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This paper presents a systematic characterization of hydrogen capacitively coupled very high 

frequency discharges, produced within a parallel plate cylindrical setup, by comparing 

numerical simulations to experimental measurements for various plasma parameters. A good 

quantitative agreement is found between calculation and experiment for the coupled electrical 

power and the plasma potential, at various frequencies, pressures and applied voltages. 

However, the model generally underestimates the electron density and the self-bias potential 

with respect to measured values. Model predictions for the absolute density of H(n=1) atoms 

are compared to first diagnostic results, obtained by two-photon absorption laser-induced 

fluorescence diagnostics at various pressures and frequencies. 
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1. Introduction 

Capacitively coupled radio frequency (ccrf) discharges are currently used in the plasma 

enhanced chemical vapor deposition (pecvd) of hydrogenated microcrystalline silicon (µ-Si:H) 

thin films, from a precursor mixture of SiH4-H2, under high dilution conditions for silane. 

Moreover, rf discharges working above the conventional 13.56 MHz frequency exhibit an 

increasing interest in plasma assisted thin-film deposition and etching. In fact, the use of higher 

frequencies is normally associated to an enhancement of the plasma processes efficiency, 

through an increase in the population of hydrogen atoms. 

The study of capacitively coupled very high frequency (ccvhf) discharges in pure hydrogen is 

therefore of great interest in optimizing pecvd reactors used for such applications. This 
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optimization is often made empirically, following a technical procedure that turns out to be 

both random and lengthy. With this respect, modeling constitutes a competitive alternative 

answer. Systematic and fast results can be obtained by using well-validated models, to simulate 

the operation features of such devices over a broad range of working conditions.  

This paper presents a systematic characterization of pure hydrogen ccvhf discharges, produced 

within a parallel plate cylindrical setup, by comparing numerical simulations to experimental 

measurements for various plasma parameters, at different frequencies (f=13.56-80 MHz), 

pressures (p=0.2-1 Torr), and rf applied voltages (Vrf=50-600 V).  

The experimental setup used here is similar to the GEC reference cell and it has been described 

in detail elsewhere [1,2]. The rf discharge is sustained between parallel plate electrodes (128 

mm diameter and 32 mm interelectrode distance), with the upper electrode (on which the rf 

voltage is measured) driven, and the lower electrode grounded. A grounded counterelectrode 

shields the back of the powered electrode, and the plasma is confined to the interelectrode 

volume by a cylindrical grid fixed to the counterelectrode.  

The simulations use a two-dimensional (2D) fluid model, which has first adopted a simplified 

hydrogen kinetics to describe the dynamics of electrons and positive ions H+, H2
+, and H3

+, in 

the reactor under study [3,4]. This simplified model version (smv) yielded a good quantitative 

agreement between calculation and experiment for the coupled electrical power and the plasma 

potential. However, smv predictions for the plasma density and the self-bias voltage showed 

only a qualitatively agreement with respect to measurements. In fact, the values of these 

quantities, calculated with the smv, were systematically underestimated with respect to 

measurements [4,5], which was attributed to both experimental uncertainties and the simplified 

hydrogen kinetics considered.  

In order to clarify the role and importance of the hydrogen kinetics in the results obtained, we 

have self-consistently coupled the previously developed charged particle transport model with 

a homogeneous kinetic model for hydrogen, including vibrationally excited molecular species 

and electronically excited atomic species [6,7]. Calculation results obtained with this complete 

model version (cmv) are compared here to both experimental measurements and predictions of 

the smv, for the electron density ne, the self-bias voltage Vdc, the plasma potential Vp, the 

effective electrical power coupled to the plasma Weff, and the H-atom density nH, at various 

pressures, excitation frequencies, and rf applied voltages. 

 



2. Model formulation 

2.1 Simplified model version 

The smv corresponds to a 2D time-dependent fluid model for electrons and H+, H2
+, and H3

+ 

positive ions, which solves the continuity, momentum transfer and mean energy equations (the 

latter for electrons only), coupled with Poisson’s equation. Boundary conditions involve 

symmetry considerations at reactor axis, and the imposition of the different particle and energy 

fluxes, together with the applied rf potential, at each physical boundary (electrodes, grid). 

