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Abstract

Due to referential transparency, functional programming is particularly appropriate for
equational reasoning. In this thesis we reason about functional programs by calcula-
tion, using a program calculus built upon two basic ingredients. The first is a set of
recursion patterns that allow us to define recursive functions implicitly. These are en-
coded as higher-order operators that encapsulate typical forms of recursion, such as the
well-known foldr operator on lists. The second is a point-free style of programming in
which programs are expressed as combinations of simpler functions, without ever men-
tioning their arguments. The basic combinators are derived from standard categorical
constructions, and are characterized by a rich set of equational laws. In order to be able
to apply this calculational methodology to real lazy functional programming languages,
a concrete category of partial functions and elements is used.

While recursion patterns are already well accepted and a lot of research has been
carried out on this topic, the same cannot be said about point-free programming. This
thesis addresses precisely this component of the calculus. One of the contributions is a
mechanism to translate classic pointwise code into the point-free style. This mechanism
can be applied to a λ-calculus rich enough to represent the core functionality of a real
functional programming language. A library that enables programming in a pure point-
free style within Haskell is also presented. This library is useful for understanding the
expressions resulting from the above translation, since it allows their direct execution
and, where applicable, the graphical visualization of recursion trees. Another contribu-
tion of the thesis is a framework for performing point-free calculations with higher-order
functions. This framework is based on the internalization of some basic combinators,
and considerably shortens calculations in this setting. In order to assess the viability
of mechanizing calculations, several issues are discussed concerning the decidability of
equality and the implementation of fusion laws.
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Resumo

Devido à transparência referencial, o paradigma funcional é particularmente adequado
ao racioćınio equacional. Nesta tese a manipulação de programas funcionais será feita
por cálculo, sendo o cálculo de programas constituido por dois ingredientes fundamen-
tais. O primeiro é um conjunto de padrões de recursividade que nos permite definir
funções recursivas implicitamente. Estes padrões são codificados como operadores de
ordem superior que ecapsulam formas de recursão t́ıpicas, tal como o bem conhecido
operador foldr para listas. O segundo ingrediente é um estilo de programação “point-
free”, no qual os programas são definidos por combinação de funções mais simples sem
nunca mencionar explicitamente os seus argumentos. Os combinadores fundamentais
são derivados de construções categoriais padrão, e são caracterizados por um conjunto
expressivo de leis equacionais. Para ser posśıvel aplicar este método de cálculo a lingua-
gens de programação funcional “lazy”, foi usada uma categoria concreta onde as funções
e os elementos podem ser parciais.

Ao contrário dos padrões de recursividade, que já são bem aceites e sobre os quais já
se fez muita investigação, o mesmo não se pode dizer sobre a programação “point-free”.
Esta tese aborda precisamente este componente do cálculo. Uma das contribuições é um
mecanismo que permite traduzir código “pointwise” clássico para o estilo “point-free”.
Este mecanismo pode ser aplicado a um λ-calculus suficientemente expressivo para repre-
sentar a funcionalidade básica de uma liguagem de programação funcional real. Também
se apresenta uma biblioteca que permite programar num estilo “point-free” puro dentro
da linguagem Hankell. Esta biblioteca é útil para compreender as expressões que resul-
tam da tradução acima referida, pois permite a sua execução directa e, quando aplicável,
a visualização gráfica de árvores de recursividade. Outra contribuição da tese consiste
numa metodologia para realizar cálculos “point-free” sobre funções de ordem superior.
Esta metodologia é baseada na internalização de alguns combinadores fundamentais,
e permite encurtar significativamente os cálculos. Para estabelecer a viabilidade de
mecanização, também se discutem várias questões relacionadas com a decidibilidade da
igualdade e a implementação de leis de fusão.
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“Since the beginning of the century, computational procedures have be-
come so complicated that any progress by those means has become impos-
sible, without the elegance which modern mathematicians have brought to
bear on their research, and by means of which the spirit comprehends quickly
and in one step a great many computations.

It is clear that elegance, so vaunted and so aptly named, can have no
other purpose . . .

Go to the roots of these calculations! Group the operations. Classify
them according to their complexities rather than their appearances! This, I
believe, is the mission of future mathematicians. This is the road on which
I am embarking in this work.”

Evariste Galois. From the preface to his final manuscript. 1832.
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fans, and my parents, Glória and Manuel, for raising me so wisely and for the uncondi-
tional support in all aspects of my life. I love you all! To my grandparents, who I miss
so much, I dedicate this thesis.

9



10



Contents

1 Introduction 15

2 Algebraic Programming 21

2.1 Some Categorical Notions . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Basic Combinators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Recursive Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Hylomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Recursion Patterns as Hylomorphisms 45

3.1 Catamorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.1 Type Functors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Anamorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.1 Splitting Hylomorphisms . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Paramorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Apomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Accumulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Calculating Accumulations Using Fusion 71

4.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.1 Transformation With Fold/Unfold Rules . . . . . . . . . . . . . . 72
4.1.2 Transformation by Calculation . . . . . . . . . . . . . . . . . . . 74
4.1.3 Transformation in the Point-free Style . . . . . . . . . . . . . . . 76

4.2 Calculating Accumulations in the Point-free Style . . . . . . . . . . . . . 80
4.2.1 Tail-recursive Accumulations over Lists . . . . . . . . . . . . . . 81
4.2.2 Other Accumulations over Lists . . . . . . . . . . . . . . . . . . . 85
4.2.3 Accumulations over Leaf-labeled Trees . . . . . . . . . . . . . . . 88
4.2.4 Accumulations over Rose Trees . . . . . . . . . . . . . . . . . . . 90

4.3 Functions with more than one accumulator . . . . . . . . . . . . . . . . 92
4.4 Transforming Hylomorphisms into Accumulations . . . . . . . . . . . . . 96

11



12 Contents

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Mechanizing Fusion 101

5.1 Warm Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Cold Fusion: First Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Higher-order Matching: the MAG System . . . . . . . . . . . . . . . . . 104

5.4 Fusion in the Point-free Style . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Pointless Haskell 109

6.1 Implementing the Basic Concepts . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Programming with Explicit Functors . . . . . . . . . . . . . . . . . . . . 114

6.3 A Point-free Programming Library . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 The PolyP Approach to Recursive Data Types . . . . . . . . . . 117

6.3.2 Polytypic Functor Instances . . . . . . . . . . . . . . . . . . . . 118

6.3.3 Implicit Coercion . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Visualization of Intermediate Data Structures . . . . . . . . . . . . . . . 124

6.4.1 Hood and GHood . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.2 Instrumenting Hylomorphisms for Visualization . . . . . . . . . . 127

6.4.3 Polytypic Observable Instances . . . . . . . . . . . . . . . . . . 130

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Deriving Point-free Definitions 135

7.1 Typed λ-Calculi and Cartesian Closed Categories . . . . . . . . . . . . . 135

7.2 Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3 Explicit Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.4 Deriving Hylomorphisms from Recursive Definitions . . . . . . . . . . . 150

7.5 Pattern Matching and Structured Types . . . . . . . . . . . . . . . . . . 156

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8 Decidability of Equality 163

8.1 Equational Reasoning and Term Rewriting Systems . . . . . . . . . . . 164

8.2 Normalization by Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.2.1 Expansionary Systems . . . . . . . . . . . . . . . . . . . . . . . . 166

8.2.2 Coping With Sums. . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.3 Normalization by Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 170

8.4 Normalization in the Point-Free Setting . . . . . . . . . . . . . . . . . . 173

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176



Contents 13

9 Towards the Mechanization of Point-free Calculations 177

9.1 Birds’s Functional Calculator . . . . . . . . . . . . . . . . . . . . . . . . 178
9.2 Scrap Your Boilerplate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.2.1 Implementing Generic Transformations . . . . . . . . . . . . . . 182
9.2.2 Generic Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.2.3 Monadic Transformations . . . . . . . . . . . . . . . . . . . . . . 184

9.3 A Typed Point-free Calculator . . . . . . . . . . . . . . . . . . . . . . . 186
9.4 Simplification of Terms Translated from Pointwise . . . . . . . . . . . . 189
9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10 Conclusions and Future Work 193

A Additional Laws and Proofs 199



14 Contents



Chapter 1

Introduction

Functional programming is particularly appropriate for equational reasoning. Due to
referential transparency, expressions in a functional programming language behave as
ordinary mathematical ones, meaning that expressions denoting the same value can
be interchanged without concern for the meaning of the surrounding context. This
fact has been known for a long time, and put into practice for program reasoning at
least since Burstall and Darlington [BD77] introduced the fold/unfold technique, and
Backus [Bac78] proposed his calculational methodology.

In fold/unfold program transformation one applies a number of semantically sound
rules to an initial program, with the aim of arriving at a better, equivalent transformed
program. “Better” here may have different interpretations: time and space complexity
improvements are obvious criteria, but removal of recursion is also a common goal
(allowing to convert programs into purely iterative forms). This is an activity that
involves steps that are not easily automated, and as such typically requires human
intervention.

In this thesis we use a different framework for reasoning about functional programs:
by calculation. Essentially a program calculus consists of a collection of equational laws
allowing to prove semantic equivalence between programs, or else to derive programs
from other programs, or from their specifications. Quoting Backus [Bac78]:

Associated with the functional style of programming is an algebra of pro-
grams [. . . ] This algebra can be used to transform programs and to solve
equations whose “unknowns” are programs in much the same way one trans-
forms equations in high-school algebra.

Some classic strategies for program transformation have been introduced using this
framework, such as Bird’s accumulation strategy [Bir84]. One advantage of the calcula-
tional approach is that one can use the programming language itself to express properties
and reason about the programs, rather than having a different formalism. Although not
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16 Chapter 1: Introduction

so general as the fold/unfold technique, this approach is also easier to mechanize be-
cause it only implies a local program analysis and the application of simple rewrite rules
(typically with simple or no side conditions to verify), and since it does not require any
global analysis it can also be implemented in a modular way [THT98].

