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Abstract. Given a bounded open subset of R
N , we study the convergence of a sequence

(Kn)n∈N of closed convex subsets of W
1,p
0

(Ω) (p ∈]1,∞[) with gradient constraint, to
a convex set K, in the Mosco sense. A particular case of the problem studied is when
Kn = {v ∈ W

1,p
0

(Ω) : Fn(x,∇v(x)) ≤ gn(x) for a.e. x in Ω}. Some examples of non-
convergence are presented.

We also present an improvement of a result of existence of a solution of a quasivaria-
tional inequality, as an application of this Mosco convergence result.

1. Introduction

Many physical problems have a mathematical formulation using variational inequalities.

A special case of variational inequalities is the one whose convex sets are defined using con-

straints on the gradient. A well known problem in the literature, with gradient constraint

(and the first introducing these kind of problems), is the elastic-plastic torsion problem.

Its elliptic variational formulation was considered by Brèzis (see [1]). The parabolic case

was solved in [11]. Jensen, in [2], considered elliptic linear variational inequalities where

the convex sets are defined using convex functions depending on the gradient. In [10],

Rozhkovskaya presents a survey of her works on elliptic and parabolic variational inequal-

ities with gradient constraint. In [6], Prighozin introduces a model of a sandpile using

a degenerate variational inequality with gradient constraint and, in [7], he presents the

critical state model of type-II superconductors in a longitudinal geometry, which is a qua-

sivariational inequality with a constraint on the gradient. Rodrigues and Kunze, in [3],

proved existence of solution for the stationary case and in [9], Rodrigues and Santos proved

existence of solution for the evolutive case. The existence of solution of the variational

problem with gradient constraint, as well as the continuous dependence on the data can be

found in [12]. In the papers [9] and [12], to obtain the proof of existence of solution, it was

necessary to establish a result that corresponds to part of the proof of the convergence of a

family of special convex sets, in the sense introduced by Mosco in [5]. On the other hand,

the proof of continuous dependence on the data (in [12]) uses, given a function belonging
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to a certain particular convex set, the same type of construction of a function belonging

to another convex set, as the one used to prove the Mosco convergence. It turns out that

the abstract problem of convergence of a family of convex sets with gradient constraint is a

relevant problem and it is the aim of this paper to treat this problem in a general situation.

In section 2, we introduce the definition of the convex sets considered, the definition of

Mosco convergence and we present some preliminary considerations.

Section 3 is the main part of this paper, and there we consider different situations in

which we are able to prove Mosco convergence. We also present two important examples

of non-convergence.

In section 4 we present an example of application of Mosco convergence. More specifically,

we apply Mosco convergence to improve a result of existence of solution of a quasivariational

inequality.

2. Preliminaries

Let Ω denote a bounded open subset of R
N with smooth boundary ∂Ω. For x ∈ Ω, let

(Kn(x))n∈N∪{∞} denote a family of compact convex subsets of R
N , uniformly bounded in

x and in n. We assume that (see Remark 2.7 for a slight generalization),

∀x ∈ Ω ∀n ∈ N ∪ {∞} 0 ∈ Kn(x)(1)

For these sets we define, if n ∈ N ∪ {∞} and p ∈ ]1,∞[,

Kn = {u ∈ W
1,p
0 (Ω) : ∇u(x) ∈ Kn(x) a.e. in Ω}.(2)

Notice that the sets Kn are nonempty closed convex subsets of W
1,p
0 (Ω).

For simplicity, in this work, we will drop the symbol ∞ whenever possible.

Our aim in this work is to prove the Mosco convergence of Kn to K, when n → ∞, with

suitable assumptions on (Kn(x))n∈N∪{∞}.

In what follows, given A,B ⊆ R
N , r > 0 and x0 ∈ R

N , A ÷ B denotes the symmetric

difference between A and B, |A| the Lebesgue measure of A, d(x0, A) the distance from x0

to A, B(0, r) = {x ∈ R
n : |x| < r} and B(0, r) = {x ∈ R

n : |x| ≤ r}.



CONVERGENCE OF CONVEX SETS WITH GRADIENT CONSTRAINT 3

Definition 2.1. Let (Tn)n∈N∪{∞} be a family of closed convex subsets of W
1,p
0 (Ω). We say

that (Tn)n∈N converges to T∞ in Mosco sense if (see [8]):

∀u ∈ T∞ ∀n ∈ N ∃un ∈ Tn : un
n−−→ u in W

1,p
0 (Ω);(3)

if, for all n ∈ N, vn ∈ Tn and vn
n−−⇀ v in W

1,p
0 (Ω)-weak, then v ∈ T∞.(4)

When (Tn)n∈N converges to T∞ in Mosco sense we will write Tn
n−→ T∞.

Below we present an important class of convex sets Kn.

Example 2.2. For n ∈ N ∪ {∞}, consider functions gn : Ω → R, Fn : Ω × R
N −→ R and

suppose that Fn is convex in the second variable. Define the family of closed convex sets

Kn(x) = {ξ ∈ R
n : Fn(x, ξ) ≤ gn(x)}. Then

Kn = {u ∈ W
1,p
0 (Ω) : Fn(x,∇u(x)) ≤ gn(x) a.e. in Ω}.

