
Supporting resource-based analysis
of task information needs

Jośe Creissac Campos1 and Gavin J. Doherty2

1 Departamento de Inforḿatica
Universidade do Minho, Braga, Portugal

jose.campos@di.uminho.pt
2 Department of Computer Science

Trinity College Dublin, Ireland
Gavin.Doherty@cs.tcd.ie

Abstract. We investigate here an approach to modelling the dynamic informa-
tion requirements of a user performing a number of tasks, addressing both the
provision and representation of information, viewing the information as being
distributed across a set of resources. From knowledge of available resources at
the user interface, and task information needs we can identify whether the system
provides the user with adequate support for task execution. We look at how we
can use tools to help reason about these issues, and illustrate their use through an
example. We also consider a full range of analyses suggested using this approach
which could potentially be supported by automated reasoning systems.

1 Introduction

Usability testing is a time consuming and expensive activity, often performed too late in
the software development life-cycle. Thus it is interesting to look at analyses which may
be performed early in the development life cycle, particularly if we can obtain leverage
from design artifacts which are produced for other purposes within the development
process. Task models (such as CTT models [12]) are an obvious type of artifact which
may be produced at such an early stage. Task models on their own however, are not suf-
ficient for the analysis of modern interactive systems, as the same basic task structure
can be supported by many possible designs. The focus of this paper is on information
needs; whether the right information is provided in an appropriate fashion at the right
time. While there is an obvious and direct mapping between user tasks and their infor-
mation needs, this is not the same as knowing how best to represent information, nor
how to reconcile competing information requirements for multiple tasks within a given
application, with fixed and possibly very limited screen “real estate” (as in mobile de-
vices). We must also avoid confusing and inconsistent information displays where an
excessive degree of task based adaptation is employed.

Thus we can see an opportunity for model-based techniques that can be applied
early in development, as they can capture this information about proposed designs and
be used to reason about the designs. Some behavioural models focus on the system and
can be supported by automated reasoning systems. The capabilities of such models to
explore issues related to interaction has been the focus of much work in the past [13,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55604061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


3, 14, 9]. Another family of techniques are based on task models as mentioned above.
Again the use of such models in the analysis of interactive systems is well documented
[6, 12]. Providing analyses which could help answer the questions regarding informa-
tion needs detailed above would require us to augment our task models with models to
account for system behaviour. The contribution of this paper is threefold:

– to look at analyses which may be performed by checking an interactive system
specification against a task model.

– to examine the use ofresourcesas a concept and model component to allow us to
move beyond what may be achieved with interactor models.

– to formalise and automate a portion of the analysis, reducing analyst effort, increas-
ing the likelihood of finding problems and opening the door to more intelligent
dynamic behaviour by applications.

2 Reasoning about system designs

In previous work we have approached reasoning about system designs from two distinct
perspectives. We have shown that using device models (with an emphasis on behaviour)
and model checking, we can identify behaviours that might lead into undesirable situ-
ations [3]. We have also shown how using partial models of system, interface and user
(with an emphasis on representation) we can analyse whether a representation is appro-
priate for a specific use [4].

In both cases we look mainly for situations where the properties under analysis
would fail. It is mainly in such situations that design knowledge about the system will
be generated. In the case of the first approach, the aim is to identify possible behaviours
that would lead the system into undesirable states. The cognitive plausibility of the
traces needs to be determined, and assumptions about user perception must be encoded
into the properties under verification. A major issue is that non-plausible behaviour
must be identified and filtered out, ie. cases where potential problems are flagged but
which in fact correspond to implausible behaviour by the user. Task models can be
introduced as a means of reducing these unwanted false positives, but at the cost of
making the analysis consider normative behaviours only. While this approach helps
determine situations where something wrong will or might happen, it tells us little about
the degree of support the interface provides to its users in achieving their goals.

The second approach attempts to reason about whether there is a straightforward
and accurate representation of information in the interface appropriate for the way it is
used in the user’s task. A failure to prove the equivalence between the different models
involved will highlight problems in the representation, reflected in the mapping between
the system’s internal state and the mental model built by the users from the interface.
However, this approach is difficult to apply to complex behaviours, as it does not di-
rectly support analyses of the changing set of information needs over a typical task
performance.

Recent years have seen a move towards a more contextualised and situated view of
interaction, where users react and adapt to a variety of information sources and stimuli
in the “environment” in order to achieve their goals. This has been accompanied by a
shift in the technology towards more pervasive and context-aware computing systems.