Model calculations are restricted to the volume between the electrodes, corresponding to a 2D 

workspace delimited by the discharge axis (r=0), the grounded lateral grid (r=R), the driven 

electrode (z=0), and the grounded electrode (z=d). Electron transport parameters are calculated 

adopting the local electron mean energy approximation [3]. This assumes that the space-time 

dependence of the electron energy distribution function (eedf) and its related transport 

parameters (obtained by solving the homogeneous and stationary electron Boltzmann equation, 

written in the two-term approximation) proceeds via the electron mean energy profile, as 

obtained from the fluid code. A detailed description of the smv and its numerical solution can 

be found in Refs. [3,4]. 

The smv adopts a simplified kinetic scheme for hydrogen, corresponding to the mechanisms 

marked with a cross symbol in Table I. In particular, this simplified kinetics: (i) does not 

explicitly include a model for H-atoms, meaning that although the dissociation of H2 is 

considered as an electron energy loss channel, collisional-radiative and transport mechanisms, 

allowing an estimation of the H-atoms density, are not taken into account; (ii) it neglects the 

production of negative ions, following the dissociative attachment of molecular hydrogen [e + 

H2(v=0-9) → H + H−]. 

 

2.2 Complete model version 

The complete description of low-temperature non-equilibrium plasmas requires a simultaneous 

analysis of the charged particle transport and the gas phase chemistry. This study concerns 

mainly the electron population, as electron-neutral collisions are essential to establish the final 

chemical composition of the gas phase, by coupling the plasma to the neutral gas. Hence, the 

modeling of this problem should involve a microscopic analysis of the energy exchanges 

between interacting populations, via the calculation of their corresponding energy distribution 

functions.  



TABLE I. Hydrogen kinetic reactions considered in the model. 
 Process smv Refs. 

Molec. species    
Elastic e + H2(v) → e + H2(v) X [8,9] 
e − R e + H2(v, J) → e + H2(v, J + 2),  J = 0-3 X [8,9] 
e – V e + H2(v) ↔ e + H2(v ± i),  i = 1−3 X [8,9] 
E – V e + H2(v) →  e + H2(B1∑u

+, C1∏u ) → e + H2(v´) X [8,9] 
V – V H2(v) + H2(w)  ↔ H2(v - 1) + H2(w + 1)  [9] 
V – T H2(v) + H2 ↔ H2(v ± 1) + H2  [9] 
V – T H2(v) + H ↔ H2(v ± i) + H,   i=1..5  [9,10] 

Triplet exc.+ Diss. 
 

Singlet exc. + Diss. 

e + H2(v) → e + H2(a3∑g
+, b3 ∑u

+,  c3∏u, e3 ∑u
+)  

→ e + 2H(1s) 
e + H2(v) → e + H2(D1∏u, B´´ 1∑u

+,  D´ 1∏u)  
→ e + H(1s) + H(n = 2,3) 

X 
 

X 

[8,9] 
 

[8] 

Ionization by 
electron impact 

e + H2(v) → e + e + H2
+ 

e + H2(v) → e + e + H+ + H 
X 
X 

[8-12] 
[8-12] 

Diss. attachment e + H2(v) → e + H2
− → H + H−  [13] 

Wall de-exc. H2(v > 0) + wall → H2(v = 0)  [14] 
Dissociation  by 
vibrat. pumping 

H2(v = 14) + H2 ↔ 2H(1s) +H2 
H2(v = 14) + H ↔ 3H(1s) 

 [15] 

Atomic species    
Elastic e + H(n) → e + H(n)  [16,17] 

Elect. exc./de-exc. e + H(n) ↔ e + H(m),    n, m=1..5  [18] 
Ionization by  

electron impact 
e + H(n) → e + H+  [18] 

Radiative de-exc. H(n) → H(m) + hv  [18] 
Deactivation 

 
Deact. + Diss. 
Ass. Ionization 

H(2s) + H2 → H(2p) + H2 
H(2p) + H2 → H(2s) + H2 

H(2s) + H2 → 3H(1s) 
H(2s) + H2 → H3

+ + H + e  

 [19] 
[18] 
[19] 
[18] 

Wall recombination 
Wall de-excitation 

H(1s) + wall → ½H2(v = 0) 
H(n > 1) + wall → H(1s) 

 [20] 
[18] 

 