The program calculus used in this thesis is built upon two basic ingredients. The
first is a set of recursion patterns that allow us to define recursive functions implic-
itly. These are encoded as higher-order operators that encapsulate typical forms of
recursion such as the well-known foldr operator on lists. These operators enjoy a nice
set of equational laws, and their importance to functional programming has been com-
pared to the abandoning of arbitrary gotos in favor of structured control primitives
in the imperative setting. The second is a point-free style of programming in which
programs are expressed as combinations of simpler functions, without ever mentioning
their arguments. The calculus uses a reduced set of combinators, derived from standard
categorical constructions, again characterized by a rich set of equational laws. Since
the choice of recursion patterns and point-free combinators was mainly driven by the
power of the associated laws, this programming paradigm is usually known as Algebraic
Programming.

While recursion patterns are already widely used by functional programmers, the
same cannot be said about point-free programming. Although there are obvious ad-
vantages in using this style – the absence of variables and λ-abstractions simplifies the
presentation and implementation of reduction rules – most authors still resort to point-
wise, both for programming and for calculation, arguing that the intuitive meaning
of point-free programs may be easily lost (it has even been jokingly called the point-
less style). Quoting Jeremy Gibbons on the advantages of calculating in the point-free
style [Gib99]:

This is the point of pointless calculations: when you travel light – discard-
ing variables that do not contribute to the calculation – you can sometimes
step lightly across the surface of the quagmire.

Even if programmers were forced to program in the point-free style there would
still be a large amount of legacy code to which we would like to apply our reasoning
methodology. As such, in this thesis the point-free style will be used just for calculations,
and we assume that the programs one wants to reason about are defined in pointwise. A
useful comparison here is that of mathematical transforms such as the Fourier transform
or the Laplace transform, which allow to express functions in different domains in which
certain manipulations are easier to perform.

This methodology raises a number of pertinent questions, most of them concerning
the point-free aspect of the paradigm. As said above, recursion patterns are already well
accepted, and indeed a lot of research, both theoretical and practical, has been carried
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out on this topic. One possible question could be: to what extent will calculations be
committed to the point-free style? Readers acquainted with the subject could point out
that when functions become a little more hairy, even the authors that clearly advocate
this style introduce some variables in order to simplify calculations. That is the case
with features nowadays so beloved such as curried or higher-order functions. To this
question we have a radical answer. Although we agree that some calculations can be
very long and tedious, we don’t think this is an intrinsic disadvantage of point-free, but
merely a consequence of the lack of adequate combinators and a solid proof methodology.
As such, one of the objectives of this thesis is precisely to improve the machinery that
is used to perform point-free calculations, so that they can be done entirely within this
style.

Another question that immediately pops up is: how will pointwise code be trans-
lated into point-free style? Interestingly, the need for such an algorithm was recently
mentioned in a functional programming mailing list, in a thread concerning the advan-
tages/disadvantages of the point-free style [Kly05]:

[. . . ] it is easier to reason equationally with point-free programs, even
if the intended computation is often easier for mere mortals to see when
named values are used. So point-free style helps when trying to apply program
transformation techniques, and translation to make greater use of point-free
idioms may be a useful precursor to transforming a program.

This question leads to another goal of this thesis: to define mechanisms to translate
between pointwise and point-free, and vice-versa, so that the programmer is free to
choose whatever style is more adequate in any given context.

Once more, the above quotation reinforces what seems to be commonly accepted in
the functional programming community, but in fact we must also ask: is it really easy
to reason about programs written in point-free style? This is obviously true if reasoning
just means the mechanical process of applying the equational laws as rewrite rules. But
there are other (perhaps more) important issues concerning an equational theory, namely
decidability. Among the many authors who advocate point-free reasoning, we failed to
find a single one who addresses this issue, and found only a few who have attempted to
mechanize proofs or transformations concerning point-free programs. So a third goal of
the thesis is to help clarify this issue.

Another question that is relevant in any program reasoning and transformation con-
text is: can this methodology be applied to real programming languages? The last
main goal of the thesis is thus to answer this question positively. To be more specific,
our target is the lazy functional programming language Haskell [Jon03]. As mentioned
above, the set of basic point-free combinators is derived from standard categorical con-
structions. Most of the work presented here uses a concrete category of partial functions
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and elements, that is typically used to give semantics to lazy programming languages.
In practice, this means that the calculus is not so neat, and some laws are polluted by
strictness side conditions. This is the price to pay for using the appropriate semantics,
which is not the case in most published work on this subject.

The thesis includes a large set of examples defined using recursion patterns and in
the point-free style. To emphasize the connection with Haskell, most of the examples
begin with the equivalent definition given in this language. In program transformation
examples, that will also be the case with the transformed program. Finally, whenever
possible, we tried to deploy our research results as practical tools and libraries that
operate on Haskell programs instead of some abstract syntax. Haskell was also the
language of choice to develop them.

Overview of the Thesis.

Chapter 2 presents the foundations of the algebraic programming paradigm. It starts
with a brief presentation of category theory. After enumerating the basic set of point-free
combinators and the associated laws, it describes how recursive types can be modeled
in a categorical setting. Our presentation of recursion patterns differs slightly from the
usual one. Given the concrete category underlying our presentation, we can assume
the existence of just one basic recursion pattern – the hylomorphism. This recursion
pattern, whose presentation concludes Chapter 2, has an expressive power equivalent
to that of the fixpoint operator. This expressiveness is put into use in Chapter 3,
where hylomorphisms are used to define some of the best known recursion patterns,
namely folds and unfolds. We also show how to derive their laws from the basic set that
characterizes hylomorphisms.

Some less known recursion patterns, such as paramorphisms or accumulations, are
also introduced in Chapter 3. Although these recursion patterns were originally defined
using folds, we show how they can be defined using hylomorphisms. This exercise reveals
one of the advantages of using this recursion pattern. For some complex functions, a
definition using hylomorphisms is much easier to understand than one using just folds
or unfolds. In fact, a hylomorphism can be seen as the composition of a function
that builds some intermediate data structure, and another one that consumes it. This
producer/consumer model usually simplifies the comprehension of the defined function.
As such, hylomorphisms make an interesting contribution to program understanding.

The main contributions of the thesis start in Chapter 4. This chapter describes how
Bird’s accumulation strategy [Bir84] can be applied in a pure point-free setting. The
main problem with this technique is that it implements accumulations as higher-order
folds that return a value of functional type (in Chapter 3 accumulations are defined
in the uncurried form using tuple arguments). To simplify reasoning in this setting
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some of the basic combinators introduced in Chapter 2 are internalized as point-free
definitions. This approach allows us to derive some fairly advanced examples, namely
functions with two accumulating parameters. This chapter is a revised version of a paper
to appear [CP05].

Many program transformation techniques, including Bird’s accumulation strategy,
can be implemented using fusion. This law states the conditions in which the compo-
sition of a function with a recursion pattern can be transformed into a single recursion
pattern. Given its relevance, Chapter 5 presents a brief review of practical transforma-
tion systems based on this law. As will be seen, there is already some solid work on the
implementation of fusion in the pointwise setting, but unfortunately very little on the
point-free counterpart.

Some of the examples presented in the first chapters reinforce the idea that, indeed,
it can be very difficult to program and understand definitions in the point-free style.
Part of this problem could be alleviated if the programmer was able to execute and type-
check his specifications. With this idea in mind, we have developed Pointless Haskell, a
library that enables programming with recursion patterns in a pure point-free style. The
implementation of this library is described in Chapter 6. The polytypic implementation
of the recursion patterns is inherited from PolyP [NJ03], a generic programming library
for Haskell. With the help of some type system extensions, we have implemented an im-
plicit coercion mechanism that provides a limited form of structural equivalence between
types. Although the library is embedded in Haskell, this mechanism allows us to use a
syntax almost identical to the theoretical one defined in Chapter 2. This feature allows
for a direct encoding of all the examples presented in this thesis. To further support
program understanding, the library also includes a generic visualization mechanism for
the intermediate data structures of hylomorphisms. This mechanism improves a previ-
ous version developed for visualizing recursion trees of Haskell functions [Cun03], and
is implemented using the graphical debugger GHood [Rei01].

Chapter 7 defines a mechanism to derive point-free hylomorphisms from explicitly
recursive pointwise definitions. The chapter begins with the definition of a simply typed
λ-calculus with pairs and terminal object, which is subsequently enriched with sums,
explicit recursion, recursive data types, and pattern-matching. We believe that these
features are rich enough to cover the core functionality of most functional programming
languages, namely Haskell. The translation to point-free style is based on the well-known
equivalence between simply typed λ-calculi and cartesian closed categories suggested by
Lambek [Lam80]. We show how to extend this equivalence in order to cover sums
and the fixpoint operator. To handle sums we again resort to the internalization of a
primitive combinator. The fixpoint operator can be encoded as a hylomorphism, but
since this encoding yields expressions that are hard to manipulate, we also show how
to adapt to our λ-calculus a well-known hylomorphism derivation algorithm that yields
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more understandable definitions. None of these ingredients is entirely new, but, to
our knowledge, it is the first time they are put together in order to build an effective
pointwise to point-free translation mechanism.

Chapter 8 presents a review of previous work on the decidability of equality in
almost bicartesian closed categories, i.e, categories with products, non-empty coproducts,
exponentials and terminal object. Likewise to fusion mechanization, this problem is
already well studied at the pointwise level, but very few results exist for point-free.
Namely, the problem has been shown to be decidable for pointwise terms using both
normalization by rewriting and by evaluation. We show that a direct adaptation of the
normalization procedure based on an expansionary rewriting system to point-free terms
is not possible.

In spite of the negative results presented, in practice it is easy to implement a system
that, given some hints from the programmer, automates many point-free calculations.
In Chapter 9 we review Bird’s functional calculator [Bir98], an example of one such
system. We show how it can be reimplemented using a generic programming library,
and how it can be extended in order to accommodate type-directed expansion rules.
The chapter concludes with the presentation of a rewriting system, that can be used to
simplify the point-free expressions that result from the translation defined in Chapter 7.