This shift in emphasis places greater strain on the quality of the user interface, since
it must provide sufficient appropriate information such that users can carry out their
activities.

To address this problem we propose to relate tasks to the information and infor-
mation representations that support them, and identify situations where support is not
adequate. In order to do this, we take the following model components [2]:

– Device model — what is available at the interface+ how the interface behaves.
– Task model — how goals can be achieved.

The user’s ability to infer a task model from the interface influences the execution
gap in Norman’s model [11]. At the very least, it is likely that the user will require infor-
mation about the state of the system in order to decide on course of action and to check
that the interaction is progressing as required However, the nature of the information
needs of the user may be more complex than this. One framework which allows us to
think about thenatureof information use is the resources model [15].

3 Resources for action

The resources model is an interaction model whose aim is to support Distributed Cog-
nition style analysis at an early stage of design, rather than as a means of understanding
existing systems or prototypes. The model itself is simple; it views interaction as involv-
ing a number of information resources which can be characterised in terms of a number
of different categories, depending on the role the information may play in interaction.
Different interaction strategies on the part of the user (eg. goal-matching, plan follow-
ing) will exploit different types of information, and place a different emphasis on such
information. For those interested in developing mobile and context aware systems, the
model is attractive since the information resources considered may be located in the en-
vironment, or provided by the system. The categories used to characterise information
resources are as follows:

– Plan: sequence of actions, events or states that should be carried out
– Goal: required state of the world.
– State: collection of relevant values of objects that feature in an interaction
– Action-effect: relation between an action or event and its effect on the interaction.
– History: actions, events or states already achieved in the interaction.
– Possibilities: set of possible next actions of the user.

Thus we can posit a third starting point for our analysis:

– A model of user information needs, structured as resources needed for action.

A system comprised of a number of different devices, which together support the user
in performing some complex task, with the user assessing the different devices accord-
ing to his or her information needs, potentially requires a different form of analysis to
reasoning about a user performing a task using a single device. An interesting aspect
of a resource focus for the analysis is that it is consistent with such a heterogeneous
multi-device view of interaction.



We view information elements in the interface as comprising resources, constitut-
ing not only information, but operations easily performed and encouraged by the repre-
sentation. Such concepts can be incorporated into analytical models as perceptual and
(logical) cognitive operations [4]. Modelling the use of information is itself an interest-
ing problem; one possible approach would be to use the classification in the resources
model to characterise information use.

Norman [11] explains the interaction process as a loop beginning with goal forma-
tion and ending with evaluation of the perceived response against the goal. When no
strictly predefined plan exists, what the user will do depends solely on his or her eval-
uation of the system state and interpretation of the system behaviour. In this case we
should provide resources appropriate to potential tasks and goals. We can also focus
on actions themselves as a useful unit of analysis, without postulating detailed plan-
ning mechanisms. Instead, for possible actions which could be carried out as part of the
user’s activities we can ask if the action is properly resourced; is it possible to know if
it is an appropriate action to take; what will the effect of the action be; will it bring the
user closer to their goal; can the user evaluate how successful the action has been?

Resources take many shapes; but here we will focus on information presented at the
interface, and actions available at the interface.

Resource = Inforesource + Actionuser (1)

We need to guarantee that user resource needs are met by the available resources
in a dynamic task execution context. We need to ask what is the set of information
resources which best suits the task at hand, at every stage, and under different (possibly
concurrent) performance scenarios.

4 Device model

In this section, we revisit the issue of device models, looking at how a standard device
model (interactors) can be enriched with resource information. An interesting issue for
further investigation would be to look at producing more dynamic interactive system
specifications structured around the notion of resources themselves.

We can conduct our analysis using a range of behaviour modelling approaches. For
simplicity and convenience, we use a domain specific language to model the systems:
MAL interactors [3]. Figure 1 presents an example interactor.

We have discussed above how the concept of resource may help us to address a
variety of questions regarding information needs in modern interactive systems; thus
we have a question concerning how best to incorporate the notion of resources into an
interactive system model.