In the particular case of hydrogen, a realistic chemistry must include the kinetics of 

vibrationally excited molecules and of electronically excited atomic species. Hydrogen 

vibrational excited species have an important role in rf discharges, as a significant part of the 

coupled electrical power is transferred to low energy vibrational excitations. Moreover, these 

species are important channels for the production of both atomic hydrogen and charged 

particles. In view of this, and in order to describe pure hydrogen ccvhf discharges, we have 

developed a cmv that couples an updated smv (corresponding to a 2D time-dependent fluid 

model, describing the production, transport and destruction of electrons, positive ions H+, H2
+, 

and H3
+, and negative ions H−), the two-term homogeneous and stationary electron Boltzmann 



equation (written in the classical two-term approximation), and a homogenous collisional-

radiative model (crm) for the populations of H(n=1-5) electronically excited atoms and 

H2(X1Σg
+,ν=0..14) vibrationally excited ground state molecules. 

 

TABLE I. (cont) Hydrogen kinetic reactions considered in the model. 

 

This hybrid model considers all the kinetic processes summarized in Table I: ground state 

elastic collisions and rotational excitations of hydrogen molecules, by electron impact; e-V, E-

V through all singlet states (eventually followed by dissociation), V-V and V-T excitations/de-

excitations collisions; dissociation through triplet states (a3, b3, c3, e3); attachment and 

ionization for H2(ν) molecules; elastic, excitation/de-excitation and ionization collisions for 

H(n) atoms; wall de-excitation/recombination for both H2(ν>0) molecules (assuming a 

probability of 0.07 [14]) and H(n) atoms (taking a probability of 10-2 for H(1) [20] and of 1.0 

for H(n>1) [18]); electron-ion recombination (including wall recombination with unity 

probability); ion-ion neutralization (including detachment); and ion conversion reactions. Note 

that the cross sections for the various electron-neutral collisional processes (appearing in the 

electron Boltzmann equation) were normalized in order to yield a good fit between calculated 

and measured electron transport parameters [27,28]. Further note that we are adopting a H-

 Process smv Refs. 
Charged species    

Electron – ion 
recombination 

e + H3
+ → 3H 

e + H3
+ → H2 + H 

2e + H3
+ → H2 + H + e 

e + H2
+ → H(1s) + H(n), n>1 

2e + H2
+ → 2H(1s) +e 

e + H+ → H(n) + hv 
2e + H+ → H(n) +e 

e + H3
+ + wall → H2 + H 

e + H2
+ + wall → H2 

e + H+ + wall → H 

 
X 
 

X 
 

X 

[21] 
[15,18-24] 

[15] 
[21-24] 

[15] 
[21-24] 

[15] 

Ion – ion 
neutralization 

H− + H3
+ → 2 H2 

H− + H2
+ → H2 + H(n > 2) 

H− + H+ → H(n = 3) + H 

 [15] 
[25] 
[15] 

Ass. detachment H + H− → H2 + e  [15] 
Ion conversion H2

+ + H2 → H3
+ + H 

H2
+ + H → H+ + H2 

H+ + 2H2 → H3
+ + H2 

H+ + H2(v > 3) → H2
+ + H 

X [15,26] 
[15] 
[15] 
[15] 



atom wall-recombination probability, which was measured under actual discharge conditions, 

for an aluminum driven electrode [20].  

The crm solves the set of coupled rate balance equations for the different neutral species 

considered here. In order to limit the calculation run times (due to the high number of species 

and kinetic processes involved), we have adopted zero-dimensional (0D) versions of the 

continuity equation for each species, by averaging them in space as follows 
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Here, radcolli tn −∂∂ )/(  represents the average net gain rate, due to collisional-radiative 

mechanisms, of species i in the volume; walli tn )/( ∂∂  represents the average net loss rate of 

species i at the wall; and in  is the average density defined as 
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The integrals in equation (2) distinguish between two plasma regions: a spatially homogeneous 

one, corresponding to the plasma bulk; a boundary layer, with size equal to the thickness of the 

plasma sheath, where the densities of neutral species are assumed to vary linearly. This 

assumption introduces a dependence of in on the corresponding diffusion coefficient and wall-

recombination probability, through its flux boundary condition.  

