, 5+5 configuration).

5.2.2 The Effect of Population Make-up

In order to understand the implication of population sizes
and the ratio of the DE and quantum individuals, a second



experiment, under the same conditions but with 10 popula-
tions of 4 DE individuals and 2 quantum individuals (de-
noted configuration 4+2) was performed. These are shown
in table 3.

F CR Scheme Error

0.5 0.6 Best/2 1.69± 0.149
0.4 0.5 Best/2 1.74± 0.112
0.3 0.3 Best/2 1.76± 0.124
0.6 0.4 Best/1 1.78± 0.152
0.3 0.4 Best/2 1.82± 0.117
0.9 0.6 RandToBest/1 1.84± 0.158
0.4 0.4 Best/2 1.86± 0.148
0.6 0.5 RandToBest/1 1.88± 0.146
0.6 0.5 Best/1 1.88± 0.162
0.7 0.3 RandToBest/1 1.99± 0.189

Table 3: Top 10 results of experiments with fixed parame-
ters for configuration 4+2. The error is the confidence inter-
val of 50 trials.

The results of 4+2 are much better than the ones pre-
sented with the 5+5 configuration. A Wilcoxon test per-
formed on the data from table 2 and 3 corroborates this with
a p-value ofp = 2.966 · 10−5. The fact that each subpop-
ulation has fewer individuals is one likely explanation for
the better results. As the peaks move every 5,000 function
evaluations, the smaller population is able to run more it-
erations with the same number of function evaluations. It
seems that the bigger number of iterations (71 versus 45)
helps the populations improve the quality of their positions.
Another possible explanation could be that a larger number
of quantum individuals introduces needless entropy into the
system. We will return to this point on section 5.4.

Figure 2 helps with visualizing the effect of varying F
and CR on offline performance when using the DE/best/2
scheme and a 4+2 configuration.
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Figure 2: Effect of varying F and CR on offline performance
(DE/best/2 scheme, 4+2 configuration).

5.2.3 The Vicissitudes of Experimentation

Neophyte researchers tend to only supply averages of their
runs when reporting the result of empirical experimenta-
tion. However, a statistician will frown at those compar-
isons. Even when showing confidence intervals, one should
observe extreme care when comparing the results of experi-
mental data. To try to better validate our results, we decided
to perform 1,000 trials with the best 5 entries of tables 2 and
3. These results are presented in tables 4 and 5.

F CR Scheme Error Error

0.3 0.4 Best/2 1.87± 0.0303
0.4 0.6 Best/2 1.87± 0.0303
0.3 0.5 Best/2 1.87± 0.0313
0.3 0.3 Best/2 1.89± 0.0288
0.2 0.2 Best/2 1.95± 0.0316

Table 4: Results of the top 5 results presented in table 2 with
1,000 trials.

F CR Scheme Error

0.4 0.5 Best/2 1.73± 0.0287
0.5 0.6 Best/2 1.76± 0.0294
0.3 0.4 Best/2 1.79± 0.0301
0.3 0.3 Best/2 1.81± 0.0320
0.6 0.4 Best/1 1.82± 0.0313

Table 5: Results of the top 5 results presented in table 3 with
1,000 trials.

As can be seen, the estimation of the average we ob-
tained with 50 trials was always lower than the one with
1,000. Another obvious conclusion is that the ordering of
the results is not the same. Once more, this indicates the
fragility of the conclusions drawn from experimental data.
This is due to the fact all the confidence intervals shown in
tables 2 and 3 overlap to some extent. Thus, it is not sur-
prising to see that the ordering changed.

There is a simple rule to see if the difference of two con-
figurations is statistically significant: if the confidence in-
tervals don’t overlap.

We can only conclude that the results presented in these
tables are among the best ones that may be obtained with a
fixed F, CR and scheme are used. We have made no further
attempts to achieve a more accurate ordering of the results.
In light of the results gathered in this section, all subsequent
results presented were based on 1,000 trials.

5.2.4 Using Random F, CR and Scheme

The experiments shown in the previous section were cum-
bersome: they needed a large amount of CPU time to ar-
rive at good results. Fortunately, we were able to identify a
region of the parameter space with good results. Even af-
ter presenting these results, we are not sure this setting will
achieve a similar performance on other problems. Thus, it
seems that it would be necessary to repeat this cumbersome
task again.