In order to use automated reasoning support for the models we build, it is helpful
to characterise what an interactor model is. An interactor defines a state space via its
attributes, and the axioms define a relation on this state space labelled by the actions
that cause the transitions:

Statei = PAttrib (2)

Behaviouri = P(Statei ×Action× Statei) (3)



interactor photocopier
attributes

door:{open, closed}
copying: boolean
error:{ok, abc, bc, ac, c}

vis display:{idle, copy, errorabc, errorbc, errorac, errorc, dooropen}
actions
vis open close start checkA checkB checkC

stop jam
axioms

per(open)→ door=closed
[open] door’=open∧ ¬copying’∧ error’=error∧ display’=dooropen
per(close)→ door=open
[close] door’=closed∧ copying’=copying∧ error’=error∧ display’=idle
per(start)→¬copying∧ door=close∧ error=ok
[start] copying’∧ door’=close∧ error’=ok∧ display’=copy
per(stop)→ copying
[stop]¬copying∧ door’=door∧ error’=error∧ display’=idle
...

Fig. 1.An example interactor

Available resources are associated with the modality that makes them available to
the users. Different modalities might be selectable according to their appropriateness,
eg. audio might be appropriate in one context (hands busy) and not in another (important
meeting). Thus modalities are used to annotate appropriate attributes and actions. The
resources define a state space (UIstate ), which is a subset of the system state space
defined by the interactor. Thus, for each user interface state we can identify a set of
resources which are available at that point in the interaction.

UIstate = PResource (4)

It is important to realise that there is not an exact match between the information
resources used in the modelling and the information made visible by interactors. Re-
sources needed for an action may be provided by several interactors. Conversely, we
specify the resources needed for an action, and much of the information provided by
an interactive system might not be relevant to this particular task. For example, an en-
gineer repairing a machine might use an onboard display of status (state) information,
along with a PDA displaying procedure information for the repair (plan information in
a resource based view). Both the machine status panel and the handheld may be dis-
playing additional information not relevant to the repair task. Actions can be classified
as user actions (those with a modality) or system actions (response to user action or
autonomous action).

Action = Actionuser + Actionsystem (5)

Different interface components and/or resources might become available or unavail-
able as the interaction progresses. Also, modalities might also change over time.



Fig. 2.An example task model

5 Task model

A task model defines the set of interactions that, from a given set of initial states of the
system, lead to the fulfilment of a goal. These interactions can be seen as sequences of
actions (traces of behaviour).

Task = PStatei × PTrace (6)

As above, two types of actions can typically be identified at task level: user actions
(representing physical actions performed by the user at the user interface), and system
actions (representing changes to the user interface performed by the system). A hierar-
chical task model can be mapped down onto such a set of traces, which may be reduced
by operational and planning constraints, if present. This set of traces could be large,
depending on the degree of visibility on the underlying system state, and the number
of different ways to achieve the task using the interface, further motivating the use of
tools. As a first approach we can model traces as sequences of actions:

Trace = Action∗ (7)

For clarity we will be using ConcurTaskTree (CTT) models [12] to support the ex-
position of ideas. CTT is a commonly used notation for task representation and analysis.
Note, however, that the approach is not specific to CTT, and in fact is extensible to other
task modelling languages. Consider the CTT model in figure 2. The behaviour it models
can be expressed by the following set of traces:

{present jam info→open door→check A→check B→check C→close door,
present jam info→open door→check B→check C→close door,

present jam info→open door→check A→check C→close door,}



As can be seen CTT abstract nodes are not represented since they are a structuring
mechanism only. For concurrent tasks there may be many possible interleavings of the
traces.

Let (Statei,Behaviouri) be an interactor, using the definitions above we can al-
ready perform a number of tests:

– Action completeness — all intended user actions are supported by the system

∀a ∈ Actionuser∃(s1, a, s2) ∈ Behaviouri (8)

This guarantees that all possible user actions the user might want to perform are
possible in the system.

– Predictability — no user action has two possible effects

∀a ∈ Actionuser , s ∈ UIstate∃1(s1, a, s2) ∈ UIbehaviour (9)

This definition demands that no two actions might have the same effect in the in-
terface. This might be two strong in specific cases (for instance, due to moding). In
that case we can use states fromStatei instead of fromUIbehaviour only. This way
we are requiring that no two action will have the same effect in the system’s state.

– Task performance — the execution of a given task(st, ts) is possible if

∀t ∈ ts·, s ∈ sttrace poss(s, t) (10)

where

trace poss(st, t) ≡ ∃(st, head(t), s) ∈ Behaviouri ∧ trace poss(s, tail(t))

The above type of analysis can be mechanised using model checking (cf. [2]), and
indeed it would be difficult to perform in an accurate and complete fashion by hand.
This analysis however, tells us only whether a given task is possible, not whether the
system supports the user in performing it. To achieve this last goal, we need to consider
the resources the system provides against the resources needed to perform the task.