 

2.3 Model solution 

The coupling between the different cmv calculation modules follows the usual procedure 

adopted in the kinetic modeling of such gas discharges [29]. The crm runs typically every 5 rf 

periods, knowing the space-time average values of the charged particle densities and of the rate 

coefficients for the production/destruction of each neutral species. The crm non-linear 

equations are solved using a semi-implicit Gauss-Seidel relaxation technique. Convergence is 

achieved after several thousand iterations, ensuring relative variations of less than 10-12 for 

each neutral species density. The new chemical composition of the gas phase, obtained within 

the crm, is then used as input data to the homogeneous Boltzmann code, yielding an updated 



set of electron transport parameters and rate coefficients. The latter are finally used to obtain a 

self-consistent solution to the charged particle transport model, by adopting the local electron 

mean energy approximation. The charged particle transport equations are discretized in a 

16x32 point grid by using second-order finite differences, and are solved for typical 1000 time 

steps within each rf period. In general, a few hundred rf cycles are needed to meet the 

convergence criterion: relative changes of particle densities, electron mean energy, plasma 

potential and self-bias voltage, between two consecutive periods, less than 0.05%. 

 

3. Results and discussion 

3.1 General features 

Figure 1 shows typical axial profiles (at r=0) of the time-average, steady-state charged particle 

densities, obtained at f=13.56 MHz, Vrf=200 V and p=0.5 Torr.  
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FIG.1. Axial profile (at r=0) of the time-average, steady-state particle densities, for electrons 

(A); positive ions H3
+ (B), H2

+ (C) and H+ (D); negative ions H− (E). Results were obtained 

using either the cmv (solid curves) or the smv (dashed), at f=13.56 MHz, Vrf=200 V and p=0.5 

Torr. 

 

Note that: (i) the density profiles exhibit a peak located approximately midway between the 

two electrodes, as a result of the alternating applied voltage; (ii) the electron density shows 

very steep gradients in the sheath regions (near the electrodes), due to the electric confinement 

produced by the rf field; (iii) the dominant ion is H3
+, its maximum density being more than 

one order of magnitude higher than the mean densities of either H2
+ or H+. This result is a 

direct consequence of the very efficient ion conversion reaction of H2
+ into H3

+ (see Table I); 



the H− density is smaller than the electron density, by about two orders of magnitude. Negative 

ions remain confined to a position located midway between the electrodes, where the plasma 

potential is higher, as they are mainly produced at the sheath edge, away from the discharge 

walls.  

For comparison purposes, the results in Fig.1 were obtained using either the cmv or the smv. 

Although this figure shows that the use of a very complete hydrogen kinetics has little 

influence in the charged particle density profiles, this conclusion can not be generalized to 

other working conditions, as will be demonstrated later on. Note also that only by using the 

cmv it is possible to detail the main kinetic features of hydrogen in ccvhf discharges, like its 

vibrational distribution function (vdf) or its dissociation degree.  
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FIG. 2. Vibrational distribution function of 

hydrogen molecules, as calculated from the 

cmv at p=0.3 Torr, for f=13.56 MHz (A) 

and 40.68 MHz (B), and the following Vrf 

values: 50 V (solid curves); 100 V 

(dashed); 200 V (dotted). 

FIG. 3. Dissociation degree of hydrogen 

molecules, as a function of Vrf, as obtained 

from the cmv at p=0.3 Torr and the 

following f values: 13.56 MHz (solid 

curves); 27.12 MHz (dashed); 40.68 MHz 

(dotted). 

 

Figure 2 represents the vdf of hydrogen molecules, as calculated from the cmv for p=0.3 Torr, 

Vrf=50, 100, 200 V and f=13.56, 40.68 MHz, whereas Fig.3 plots the ratio of the atomic density 

to the molecular density of hydrogen, nH / nH2, as a function of Vrf, obtained from cmv 

simulations at p=0.3 Torr and f=13.56, 27.12, 40.68 MHz. From these figures one observes that 

both the vibrational excitation and the dissociation of hydrogen are favored by an increase in 

either the rf applied potential or the excitation frequency. In fact, both of these changes lead to 

higher electric fields within discharge sheaths (hence, higher effective electrical powers 



coupled to the plasma), in order to limit the electron displacement and thus the electron wall 

losses [4]. Note, in Fig.2, the effect of the superelastic vibrational pumping, which results in an 

enhancement of the vdf’s tail.  

