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ABSTRACT 
 
 Some time ago the general form of partial differential equations that governs most of 
the engineering problems have put forward together and a brief historical outline of FD, FE, 
BE and DEMs has been given (Martins, 1995). 
 Questions related to comparison of the BEMs with others have formulated, some 
answers have been attempted. 
 Now the discussion is carried on, further focused on BEM versus FEM. 
 
 
1. INTRODUCTION  
 
 In a presentation to the BEM17 Conference (Martins,1995) it has been shown that the 
differential equations which govern most of the engineering problems in continuum 
mechanics are of the form:  
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The correspondent homogeneous equation is 
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In this equation A, B, C are given constants if the material is homogeneous. 
The value of the determinant 
 
 k=B2-4AC  (1.3) 
 
gives the type of Eqn [1.2]. If k<0, Eqn[1.2] is of elliptic type;  If k > 0, Eqn[1.2] is of 
hyperbolic type;  and if k = 0, Eqn[1.2] is of parabolic type (Weinberger, 1970). If A, B and C 
are scalar constants, Eqn[1.2] governs scalar potential problems (steady and unsteady 
irrotational flow, heat exchange and transfer, diffusion and convection, Electrostatics, Flow 
through porous media, etc.). 
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 After change of coordinates, for the elliptic type Eqn[1.2] takes the form (Laplace) 
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 For the hyperbolic type Eqn[1.2] takes the form: 
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 For the parabolic type Eqn[1.2] takes the form: 
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 Vectorial Problems: 
 
 The differential Eqn[1.1] can be generalized to “vectorial” forms considering the 
instead one function u we have a vector of n components. Usually, these components are 
either 3 displacements or velocities in Solid or Fluid Mechanics. 
 In these cases A, B and C are matrices of coefficients, eventually constants, 
representing the properties of the medium. 
 These differential equations represent “constraints” of the variables in space and time in 
the domains. Initial (at time t=0) on the domain, and on the boundary there are conditions to 
be satisfied (Dirichelet’s, Newman’s or mixed conditions), giving altogether “boundary value 
problems”. These conditions are data, which are also “constraints” for the problem of finding 
values for the field variables in the domain and some complementary values for the variables 
and/or its derivatives at the boundary. 
 In general, each type of boundary value problem has its specific method of numerical 
solution. However, since the value of the determinant depends on A, B, C which in turn are 
related to material properties, it follows that the type of problem may change if the materials 
properties change from one zone to the other of the domain. This is one first difficulty to get a 
proper numerical solution in non-homogeneous media. 
 It should be noted that the general form the Eqn[1.1] has a second member which may 
be a function F(x, t, u, ∂

∂
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 If F is linear in u, ∂
∂

u
t  and ∂

∂
u
x , the whole equation is still linear, but if F is non-linear in 

those variables, the equation is said “quasi linear”, since still is linear in the higher 
derivatives. 
 It should be notice that, if there are derivatives ∂

∂
u
t  and ∂

∂
u
x , the whole equation is of 

mixed type, i.e., elliptic and hyperbolic at the same time, for example, and according to the 
values of the coefficients A, B, C and those of ∂

∂
u
t  and ∂

∂
u
x  in F (supposed to be linear) either 

the elliptic component or the hyperbolic component may prevail. This circumstance should be 
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taken into account in the numerical solution. Also, if F is not linear in u, ∂
∂

u
t  and/or ∂

∂
u
x , the 

solution of the problem may not be unique, creating difficulties in the numerical solution. 
 Even if in the equation F is function of t and x, only, the corresponding boundary value 
problem will be a “well posed problem” only if the following conditions are satisfied (e.g. 
Weinberger, 1970): 

i ) The function F and the functions f(x) and g(x) corresponding to initial conditions. 
 
 u(x,0) = f(x) and  ∂

∂
u
t (x,0) = g(x),    0 < x < l , t =0 

 
are “regular enough”. This implies the existence of a solution u(x,t). 

ii ) The solution is unique. 
iii) Continuity. The different solutions u(x,t) corresponding to sets of data which differ 

in small quantities, must differ in small quantities also. Continuity implies 
uniqueness, but it is easier to show uniqueness. 