6 Tasks and Resources

At specific stages in the interaction process, information resources will be needed by
the user to decide on the course of action. It is this possibility of different courses of
action that justifies using a set of traces to model a single task. In order to analyse this
aspect we need to know whether the interface provides the adequate resources for the
right choice to be made.

Using the models in the previous section would fail at this point because the process
of decision is not explicitly represented in the traces. Hence, we must introduce another
type of user action: choice actions (representing mental choices by the user regarding
which physical action to take next).

Actionuser = Actionphysical + Actionchoice (11)

These actions exist in the CTT model as User Tasks. What needs to be done is to
include them in the traces:



{present jam info→read instructions→open door→check A→check B→check C→close door,
present jam info→read instructions→open door→check B→check C→close door,

present jam info→read instructions→open door→check A→check C→close door,}

In order to analyse the system regarding its support for a given task we need to
know what the task demands in terms of resources are. One obvious case is that each
user action maps directly to the requirement that the resource corresponding to that
action must be available at the interface at the required moment.

Additionally, for each user action in a task we must indicate what resources are
needed (other more advanced options are discussed in section 8). For choice actions,
there might be the need for some specific information to be present at the interface
in order for the user to make the correct decision. For physical actions, besides the
action being available, there might also be the need for some specific information to
be present to prompt the user into performing the correct actions. We might consider
whether information is made available at an earlier point in the task performance (trace)
or whether it is visible at the current time. Focusing on resources, tasks become:

Taskresourced = PStatei × PTraceresourced (12)

whereStatei represents the states from which the task can be performed, and traces
include the actions, and the resource needs:

Traceresourced = Actionresourced∗ (13)

Actionresourced = (Actionuser × PResource) + Actionsystem (14)

Hence, for each user action we can include a set of needed resources.
This information is not available at the original CTT model, and must be provided in

order for the analysis to take place. Notice, however, that this is the type of information
needed to carry out other types of analysis such as Cognitive Walkthroughs [8].

For example, if we go back to the example introduced in Figure 2 we can say that
at the “read instructions” step the user needs the information about the type of jam to
be present at the interface. We might also consider whether the user should be relied
upon (or burden with the necessity) to remember the correct procedure. If we decide
against that, all user actions after “read instructions” also require that information about
the correct procedure be present at the interface. As an example, the trace for the ABC
strategy becomes:

present jam info→ (read instructions,{abcerror info})→ (open
door,{abcerror info})→ (check A,{abcerror info})→ (check B,{abcerror info})→

(check C,{abcerror info})→ (close door,{abcerror info})
We can now verify if, for a given task(st, ts), the system always provides the

needed resources. For that we must prove the following theorem:

∀t ∈ ts, s ∈ st · trace possresourced(s, t) (15)

where

trace possresourced(st, t) ≡
∃(st,head(t),s)∈Behaviouri

· (is Actionsystem(head(t)) ∨ π2(head(t)) ⊆ st)
∧trace poss(s, tail(t))



If this can be proved, then the needed actions and the specified information re-
sources are available at each point in the task where they are needed. If not, then even if
the task is possible, the user might find problems in performing it. While proving the-
orem 10 above would only guarantee that the task could be executed (nothing could be
deduced regarding support to its execution), this analysis is comparable to a Cognitive
Walkthrough type of approach, note however that we are attempting to make minimal
assumptions about user cognition.

7 An example

In this section we show how the approach can be applied to the running example in the
context of the MAL interactors modelling and analysis work put forward in [3, 2]. Due
to space constraints, we will not describe the modelling and analysis aspects in detail.
Instead, we will focus on the impact of including resource related information into the
analysis.

We use the model of a photocopier, already partially introduced in Figure 1, fo-
cusing specially on the handling of jamming problems. When a jam occurs, there are
three different places inside the photocopier (A, B, C) which must be checked for pa-
per. Depending on the type of jam a different sequence of actions must be performed.
The photocopier has a display where this information is presented whenever a jam hap-
pens. Additionally the display can show information regarding the status of operation
and of the door. Due to limited screen size, the display can only present one item of
information at a time.

Using the model of the photocopier only we can already use i2smv and SMV to
check whether it is possible to solve a jam problem. We will consider here the ABC
jam error (all three places must be checked sequentially). First, we do a sanity check on
the model and check whether a ABC jam is possible: EF(error=abc). What this formula
states is that it possible to a a future state of the system where a ABC jam has occurred.