If Fn(x, ξ) = |ξ|, we obtain Kn(x) = B(0, gn(x)) and

Kn = {u ∈ W
1,p
0 (Ω) : |∇u(x)| ≤ gn(x) a.e. in Ω}.

In general, we may define the convex sets Kn(x) using a function gn that depends on

the point x but also on the direction in R
N , as we can see in the following remark.

Remark 2.3. Given (Kn(x))n∈N∪{∞}, for x ∈ Ω, defining gn : Ω × R
N \ {0} −→ R

+
0 by

gn(x, ξ) = max{λ ∈ R
+
0 : λ

ξ

|ξ| ∈ Kn(x)},(5)

we have Kn(x) = {ξ ∈ R
n : |ξ| ≤ gn(x, ξ)}.

Defining dn(x) = d(0, ∂Kn(x)), notice that dn(x) = min
|ξ|=1

gn(x, ξ) and, if p 6= 0 and λ > 0,

gn(x, λξ) = gn(x, ξ). Given x ∈ Ω,

0 ∈ K
◦

n(x) =⇒ gn(x, ·) is continuous.(6)

In this work we will deal with the following three natural assumptions on the sets

(Kn(x))n∈N∪{∞}, trying to guarantee the Mosco convergence Kn
n−→ K.

Assumption 2.4. |Kn(x) ÷ K(x)| n−→ 0, uniformly in x, and, ∀n ∈ N, K
◦

n(x) 6= ∅.
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Notice that, if the sets Kn(x) had all measure zero, this condition would be meaning-

less. Nevertheless, we will prove that, if N = 1, this is sufficient to guarantee Mosco

convergence. If N > 1 and 0 ∈ K
◦

(x), then we have the same conclusion if we demand
|Kn(x) ÷ K(x)|

[d(x)]N
n−→ 0, uniformly in x. In particular, if d(x) >> 0, then Assumption 2.4

implies Mosco convergence.

We will give an example which shows we cannot substitute the exponent N by any other

less than N − 1, neither we can substitute [d(x)]N by |K(x)| if 0 6∈ K
◦

(x) and |K(x)| > 0.

Assumption 2.5.
gn

g

n−→ 1, uniformly on {(x, ξ) ∈ Ω × (RN \ {0}) : g(x, ξ) 6= 0}.

This condition always implies (3). In particular, Assumptions 2.4 and 2.5, together,

imply Mosco convergence.

Assumption 2.6. gn
n−→ g, uniformly in Ω × R

N \ {0}.

In this case, in order to obtain Mosco convergence, we will impose the continuity of the

functions gn and that, for every x ∈ Ω, 0 ∈ K
◦

(x) or K(x) = {0}.
Notice that when N = 1 the Assumptions 2.4 and 2.6 are equivalent.

Remark 2.7. If there exists a function w ∈ Kn, ∀n ∈ N, everything works similarly if we

substitute the condition 0 ∈ K
◦

(x) ∀x ∈ Ω by the condition ∇w(x) ∈ K
◦

(x) ∀x ∈ Ω.

In the last section we use Mosco convergence to prove existence of solution of a parabolic

quasivariational inequality in a limit case. In [9], Rodrigues and Santos established exis-

tence of solution of a quasivariational inequality in the following convex set with gradient

constraint:

Ku(t) =
{

v ∈ W
1,p
0 (Ω) : |∇v(x)| ≤ ϕ(u(x, t)) for a.e. x ∈ Ω

}

, for a.e t ∈ [0, T ],

satisfying the function ϕ certain regularity assumptions and the additional assumption

∃m > 0 : ϕ ≥ m. The use of Mosco convergence allows us to generalize the existence

result referred above to the case where ϕ ≥ 0.

3. Study of the Mosco convergence

This section is dedicated to the study of Mosco convergence, in different situations. We

also present two relevant examples.

Recall that we are always assuming (1).
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Proposition 3.1. If Assumption 2.4 is verified then condition (4) is always satisfied.

Proof. Let un ∈ Kn, for n ∈ N, and suppose that un
n−−⇀ u in W

1,p
0 (Ω) − weak.

For m ∈ N and x ∈ Ω let Km(x) = {y ∈ R
N : d(y,K(x)) ≤ 1

m
} and define

K
m = {v ∈ W

1,p
0 (Ω) : ∇v(x) ∈ Km(x) for a.e. x in Ω}. As |Kn(x) ÷ K(x)| n−→ 0, uni-

formly in x,

∃ pm ∈ N : ∀n ≥ pm ∀x ∈ Ω Kn(x) ⊆ Km(x).

In particular,

∃ pm ∈ N : ∀n ≥ pm un ∈ K
m.

As K
m is a closed convex subset of W

1,p
0 (Ω), it is also weakly closed and so u ∈ K

m. To

conclude, just note that
⋂

m∈N

Km = K. �

Firstly, we prove a specific result in the case N = 1. This case is special since the convex

subsets of R are simply the intervals.

Theorem 3.2. If N = 1, Ω =]a, b[ and |Kn(x) ÷ K(x)| n−→ 0, uniformly in x, then

Kn
n−→ K, in the sense of Mosco.