 

3.2 Modeling vs. experiment 

Figure 4 shows the variation of the time-average electron density with the rf applied voltage, 

on the axis of the discharge and midway between the two electrodes ne(0, d/2), for pressure 

p=0.3 Torr and for multiple operating frequencies f=13.56, 27.12, 40.68, and 80 MHz. The 

simulation results presented in this figure were obtained using either the cmv or the smv, to 

show that the updated hydrogen kinetics adopted here yields higher electron densities. The 

latter is mainly due to the introduction of electron production mechanisms involving H-atoms, 

such as associative ionization (AI) and associative detachment (AD), which become highly 

competitive with respect to the ionization of hydrogen (atomic or molecular) by electron 

impact. Notice that the updated hydrogen kinetics features the dissociation attachment and the 

recombination of H3
+ ions as main electron destruction mechanisms. 
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FIG.4. Time-average electron density (at r=0 and z=d/2) as a function of Vrf. The curves are 

calculation results obtained with the cmv (solid curves) and the smv (dashed), at p=0.3 Torr 

and the following frequency values: 13.56 MHz (A); 27.12 MHz (B); 40.68 MHz (C); 80 MHz 

(D). The points correspond to experimental measurements, obtained using a planar probe 

(closed points) and a cylindrical Langmuir probe (open), at frequencies 13.56 MHz (squares), 

27.12 MHz (circles), 40.68 MHz (up triangles), and 80 MHz (diamonds). The experimental 

values were divided by a factor of 3 for representation purposes. 



From Fig.4 it is observed that ne increases with both Vrf and f (and that this increase is 

intensified when the cmv is used in calculations), as a consequence of the enhanced energy 

transfer between the rf electric field and the electron plasma population. This figure also 

compares simulation results to experimental measurements obtained using either a planar probe 

or a cylindrical Langmuir probe [5]. The planar probe (with 0.25 cm2 surface) received a –30 V 

bias, to collect an ion flux. The corresponding electron density was obtained by using Bohm’s 

theory (assuming a non-collisional sheath), for a constant 3 eV electron temperature (in 

coherence with cylindrical probe results). Measurements of the electron density using a 

Langmuir probe were first obtained using the Smartprobe  tool of Scientific Systems. This 

tool, however, leads to incorrect results when applied to hydrogen discharges at pressures 

above 0.1 Torr, and thus we have directly obtained the electron temperature and density from 

the corresponding probe characteristics, following the techniques described in Refs. [30,31]. 

Although a good qualitative agreement is found between simulations and experiment, and 

despite the fact that the model yields higher electron densities when the complete hydrogen 

kinetics is adopted, the calculated values of the electron densities are still below the measured 

ones by a factor of 1.5−6, particularly at low applied voltages and frequencies (note that the 

experimental points in Fig.4 were divided by a factor of 3). This disagreement is most probably 

associated to the incomplete description of the discharge space-charge sheaths, for example 

due to the absence of the nonlinear inertia term in the electron flux equation [3].  

Figure 5 plots the effective electrical power coupled to the plasma [3], as a function of the rf 

applied voltage, for pressure p=0.3 Torr and different frequency values. It is observed that the 

use of the very complete hydrogen kinetics has only a little influence in the values of Weff. In 

general, the cmv leads to Weff values higher than the ones obtained with the smv (see also the 

zoom in Fig.5), probably due to the increase in the number of energy absorption channels. 

Note, however, that the cmv predictions for Weff are below the corresponding smv predictions, 

for frequencies above 40.68 MHz and rf voltages above 150 V, for which a more effective 

energy transfer takes place. As expected, Weff increases with both Vrf and f, as a direct result of 

the more intense total voltages [Vdc + Vrf cos(2πf t)] and currents [Irf(t)] developed under these 

circumstances. This figure also shows a good agreement between model predictions and 

experimental measurements for Weff, obtained over a large range of working conditions.  

The experimental results depicted in Fig.5 were obtained using a subtractive method [32], 

which proceeds as follows: (i) for given discharge working conditions, we measured the 



plasma-on generator power input, Pon, and the rf voltage and current, Vrf and Irf; (ii) for a 

plasma-off situation (i.e., by operating the plasma reactor under vacuum conditions), we 

searched for the generator power input, Poff, which ensures the same Irf value as measured 

before. Contrarily to classical methods, we used here the rf current (instead of the rf voltage), 

as calibration parameter; (iii) the effective electrical power coupled to the plasma was 

calculated as Weff = Pon − Poff.  
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FIG.5. Effective electrical power coupled to the plasma as a function of Vrf. The curves are 

calculation results obtained with the cmv (solid curves) and the smv (dashed), at p=0.3 Torr 

and the following frequency values: 13.56 MHz (A); 27.12 MHz (B); 40.68 MHz (C); 60 MHz 