Chapter 10 begins with a review of the main contributions of the thesis. It also
discusses the proposed reasoning methodology taking into account the initially stated
objectives. The thesis ends with an enumeration of possible ideas for future work.



Chapter 2

Algebraic Programming

The origins of the algebraic programming paradigm can be traced back to 1977, when
John Backus proposed, in his ACM Turing Award lecture, a new functional style of
programming whose main features were the absence of variables and the use of functional
forms to combine existing functions into new functions [Bac78]. The main idea was
already to develop a calculus of programs that could be used for program transformation.
The choice of the functional forms was based not only on their programming power, but
also on the power of the associated algebraic laws. Most of the now standard combinators
(presented later in this chapter) were already introduced in that seminal paper.

This approach was later endorsed by Bird and Meertens, who popularized a style
of programming (the so-called “Bird-Meertens formalism”) where final programs were
derived from their specifications (typically, an inefficient combination of easy to un-
derstand functions) through a set of equational laws [Bir84, Bir87, Mee86]. The now
well-known notions of folding and fusion (or promotion) over lists were presented in
this work, enabling, for the first time, the effective use of the calculational approach in
program transformation. The main difference with respect to the initial approach by
Backus was the emphasis on the use of recursion operators, instead of the point-free
combinators. As Backhouse pointed out [Bac89], the importance of the Bird-Meertens
formalism lies not on the foundational concepts per se (at the time already known), but
on their application to develop a concise calculational method for program transforma-
tion.

Malcolm later showed that the concepts introduced by Bird and Meertens (notably
the notion of fusion) arise naturally for any data type when viewed in a categorical
setting [Mal90]. The categorical approach to data types, and functional programming
in general, had been previously clarified by Hagino [Hag87]; category theory turned out
to be a natural setting for defining the basic building blocks of data types (including
sophisticated concepts such as mutually recursive data types, types defined using other
parameterized data types, and infinite data types). As shown in this chapter, the defini-
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22 Chapter 2: Algebraic Programming

tion of most of the combinators used in the point-free style of programming is immediate
from standard categorical constructions.

The generalization proposed by Malcolm was done in the context of total functions
and totally defined elements, but later Meijer, Fokkinga, and Paterson [MFP91] ex-
tended it to the domain of partial functions and elements, thus enabling the power
of full recursion, and providing a more appropriate semantic domain to modern lazy
programming languages.

Our presentation of algebraic programming will be split into two chapters. This one
presents the basic point-free combinators, the categorical approach to modeling recursive
data-types, and the notion of hylomorphism. This fundamental recursion pattern will
be used in the next chapter to implement typical recursion patterns, such as folds and
unfolds.

2.1 Some Categorical Notions

The category theory concepts that will be used in this thesis are very simple, and are
presented in any introductory book to the subject, such as [Pie91]. Essentially, a category
is a collection of objects and a collection of arrows (or morphisms), such that

• an arrow f with domain A and codomain B is denoted by f : A → B;

• there exists a composition operator · ◦ · that assigns to each pair of arrows g :
A → B and f : B → C their composite arrow f ◦ g : A → C, and that obeys the
following associative law

f ◦ (g ◦ h) = (f ◦ g) ◦ h Comp-Assoc

• for each object A there exists an identity arrow idA : A → A satisfying the following
condition

id ◦ f = f ◦ id = f Id-Nat

As seen in Id-Nat, we will often drop the typing information from most of the basic
“polymorphic” morphisms, whenever this information can be easily derived from the
context or is not relevant. In this case the complete formulation of the law would be:
for any arrow f : A → B, we have idB ◦ f = f ◦ idA = f .

The following is another basic fact about any category.

f ◦ h = g ◦ h ⇐ f = g Leibniz

The categorical approach to functional programming is based on a categorical ac-
count of the denotational semantics, with functions modeled by arrows in the underlying
category, and types modeled by objects in that category. A lot of the research done in
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the area of algebraic programming is being carried out in the context of total functions
and total elements. Technically, this means that the model of computation is Set, the
category where objects are sets and morphisms are total functions. Unfortunately, this
category is not a good semantic model for modern lazy functional languages, since it
hardens the treatment of arbitrary recursive and partial definitions. Another problem is
that, in Set, finite and infinite data types are different entities that cannot be combined,
thus excluding, for example, functions defined by induction that work for both, and also
the hylomorphism recursion pattern that will be defined in Section 2.4.

These problems can be overcome by moving to the category CPO, which imposes
some additional structure: objects are pointed complete partial orders, and morphisms
are continuous functions (more details later). The study of algebraic programming in this
setting was pioneered by Meijer, Fokkinga and Paterson [MFP91], and the presentation
of the material in this chapter is strongly influenced by their work.

A partial order (poset) is a set A that is equipped with a reflexive, transitive, and
antisymmetric relation vA (we will drop the subscript if it is clear from the context).
The least element of a poset A is the a ∈ A such that a v b for all b ∈ A (notice that
it may not exist, but if it exists, by antisymmetry it must be unique). A chain is a
sequence {ai | i ≥ 0} ⊆ A such that ∀i ≥ 0, ai v ai+1.

An upper bound of a chain {ai | i ≥ 0} is an element a such that ∀i ≥ 0, ai v a. The
least upper bound (lub) is an upper bound that is less than or equal to every other upper
bound. If a chain {ai | i ≥ 0} ⊆ A has a lub it is denoted by

⊔A
i≥0 ai. A poset where

every chain has a lub is a complete partial order (cpo). If it also has a least element
(denoted by ⊥A) it is called a pointed complete partial order (pcpo).

A function f : A → B between pcpos A and B is monotonic if ∀a1, a2 ∈ A, if
a1 vA a2 then f a1 vB f a2. A monotonic function f : A → B is continuous if for each
chain {ai | i ≥ 0} ⊆ A it is the case that f (

⊔A
i≥0 ai) =

⊔B
i≥0(f ai).

Since types will be modeled by pcpos, this means that their elements can be com-
pared according to a partial order v. The fact x v y will mean that x is an approxi-
mation of y, in the sense that x is less well defined than y. Completeness of a partial
order implies that infinite data structures can be determined by the limit of their finite
approximations. Continuity means that functions (modeled by arrows) respect these
limits.

Terminal Object. The terminal object in CPO is 1 = {⊥1}. This means that for
any other object A there exists a unique arrow from it to 1, namely the function that
always returns ⊥1. We will denote that arrow by !A. Since the least element of the
functional type is precisely the function that always returns ⊥, !A denotes the value
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⊥A→1. Given any f : A → B, ! is characterized by the following properties.

!1 = id1 Bang-Reflex

!B ◦f = !A Bang-Fusion

Points. Elements of a pcpo A are represented categorically by arrows of type 1 → A,
usually called points. Given an element x ∈ A, x denotes the corresponding point in the
category. By composing points with ! it is possible to define constant morphisms, that
ignore the argument and always return a specific value.

Strictness. From the point of view of program calculation, the major difference be-
tween using Set and CPO as the underlying category is that some of the laws that char-
acterize the basic combinators will have strictness side conditions. As we will shortly
see, this is due to the fact that the separated sum is not a categorical coproduct in
CPO. A function f : A → B is strict if it preserves bottoms. In the categorical setting,
a strict morphism is defined as follows.

f strict ⇔ f ◦ ⊥ = ⊥ Strict-Def

The composition of two strict functions is necessarily strict.

f ◦ g strict ⇐ f strict ∧ g strict Strict-Comp

The reverse implication is not true in general, but the following holds due to monotony.

f strict ⇐ f ◦ g strict Comp-Strict

Sometimes we will also refer to the sub-category of CPO where all the functions are
strict. We will denote this category by CPO⊥.

Functors. Another useful categorical concept is that of a functor, which will be used
to model type constructors. A functor F is a mapping between categories (it maps
objects to objects and arrows to arrows) such that

F f : F A → F B ⇐ f : A → B

F (f ◦ g) = F f ◦ F g Functor-Comp

F idA = idFA Functor-Id

For our purposes (and in general in the context of programming language semantics),
endofunctors in CPO will be used, mapping types to types, and functions to functions.
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The basic set of functors includes the identity functor Id, whose action on types is
defined as Id A = A, and on functions as Id f = f . It also includes the constant functor:
given a type A, the functor A is defined on types as A B = A, and on functions as
A f = idA.

A functor is locally continuous if, for all objects A and B, its action on functions of
type A → B is continuous. A functor F is strictness-preserving if, given a strict f , F f

is also strict (essentially, it should be a functor in CPO⊥).

A bifunctor ? is a mapping from a pair of categories to a category; in the present
context a bifunctor maps pairs of types to types, and pairs of functions to functions,
verifying the conditions (infix notation is used):

f ? g : A ? B → C ? D ⇐ f : A → C ∧ g : B → D

(f ◦ g) ? (h ◦ k) = (f ? h) ◦ (g ? k) Bifunctor-Comp

idA ? idB = idA?B Bifunctor-Id

Given two monofunctors F and G and a bifunctor ?, a new monofunctor F ?̂ G can
be defined by lifting ? as follows:

(F ?̂ G) A = (F A) ? (G A)

(F ?̂ G) f = (F f) ? (G f)

Given a type A, a monofunctor A? can also be defined by sectioning ?:

(A?) = A ?̂ Id

This left-sectioning corresponds to treating as a constant the first parameter of the
functor. Analogously, the right-sectioning of a bifunctor can also be defined.

Natural Transformations. A natural transformation η between functors F and G,
denoted by η : F

.→ G, is a function that assigns to each type A an arrow ηA : F A → G A

such that, for any function f : A → B the following naturality condition holds.

G f ◦ ηA = ηB ◦ F f

Alternatively, we could say that for each f : A → B the following diagram commutes.

F A
ηA //

F f

��

G A

G f

��
F B ηB

// G B
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If each ηA is also an isomorphism then η is called a natural isomorphism. The concept
of natural transformation can be generalized to bifunctors.