Proof. Let u ∈ W
1,p
0 (Ω) and u′ be its derivative.

For m ∈ N, and given ε, δ such that 0 < ε, δ ≤ 1
m

, let

Iε = {x ∈ Ω : u′(x) ≥ ε} Jδ = {x ∈ Ω : u′(x) ≤ −δ}

Kε = {x ∈ Ω : 0 ≤ u′(x) < ε} Lδ = {x ∈ Ω : −δ < u′(x) ≤ 0}
and

gε,δ = max{u′ − ε, 0} + min{u′ + δ, 0}.

Then,
∫

Ω
gε,δ =

∫

Iε

u′ +
∫

Jδ

u′ − ε |Iε| + δ |Jδ|.

= −
∫

Kε∪Lδ

u′ − ε |Iε| + δ |Jδ|, as

∫

Ω
u′ = 0.

Fix ε0, δ0 < 1
m

. We can suppose, without any loss of generality, that

∫

Ω
gε0,δ0 ≥ 0. But

lim
δ→0

∫

Ω
gε0,δ = −

∫

Kε

u′ − ε0 |Iε0
| ≤ 0.

In particular, there exists 0 < δ1 ≤ 1
m

such that

∫

Ω
gε0,δ1 = 0.
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Considering now hm(x) =

∫ x

a

gε0,δ1(t)dt, we have that hm ∈ W
1,p
0 (Ω), since hm ∈

W1,p(Ω) and hm(a) = hm(b) = 0. Besides that,

‖u − hm‖p

W
1,p
0

(Ω)
=

∫

Ω
|u′(x) − h′

m(x)|p ≤
∫

Ω

(

1

m

)p

=
|Ω|
mp

m−→ 0.

We have that |Kn(x) ÷ K(x)| n−→ 0, uniformly in x, all the convex sets Kn(x) are

intervals containing 0 and K(x) contains u′(x). Then, there exists kj ∈ N such that, for

n ≥ kj , h′
j(x) ∈ Kn(x).

Then, if, u1 = · · · = uk1−1 = 0, uki
= · · · = uki−1 = hi, for i ≥ 1, un

n−→ u. �

Before studying the general case, we start with an example in R
N , showing that we

cannot guarantee the Mosco convergence of the sets Kn to K, even if 0 ∈ K
◦

n(x) and
|Kn(x) ÷ K(x)|

dα(x)

n−→ 0, uniformly in x, for some 0 ≤ α < N − 1.

Example 3.3. Let Ω = B(0, 1) ⊆ R
N . Consider (Ωm)m∈N a partition of Ω \ {0} such that

Ωm is a (non-measurable) set with exterior measure equal to |Ω|.

Define now the closed convex sets Kn(x) and K(x), with n ∈ N and x ∈ Ω, as follows:

• K(0) = Kn(0) = {ξ ∈ R
n : |ξ| ≤ 1} for n ∈ N;

• K(x) is the cilindre whose axis is the closed segment joining x to −x and the bases

have ratio 1
m

, for x ∈ Ωm;

• Kn(x) = K(x) for x ∈ Ωm and m < n, or if x ∈ Ωm, m ≥ n and |x| < 1
m

;

• Kn(x) is the cilindre whose axis is the closed segment joining x
2 to −x

2 and the bases

have ratio 1
m

, for x ∈ Ωm, |x| ≥ 1
m

and m ≥ n.

Notice that, if x 6= 0, then d(x) = inf
{

|x|, 1
m

}

.

Let u : Ω → R be defined by u(x) = 1
2

(

|x|2 − 1
)

. Observe that u ∈ W
1,p
0 (Ω) and

∇u(x) = x.

Then, if 0 ≤ α < N − 1 and D is the volume of the unitary disk in R
N−1,

|Kn(x) ÷ K(x)|
dα(x)

=







D
(

1
m

)N−1−α |x| if x ∈ Ωm, m ≥ n, |x| ≥ 1
m

,

0 otherwise,

which implies that

|Kn(x) ÷ K(x)|
dα(x)

≤ D

(

1

n

)N−1−α
n−→ 0, uniformly on x.
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On the other hand, if (un)n∈N is such that un ∈ Kn for all n ∈ N, then

∀n ∈ N |∇u(x) −∇un(x)| ≥ 1

2
|x|, for a.e. x in Ωn \ B(0, 1

n
).

As
{

x ∈ Ω : |∇u(x) −∇un(x)| ≥ 1
2 |x|

}

is a measurable set, we conclude, by the assump-

tions on Ωn, that

∀n ∈ N |∇u(x) −∇un(x)| ≥ 1

2
|x|, for a.e. x in Ω \ B(0, 1

n
).

In particular

‖u − un‖p

W
1,p
0

(Ω)
=

∫

Ω
|∇u(x) −∇un(x)|p ≥ 1

2p

∫

Ω\B(0, 1

n
)
|x|p ≥ 1

2p

∫

Ω\B(0, 1
2
)
|x|p.

and so, un

n

6−→ u in W
1,p
0 (Ω).

Now we are in conditions to set a positive result if N > 1. We start with a Lemma.