Next we check if the jam can be solved. This can be attempted by checking the
following CTL formula: AG(error=abc –> AF(error=ok)). The property is not true. The
model checker points out that the user might behave in a way which does not to solve
the problem (for example, repeatedly opening and closing the door). At this stage we
could introduce assumptions about user behaviour to the property being investigated.
While this is useful in that it helps uncover those assumptions, it leads to hard to read
properties. Also, since there are prescribed operating procedures for each type of jam,
it would be interesting to analyse whether the interface adequately supports them.

We could use negation on the property to get a counter-example illustrating a strat-
egy to solve the jam and compare it to our own pre-defined strategy. However, this will
only be one possibility among many (usually the shortest, but that is not guaranteed),
and we still have to consider the cognitive plausibility of the user following that partic-
ular strategy, and the degree of support given by the interface to the strategy.

Instead we will directly encode the strategy into the model in a way similar to [2].
We start by modelling the procedure as an interactor that performs the sequence of steps
expressed in the task model. We then place the two models together using the following
interactor:



interactor main
includes

photocopiervia device
solveabc jamvia task

axioms
task.active→ task.action=device.action
device.action=jam↔ task.action=jam

What the axioms state is that: a) whenever the task is being performed, the system must
behave according to the task description; b) if the device jams then the task model also
processes that event (in order to activate the task).

We can now perform the tests proposed above. Testing the property AG(error=abc
–> AF(error=ok)) we conclude that the strategy solves the problem. However we still
do not know whether the strategy is supported by the interface. It might be, for example,
that an action is required that in practice an user will have difficulty in identifying and
performing. To address this, we include resource information in the task model. As has
already been explained, we consider two types of resource needs:

– all the needed action resources must be available when needed — otherwise it be-
comes physically impossible to perform the task;

– the strategy for solving the problem must be available during the solving procedure
— otherwise the user will have to memorise the strategy or find some alternative
means of externalising that knowledge.

Action resource verification is structurally guaranteed by the first theorem in the
interactor above. If an action is not available when needed, task and device models can-
not synchronize, and that behaviour deadlocks. Information resource needs are encoded
using the following axiom:

task.action ∈ {open, checkA, checkB, checkC, close} →
device.display = error abc

This axiom is an encoding of the resource testing condition oftrace possresourced from
theorem 15 above.

Using this we can conclude that the system does not support the strategy as the
combined system/task model is not capable of performing the task. The source of the
problem resides in the fact that once the door is open the information regarding the strat-
egy needed for solving the jam problem is no longer available. This happens because
the door open information replaces the jamming information. In this particular design,
closing the door again would not help since according to the model the jam information
is no longer displayed.

If we enhance the display to be able to present two items of information so that the
door open item does not hide the jam item, then it is possible to verify the model, and
conclude that all needed resources to solve the jam are available.

8 Conclusions

A resources based approach can help in identifying potential usability problems by ex-
ploring what should be available at the interface to support users. We have presented an



approach to the inclusion of resource needs into an approach to mechanised reasoning
over models of interactive systems. This analysis complements a more unconstrained
style of analysis where all possible behaviours of the system are analysed.

In [10] an approach to checking tasks against system models is put forward. The
analysis is based on the assumption that the task model identifies the perceptual opera-
tions performed by the users. These perceptual operations must then have corresponding
output operations in the device model. A resources based approach allows us to break
away from this tight coupling between task and system operations. We can concentrate
on the users’ needs, and inspect whether the system provides the relevant information
resources at the user interface. Additionally, we believe that by considering different
types of resources we can expand on the type of analysis that can be performed.

Other approaches exist that attempt to fold human factors considerations into model-
based approaches to reasoning about usability. One possibility is to build an explicit
model of the user as in programmable user models (eg. PUMA [1]) and executable cog-
nitive architectures (SOAR [7], EPIC [5] etc.). While these may deliver more detail on
cognitive and performance aspects, they also tend to be complex to build to an automat-
able state. Another approach is to encode assumptions about the user directly into the
model (cf. [14]). In this case the separation between device model and user assumptions
is not clear and can bias the user assumptions towards those that are needed to make
the system work. By working with assumptions at task level, we have a clear separation
between models, assumptions about users are expressed in terms of tasks and user inter-
face, and not directly about the system. Additionally, the models are relatively easy to
build. The concept of resources is straightforward to work with and provides a natural
way for the HCI expert to augment a task model.