2.2 Basic Combinators

In this section we will introduce a number of type constructors (such as products and
coproducts); each comes equipped with its own function combinators and laws for these
combinators. In the categorical setting, type constructors are simply universal construc-
tions (that can be generalized as functors), and the laws can all be derived from their
universal properties. Most of the laws presented in this chapter have trivial proofs.
Some are presented in order to exemplify the calculational style used throughout the
thesis, but the majority of them are omitted.

Products. The product of two types is defined as the cartesian product:

A×B = {(x, y) |x ∈ A, y ∈ B}

The ordering on the elements is defined as

(a, b) v (c, d) ⇔ a v c ∧ b v d

which means that the least element is ⊥A×B = (⊥A,⊥B).

On a product A×B the projections and the split function combinator (denoted by
· M ·) can also be defined.

fstA×B (x, y) = x

sndA×B (x, y) = y
(g M h) x = (g x, h x)

The fact that the cartesian product is a categorical product in CPO is justified by the
following uniqueness law.

f = g M h ⇔ fst ◦ f = g ∧ snd ◦ f = h Prod-Uniq

This law is also known as the universal law of products. Universal laws are used
in category theory to implicitly characterize entities. Instead of giving the explicit
pointwise definitions, we could state that the product of two objects A and B is an
object A×B, together with a pair of projections fst : A×B → A and snd : A×B → B,
such that for every object C, and arrows g : C → A and h : C → B, there exists
exactly one arrow from C to A×B, denoted by gMh, that makes the following diagram
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commute (uniqueness is signaled by a dashed line).

C
g

{{xxxxxxxxx
h

##GGGGGGGGG

gMh
���
�
�

A A×B
fst

oo
snd

// B

The implicit definition of products via their universal law turns out to be much
more effective for program calculation than the explicit pointwise definition given before.
Suppose one wants to prove the following very simple property about split.

fst M snd = id Prod-Reflex

Given its pointwise definition, the proof goes as follows.2666666666664

fst M snd = id

⇔ { η-expansion }
(fst M snd) (x, y) = id (x, y)

⇔ {definition of · M · and id }
(fst (x, y), snd (x, y)) = (x, y)

⇔ {definition of fst and snd }
(x, y) = (x, y)

Using the universal law, we can avoid unfolding definitions, and the proof becomes
even more straightforward.26666664

fst M snd = id

⇔ {Prod-Uniq, with g = fst, h = snd, and f = id }
fst ◦ id = fst ∧ snd ◦ id = snd

⇔ { Id-Nat }
fst = fst ∧ snd = snd

Throughout the thesis, the following conventions will be adopted. Although natural-
ity of identity is explicitly mentioned here, it will usually be omitted. We will implicitly
use associativity laws, just by omitting parenthesis around operators that enjoy this
property, namely composition. We will also assume that this operator binds stronger
than any other combinator in order to avoid the proliferation of parentheses.

Using Prod-Uniq the following laws can easily be proved.

fst ◦ (f M g) = f ∧ snd ◦ (f M g) = g Prod-Cancel

(f M g) ◦ h = f ◦ h M g ◦ h Prod-Fusion

f M g = h M i ⇔ f = h ∧ g = i Prod-Equal

It is also useful to define a product function combinator as follows.

f × g = f ◦ fst M g ◦ snd Prod-Def
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Observe that this definition of product over functions allows to see product as a bifunc-
tor. The corresponding laws can be checked as shown.

id× id = id Prod-Functor-Id

26666664
id× id

= {Prod-Def }
id ◦ fst M id ◦ snd

= {Prod-Reflex }
id

(f × g) ◦ (h× i) = f ◦ h× g ◦ i Prod-Functor-Comp

266666666666666664

(f × g) ◦ (h× i)

= {Prod-Def }
(f ◦ fst M g ◦ snd) ◦ (h ◦ fst M i ◦ snd)

= {Prod-Fusion }
f ◦ fst ◦ (h ◦ fst M i ◦ snd) M g ◦ snd ◦ (h ◦ fst M i ◦ snd)

= {Prod-Cancel }
f ◦ h ◦ fst M g ◦ i ◦ snd

= {Prod-Def }
f ◦ h× g ◦ i

The following absorption law fuses a product with a split.

(f × g) ◦ (h M i) = f ◦ h M g ◦ i Prod-Absor

Since we are working in CPO it is important to characterize the strictness of the
split combinator and the projections.

(f M g) strict ⇔ f strict ∧ g strict Prod-Strict

fst strict Fst-Strict

snd strict Snd-Strict

An example of a very useful function defined using split is the swap function.

swap : A×B → B ×A

swap = snd M fst
Swap-Def

This function is a natural isomorphism between the bifunctor ·×· and A⊗B = B×A,
as shown in the following calculations.

(f × g) ◦ swap = swap ◦ (g × f) Swap-Nat

swap ◦ swap = id Swap-Iso
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26666666666666666666664

swap ◦ (g × f)

= {Swap-Def, Prod-Def }
(snd M fst) ◦ (g ◦ fst M f ◦ snd)

= {Prod-Fusion, Prod-Cancel }
f ◦ snd M g ◦ fst

= {Prod-Cancel }
f ◦ fst ◦ (snd M fst) M g ◦ snd ◦ (snd M fst)

= {Prod-Fusion }
(f ◦ fst M g ◦ snd) ◦ (snd M fst)

= {Swap-Def, Prod-Def }
(f × g) ◦ swap

266666666666666664

swap ◦ swap

= {Swap-Def }
(snd M fst) ◦ (snd M fst)

= {Prod-Fusion }
snd ◦ (snd M fst) M fst ◦ (snd M fst)

= {Prod-Cancel }
fst M snd

= {Prod-Reflex }
id

Another useful natural isomorphism is the one that gives evidence of the associativity
of the cartesian product.

assocr : (A×B)× C → A× (B × C)
assocr = (fst ◦ fst) M (snd× id)

Assocr-Def

(f × (g × h)) ◦ assocr = assocr ◦ ((f × g)× h) Assocr-Nat

Its inverse is defined as follows.

assocl : A× (B × C) → (A×B)× C

assocl = (id× fst) M (snd ◦ snd)
Assocl-Def

assocr ◦ assocl = assocl ◦ assocr = id Assocr-Iso

Sums. It is know that CPO does not have true coproducts. In most lazy functional
languages this notion is implemented by the separated sum, where a new bottom element
is added to the tagged reunion of the elements of both sets.

A + B = ({0} ×A) ∪ ({1} ×B) ∪ {⊥A+B}

The ordering relation of this pcpo is defined as follows.

x v y ⇔ x = ⊥ ∨ (fst x = fst y ∧ snd x v snd y)

Dually to products, injections and the either combinator (denoted by · O ·) can be
defined on a sum A + B.

inlA+B x = (0, x)
inrA+B x = (1, x)

(g O h) ⊥ = ⊥
(g O h) (0, x) = g x

(g O h) (1, x) = h x
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The fact that the separated sum is not a categorical coproduct in CPO is reflected
in the uniqueness law, that only holds for strict functions:

f = g O h ⇔ f ◦ inl = g ∧ f ◦ inr = h ∧ f strict Sum-Uniq

If the strictness side condition was omitted, the equation would not be valid because
the right-hand side would not determine the outcome of f when applied to ⊥. Resorting
to diagrams, we could say that there exists exactly one strict arrow from A + B to C

that makes the following diagram commute.

A
inl //

g
##FFFFFFFFF A + B

gOh

���
�
� B

inroo

h{{wwwwwwwww

C

Using uniqueness the following laws can be proved. Notice how fusion becomes
“polluted” by strictness side conditions.

inl O inr = id Sum-Reflex

(f O g) ◦ inl = f ∧ (f O g) ◦ inr = g Sum-Cancel

f ◦ (g O h) = f ◦ g O f ◦ h ⇐ f strict Sum-Fusion

f O g = h O i ⇔ f = h ∧ g = i Sum-Equal

Likewise products, the separated sum can be turned into a bifunctor by defining its
operation on arrows, which leads to the introduction of the sum function combinator:

f + g = inl ◦ f O inr ◦ g Sum-Def

Here are the corresponding functor and absorption laws.

id + id = id Sum-Functor-Id

(f + g) ◦ (h + i) = f ◦ h + g ◦ i Sum-Functor-Comp

(f O g) ◦ (h + i) = f ◦ h O g ◦ i Sum-Absor

By definition, any either is strict. However, unlike fst and snd, which are strict
functions, inl and inr are not.

(f O g) strict Sum-Strict

There is an interesting law that relates split with either, typically called the abides
or exchange law.

(f M g) O (h M i) = (f O h) M (g O i) Abides
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266666666666666664

(f M g) O (h M i)

= {Prod-Reflex }
(fst M snd) ◦ ((f M g) O (h M i))

= {Prod-Fusion }
fst ◦ ((f M g) O (h M i)) M snd ◦ ((f M g) O (h M i))

= {Sum-Fusion, Fst-Strict, Snd-Strict }
(fst ◦ (f M g) O fst ◦ (h M i)) M (snd ◦ (f M g) O snd ◦ (h M i))

= {Prod-Cancel }
(f O h) M (g O i)

Analogously to the swap function for products, the coswap can be defined for sums,
with similar laws (and proofs).

coswap : A + B → B + A

coswap = inr O inl
Coswap-Def

(f + g) ◦ coswap = coswap ◦ (g + f) Coswap-Nat

coswap ◦ coswap = id Coswap-Iso

Sum is also associative, and the isomorphism is justified by the following definitions.

coassocr : (A + B) + C → A + (B + C)
coassocr = (id + inl) O (inr ◦ inr)

Coassocr-Def

coassocl : A + (B + C) → (A + B) + C

coassocl = (inl ◦ inl) O (inr + id)
Coassocl-Def

Unfortunately, CPO is not a distributive category, which means that A × (B + C)
is not isomorphic to (A × B) + (A × C). In fact, there are more elements in the first
type (for example, given a value (x,⊥) of the first type, it must be converted into ⊥ of
the second, but there is no way to invert this value in order to obtain the original x).
Even so, it is possible to write a function that distributes the product over the sum and
vice-versa. The point-free definition of the former needs exponentials, but the latter can
be readily defined as follows.

undistr : (A×B) + (A× C) → A× (B + C)
undistr = (id× inl) O (id× inr)

Undistr-Def

Exponentials. The exponentiation of type B to type A is defined as the set of all
functions with domain A and codomain B:

BA = {f | f : A → B}



32 Chapter 2: Algebraic Programming

Given pcpos A and B, the ordering of the continuous functions from A to B is determined
by

f v g ⇔ (f a v g a,∀a ∈ A)

As already mentioned in the previous section, this ordering implies that the least element
of BA is the function that always returns ⊥B.