Furthermore, for the problem to have a unique solution the matrices A, B and C must 
be positive definite (Weinberger,1970). 
 As particular cases of Eqn[1.1] under vectorial form, we have the system of differential 
equations that govern the displacements in the motion of the linear elastic body (e.g. Atkinson 
and Fox, 1980): 
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where the repeated indices represent summation and the comma represents partial derivation. 
D stands for derivation in terms of material (Lagrange) coordinates.  and  are the Lamé’s 
constants , ρ0 the mass per unit volume of the material and bj the components of the body 
forces. 

µ λ

 If there is no motion Eqn[1.7] becomes (Novozhilov): 
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where e  is the volume strain of the body (1.9) 
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is the Laplace’s operator. 
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where E is the Young’s Modulus and υ the Poisson’s ratio. 
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 The system of Eqns[1.8] can be generalized for the porous linear elastic media with 
pore pressures pw(x,y,z) under the form (Biot, 1944; Wilkins, 1964; Nemat Nasser and 
Chung, 1992). In the case of zero body force Fj.: 
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and k the permeability of the porous media and G, H and Q elastic constants. 
For a completely saturated porous material  and Q=  (Biot, 1944). α =1 ∞
 Eqns[1.12] and [1.13] can be further generalized for the case of the viscoelastic porous 
media with internal fluid flow (Biot, 1956) 
 These are only a few problems of Continuum Mechanics to be solved. 
Discontinuum Mechanics is now rapidly developping with problems of Mechanics of 
Granular Materials, Block Mechanics and Mechanics of no tension or no-Compression 
Materials and Structures. Some of these problems and others in Continuum Mechanics lead to 
Operational Research solutions involving optimisation of functions of variables subjected to 
inequality constraints which can be of algebraic and/or differential type (differential 
inequalities) (Martins, 1985). Optimisation problems derive also from inverse (back analysis) 
problems, damage problems, etc.. 
 Many of those problems are best solved by the “Discrete Element Method” (Cundall, 
1971; Williams and Mustoe, 1993).  
 Also, some “evolution problems” lead to integral-differential equations of “parabolic” 
type (Wahlbin, in Light 1991, Zhang, 1990) 
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which govern transient fluid flow and deformation in elastic porous media (Habetler and 
Schiffman, 1970) and visco-elastic problems (Camino, 1988). 
 In Eqn[1.14] A(t) is a second order elliptic, symmetric, positive definite, linear (mostly) 
partial differential operator in space variables and B(t) is an at most second order partial 
differential operator, not necessarily elliptic. 
 The “hyperbolic” counterpart of Eqns[1.14] and [1.15] is : 
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but now with an initial boundary condition 
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Oden et al. (1971) had dealt with this kind of problems. 
 Boundary Element Methods have cope with potential problems, both scalar and 
vectorial. However, so far, most of the kind of problems just referred have not yet been solved 
by BEMs, at least, for cases with complex boundary conditions, inhomogeneities and non-
linearities. 
 