(D); 80 MHz (E). The points correspond to experimental measurements obtained at frequencies 

13.56 MHz (squares), 27.12 MHz (circles), and 40.68 MHz (up triangles). 

 

The values of Weff so obtained were validated through an alternative experimental procedure, 

based on an electrical model of the discharge and of its matching network, which uses as input 

data the measured values of Vrf, Irf and the phase-shift between them. Although a good 

agreement was found, for f=13.56−40.68 MHz, between the values of Weff obtained with the 

subtractive and the electrical model methods, these experimental procedures yield quite 

different results for frequencies above 60 MHz, probably due to an incomplete discharge 

description within the electrical model.  

Figures 6(a) and (b) represent, respectively, the time-average plasma potential Vp at position 

(r=0, z=d/2) and the self-bias voltage Vdc, as a function of the rf applied voltage, for pressure 

p=0.3 Torr and different frequency values. The experimental values of the plasma potential 

were obtained from the energy distribution function of the H3
+ ions impinging on the grounded 



electrode, as they perform very few collisions along the bulk-to-wall path. The H3
+ energy 

distribution function was measured using a mass spectrometer equipped with an energy 

analyzer, as described in [33].  
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FIG.6 Electrical parameters as a function of Vrf: time-average, steady-state plasma potential at 

r=0 and z=d/2, Vp(0,d/2) (a); self-bias voltage, Vdc (b). The curves are cmv calculation results, 

obtained at p=0.3 Torr and the following frequency values: 13.56 MHz (solid curves); 27.12 

MHz (dashed); 40.68 MHz (dotted); 60 MHz (dashed-dotted); 80 MHz (dashed-dotted-dotted). 

The curves labeled smv were obtained at p=0.3 Torr and f=13.56 MHz, using the simplified 

model version. The points correspond to experimental measurements obtained at frequencies 

13.56 MHz (squares), 27.12 MHz (circles), 40.68 MHz (up triangles), 60 MHz (down 

triangles), and 80 MHz (diamonds). 

 

The latter figures show that: (i) the use of the very complete hydrogen kinetics has a small 

influence in the values of both Vp and Vdc (for demonstration purposes, Figs.6(a) and (b) only 

plot smv predictions obtained at f=13.56 MHz); (ii) Vp varies very little with f being an 

increasing function of Vrf; (iii) discharge symmetry (corresponding to smaller Vdc absolute 

values) is favored by a reduction in both Vrf and f values; (iv) a good agreement is found 

between simulation results and experimental measurements for Vp, while there is a systematic 

underestimation of the calculated Vdc absolute values with respect to experiment, particularly 

for high Vrf. The latter deviations show that the model overestimates the ion current at the rf 

electrode (or, alternatively, that it underestimates the corresponding electron current), thus 

giving a strong indication that the fluid description of the rf sheath has not yet been fully 

achieved. 



The coupled electrical power is plotted in Fig.7 as a function of pressure, at fixed Vrf=100 V 

and for different operating frequencies. Once again, a good agreement is found between model 

predictions and experimental measurements for Weff, over a large range of discharge operating 

conditions (notice that, in general, this good agreement is also observed for rf applied voltages 

up to 300 V). Figure 7 shows that Weff increases with p, for pressures up to 1 Torr. This 

increase is associated to the enhancement of the rf electric field within the discharge sheaths, 

induced by the compression of these charge separation regions.  
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FIG.7 Effective electrical power coupled to the plasma as a function of p. The curves are cmv 

calculation results, obtained at Vrf=100 V and the following frequency values: 13.56 MHz 

(solid curves); 27.12 MHz (dashed); 40.68 MHz (dotted). The points correspond to 

measurements obtained at frequencies 13.56 MHz (squares), 27.12 MHz (circles), and 40.68 

MHz (up triangles). 