Associated to the exponential BA, are the apply function and the curry combinator
(denoted by · ).

apBA (f, x) = f x

g x y = g (x, y)

The following uniqueness law states that this notion of exponentiation is truly categorical
in CPO.

f = g ⇔ g = ap ◦ (f × id) Exp-Uniq

Alternatively, we could say that for every object C, and g : C × A → B, g is the
unique arrow from C to BA that makes the following diagram commute.

BA ×A
ap // B

C ×A

g

;;wwwwwwwww
g×id

OO�
�
�

The definition of the exponentiation combinator allows to turn this operation into a
functor:

fA = f ◦ ap Exp-Def

Notice that when the type in superscript is not relevant the symbol • will be used in
replacement. The following laws characterize exponentiation.

ap = id Exp-Reflex

ap ◦ (f × id) = f Exp-Cancel

f ◦ g = f ◦ (g × id) Exp-Fusion

f = g ⇔ f = g Exp-Equal

id• = id Exp-Functor-Id

(f ◦ g)• = f• ◦ g• Exp-Functor-Comp

f• ◦ g = f ◦ g Exp-Absor

Left-strictness. To characterize the strictness of the curry operator, the stronger
notion of left-strictness is needed. An arrow of type A×B → C is left-strict if it returns
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⊥C when the first element of the input pair is ⊥A. Categorically, this concept can be
characterized as follows.

f left-strict ⇔ f ◦ (⊥× id) = ⊥ ◦ fst Lstrict-Def

f strict ⇐ f left-strict Lstrict-Strict

Alternatively, f is left-strict iff the following diagram commutes.

1×B
fst //

⊥×id

��

1

⊥
��

A×B
f

// C

An example of a strict function that is not left-strict is the projection snd.

Left-strictness and composition interact according to the following laws. Again, the
last law can be derived from monotony.

f ◦ (g × id) left-strict ⇐ f left-strict ∧ g strict Lstrict-Comp-Left

f ◦ g left-strict ⇐ f strict ∧ g left-strict Lstrict-Comp-Right

f left-strict ⇐ f ◦ (g × id) left-strict Comp-Lstrict

Remember that the least element of type AB is a function that ignores its argument
and always returns the least element of type A. As such, a curried function is strict
if and only if its uncurried version is left-strict. The same reason justifies that ap is a
left-strict function (and thus strict).

f strict ⇔ f left-strict Exp-Strict

ap left-strict Ap-Lstrict

Distributivity. Using exponentials, functions to distribute products over sums can
be defined in the point-free style as follows.

distl : (A + B)× C → (A× C) + (B × C)
distl = ap ◦ ((inl O inr)× id)

Distl-Def

distr : A× (B + C) → (A×B) + (A× C)
distr = (swap + swap) ◦ distl ◦ swap

Distr-Def

Although CPO is not distributive, it is still true that

distr ◦ undistr = id Distr-Iso-Left
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as the following calculation shows.

2666666666666666666666666666666666666666664

distr ◦ undistr

= {Distr-Def, Distl-Def, Undistr-Def }
(swap + swap) ◦ ap ◦ ((inl O inr)× id) ◦ swap ◦ ((id× inl) O (id× inr))

= {Sum-Fusion, swap strict, Swap-Nat }
(swap + swap) ◦ ap ◦ ((inl O inr)× id) ◦ ((inl× id) ◦ swap O (inr × id) ◦ swap)

= {Sum-Absor, Prod-Def }
(swap + swap) ◦ ap ◦ ((inl O inr)× id) ◦ ((inl ◦ fst M snd) O (inr ◦ fst M snd)) ◦ (swap + swap)

= {Abides, Prod-Absor }
(swap + swap) ◦ ap ◦ ((inl O inr) ◦ (inl ◦ fst O inr ◦ fst) M (snd O snd)) ◦ (swap + swap)

= {Sum-Fusion, Sum-Strict, Sum-Cancel }
(swap + swap) ◦ ap ◦ ((inl ◦ fst O inr ◦ fst) M (snd O snd)) ◦ (swap + swap)

= {Abides, Prod-Def }
(swap + swap) ◦ ap ◦ ((inl× id) O (inr × id)) ◦ (swap + swap)

= {Sum-Fusion, ap strict, Exp-Cancel }
(swap + swap) ◦ (inl O inr) ◦ (swap + swap)

= {Sum-Reflex, Sum-Functor-Comp }
swap ◦ swap + swap ◦ swap

= {Swap-Iso, Sum-Functor-Id }
id

Obviously, the inverse does not hold (although undistr ◦ distr v id). Some additional
properties about distributivity, namely naturality, are stated and proved in Appendix A.

Guards. Booleans can be defined by Bool = 1 + 1, with

true : 1 → Bool

true = inl

false : 1 → Bool

false = inr

Given this definition, negation is implemented by the coswap function.

To facilitate the point-free treatment of conditional expressions, it is useful to define
the guard combinator associated to a given predicate p : A → Bool.

p? : A → A + A

p? = (fst + fst) ◦ distr ◦ (id M p)
Guard-Def

Notice that if p returns ⊥ for some input, then p? will also return ⊥.

Cartesian Closed Categories. A category that has products, exponentials, and
terminal object is called cartesian closed. In these categories, the set of arrows from A

to B can be represented by the object BA. Formally, this means that an f : A → B can
be internalized as a point f : 1 → BA, and vice versa. Moreover, it is possible to define
the conversions between a function and its point using the basic combinators previously



2.3 Recursive Data Types 35

defined. Given any arrow f : A → B we have [McL95]

f = f ◦ snd Pnt-Def

f = ap ◦ (f ◦ ! M id) Pnt-Cancel

Notice that in the first law, the type of snd is 1×A → A. The second law can be proved
as follows. 266666666666666664

ap ◦ (f ◦ ! M id)

= {Pnt-Def }
ap ◦ (f ◦ snd ◦ ! M id)

= {Prod-Absor }
ap ◦ (f ◦ snd× id) ◦ (! M id)

= {Exp-Cancel }
f ◦ snd ◦ (! M id)

= {Prod-Cancel }
f

By looking just at the last step of the proof, it may seem that ! could be replaced
by any other function with similar results. However, due to the specific type of snd in
this particular case, one must guarantee that the first element of the pair is of type 1;
but there is only one function that given a A returns 1, namely !A.

Surprisingly (or maybe not), points allow us to internalize in the point-free calculus
some pointwise like definitions. The basic idea is that application can be modeled by
composition as follows.

f ◦ x = f x Pnt-Comp

Consider, for example, the pointwise definition of the exponentiation combinator f• g =
f ◦ g. Given Pnt-Comp, this fact can be expressed and proved in the point-free calculus
as follows.

f• ◦ g = f ◦ g Exp-Pnt

2666666666664

f• ◦ g

= {Pnt-Def }
f• ◦ g ◦ snd

= {Exp-Absor }
f ◦ g ◦ snd

= {Pnt-Def }
f ◦ g

2.3 Recursive Data Types

In a typed functional programming language a new data type is defined by declaring its
constructors and the respective types. For example, in Haskell the following types can
be defined.
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data Nat = Zero | Succ Nat

data List a = Nil | Cons a (List a)

data Tree a = Empty | Node a (Tree a) (Tree a)

The first one is a monomorphic type that represents natural numbers, and the later
are polymorphic ones representing lists and binary trees containing elements of an ar-
bitrary type.

In order to present a general theory for data types, we first have to circumvent
some “irregularities” in constructor declaration, namely, the fact that there may exist
an arbitrary number of constructors, and that each may have an arbitrary number of
arguments. This last problem is easily solved by treating constants as functions with
domain 1, and by uncurrying constructors with more than one parameter. For naturals
and lists this technique can be illustrated by the following declarations.

zero : 1 → Nat

succ : Nat → Nat

nil : 1 → List A

cons : A× List A → List A

For binary trees we have to decide where to put parentheses.

empty : 1 → Tree A

node : A× (Tree A× Tree A) → Tree A

All the constructors of a data type share the same target type. As such, the either
combinator can be used to pack all of them in a single declaration, as in the following
declaration for naturals.

zero O succ : 1 + Nat → Nat

Since the domain is an expression involving the target type, the categorical concept of
functor can be used to factor this type out. The packed representation of the constructors
of a data type T will be denoted by inT , and the base functor that captures its signature
by FT . Notice that with this approach, the type of inT is always FT T → T . For
polymorphic data types the type variables will be omitted in subscripts in order to
improve readability.

FNat = 1 +̂ Id

inNat = zero O succ

FList = 1 +̂ A ×̂ Id

inList = nil O cons

FTree = 1 +̂ A ×̂ (Id ×̂ Id)
inTree = empty O node

A recursive data type T is then defined by taking the fixed point of its base functor
FT . Reynolds proved that in CPO, given a locally continuous and strictness-preserving
base functor F , there exists a unique data type T = µF and two unique strict functions
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inT : F T → T and outT : T → F T that are each other’s inverse [Rey77].

inT ◦ outT = idT ∧ outT ◦ inT = idFT In-Out-Iso

inT strict In-Strict

outT strict Out-Strict

Fokkinga and Meijer [FM91] showed that all polynomial, and even all regular func-
tors, are locally continuous and strictness-preserving. A polynomial functor is either the
identity functor, a constant functor, a lifting of the sum and product bifunctors, or the
composition of polynomial functors. This guarantees that, for example, all the following
data types are well defined.