Lemma 3.4. Let K be a bounded convex subset of R
N , d ∈ R

+ and y ∈ K. If B(0, d) ⊆ K

and ε ∈]0, 1[ then

∀ y ∈ K d((1 − ε) y, ∂K) ≥ εd.

Proof. If (1 − ε) y ∈ B(0, d) then

d((1 − ε) y, ∂K) ≥ d((1 − ε) y, ∂B(0, d)) = d − (1 − ε) |y| ≥ d − (1 − ε) d = εd.

If (1 − ε) y 6∈ B(0, d) consider C, the convex hull of {y} ∪ B(0, d)

���
�

������ �
	���

Then

d((1 − ε) y, ∂K) ≥ d((1 − ε) y, ∂C) = εd. �
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Theorem 3.5. Let Ω∗ = {x ∈ Ω : 0 ∈ K
◦

(x)} and suppose that K(x) ⊆ Kn(x), for x 6∈ Ω∗.

Assuming that

|Kn(x) ÷ K(x)|
[d(x)]N

n−→ 0 uniformly in Ω∗(7)

then condition (3) in the definition of Mosco convergence is satisfied.

If we also have Assumption 2.4 then Kn
n−→ K.

Proof. For the second part of this theorem just use Proposition 3.1.

To prove the first part, given y = (y1, . . . , yN ) ∈ R
N , a ∈ R

+ and µ = (µ1, . . . , µN ) ∈
{1,−1}N , let

A(y, a, µ) =
{

(x1, . . . , xN ) ∈ B(y, a) : µi(xi − yi) ≥
a

2
, i = 1, . . . , N

}

��������������������������

 ���!�����"�������"����� ����������"���#�"�����

��$�!���!���������������

% &

% &

�

Notice that, if A = |A(0, 1, (1, 1, . . . , 1))|, then |A(y, a, µ)| = AaN .

First step: Let us prove that

∀ ε > 0 ∃ k ∈ N ∀n ≥ k ∀x ∈ Ω∗ ∀ y ∈ K(x)
[

d(y, ∂K(x)) ≥ ε d(x) ⇒ y ∈ K
◦

n(x)
]

.

For ε > 0, let k ∈ N be such that, for all n ≥ k and x ∈ Ω∗

|Kn(x) ÷ K(x)|
[d(x)]N

≤ A

2
εN ,
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which implies that

|K(x) \ Kn(x)| ≤ A

2
[d(x)]NεN .

For these k, n, x, if d(y, ∂K(x)) ≥ ε d(x) and µ ∈ {−1, 1} then, as A(y, d(x)ε, µ) is a

subset of K(x) with volume A [d(x)]N εN , there exists yµ ∈ A(y, d(x)ε, µ) ∩ Kn(x). In par-

ticular, Kn(x) contains the convex hull of {yµ : µ ∈ {−1, 1}N}. This convex hull contains

B(y,
ε d(x)

2 ).

Second step: Let ε ∈]0, 1[ and u ∈ W
1,p
0 (Ω).

If x ∈ Ω \ Ω∗ then (1 − ε)∇u(x) ∈ K(x) ⊆ Kn(x).

If x ∈ Ω∗, then, applying Lemma 3.4 for y = ∇u(x), K = K(x) and d = d(x), we have

d((1−ε)∇u(x), ∂K(x)) ≥ εd(x). By the first step, (1−ε)∇u(x) ∈ K
◦

n(x), for n ≥ k = k(ε).

In particular (1 − ε)u ∈ Kn.

To conclude, let ki be such that, for n ≥ ki,
ki

ki+1 u ∈ Kn. We can assume that (ki)i∈N is

an increasing sequence. Then, if we consider, u1 = · · · = uk1−1 = 0, uki
= · · · = uki−1 =

ki

ki+1 u, for i ≥ 1, then un ∈ Kn and un
n−→ u. �

Remark 3.6. If
|K(x)|
dN (x)

is bounded in x, which is the case, for example, if the sets K(x)

are closed balls, then the condition (7) in the last theorem is equivalent to

|Kn(x) ÷ K(x)|
|K(x)|

n−→ 0 uniformly in Ω∗

If Kn(x) is the closed ball of ratio gn(x) centered in 0 then this condition is also equivalent

to

|Kn(x)|
|K(x)|

n−→ 1 uniformly in Ω∗ or to
gn(x)

g(x)

n−→ 1 uniformly in Ω∗.

The following example shows that, if we do not impose 0 to be an interior point of the

sets K(x), we can have non convergence in Mosco sense even with some conditions similar

to the ones in the last theorem.

Example 3.7. Let N = 2 and define Ω = B(0, 1) ⊆ R
2.

Consider {Ω1,Ω2} a partition of Ω \ {0} on two (non-measurable) subsets of Ω with

exterior measure equal to |Ω|.
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For x ∈ Ω \ {0} consider H1 and H2 the two closed half-planes containing x and 0 on

the boundary.

For x ∈ Ωi (i = 1, 2), let K(x) be any bounded closed (uniformly in x) convex set

contained in Hi and containing 0 and x.

Consider:

• K(0) = Kn(0) = {ξ ∈ R
2 : |ξ| ≤ 1}, for n ∈ N;

• Kn(x) =
{

ξ ∈ K(x) : ](ξ − x
2 , x) ≥ 1

n

}

.