 

Figures 8(a) and (b) represent, respectively, the time-average plasma potential Vp at position 

(r=0, z=d/2) and the self-bias voltage Vdc, as a function of pressure, at Vrf=100 V and for 

different frequency values. From Fig.8(a) one observes that Vp is a decreasing function of p, for 

the range of pressures analyzed here [see also Fig.7], and that the relative variations of Vp with 

f are always smaller than 10% [see also Fig.6(a)]. Figure 8(b) shows that: (i) Vdc is a slow 

decreasing function of p, which reveals that discharge symmetry (due to sheath compression) is 

favored by a pressure increase; (ii) the calculated Vdc absolute values are underestimated with 

respect to experiment [similarly to what was shown in Fig.6(b)], although a good qualitative 

agreement is observed between simulations and measurements. 
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FIG.8 Electrical parameters as a function of pressure: time-average, steady-state plasma 

potential at r=0 and z=d/2, Vp(0,d/2) (a); self-bias voltage, Vdc (b). The curves are cmv 

calculation results, obtained at Vrf=100 V and the following frequency values: 13.56 MHz 

(solid curves); 27.12 MHz (dashed); 40.68 MHz (dotted). The points in Fig.8(b) correspond to 

measurements obtained at frequencies 13.56 MHz (squares), 27.12 MHz (circles), and 40.68 

MHz (up triangles).  

 

Figure 9 shows the variation of the time-average electron density with pressure, on the axis of 

the discharge and midway between the two electrodes ne(0, d/2), obtained at Vrf=100 V and for 

f= 27.12, 40.68, and 60 MHz. The simulation results presented in this figure were obtained 

using either the smv or the cmv to confirm that the extra reactions included in the complete 

hydrogen kinetics do lead to higher electron densities (see also Fig.4). However, as before, the 

calculated values of the electron density are still below the measured ones by a factor of 1.5−5 

(in Fig.9, the experimental points were once again divided by a factor of 3). Figure 9 also 

shows that the electron density varies very little within the range of pressures analyzed here, 

when using the smv (no H-atoms considered), whereas a strong increase of ne with p is 

observed, when using the cmv. The latter is due to the introduction of electron production 

mechanisms involving H-atoms, such as AI and AD, whose relative importance is enhanced 

with pressure increase. In fact, the electron production rates via AI or AD, at position (0, d/2), 

present a limited variation (of less than a factor of 2 for AI and of less than a factor of 30 for 

AD), over the pressure range considered here, whereas the ionization rate of hydrogen (atomic 

or molecular) by electron impact becomes highly attenuated at (0, d/2), being strongly 

enhanced within discharges sheaths, due to the decrease in Vp as p increases. 
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FIG.9. Time-average electron density (at r=0 and z=d/2) as a function of p. The curves are 

calculation results obtained with the cmv (solid curves) and the smv (dashed), at Vrf=100 V and 

the following frequency values: 27.12 MHz (A); 40.68 MHz (B); 60 MHz (C). The points 

correspond to experimental measurements, obtained using a cylindrical Langmuir probe at 

frequencies 27.12 MHz (circles), 40.68 MHz (up triangles), and 60 MHz (down triangles). The 

experimental values were divided by a factor of 3 for representation purposes. 

 

Figure 9 evidences a disagreement between experimental measurements (which show 

negligible variations of ne with p) and cmv predictions, which might indicate that the model is 

not providing a good estimate for the H-atoms density, particularly at higher pressures. To 

further investigate this problem, we plot in Fig.10 the time-average H-atoms density nH, as a 

function of pressure, obtained at constant Weff=30 W and for f=13.56, 27.12, and 40.68 MHz. 

For comparison purposes, the simulation results presented in this figure were obtained by 

running the cmv at two different values of the wall-recombination probability: γH=10-2 and 0.2.  

The H-atom density has been measured by using two-photon absorption laser-induced 

fluorescence (TALIF) diagnostics [20]. The second harmonic of a Nd-Yag laser at 532 nm was 

used to pump a dye mixture of R610 and DCM, in order to produce a laser emission at 615 nm. 

The third harmonic of the 615 nm fundamental wavelength (obtained from frequency doubling 

in a KDP crystal followed by frequency mixing in a BBO crystal) was used to produce a 205 

nm laser emission. This laser beam was focused onto the plasma chamber with a lens of 57 cm 

focal length. The resulting induced fluorescent radiation was collected through the reactor grid 

by a lens, was imaged on the entrance slit of a monochromator, and it was detected by a 

photomultiplier connected to a BOXCAR averager. The absolute H-atom density was derived 



from the measurements of the generated TALIF signal, on the axis of the discharge at 12 mm 

from the driven electrode, using a well-known Kr:H detection sensitivity ratio [34]. 
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FIG.10. Time-average H-atoms density as a function of p. The curves are cmv calculation 

results, obtained at γH=10-2 (A) and γH=0.2 (B), for Weff=30 W and the following frequency 

values: 13.56 MHz (solid curves); 27.12 MHz (dashed); 40.68 MHz (dotted). The points were 

obtained by TALIF diagnostics, at frequencies 13.56 MHz (squares), 27.12 MHz (circles), and 

40.68 MHz (up triangles). Curves B were multiplied by a factor of 10 for representation 

purposes. 

