

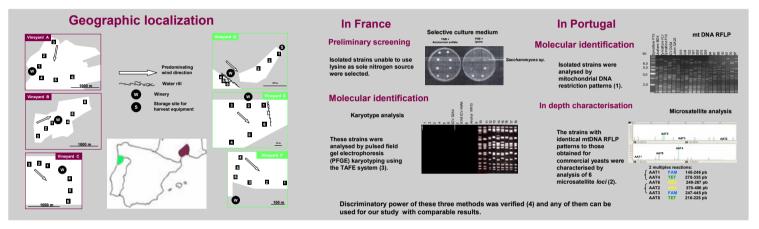
wine yeast in vineyard ecosystems

E. Valero 1,2*, D. Schuller 3*, B. Cambon 1, M. Casal 3 and S. Dequin 1

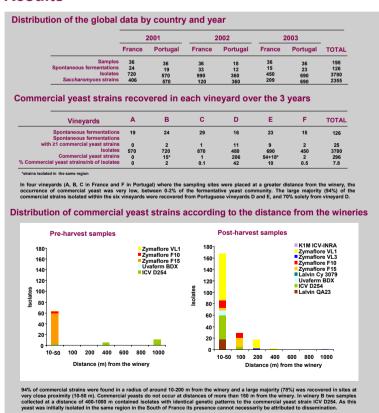
brought to you by CORE

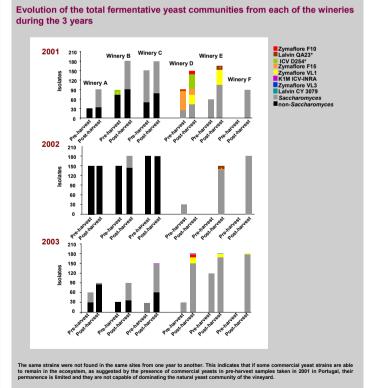
¹UMR Sciences pour l'Œnologie, Microbiologie et Technologie des fermentations INRA, 2 place Viala, 34060 Montpellier, France. ²IMIDRA. Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario. Madrid. Spain. E-mail: eva.valero@madrid.org ³Centro de Ciências do Ambiente, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal.

*Contributed equality to this work


Introduction

Modern winemaking practices and diversification of wine products involve an increasing quest for specialised wine yeasts. The use of commercial wine yeast strains as starters has been extensively generalised over the past two decades. Wine yeast strains are annually released into the wineries' environment. However, little is known about the fate of these strains in the vineyard. In this study a large-scale sampling plan was established with the aim of evaluating the industrial starter yeasts' ability to spread and survive in nature. This study provides a consistent assessment of potential environmental risks associated with the use of genetically engineered winery yeast strains using commercial wine yeast as a model.


Material and Methods


Sampling plan: This includes 36 sites in 6 vineyards, 3 in France (A, B, C) and 3 in Portugal (D, E, F) that have used industrial starter yeasts for at least 5 years. Samples were taken before harvest (annual remanence) and at late harvest (immediate release), at 3 distances from the winery (20-1000 m) and from opposite directions. The overall duration of these studies was 3 years.

Yeast isolation: For each sample about 2 Kg of grapes were collected to perform small-scale fermentations (0.25-0.5 l). Must samples were plated when 70 g/l of CO₂ were released and 30 randomly selected colonies were analysed.

Results

Conclusions

- Commercial yeasts represented 7.8% of the fermentative yeast community, the majority of which (5.8%) were recovered in post-harvest campaigns indicating immediate dissemination.
 The dissemination of commercial yeast strains in the vineyard can be detected mainly in close proximity to the winery (10-50 m).
 Liquid effluents are an important vector for the release of yeasts into the environment.
 Permanent implantation of commercial strains in the vineyard did not occur, instead these strains were subject to natural fluctuations of periodical appearance / disappearance like

- Significant genetic diversity is found in the different vineyards, varying from year to year.

These results indicate that the dissemination of commercial yeasts in the vineyard and their impact on the ecosystem is very limited in terms of space and time. The associated risks of contamination of grape must are consequently very weak. Considering commercial yeast strains as an appropriate model system for genetically modified yeast strains, our data can contribute to the in-depth environmental risk assessment concerning the use of such strains in the wine industry.

References

Querol, A., Barrio, E., and Ramon, D. 1992.
 System. Appl. Microbiol. 15: 439-446.
 Perezu, M.A., Gallego, F.J., Martinez, I. and Hiddalgo, P. 2001. Lett. Appl. Microbiol. 33: 461-466.
 Blondin, B. and Vezinder, F. 1988, Fr. Ceno. 28: 7-11
 Schuller, D., Valero, E., Dequin, S. and Casal, M. 200 FEMS Microbiol. Lett. 23: 1-90.