Notice that

|Kn(x) ÷ K(x)|
|K(x)|

n−→ 0, uniformly in x.

Consider u : Ω → R defined by u(x) = 1
2

(

|x|2 − 1
)

. Notice that u ∈ K, as ∇u(x) = x.

Let (un)n∈N be a sequence such that un ∈ Kn, for all n ∈ N, and consider the function

Φn : Ω −→ R,

x 7→ ∂u

∂x1

∂un

∂x2
− ∂un

∂x1

∂u

∂x2

which is the third component of the vectorial product of ( ∂u
∂x1

, ∂u
∂x2

, 0) by (∂un

∂x1
, ∂un

∂x2
, 0).

The sets {x ∈ Ω : Φn(x) ≥ 0} and {x ∈ Ω : Φn(x) ≤ 0} are, obviously, measurable sets.

On the other hand, Φn|Ω1
≥ 0 and Φn|Ω2

≤ 0 or Φn|Ω1
≤ 0 and Φn|Ω2

≥ 0. So, by the

assumptions on Ω1 and Ω2, we have

∀n ∈ N Φn(x) = 0 for a.e. x in Ω

and consequently, ∇u(x) and ∇un(x) are colinear a.e. in Ω. Then, as ∇u(x) = x, by the

definition of Kn(x), there exists λ ≤ 1
2 such that ∇un(x) = λx. In particular

‖u − un‖p

W
1,p
0

(Ω)
=

∫

Ω
|∇u(x) −∇un(x)|p

≥
∫

Ω

1

2p
|x|p =

π

2p−1(p + 2)

and so, un

n

6−→ u in W
1,p
0 (Ω).

We present now another convergence result. In the special case where the convex sets

are closed balls, this result is equivalent to the previous one.
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Theorem 3.8. Let G∗ = {(x, ξ) ∈ Ω × (RN \ {0}) : g(x, ξ) 6= 0}. If

gn

g

n−→ 1, uniformly on G∗,

then condition (3) on the definition of Mosco convergence is satisfied.

If we also have Assumption 2.4 then condition (4) is satisfied and Kn
n−→ K.

Proof. We will follow the proof of Theorem 3.5.

Let ε ∈]0, 1[ and u ∈ K. As in the last theorem, we just need to prove that there exists

k = k(ε) ∈ N such that, for all n ≥ k, (1 − ε)u ∈ Kn. By assumption

∃ q ∈ N ∀n ≥ q ∀ (x, ξ) ∈ G∗ |gn(x, ξ) − g(x, ξ)| ≤ εg(x, ξ).

In particular,

∃ q ∈ N ∀n ≥ q ∀ (x, ξ) ∈ G∗ gn(x, ξ) ≥ (1 − ε)g(x, ξ).

This last inequality is also valid if ξ 6= 0 and g(x, ξ) = 0.

Finally, let x ∈ Ω. We have

(1 − ε)|∇u(x)|
{

= 0 if ∇u(x) = 0
≤ (1 − ε)g(x,∇u(x)) ≤ gn(x,∇u(x)) if ∇u(x) 6= 0

In particular, (1 − ε)u ∈ Kn, as long as n ≥ q. �

From now on, in this section, we assume that

∀ x ∈ Ω ∀n ∈ N ∪ {∞} 0 ∈ K
◦

n(x) or Kn(x) = {0},(8)

∀n ∈ N ∪ {∞} gn is continuous(9)

and

gn
n−→ g, uniformly on Ω × (RN \ {0}).(10)

Recall that under condition (8), the functions gn(x, ·), with n ∈ N∪{∞}, are continuous

(see (6)).

As a natural consequence of (9) we have:

Lemma 3.9. If, for n ∈ N ∪ {∞}, gn is continuous, then

dn : Ω −→ R

x 7→ d(0, ∂Kn(x))

is also continuous. �
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The following result will be crucial for the proof of the fundamental theorem of this

section.

Theorem 3.10. Given n ∈ N ∪ {∞}, define

Fn : Ω × R
N −→ R.

(x, ξ) 7→







d2
n(x)

|ξ|
gn(x, ξ)

if ξ 6= 0 and gn(x, ξ) 6= 0

0 otherwise.

Then, under the conditions (8) and (9):

(1) Fn is continuous;

(2) Fn(x, ξ) ≤ d2
n(x) if and only if Kn(x) = {0} or p ∈ Kn(x);

(3) ∀x ∈ Ω, F (x, ·) is convex.

Proof.

(1) Just use the previous Lemma and the inequality Fn(x, ξ) ≤ dn(x)|ξ|.

(2) Use the Remark 2.3.

(3) If Kn(x) = {0}, the result is trivial. If 0 ∈ K
◦

n(x), we need to prove that

∀ ξ, η ∈ R
N ∀λ ∈ [0, 1]

|λ ξ + (1 − λ) η|
gn(x, λ ξ + (1 − λ) η)

≤ λ
|ξ|

gn(x, ξ)
+ (1 − λ)

|η|
gn(x, η)

.

Let ξ, η ∈ R
N , λ ∈ [0, 1] and t = λ ξ + (1 − λ) η.

• If ξ, η or t is 0 then the inequality is trivial.