Nat = µ(FNat) List A = µ(FList) Tree A = µ(FTree)

A regular functor can also be built from type functors, a concept that will be presented
later in Section 3.1.1. An example of a data type built from a regular functor is that of
rose trees, where each node may have an arbitrary number of children. Since all functors
used in this thesis are locally continuous and strictness-preserving, this fact will usually
be omitted from proofs.

To see what elements belong to a data type defined by fixed point, let us take the
natural numbers as an example. A pcpo that satisfies the equation Nat ∼= 1 + Nat can
informally be defined as Nat = 1 + (1 + (1 + . . .)). We can picture the ordering relation
of this pcpo as follows.

zero ⊥1 (succ ◦ zero) ⊥1 (succn ◦ zero) ⊥1

⊥Nat
//

OO

succ ⊥Nat
//

OO

(succn) ⊥Nat
//

OO

∞

The elements in the upper row can be interpreted as the natural numbers, that is,
0 = zero ⊥1, 1 = (succ ◦ zero) ⊥1, and in general n = (succn ◦ zero) ⊥1. Notice that the
order in the poset is a definedness order, and so, these elements are unrelated. Besides
the natural numbers, Nat also contains a chain of “partial numbers”. An upper bound
of this chain ∞ =

⊔
n((succn) ⊥Nat) must be added in order to make the poset complete.

This element satisfies ∞ = succ ∞, and denotes the infinite number. Similarly, the data
type List A contains, not only all totally defined finite lists, but also chains of partial lists
with shape cons (a0, cons (a1, . . .⊥)), whose upper bounds are totally defined infinite
lists.

We have already seen what the in functions for this data types are. But what about
their destructors, the out functions? Given a predicate iszero : Nat → Bool that tests
if a natural is equal to zero, and a function pred : Nat → Nat that determines the
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predecessor, we have for naturals

outNat : Nat → 1 + Nat

outNat = (! + pred) ◦ iszero?

For lists, given a similar predicate isnil : List A → Bool, and the typical destructors
head : List A → A and tail : List A → List A we have

outList : List A → 1 + A× List A

outList = (! + (head M tail)) ◦ isnil?

Remark. This presentation excludes non-regular data types and mutually recursive
ones. Several authors have shown how to extend this theory of algebraic programming
to mutually recursive data types [Mei92, SF93, IHT98]. There is also some work on
extending it to nested data types [BP99, MG01]. These are parameterized data types
in which the parameter changes in the recursive call, and are interesting because they
can capture some structural invariants. For example, the following Haskell data type
can be used to store perfectly balanced binary trees with labels in the leafs.

data Balanced a = Leaf a | Fork (Balanced (a,a))

2.4 Hylomorphisms

The hylomorphism recursion pattern was first defined in [FM91]. Given a functor F , a
function g : F B → B, and a function h : A → F A, a hylomorphism is defined as the
following recursive function, using the fixpoint operator µ.

[[g, h]]µF : A → B

[[g, h]]µF = µ(λf.g ◦ Ff ◦ h)
Hylo-Def

The main advantage of expressing recursive functions as hylomorphisms is that they
have several interesting laws appropriate for program calculation and transformation.
For example, by unfolding the fixpoint operator we immediately get the following can-
cellation law.

[[g, h]]µF = g ◦ F [[g, h]]µF ◦ h Hylo-Cancel

From this law, it is clear that the recursion pattern of the hylomorphism is characterized
by the functor F . For example, if this functor is 1 +̂ Id then the resulting definition is
necessarily linear recursive. To define a birecursive function a second degree polynomial
functor, such as 1+̂ Id×̂ Id, must be used. In fact, the recursion tree of a function defined
as a hylomorphism is modeled by µF .

Function h is responsible for all computations prior to recursion, namely, to compute
the values passed to the recursive calls. Function g combines the results of the recursive
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calls in order to compute the final result. Notice that some values can be passed intact
from h to g. This will be the case when a functor modeling a data type that stores some
information in the nodes is used, like 1 +̂ A ×̂ Id for the case of lists.

Example 2.1 (Factorial). Consider the following typical definition of the factorial
function in Haskell, where Nat is the data type defined in the previous section, and
mult :: (Nat,Nat) -> Nat implements multiplication.

fact :: Nat -> Nat

fact Zero = Succ Zero

fact (Succ n) = mult (Succ n, fact n)

Assuming that constants are functions from 1, this recursive definition verifies the
following equations.

fact (zero ⊥) = succ (zero ⊥) ∧ fact (succ n) = mult (succ n, fact n)

By applying the definitions of composition and the split combinator we can push the
variables out of the expressions. one will be used as a shortcut to succ ◦ zero.

(fact ◦ zero) ⊥ = one ⊥ ∧ (fact ◦ succ) n = (mult ◦ (succ M fact)) n

η-reduction then enables us to transform these equations into the point-free style.

fact ◦ zero = one ∧ fact ◦ succ = mult ◦ (succ M fact)

With some simple calculations we can rearrange this expression as follows.266666666666666664

fact ◦ zero = one ∧ fact ◦ succ = mult ◦ (succ M fact)

⇔ {Sum-Equal }
fact ◦ zero O fact ◦ succ = one O mult ◦ (succ M fact)

⇔ {Sum-Fusion, fact strict, Prod-Absor }
fact ◦ (zero O succ) = one O mult ◦ (id× fact) ◦ (succ M id)

⇔ { inNat = zero O succ, Sum-Absor }
fact ◦ inNat = (one O mult) ◦ (id + id× fact) ◦ (id + succ M id)

⇔ { In-Out-Iso }
fact = (one O mult) ◦ (id + id× fact) ◦ (id + succ M id) ◦ outNat

This means that factorial can be determined by the fixpoint

fact = µ(λf.(one Omult) ◦ (FList f) ◦ (id + succ M id) ◦ outNat)

and hence defined as the hylomorphism

fact : Nat → Nat

fact = [[one Omult, (id + succ M id) ◦ outNat]]List Nat
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Example 2.2 (Length). To give another example, this informal method to derive a
hylomorphism will be applied to the following function that determines the length of a
list.

length :: List a -> Nat

length Nil = Zero

length (Cons h t) = Succ (length t)

This definition satisfies the following pointwise equations.

length (nil ⊥) = zero ⊥ ∧ length (cons (h, t)) = succ (length t)

These can be converted into point-free style by using snd to “forget” the head of the
list.

length ◦ nil = zero ∧ length ◦ cons = succ ◦ length ◦ snd

By similar calculations to the factorial example, these equations can be converted into

length = inNat ◦ (id + length) ◦ (id + snd) ◦ outList

which means that length can be defined as the following hylomorphism.

length : List A → Nat

length = [[inNat, (id + snd) ◦ outList]]Nat

Laws. Most of the fundamental laws about hylomorphisms follow directly from similar
laws about fixpoints, or can be proved by fixpoint induction. That is the case of the
following, first presented in [FM91].

g ◦ [[h, i]]µF ◦ j = [[k, l]]µF

⇐
g strict ∧ g ◦ h = k ◦ F g ∧ i ◦ j = F j ◦ l

Hylo-Fusion

[[g, h]]µF ◦ [[i, j]]µF = [[g, j]]µF ⇐ h ◦ i = id Hylo-Compose

[[g, h]]µF strict ⇐ g strict ∧ h strict Hylo-Strict

The following fact is related to the existence of recursive data types, and its original
proof using the fixpoint operator instead of hylomorphisms is also due to Reynolds [Rey77].

[[inµF , outµF ]]µF = idµF Hylo-Reflex

Finally, we also have the interesting shifting law [MFP91], that can be used to change
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the shape of recursion.

[[g ◦ η, h]]µF = [[g, η ◦ h]]µG ⇐ η : F
.→ G Hylo-Shift

These laws allow us to reason about recursive definitions using the same calculational
style that the laws about the basic combinators enabled for the non-recursive case.

Example 2.3 (From). In order to exemplify their usage let us prove that

length ◦ from = id

where from is a function that given a natural n generates a list with all numbers from
n− 1 down to 0, and that can be defined as

from : Nat → List Nat

from = [[inList, (id + id M id) ◦ outNat]]List Nat

The calculation goes as follows. Notice that we have specialized length to lists of
naturals.

26666666666666666666664

[[inNat, (id + snd) ◦ outList]]Nat ◦ [[inList, (id + id M id) ◦ outNat]]List Nat

= {Hylo-Shift, id + snd : 1 +̂ Nat ×̂ Id
.→ 1 +̂ Id }

[[inNat ◦ (id + snd), outList]]List Nat ◦ [[inList, (id + id M id) ◦ outNat]]List Nat

= {Hylo-Compose, In-Out-Iso }
[[inNat ◦ (id + snd), (id + id M id) ◦ outNat]]List Nat

= {Hylo-Shift, id + snd : 1 +̂ Nat ×̂ Id
.→ 1 +̂ Id }

[[inNat, (id + snd) ◦ (id + id M id) ◦ outNat]]Nat

= {Sum-Functor-Comp, Prod-Cancel }
[[inNat, (id + id) ◦ outNat]]Nat

= {Sum-Functor-Id, Hylo-Reflex }
idNat

As seen in this example, natural transformations are sometimes the main ingredient
of a hylomorphism, and its identification is fundamental during calculation. Due to this
fact, hylomorphisms are sometimes presented in the so-called triplet form, where the
natural transformation is explicitly factored out [TM95].

Acid Rain. Takano and Meijer [TM95] defined a different kind of fusion rule, more
suitable to be applied in contexts of program deforestation (i.e., optimization through
the elimination of intermediate data structures). This rule generalizes the foldr/build
rule, first defined in [GLJ93], to work on any regular data type, and is usually known
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as the acid rain theorem.