We have outlined many more possibilities for analysis than could be explored fully
for this paper (especially in terms of tool support). Among the suggested possibilities
for further work, we have:

– Development of a more flexible view of resources, including representational (per-
ceptual) aspects.

– Action based analysis with task fragments and constraints as an alternative to canon-
ical task trees, which can also be seen as the use of partial specifications of user
behaviour.

– Tool support for analysis of multiple and concurrent tasks. Could we help find a
compromise set of resources which supports all or most tasks? A related question
would be understanding conflict and interference between different tasks.

– Modelling changing resource needs. Can we integrate the resource model charac-
terisations (plan, possibility, action effect etc.) into a modelling approach and match
against appropriate presentations? How can this be done within the framework of
existing task languages?

– Dynamic availability of resources - can we come up with designs with better and
fewer transitions between sets of resources. Modelling the availability is straight-
forward, so this seems quite feasible.

– Encapsulating user interaction strategies, for example when a user takes a side track
to get some information. There are related questions about access to information in
the history of an interaction which is required for a later action, and how this may
be modelled.



– A new modelling approach directly based on resources. This is somewhat specu-
lative but could lend itself towards intrinsically dynamic and adaptive interactive
system specifications.

A final question pertains to the variety of possible analyses, how they relate to one
another, and how they may be provided to the analyst as part of a coherent methodology.

Acknowledgements

The authors wish to thank Michael Harrison for his comments on earlier version of this
work. Gavin Doherty would like to acknowledge the support of Enterprise Ireland in
the form of an International Collaboration grant.

References

1. R. Butterworth, A. Blandford, D. Duke, and R. M. Young. Formal user models and methods
for reasoning about interactive behaviour. In J. Siddiqi and C. Roast, editors,Formal Aspects
of the Human-Computer Interaction, pages 176–192. SHU Press, 1998.

2. Jośe C. Campos. Using task knowledge to guide interactor specifications analysis. In J. A.
Jorge, N. J. Nunes, and J. Falcão e Cunha, editors,Interactive Systems: Design, Specifica-
tion and Verification — 10th International Workshop, DSV-IS 2003, volume 2844 ofLecture
Notes in Computer Science, pages 171–186. Springer, 2003.

3. Jośe C. Campos and Michael D. Harrison. Model checking interactor specifications.Auto-
mated Software Engineering, 8(3-4):275–310, August 2001.

4. Gavin J. Doherty, José C. Campos, and Michael D. Harrison. Representational reasoning
and verification.Formal Aspects of Computing, 12(4):260–277, 2000.

5. D. Kieras and D.E. Meyer. An overview of the EPIC architecture for cognition and per-
formance with application to human-computer interaction.Human-Computer Interaction,
12:391–438, 1997.

6. B. Kirwan and L. Ainsworth.A Guide to Task Analysis. Taylor and Francis, 1992.
7. J.E. Laird, A. Newell, and P.S. Rosenbloom. Soar: An architecture for general intelligence.

Artificial Intelligence, 33:1–64, 1987.
8. Clayton Lewis, Peter Polson, Cathleen Wharton, and John Rieman. Testing a walkthrough

methodology for theory-based design of walk-up-and-use interfaces. InCHI ’90 Proceed-
ings, pages 235–242, New York, April 1990. ACM Press.

9. Karsten Loer.Model-based Automated Analysis for Dependable Interactive Systems. PhD
thesis, Department of Computer Science, University of York, 2003.

10. D. Navarre et al. A tool suite for integrating task and system models through scenarios. In
C. Johnson, editor,Interactive Systems: Design, Specification, and Verification, volume 2220
of Lecture Notes in Computer Science, pages 88–113. Springer, June 2001.

11. Donald E. Norman.The Psychology of Everyday Things. Basic Book Inc., 1988.
12. Fabio Paterǹo. Model Based Design and Evaluation of Interactive Applications.Applied

Computing. Springer Verlag, Berlin, 1999.
13. Fabio D. Paterǹo. A Method for Formal Specification and Verification of Interactive Systems.

PhD thesis, Department of Computer Science, University of York, 1995.
14. John Rushby. Using model checking to help discover mode confusions and other automation

surprises.Reliability Engineering and System Safety, 75(2):167–177, February 2002.
15. P.C. Wright, R.E. Fields, and M.D. Harrison. Analyzing human-computer interaction as

distributed cognition: the resources model.Human Computer Interaction, 15(1):1–42, 2001.