• If η 6= 0 and there exists a > 0 such that ξ = aη and t 6= 0 then gn(x, ξ) = gn(x, η) =

gn(x, t) and

|t|
gn(x, t)

≤ λ
|ξ|

gn(x, t)
+ (1 − λ)

|η|
gn(x, t)

= λ
|ξ|

gn(x, ξ)
+ (1 − λ)

|η|
gn(x, η)

.

• If η 6= 0 and there exists a > 0 such that ξ = −aη and t 6= 0 then t = [−aλ+(1−λ)]η

and

gn(x, t) =

{

gn(x, ξ) if −aλ + (1 − λ) < 0
gn(x, η) if −aλ + (1 − λ) > 0

In this situation,

|t|
gn(x, t)

=























(−aλ + (1 − λ))|η|
gn(x, η)

≤ (1 − λ)
|η|

gn(x, η)
if −aλ + (1 − λ) > 0

(aλ − (1 − λ))|η|
gn(x, ξ)

≤ aλ
|η|

gn(x, ξ)
= λ

|ξ|
gn(x, ξ)

if −aλ + (1 − λ) < 0.
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• If ξ and η are not colinear, let Y be the intersection between the lines defined by 0

and t and by gn(x, ξ) ξ
|ξ| and gn(x, η) η

|η| .

Then

Y =































µ
gn(x, ξ)

|ξ| ξ + (1 − µ)
gn(x, η)

|η| η where µ =
λ

|ξ|
gn(x,ξ)

λ
|ξ|

gn(x,ξ) + (1 − λ) |η|
gn(x,η)

1

λ
|ξ|

gn(x,ξ) + (1 − λ) |η|
gn(x,η)

t

By the first identity for Y we conclude that Y ∈ Kn(x) and, by the second one,

that gn(x, Y ) = gn(x, t) and |Y | ≤ gn(x, t).

To conclude the proof, just notice that

|Y | ≤ gn(x, t) ⇐⇒ 1

λ
|ξ|

gn(x,ξ) + (1 − λ) |η|
gn(x,η)

|t| ≤ gn(x, t)

⇐⇒ |t|
gn(x, t)

≤ λ
|ξ|

gn(x, ξ)
+ (1 − λ)

|η|
gn(x, η)

. �

Example 3.11. An important example of a family of convex sets with gradient constraint

is the following (see Example 2.2):

Let, for x ∈ Ω and n ∈ N ∪ {∞}, Kn(x) = {ξ ∈ R
n : |ξ| ≤ gn(x)} where the gn are

continuous functions. Then Fn(x, ξ) = gn(x) |ξ|. In this case we could substitute Fn by the

function (x, ξ) → |ξ|.

We are now in conditions to prove the following theorem.

Theorem 3.12. Let Ω be an open bounded subset of R
N with a boundary of class C2. For

x ∈ Ω, let (Kn(x))n∈N∪{∞} be a family of uniformly bounded (in x and n) closed convex

sets and Kn = {u ∈ W
1,p
0 (Ω) : ∇u(x) ∈ Kn(x) for a.e. in Ω}. For n ∈ N ∪ {∞}, let gn be

the functions defined in (5). Then, under conditions (8), (9) and (10),

Kn
n−→ K in the Mosco sense

Proof. As condition (10) implies Assumption 2.4, then, using Proposition 3.1, we only need

to prove (2.4).

We can also consider, without any loss of generality, that, for n > m and x ∈ Ω,

Km(x) ⊆ Kn(x) ⊆ K(x).

Let u ∈ K and suppose first that u has compact support.
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Consider U a regular domain containing the support of u and whose closure is contained

in Ω.

Define






































αn = sup
{

|g(x, ξ) − gn(x, ξ)| : (x, ξ) ∈ Ω × R
N \ {0}

}

Un =
{

x ∈ U : dn(x) >
√

αn

}

T = {x ∈ U : d(x) = 0}

wn = 1
1+

√
αn

u.

Then:

• Un ∩ T = ∅;

• (Un)n∈N is an increasing sequence of open subsets of U ;

•
⋃

n∈N

Un = U \ T , since αn
n−→ 0 and dn(x)

n−→ d(x);

• if x ∈ Un then ∇wn(x) ∈ Kn(x). To prove this, notice that, if ∇wn(x) 6= 0 then,

∇wn(x) ∈ Kn(x) ⇔ |∇wn(x)| ≤ gn(x,∇wn(x))

⇔ 1

1 +
√

αn
|∇u(x)| ≤ gn(x,∇un(x))

⇐ 1

1 +
√

αn
g(x,∇u(x)) ≤ gn(x,∇un(x)), as u ∈ K

⇔ g(x,∇u(x)) − gn(x,∇un(x)) ≤ √
αn gn(x,∇un(x))

⇐ αn ≤ √
αn gn(x,∇un(x))

which is true, as gn(x,∇un(x)) ≥ dn(x) ≥ √
αn in Un.

Let Rn be a closed subset of U , containing U \ Un, with a Lipschitz boundary, and such

that |Rn \ (U \ Un)| n−→ 0. Notice that ∂Rn ⊆ ∂U ∪ Un and |Rn \ T | n−→ 0.