[[g, outµF ]]µF ◦ [[τ(inµF ), h]]µG = [[τ(g), h]]µG

⇐
τ : ∀A.(F A → A) → G A → A

The first difference to Hylo-Fusion is that the function to be fused is not arbitrary,
and should itself be expressed as a hylomorphism. The other difference is that the
hylomorphism parameters are also not arbitrary. In particular, one of them must result
from the application of a polymorphic function transformer to the constructors of the
intermediate data structure.

The dual of this rule, also presented in [TM95], was (much) later rebaptized as the
destroy/unfoldr rule [Sve02].

[[g, σ(outµF )]]µG ◦ [[inµF , h]]µF = [[g, σ(h)]]µG

⇐
σ : ∀A.(A → F A) → A → G A

Expressiveness. An interesting result by Meijer and Hutton [MH95] shows how hylo-
morphisms can be used to compute arbitrary fixpoints, and thus provide the full power of
recursion. In fact, the fixpoint operator can itself be implemented as a hylomorphism.
The insight to this result is to notice that µ f is determined by the infinite applica-
tion f (f (f . . .)), whose recursion tree is an infinite list of functions f , subsequently
consumed by application.

Infinite lists, or streams, can be defined as

Stream A = µ(A ×̂ Id)

with a single constructor to insert an element at the head.

inStream : A× Stream A → Stream A

Given a function f , the following hylomorphism builds the (virtual) recursion tree
in (f, in (f, in (f, . . .))), and then just replaces in by ap.

fix : AA → A

fix = [[ap, id M id]]Stream AA

Fix-Def

According to [AL91], a morphism µA : AA → A is a fixpoint operator for A in a
cartesian closed category if it verifies µ = ap ◦ (id M µ). After expanding the definitions
of composition, split, and ap we see that this corresponds to the expected pointwise
equation µ f = f (µ f). By applying Hylo-Cancel and Prod-Absor to fix it can be proved



2.5 Summary 43

that it is indeed a fixpoint operator.

fix = ap ◦ (id M fix) Fix-Cancel

2.5 Summary

This chapter presented the fundamentals of algebraic programming, using the CPO cat-
egory as a model for computation. Most of the material is well known, and is presented
in many introductory texts to the subject, like [MFP91, BdM97, Gib02]. The notion
of left strictness does not appear in literature, but will be very useful to reason about
higher-order functions. A slightly different approach was followed in presenting recursion
operators, by restricting the basic set to a single primitive pattern: the hylomorphism.
In the next chapter it will be used to define folds, unfolds, and all the remaining typ-
ical recursion operators. Some very simple calculations and examples were presented,
to smooth the transition to the more elaborate ones to appear in the remaining of the
thesis.
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Chapter 3

Recursion Patterns as

Hylomorphisms

The advantages of using generic operators to capture typical patterns of recursion are
widely recognized. Some of these are [SF93]:

• Abstraction. They allow the specification of algorithms to be independent from
the types of the values they operate on. They make possible the statement, proof
and use of generic theorems.

• Structure. By using a structured programming paradigm, tasks like program un-
derstanding or program transformation can be made easier.

Although many recursion patterns are described in the literature, only the hylo-
morphism was presented in the previous chapter. Since the fixpoint operator can itself
be defined as a hylomorphism, this recursion pattern provides the full power of recur-
sion. This means that, in principle, there is no need to define other recursion operators.
However, having a collection of more structured recursion patterns can help in program
calculation and transformation, because they can be characterized by more specific laws
than the hylomorphism.

In particular, due to their generality, hylomorphisms lack one of the fundamental
laws to reason about programs - uniqueness. As seen for the basic combinators in
Section 2.2, this law gives a precise algebraic characterization of when a function can be
expressed by a given combinator, and can be used as the “swiss army knife” for proving
properties about it.

In this chapter we show how to define most of the typical recursion patterns using
hylomorphisms. Usually, when working in CPO, recursion patterns are defined directly
by fixpoint [MFP91]. By using hylomorphisms, the laws that characterize them can be
derived from the basic set of laws presented in the previous chapter, thus avoiding the

45
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use of fixpoint induction. Since this also applies to uniqueness, this chapter can also be
seen as a quest to find “well behaved” hylomorphisms.

Likewise to the basic combinators, namely products and sums, the categorical notion
of dual also applies to recursion patterns. For example, folds and paramorphisms (corre-
sponding to the operator that captures primitive recursion) will be presented, together
with their duals, unfolds and the less known apomorphisms. By skipping the proofs,
which are essentially the same, the presentation of duals is more concise.

3.1 Catamorphisms

One of the fundamental patterns of recursion is iteration, where recursive data types
are “consumed” by replacing their constructors by arbitrary functions. This recursion
pattern is usually called fold or catamorphism. In Haskell it is predefined for lists as the
function foldr. Adapting that definition to the lists defined in Section 2.3 we get

fold_List :: (a -> b -> b) -> b -> List a -> b

fold_List f z Nil = z

fold_List f z (Cons h t) = f h (fold_List f z t)

From this definition, it is clear that folding over a list

Cons x1 (Cons x2 (Cons x3 (... Nil)))

yields

f x1 (f x2 (f x3 (... z)))

The informal approach presented in Section 2.4 can be used to convert this definition
into a hylomorphism. By uncurrying f and treating z as a point, both parameters can
be combined into a single function g : 1 + A × B → B. Given this change, the fold for
lists can alternatively be defined by the following equations.

foldList g ◦ nil = g ◦ inl

foldList g ◦ cons = g ◦ inr ◦ (id× foldList g)

By using inList to pack the constructors, these definitions can be simplified as follows.
Notice that both g and foldList g are strict functions, because g is defined using the either
combinator and the fold diverges when presented with a totally undefined list.
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266666666666666664

foldList g ◦ nil = g ◦ inl ∧ foldList g ◦ cons = g ◦ inr ◦ (id× foldList g)

⇔ {Sum-Equal }
foldList g ◦ nil O foldList g ◦ cons = g ◦ inl O g ◦ inr ◦ (id× foldList g)

⇔ {Sum-Fusion, foldList g strict, g strict }
foldList g ◦ (nil O cons) = g ◦ (inl O inr ◦ (id× foldList g))

⇔ { inList = nil O cons, Sum-Def }
foldList g ◦ inList = g ◦ (id + id× foldList g)

⇔ { Leibniz, In-Out-Iso, FList = 1 +̂ A ×̂ Id }
foldList g = g ◦ (FList (foldList g)) ◦ outList

This calculation shows that

foldList g = [[g, outList]]List A

The same reasoning can be applied to folding over naturals.

fold_Nat :: (b -> b) -> b -> Nat -> b

fold_Nat f z Zero = z

fold_Nat f z (Succ n) = f (fold_Nat f z n)

By combining both parameters in a single function g : 1 + Nat → Nat, this function can
also be implemented using a hylomorphism.

foldNat g = [[g, outNat]]Nat

Definition. Given a function of type g : F A → A, the catamorphism operator which
implements iteration over the data type µF can be generically defined as follows (fol-
lowing the Dutch tradition, it is denoted using the banana-brackets notation).

(|g|)µF : µF → A

(|g|)µF = [[g, outF ]]µF

Cata-Def

Example 3.1 (Sum). One of the simplest examples of a catamorphism over lists is the
sum function. To sum all the elements of a list nil can be replaced by zero, and cons by
plus : Nat× Nat → Nat.

sum : List Nat → Nat

sum = (|zero O plus|)List Nat

Example 3.2 (Length). As seen in Example 2.3, the length function can also be
defined as the hylomorphism [[inNat ◦ (id + snd), outList]]. By definition this means that

length : List A → Nat

length = (|inNat ◦ (id + snd)|)List A
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Example 3.3 (Insertion Sort). Given a function insert : A × List A → List A that
inserts an element in an ordered list, the insertion sort algorithm can be easily imple-
mented by a catamorphism.

isort : List A → List A

isort = (|nil O insert|)List A

Example 3.4 (Flatten). Another example of a catamorphism over lists is the flatten
function, that converts a list of lists into a single list. cat : List A × List A → List A is
the function that concatenates two lists.

flatten : List (List A) → List A

flatten = (|nil O cat|)List (List A)

Example 3.5 (Inorder). An example of a catamorphism over binary trees is the in-
order traversal.

inorder : Tree A → List A

inorder = (|nil O cat ◦ (id× cons) ◦ assocr ◦ (swap× id) ◦ assocl|)Tree A

Laws. From Cata-Def it is trivial to derive the following laws about catamorphisms
from the corresponding laws about hylomorphisms.

(|inµF |)µF = idµF Cata-Reflex

(|g|)µF ◦ inµF = g ◦ F (|g|)µF Cata-Cancel

f ◦ (|g|)µF = (|h|)µF ⇐ f ◦ g = h ◦ F f ∧ f strict Cata-Fusion

Assuming a strictness-preserving functor we have

(|g|)µF strict ⇔ g strict Cata-Strict

The ⇐ implication follows directly from Hylo-Strict and Out-Strict. For the other impli-
cation we could argue as follows.

2666666666664

(|g|) strict

⇒ { In-Strict, Strict-Comp }
(|g|) ◦ in strict

⇒ {Cata-Cancel }
g ◦ F (|g|) strict

⇒ {Comp-Strict }
g strict

Similarly to sums, catamorphisms also obey a uniqueness law constrained by some
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strictness side conditions.

f = (|g|)µF ∧ g strict ⇔ f ◦ inµF = g ◦ Ff ∧ f strict Cata-Uniq

The ⇒ implication follows trivially from Cata-Cancel and Cata-Strict. The other impli-
cation can also be easily proved as follows.

26666664
f ◦ inµF = g ◦ Ff ∧ f strict

⇒ {Cata-Fusion }
f ◦ (|inµF |)µF = (|g|)µF

⇔ {Cata-Reflex }
f = (|g|)µF

Strictness of g then follows from Cata-Strict.

Categorically, this uniqueness law means that inµF is an initial F -algebra in the
category CPO⊥. An F -algebra is a function of type F A → A, where A is called the
carrier of the algebra. Given a strict g : FA → A, (|g|)µF is the unique strict function
that makes the following diagram commute.