 
2. EVALUATION AND COMPARISON OF BEMs AND FEMs  
 
 Some Key Questions: 
 The main issue in this subject is to answer to the following questions: 
 i. Why both FEMs, BEMs (and others) remain in use? If there was a method better than 
all the others to solve all kinds of engineering problems, that would be take over. 
 ii. How many comparisons have been made so far between potentials (scalar or 
vectorial, i.e., displacements) and derivatives (fluxes or stresses) for the same points at 
boundary and at element sides and other points within the domain, calculated by the BEM and 
by the FEM, for the same physical problem with several discretization hypothesis? 
 iii. How many error estimates comparisons for the calculated values by FEM and by 
BEM as indicated in ii. (not in terms of energy norms) have been done? 
 iv. How does the calculation effort (time and cost) compares between the BEM and the 
FEM, for various shapes of boundary and for various cases of singularities in the boundary 
geometry and in boundary conditions, to get the same accuracy. 
 v. Are there specific problems where a method is the best? In the affirmative which are 
the problems better solved by each of the above methods? 
 vi. Does the development of computer capabilities contribute to the coexistence of both 
methods or is a way for the prevailing of one of them? 
 vii. Are there any way of relating the H and G matrices in the BEM Eqn .H u = G q to 
the stiffness and flexibility matrices K and K-1 in the FEM Eqn. Ku=F for the same boundary 
points ? 
 viii. Is it possible and easy to solve problems in nonhomogeneous (zoned) media with 
irregular shape domains sub-dividing them in sub-domains with regular shapes, and to cover 
each of these with circular domains and use for them particular solutions instead of the BEM 
fundamental solution which is not available for nonhomogeneous media ? 
 ix. Which is the best method to cope with Operational Research problems 
(Optimisation, inverse, sensitivity analysis, etc.)? 
x. In what way each of those methods can be linked with the bifurcation and chaos theories? 
Does the development of these theories contributes to easier and/or more rigorous solution of 
the engineering problems? Which of these may first benefit of the recent development of 
those theories? 
 We do not claim to give an answer to all these questions, but a number of them can be 
discussed. 
 In relation to the first question it can be said that, broadly speaking, BEMs have 
advantage when all the dimensions of the domain are nearly the same, because the amount of 
data to be fed in the problem is much less in the case of the BEMs. However, due to the great 
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development of pre-processors and post-processors the difference is becoming less relevant 
when there is need for graphical field representation of the values of the variables (mainly 
stresses or fluxes). 
 In relation to the second question we could not find in the literature one sole 
comparison done in that way. The same for the third to fifth questions. In relation to these 
what is usual is that most of the published comparisons between FE and BEM solutions refer 
mainly to the CUP time involved in the solutions and “accuracy” for very simple cases. 
Furthermore, error estimations are usually given in relation to the field variable (i.e., 
displacements for the case of elastostatics problems) and not of its derivatives (stress or fluxes 
in the case of scalar potential problems). Also, many of the error estimates are done for the 
energy norms and not for the stresses themselves. The important question would be to fix "a 
priori" the maximum acceptable error for a given engineering problem and to find the mesh 
refinement and type of element needed in both FEM and BEM to reach such an accuracy and 
then compare the calculation effort necessary in each case. 
 On the other hand there is in literature a very small amount of comparisons between the 
stresses calculated at the same points by FEMs and by BEMs. Particularly important is to 
determinate the stress (or flux in the case of scalar potential problems) discontinuities at the 
boundaries of each element in the FEMs when the field variables are the displacements. The 
BEMs have no such discontinuities. However, in this case, the accuracy of the stresses 
calculated at any internal point are still dependent of the accuracy obtained for the elements 
of the matrices H and C in the final linear equation H u = Bq. 
 In relation to question vi it seems that, in effect, computer rapid increase in capacity and 
speed of calculation make indifferent the use of BEM or FEM, provide a safe and "robust" 
code is available. 
 In what refers question vii it can be said that such an exercise is possible removing the 
difficulty of F being a force and q being a traction and, therefore q needs to be integrated 
along the sides neighbouring each boundary node. This exercise would give a good insight in 
the relationships between BEM and FEM. It can be said that using the BEM a big FE can be 
created (Azeredo,1984).  
 Referring question viii it seems, in effect, to be possible, in the future, to solve by this 
method, problems of heterogeneous media in irregular domains (Arantes e Oliveira, 1965; 
Yasnitsky,1995)  
 Referring to question ix it seems that the FEM has, so far, more published results than 
BEM for Operational Research (Optimisation) problems. 
 In relation to the last question a lot o research is needed in both methods to take 
advantage of the new theories of bifurcation and chaos in the solution of engineering 
problems. Perhaps coupling these and other numerical methods is the trend for the future.  
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