In an attempt to suppress the need of parameter fine tun-
ing, and inspired by the fact we are trying to solve dynamic
optimization problems, we decided to experiment with set-
ting F and CR to random values taken from the uniform dis-
tribution. Instead of using a fixed value, each time a value
of either F or CR is needed a value is sampled fromU [0, 1].

We also decided to experiment with allowing each in-
dividual to choose its scheme. Two variations of this idea
were considered. The first, calledRandomInitassigns a
random scheme to each individual at initialization time; the
individual henceforth keeps that random scheme and uses it
whenever it is being updated. In the second variation, called
RandomScheme, each time an individual is being updated,
a random scheme is selected. In both instances, the random
schemes are selected from the set{rand/1, rand/2, best/1,
best/2, rand-to-best/1}.

These results are presented in table 6 for the 5+5 config-
uration and those of the 4+2 population are shown in table
7. In these tables the ‘error’ column gives the confidence
interval of the offline error taken from 1,000 trials.

Scheme Error

Best/2 1.91± 0.0289
Best/1 1.95± 0.0339

RandToBest/1 2.00± 0.0319
RandomInit 2.09± 0.0336

RandomScheme 2.10± 0.0360
CurrentToBest/1 2.15± 0.0332

Rand/1 2.19± 0.0338
Rand/2 2.27± 0.0358

CurrentToRand/1 2.51± 0.0396

Table 6: Results of the experiments with random F and CR
for configuration 5+5 with 1000 trials

In the 5+5 configuration, the best results are from
DE/best/2 and DE/best/1. None of the random selection of
schemes works as well as these results. This was corrobo-
rated by a Wilcoxon test with a p-valuep < 2.2 · 10−16 �
0.051. However, it should be kept in mind that the advan-
tage of the RandomInit and RandomScheme variations is
that they eliminate the need for fine-tuning the parameters
of the algorithm.

In the 4+2 configuration, we arrived at the same con-
clusions. Once again, a Wilcoxon test yielded a p-value
p � 0.05. In this case, best/2 is clearly superior to the
following two configurations. This was confirmed by a
Wilcoxon test between best/2 and the set{best/1, rand-to-
best/1} with a p-valuep = 3.646 · 10−10.

One last question remains: did the quality of the solu-
tions decrease with the use of random F and CR? We com-
pared the first line of tables 2 and 6 using a Wilcoxon test
and found them to be statistically differentp = 0.01087.
The same comparison was performed on tables 3 and 7 but
this time the difference was not significantp = 0.3307.
Even thought there was a statistical difference in the 5+5

1In the following tests, whenever the p-value given is lower than this
amount, we will use the convention of writingp� 0.05.

Scheme Error

Best/2 1.76± 0.0307
RandToBest/1 1.85± 0.0295

Best/1 1.87± 0.0331
RandomInit 1.93± 0.0335

RandomScheme 1.96± 0.0333
CurrentToBest/1 1.97± 0.0330

Rand/1 2.08± 0.0331
Rand/2 2.11± 0.0355

CurrentToRand/1 2.31± 0.0376

Table 7: Results of the experiments with random F and CR
for configuration 4+2 with 1000 trials.

configuration, the slight decrease of quality of the solution
is a good compromise when compared to the titanic task of
fine-tuning the parameters.

5.3 Different Methods of Increasing Diversity

In this section we decided to compare the different ways of
increasing diversity in the population. In the previous sec-
tions, the method used to introduce diversity was the Quan-
tum individuals. This section explores the use of the other
two methods presented in section 3.2.

Both of these methods have one parameter: the standard
deviationσ. As the change severitys = 1, it makes sense to
use values so that roughly 90% of the values are generated
in the interval with a range of 1. Ifσ = 0.3, 90% of the
values would fall in the interval[−0.49, 0.49].

We decided to test this theory. Based on our previous
experiments, we selected the following parameters:

Scheme In this case, we chose three setups:

s1 best/2;

s2 Random scheme from rand/1, rand/2, best/1,
best/2, rand-to-best/1, current-to-rand/1 or
current-to-best/1;

s3 Random scheme from best/1 or best/2.