Under these conditions, the restriction of the function Fn, defined in Theorem 3.10, to

Rn×R
N , is continuous and convex in the second variable. As ∇wn(x) ∈ Kn(x), for x ∈ Un,
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then Fn(x,∇wn(x)) ≤ d2
n(x) and, using a result of P. L. Lions (see [4], Theorem 5.2, page

126), there exists ζn : Rn → R such that:

{

Fn(x,∇ζn(x)) = d2
n(x) in Rn

ζn(x) = wn(x) in ∂Rn.

This function can be extended to Ω, defining ζn(x) = wn(x) for x ∈ Ω \ Rn. Obviously,

ζn ∈ W
1,p
0 (Ω).

To complete this part of the proof we only need to show that ζn
n−→ u.

∫

Ω
|∇u(x) −∇ζn(x)|p =

∫

Ω\Rn

|∇u(x) −∇ζn(x)|p +

∫

Rn

|∇u(x) −∇ζn(x)|p.

The conclusion follows from

∫

Ω\Rn

|∇u(x) −∇ζn(x)|p =

∫

Ω\Rn

( √
αn

1 +
√

αn

)p

|∇u(x)|p

≤
( √

αn

1 +
√

αn

)p

‖u‖p

W
1,p
0

(Ω)

n−−−−→ 0

and

∫

Rn

|∇u(x) −∇ζn(x)|p =

∫

Rn\T
|∇u(x) −∇ζn(x)|p +

∫

Rn∩T

|∇u(x) −∇ζn(x)|p

=

∫

Rn\T
|∇u(x) −∇ζn(x)|p, as ∇u(x) = ∇ζn(x) = 0, if x ∈ T

≤ Mp |Rn \ T | n−−→ 0,

where M = sup
x∈Ω,n∈N∪{∞}

diameter(Kn(x)).

Suppose now that the support of u is not compact. As the boundary of Ω is of class C 2,

we can consider a N ∈ N such that for k ≥ N , Sk = {x ∈ Ω : d(x, ∂Ω) > 1
k
} is a regular

open set with a C2 boundary.

Let M = ‖u‖∞. Given x ∈ Ω \ Sk, let y ∈ ∂Ω be such that |x − y| ≤ 1
k
. Then

∃ ξ ∈]x, y[: |u(x)| = |u(x) − u(y)| = |∇u(ξ) · (x − y)| ≤ M

k
.

Let uk =
(

u+ − M
k

)+ −
(

u− − M
k

)+
. Notice that uk has support contained in Sk, which

is a compact subset of Ω.
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On the other hand, if Ω̃k = {x ∈ Ω : |u(x)| ≤ M
k
}, then

∫

Ω
|∇uk(x) −∇u(x)|p =

∫

Ω̃k

|∇uk(x) −∇u(x)|p +

∫

Ω\Ω̃k

|∇uk(x) −∇u(x)|p

=

∫

Ω̃k

|∇u(x)|p k−−→
∫

{x∈Ω:u(x)=0}
|∇u(x)|p = 0

using the dominated convergence theorem.

By the first part of the proof, for all k > N and n ∈ N, there exists uk
n ∈ Kn such that

uk
n

n−→ uk. In particular, for n > N , un
n ∈ Kn and un

n
n−→ u. �

4. An existence result through Mosco convergence

In this section, we are going to consider a quasi-variational inequality. Here, the convex

set considered is the subset of W
1,p
0 (Ω) with a constraint on the gradient of its functions,

constraint that depends on the composition of a given function ϕ with a solution of the

quasi-variational inequality itself. It was proved an existence result for this problem, by

Rodrigues and Santos, in [9], in the case where the given function ϕ verifies the following

condition: there exists m > 0 such that ϕ ≥ m. The formulation of this problem will

be presented here in detail. Our aim is to prove that Mosco convergence will allow us to

consider m = 0.

Let T ∈ R
+, QT = Ω× [0, T ]. Consider, given p ∈ ]0,+∞[, u ∈ L∞(QT ) and ϕ ∈ C0(R),

the following convex set

Ku,ϕ =
{

v ∈ W
1,p
0 (Ω) : |∇v| ≤ ϕ(u) a. e. in Ω

}

.

The critical state model of type-II superconductors in a longitudinal geometry was for-

mulated mathematically by the quasivariational inequality (14) with a constraint on the

gradient. If ∆p h = ∇.(|∇h|p−2∇p) denotes the p-Laplacian and f , h, ϕ are given functions

such that

f ∈ L∞(QT ), ft ∈ M(QT ) =
[

C0(QT )
]′

,(11)

h ∈ W
1,p
0 (Ω), |∇h| ≤ ϕ(h) a. e. in Ω, ∆p h ∈ M(Ω)(12)

∃m > 0 ∀ s ∈ R ϕ(s) ≥ m,(13)

the problem is to find u : [0, T ] × Ω → R such that
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ut ∈ Ku(t),ϕ ∩ L∞(QT ) for a. e. in t ∈ [0, T ],

u(0) = h,

∫

Ω
ut(t)(v − u(t) +

∫

Ω
|∇u(t)|p−2∇u(t) · ∇(v − u(t)) ≥

∫

Ω
f(t)(v − u(t)),

∀ v ∈ Ku(t),ϕ, for a. e. t ∈ [0, T ].