 

As anticipated, Fig.10 presents a significant disagreement between measurements (showing a 

strong increase of nH with p) and cmv calculations at γH=10-2 (showing negligible variations of 

nH with p), although both experiment and simulations yield the same order of magnitude for 

the nH density. As expected, the H-atoms density is strongly reduced when calculations adopt a 

higher wall-recombination probability of 0.2 (note that, in this case, simulation results were 

multiplied by a factor of 10).  

The calculated nH vs. p variation, obtained with the cmv at γH=10-2, and its disagreement with 

respect to experiment can be explained by a combination of three factors. First, the cmv 

includes a 0D crm that imposes a flat profile for the bulk density of all neutral species (and in 

particular of the H-atoms, see Sec. 2.2), regardless of the working pressure. Most probably, this 

assumption is not valid at high pressures, in which case the neutral species normally exhibit a 

non-homogeneous density profile, associated to diffusion transport. Furthermore, the 

differences between bulk and wall densities become highly attenuated at low-γH, as the flux 

boundary condition relating the boundary layer to the plasma bulk goes to zero (in our case, 



this yields a constant density profile all across the discharge, from the bulk to the wall). The 

latter considerations might explain the good qualitative agreement between measurements and 

simulations at γH=0.2. Second, model predictions for the energy density neε (where ε represents 

the electron mean energy) remain practically unchanged with modifications on the reaction 

kinetics. Consequently, an increase in ne (for example, following the introduction of a very 

complete hydrogen kinetics) leads to a simultaneous decrease in ε, in order to keep the same 

neε values. In particular, smv calculations yield ε=5−2.5 eV (at the center of the discharge, and 

for pressures between 0.3 and 0.9 Torr), whereas cmv predictions (with a complete updated 

kinetic scheme) give ε=5−1 eV, for the same pressure region. This reduction in the electron 

mean energy: (i) might be caused by missing electron energy gain terms in the corresponding 

energy balance equation; (ii) will contribute to a strong decrease in the H-atoms production 

rate (particularly at high pressures), which mainly proceeds via the dissociation of H2 by 

electron impact. Third, the experimental results for the H-atoms density, presented in Fig.10, 

were obtained at constant generator power input, Pon=30 W (not constant coupled electrical 

power, Weff=30 W). In general, the energy coupling is more effective at high pressures, and so 

one can expect an underestimation of low-pressure nH measurements, with respect to 

calculations obtained at constant Weff. 

 

4. Final remarks 

This paper has compared numerical simulations to experimental measurements of various 

plasma parameters, in view of the characterization of capacitively coupled hydrogen 

discharges, produced within a parallel plate cylindrical setup at different frequencies (f=13.56-

80 MHz), pressures (p=0.2-1 Torr), and rf applied voltages (Vrf=50-600 V). A charged particle 

transport model was self-consistently coupled with a homogeneous kinetic model for 

hydrogen, including vibrationally excited molecular species and electronically excited atomic 

species. This updated hydrogen kinetics led to higher electron densities, due to the presence of 

electron production mechanisms involving H-atoms, such as associative ionization and 

associative detachment. A good quantitative agreement was found between calculation and 

experiment for the coupled electrical power and the plasma potential, at various frequencies, 

pressures and applied voltages. However, the model has generally underestimated the electron 

density and the self-bias potential with respect to measured values, which probably indicates 

that the fluid description of rf space-charge sheaths is still incomplete. Model predictions for 



the absolute density of H(n=1) atoms (which show negligible variations of nH with p, at various 

frequencies) were compared to TALIF diagnostic results (which show a strong increase of nH 

with p, for the same frequencies). This disagreement between simulations and measurements is 

probably associated to the use of a 0D crm, together with an incomplete electron energy 

description when using the updated hydrogen kinetics. Work is in progress to overcome these 

model limitations. 
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