σ One value from{0.01, 0.05, 0.1, 0.2, 0.3}

Diversity We tested two methods:

1. DE with regular and Brownian individuals

2. Entropic Differential Evolution

Population Size We tested two sizes: 6 and 10. The DE
with regular and Brownian individuals used configu-
rations 4+2 and 5+5 where the first number represents
the number of regular individuals and the second rep-
resents the number of Brownian individuals. The En-
tropic DE simply used 6 and 10 entropic individuals.

The results are presented in table 8 for populations of
size 10 and table 9 for populations of size 6. In these ta-
bles, error is the confidence interval of the offline error taken
from 1,000 trials.



Scheme Diversity σ Error

s1 brownian 0.2 1.94± 0.029
s3 brownian 0.2 1.95± 0.032
s3 brownian 0.3 1.95± 0.030
s1 brownian 0.3 2.00± 0.030
s1 brownian 0.1 2.10± 0.032
s2 brownian 0.2 2.11± 0.033
s2 brownian 0.3 2.12± 0.031
s3 brownian 0.1 2.19± 0.033
s3 entropy 0.1 2.24± 0.034
s2 brownian 0.1 2.31± 0.038

Table 8: Top 10 results of varyingσ with the Brownian and
entropy differential evolution for populations of size 10.

The results seem to corroborate the hunch of usingσ =
0.3. In fact, they indicate that0.2 works as well, if not better.
To verify this hunch, we conducted a Kruskal-Wallis test
with the null hypothesis that the means of the offline error
factored byσ are equal. The result of the test was a p-value
p � 0.05 that disproves the null hypothesis. Thus, we can
conclude thatσ explains a difference in offline error. We
performed a similar test with the results of table 9 and also
obtained a p-valuep � 0.05.

We decided to investigate the hypothesis that aσ of 0.2
or 0.3 yields different results from the other values. This
time we used a Wilcoxon test as there were only two pop-
ulations, one forσ ∈ {0.2, 0.3} and the other for the other
values ofσ. The result of the tests for both tables 8 and 9
gave a p-value ofp � 0.05 that disproves the null hypoth-
esis that the mean of the two populations was equal. Thus,
we conclude that the offline error forσ ∈ {0.2, 0.3} is dif-
ferent from other values.

We decided to test our hunch that entropic DE does not
work as well as using Brownian individuals. A Wilcoxon
test again yielded a p-valuep � 0.05 for tables 8 and 9.
Thus we can conclude that using Brownian individuals is
indeed superior to using entropic differential evolution.

Scheme Diversity σ Error

s3 brownian 0.3 1.73± 0.029
s1 brownian 0.3 1.74± 0.029
s1 brownian 0.2 1.75± 0.032
s3 brownian 0.2 1.78± 0.033
s1 brownian 0.1 1.87± 0.033
s2 brownian 0.2 1.88± 0.033
s2 brownian 0.3 1.90± 0.033
s3 entropy 0.05 1.94± 0.029
s3 entropy 0.1 1.95± 0.031
s3 brownian 0.1 2.02± 0.035

Table 9: Top 10 results of varyingσ with the Brownian and
entropy differential evolution for populations of size 6.

The entropic DE did not work as well as using Brown-
ian individuals. And the best results were with much lower
σ values: around0.1. Unlike Brownian individuals, where
only a fraction of the population used that behavior, in en-

tropy schemes the entire population used entropy. The rea-
son for much lowerσ is easily explained: as the entire pop-
ulation is using a perturbation, it’s amplitude needs to be
smaller.

It seems to make sense that using only a fraction of the
population with this scheme would work well. However,
given the fact that Brownian individuals work so well, it
doesn’t make sense to try a more complicated procedure to
achieve the same result.

The results also indicate there is no significant differ-
ence between the Brownian individuals and the Quantum
ones. To verify it, we conducted Wilcoxon tests between
the corresponding configurations using Brownian individu-
als withσ = 0.2 and using Quantum individuals for scheme
DE/best/2. The p-values werep = 0.7143 andp = 0.07237
for the 4+2 and 5+5 configurations respectively. Given the
fact that the Brownian individuals are simpler, Occam’s ra-
zor suggests using them instead of Quantum individuals.