(14)

In the next theorem, we will prove the same result, substituting the condition (13) by

the weaker condition

ϕ ≥ 0,(15)

and this will be done as an application of Mosco convergence.

Theorem 4.1. Suppose that the assumptions (11), (12)and (15) are satisfied. Then problem

(14) has a solution, which is the limit, in Mosco sense, of solutions of problem (14) with ϕ

substituted by ϕ + 1
n
.

Proof. For n ∈ N, let un : [0, T ] × Ω → R be a solution of the problem























































un
t ∈ Kun(t),ϕ+ 1

n
∩ L∞(QT ) for a. e. in t ∈ [0, T ],

un(0) = h,

∫

Ω
un

t (t)(v − un(t)) +

∫

Ω
|∇un(t)|p−2∇un(t) · ∇(v − un(t))

≥
∫

Ω
f(t)(v − un(t)) ∀ v ∈ Kun(t),ϕ+ 1

n
, for a. e. t ∈ [0, T ].

(16)

Notice that, as ϕ + 1
n
≥ 1

n
> 0, (16) has a solution.

Since un(t) ∈ Kun(t),ϕ+ 1

n
, obviously |∇un(t)| ≤ ϕ(un(t)) + 1

n
.

It was proved in [9] that a solution of the quasi-variational inequality (14) is bounded

in L∞(QT ) and this bound depends only on the given data. This means that ‖un‖L∞(QT )

may be assumed independent of n, and consequently,

∃M > 0 ∀n ∈ N ‖un‖L∞(0,T ;W1,∞(Ω)) ≤ M.

On the other hand, it was also proved in [9] that the L∞(0, T ;L1(Ω)) norm of the

derivative in order to time of a solution of the quasi-variational inequality (14) depends

only on ‖∆ph‖L1(Ω) and on ‖ft‖L1(QT ).
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So, there exists N > 0 such that ‖un
t ‖L∞(0,T ;L1(Ω)) ≤ N .

Then

∃C > 0 ∀n ∈ N ‖un‖
L∞(0,T ;W1,∞

0
(Ω)) ≤ C, ‖un

t ‖L∞(0,T ;L1(Ω)) ≤ C.

So, there exists a function u such that

• un n−−⇀ u in L∞(0, T ;W1,∞
0 (Ω)) weak−∗;

• un(t)
n−−→ u(t) in L∞(Ω);

• un
t

n−−⇀ ut in L∞(0, T ;M(Ω)) weak−∗.
We want to prove that u is the solution of the problem (14) for ϕ satisfying (15).

Given v ∈ Ku(t),ϕ, since Kun(t),ϕ+ 1

n

n−−→ Ku(t),ϕ in Mosco sense (notice that ϕ(un(t)) +

1
n

n−→ ϕ(u(t)) in L∞(Ω)),

∃ vn ∈ Kun(t),ϕ+ 1

n
: vn n−−→ v in W

1,p
0 (Ω).

So, for a.e. t ∈ [0, T ],
∫

Ω
un

t (t)(vn − un(t)) +

∫

Ω
|∇un(t)|p−2∇un(t) · ∇(vn − un(t)) ≥

∫

Ω
f(t)(vn − un(t)),

from which follows
∫

Ω
un

t (t)(vn − un(t)) +

∫

Ω
|∇vn|p−2∇vn · ∇(vn − un(t)) ≥

∫

Ω
f(t)(vn − un(t)).

Notice that the use of this last step is related with the fact that we only have weak

convergence of ∇un(t) to ∇u(t).

Letting now n → +∞ we have, for a.e. t ∈ [0, T ],
∫

Ω
ut(t)(v − u(t)) +

∫

Ω
|∇v|p−2∇v · ∇(v − u(t)) ≥

∫

Ω
f(t)(v − u(t)).(17)

We are going to use now a kind of Minty’s Lemma. Let w(t) be an arbitrary function

of Ku(t),ϕ, for a.e. t ∈ [0, T ]. Define v(t) = u(t) + θ(w(t) − u(t)), θ ∈]0, 1]. Obviously,

v(t) ∈ Ku(t),ϕ, for a.e. t ∈ [0, T ] and, substituting in (17), we obtain
∫

Ω
ut(t) θ(w(t) − u(t)) +

∫

Ω

∣

∣

∣
∇

(

u(t) + θ(w(t) − u(t)
)

∣

∣

∣

p−2
∇

(

u(t) + θ
(

w(t) − u(t)
)

)

· ∇θ(w(t) − u(t))

≥
∫

Ω
f(t)θ(w(t) − u(t)).

Dividing both members by θ and letting θ −→ 0, we obtain, for a.e. t ∈ [0, T ],



CONVERGENCE OF CONVEX SETS WITH GRADIENT CONSTRAINT 19

∫

Ω
ut(t)(w(t) − u(t)) +

∫

Ω
|∇u(t)|p−2∇u(t) · ∇(w(t) − u(t)) ≥

∫

Ω
f(t)(w(t) − u(t)),

and, as w(t) is an arbitrary element of Ku(t),ϕ, for a. e. t ∈ [0, 1], the conclusion follows. �
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