We decided to test if the schemes could explain a dif-
ference in the mean of offline error. Again, Kruskal-Wallis
tests for both tables yielded p-valuesp � 0.05. We also
tested the hypothesis that schemes1 was different from
s3 when using Brownian individuals andσ ∈ {0.2, 0.3}.
Wilcoxon tests returnedp = 0.04274 for table 8 andp =
0.8238 for table 9. Thus, there is a valid statistical differ-
ence in table 8 but we could not prove one for table 9.

We conclude that the random schemes2does not seem
to produce as good results as using DE/best/2 (s1). s3pro-
vides results that are almost as good ass1. However, given
Occam’s razor, we recommend DE/best/2.

5.4 Population Setup

We decided to study the relationship between normal indi-
viduals and Brownian ones. Thus we setup an experiment
with sub-populations of 10 individuals where we tested all
the possible combinations of normal and Brownian individ-
uals. We also used schemess1, s2 and s3. The value of
σ = 0.2 was used. Table 10 shows the results of 100 trials.

Scheme Normal Brownian Error

s3 6 4 1.88± 0.088
s3 7 3 1.89± 0.089
s3 5 5 1.93± 0.090
s3 8 2 1.94± 0.080
s1 7 3 1.94± 0.087
s1 6 4 1.95± 0.098
s1 5 5 1.98± 0.107
s1 4 6 2.07± 0.113
s3 4 6 2.09± 0.104
s2 5 5 2.11± 0.117

Table 10: Top 10 results of varying the number of normal
and brownian individuals.

The results suggest that configurations 6+4 and 7+3
seem better both for schemess1ands3. A Kruskal-Wallis
test indicates that the configuration does matter (p � 0.05)
and even that there is a statistically significant difference be-



tween configurations 5+5, 6+4, 7+3 and 8+2 (p = 0.04556).
Again, we find no statistically significant difference be-
tween schemess1 ands3 (p = 0.07823). We hypothesize
that roughly 40% of the individuals in the population should
be Brownian but that using more is detrimental.

5.5 Comparison with Other Approaches

To validate our work, we compared it to the approach of
[1] and [2]. The results presented in [2] report an offline
error of4.01. Our results are clearly superior to those. As
our approach is similar to the one in [1], we implemented
it and were able to perform tests in the same conditions.
Table 11 compares the results of multi-swarms to DynDE
and shows the results with 1,000 trials. In this table, DynDE
used normal and Brownian individuals withσ = 0.2 and
scheme DE/best/2.

Scheme Error

DynDE 5+5 1.94± 0.029
Swarm 5+5 1.93± 0.032
Swarm 4+2 1.73± 0.029
DynDE 4+2 1.75± 0.032

Table 11: Comparison between Multi-swarm and DynDE.
Both algorithms were run 1,000 times.

We conducted a Wilcoxon test to try to establish if there
was a statistically significant difference between Multi-
Swarm and DynDE. The test yieldedp = 0.1198 for the
5+5 configuration andp = 0.4531 for the 4+2 configura-
tion. In both cases, we were unable to establish any statis-
tically significant difference between both approaches. The
approach we are using has the advantage of using Brownian
Individuals, that are simpler than the Quantum ones.

6 Conclusions

This paper presented DynDE: a differential evolution algo-
rithm for solving dynamic optimization problems. It started
by showing the cumbersome task of fine-tuning the param-
eters and then introduced random F and CR. The use of ran-
dom values for these parameters produced equal quality so-
lutions and was thus deemed far superior to the use of fixed
values as it does not need any fine-tuning.

The use of random schemes did not improve the results.
In fact, unless the schemes used were selected from the
greedier ones, the results seemed somewhat inferior. How-
ever, in this case, the results seemed a bit more robust. More
research is needed in this area.

Several ways of increasing the diversity during the run
were compared: Quantum individuals, Brownian individ-
uals and entropic differential evolution. From these, en-
tropic differential evolution was considered inferior. As the
guess of theσ parameter was proved correct, the Brown-
ian method seems to be easily configurable to other prob-
lems. We recommend it because it is less computationally
demanding than Quantum individuals.

Our experiments with the ratio of normal and Brownian
individuals seem to indicate a ratio of 60% normal individ-
uals to 40% Brownian. The comparison to the approaches
of other researchers allows us to conclude that this method
presents good results and that more research is needed in
this area to further improve it.
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