µF

(|g|)µF

��

F (µF )
inµFoo

F (|g|)µF

��
A F Ag

oo

Unfortunately, Cata-Uniq does not say anything about non-strict functions, but as argued
by Fokkinga and Meijer [FM91] it is not possible to relax any of the strictness conditions
without breaking the law. As an example of this lack of expressive power, let us try
to derive Cata-Fusion from Cata-Uniq. In Set this is typically achieved by the following
calculation.
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f ◦ (|g|)µF = (|h|)µF

⇔ {Cata-Uniq }
f ◦ (|g|)µF ◦ inµF = g ◦ F (f ◦ (|g|)µF )

⇔ {Cata-Cancel, Functor-Comp }
f ◦ g ◦ F (|g|)µF = h ◦ F f ◦ F (|g|)µF

⇐ { Leibniz }
f ◦ g = h ◦ F f

In order to perform the same calculation in CPO f ◦ (|g|) must be a strict function,
but Cata-Fusion only requires f to be strict. Due to this problem, in [FM91] both
uniqueness and fusion are independently proved using fixpoint induction.

Expressiveness. Concerning the expressiveness of catamorphisms, it can be proved
that at least any strict injective function (a function with left inverse) can be defined as
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a catamorphism.

f = (|f ◦ inµF ◦ F g|)µF ⇐ g ◦ f = id ∧ f strict

This result follows from Cata-Uniq. Notice that given the strictness of f , g is necessarily
strict. This means that f ◦ inµF ◦ F g is also strict and uniqueness can be applied.
A complete characterization of catamorphisms in the Set category can be found in
[GHA01]. The authors give a necessary and sufficient condition to decide if a set-
theoretic function can be written as a fold, but currently it is not known how to extend
this result to CPO.

Given this result, out can be defined as a catamorphism using its inverse in as follows.

outµF : µF → F (µF )
outµF = (|F inµF |)µF

Out-Def

The proof that this function is indeed the inverse of in is given by the following
calculations.
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in ◦ out

= {Out-Def }
in ◦ (|F in|)

= {Cata-Fusion, In-Strict }
(|in|)

= {Cata-Reflex }
id
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out ◦ in

= {Out-Def }
(|F in|) ◦ in

= {Cata-Cancel }
F in ◦ F (|F in|)

= {Functor-Comp, Out-Def }
F (in ◦ out)

= { in ◦ out = id, Functor-Id }
id

Banana Split. Another important law about catamorphisms relates them with the
split combinator, and was first presented by Fokkinga [Fok89]. Due to the notation used
for representing catamorphisms it is also called the banana split law. It has practical
usage in program optimization, since it can be used to transform a pair of traversals
over a data structure into a single one.

(|g|)µF M (|h|)µF = (|g ◦ F fst M h ◦ F snd|)µF Cata-Split
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266666666666666666666666666666664

(|g ◦ F fst M h ◦ F snd|)µF

= {Prod-Reflex }
(fst M snd) ◦ (|g ◦ F fst M h ◦ F snd|)µF

= {Prod-Fusion }
fst ◦ (|g ◦ F fst M h ◦ F snd|)µF M snd ◦ (|g ◦ F fst M h ◦ F snd|)µF

= {Cata-Fusion, Fst-Strict }264 fst ◦ (g ◦ F fst M h ◦ F snd) = g ◦ F fst

= {Prod-Cancel }
g ◦ F fst = g ◦ F fst

(|g|)µF M snd ◦ (|g ◦ F fst M h ◦ F snd|)µF

= {Cata-Fusion, Snd-Strict }264 snd ◦ (g ◦ F fst M h ◦ F snd) = h ◦ F snd

= {Prod-Cancel }
h ◦ F snd = h ◦ F snd

(|g|)µF M (|h|)µF

Example 3.6 (Average). The classic example of using Cata-Split consists in trans-
forming the following clear, but inefficient, function to determine the average of a list
into a single pass version. div : Nat× Nat → Nat computes integer division.

average : List Nat → Nat

average = div ◦ (sum M length)

After some simplifications, the resulting function is

average = div ◦ (|(zero O plus ◦ (id× fst)) M (zero O succ ◦ snd ◦ snd)|)List Nat

3.1.1 Type Functors.

The base functor of a polymorphic data type can be seen as the sectioning of a bifunctor.
The base bifunctor that corresponds to a polymorphic data type TA will be denoted by
?T . For example, for lists such bifunctor can be defined as

A ?List B = 1 + A×B

f ?List g = Id + f × g

allowing us to state
List A = µ(A?List) = µ(1 +̂ A ×̂ Id)

For each polymorphic data type, a new type functor can be defined, whose action
on functions corresponds to the standard map function of that type. The action of a
type functor on objects is the data type definition itself TA = µ(A?T ). Given a function



52 Chapter 3: Recursion Patterns as Hylomorphisms

f : A → B, the map function can be defined generically using a catamorphism.

T f : T A → T B

T f = (|inT ◦ (f ?T id)|)TA

Map-Def

After simplification with Sum-Absor, this definition gives the following map function
for lists.

List f = (|nil O cons ◦ (f × id)|)List A

After converting it into pointwise Haskell the expected definition is obtained.

map :: (a -> b) -> List a -> List b

map f Nil = Nil

map f (Cons h t) = Cons (f h) (map f t)

The following law allows catamorphisms to be fused with maps (g is a function of
type A → B).

(|f |)TB ◦ T g = (|f ◦ (g ?T id)|)TA Cata-Map-Fusion

This law can be proved using Hylo-Shift.
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(|f |)TB ◦ T g

= {Map-Def }
(|f |)TB ◦ (|inT ◦ (g ?T id)|)TA

= {Cata-Def }
[[f, outT ]]TB ◦ [[inT ◦ (g ?T id), outT ]]TA

= {Hylo-Shift, g ?T id : (A?T )
.→ (B?T ) }

[[f, outT ]]TB ◦ [[inT , (g ?T id) ◦ outT ]]TB

= {Hylo-Compose }
[[f, (g ?T id) ◦ outT ]]TB

= {Hylo-Shift, g ?T id : (A?T )
.→ (B?T ) }

[[f ◦ (g ?T id), outT ]]TA

= {Cata-Def }
(|f ◦ (g ?T id)|)TA

Example 3.7 (Squares). Consider the following two-pass function for computing the
sum of the squares of a list, where sq = mult ◦ (id M id).

sumsq : List Nat → Nat

sumsq = sum ◦ List sq

By applying Cata-Map-Fusion and Sum-Absor it can be optimized into the following
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single pass implementation.

sumsq : List Nat → Nat

sumsq = (|zero O plus ◦ (sq× id)|)

This is a well-known example in the program transformation community, where it is
usually implemented using fold/unfold rules [BD77]. In Chapter 4 an example of using
such technique will be presented.

Type functors can be used to define more complex types, such as rose trees, where
lists are used to capture the arbitrary branching factor. The base functor of this data
type is regular, but not polynomial.

Rose A = µ(A ×̂ List)

Example 3.8 (Preorder). The preorder traversal on rose trees can be defined as fol-
lows.

preorder : Rose A → List A

preorder = (|cons ◦ (id× flatten)|)Rose A

3.2 Anamorphisms

The recursion pattern corresponding to the dual of iteration is a standard way of produc-
ing values of a recursive data type. It is usually designated as unfold or anamorphism.
In Haskell it is predefined for native lists as the function unfoldr. This definition can
be adapted to the List data type.

unfold_List :: (b -> Maybe (a,b)) -> b -> List a

unfold_List h b = case h b of Nothing -> Nil

Just (a,c) -> Cons a (unfold_List h c)

The data type Maybe a is isomorphic to 1 + A and is predefined as

data Maybe a = Nothing | Just a

The function h has a dual role. It dictates whether to stop or to continue to generate
a list (respectively, by returning Nothing or Just something). In the latter case, it also
specifies the value to be placed at the head of the list, and the seed that will be used to
generate the tail. For example, the function from of Example 2.3 can be defined as the
following unfold.

from :: Nat -> List Nat

from = unfold_List h

where h Zero = Nothing

h (Succ n) = Just (n,n)
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In order to transform the definition of unfold into a hylomorphism it should first be
rearranged as follows.

unfold_List :: (b -> Maybe (a,b)) -> b -> List a

unfold_List h b = aux (h b)

where aux Nothing = Nil

aux (Just (a,c)) = Cons a (unfold_List h c)

From this definition, it is clear that unfoldList h = aux ◦ h. Concerning aux we can
reason as follows.2666666666664

aux ◦ inl = nil ∧ aux ◦ inr = cons ◦ (id× unfoldList h)

⇔ {Sum-Equal }
aux ◦ inl O aux ◦ inr = nil O cons ◦ (id× unfoldList h)

⇔ {Sum-Fusion, aux strict, Sum-Absor }
aux ◦ (inl O inr) = (nil O cons) ◦ (id + id× unfoldList h)

⇔ {Sum-Reflex, inList = nil O cons, FList = 1 +̂ A ×̂ Id }
aux = inList ◦ (FList (unfoldList h))

This calculation shows that this unfold satisfies the equation

unfoldList h = inList ◦ (FList (unfoldList h)) ◦ h

suggesting that it can be implemented by the following hylomorphism.

unfoldList h = [[inList, h]]List A

A similar reasoning can be applied to the unfold of the natural numbers data type

unfold_Nat :: (a -> Maybe a) -> a -> Nat

unfold_Nat h a = case h a of Nothing -> Zero

Just b -> Succ (unfold_Nat h b)

in order to get the following definition.

unfoldNat h = [[inNat, h]]Nat

Definition. As seen in these examples, given a function h : A → F A, the anamor-
phism parameterized by g can be generically defined as follows.

bd(h)ceµF : A → µF

bd(h)ceµF = [[inµF , h]]µF

Ana-Def

Example 3.9 (From). Given the definition as a hylomorphism in Example 2.3 and
Ana-Def, it is clear that from can be defined as an anamorphism.

from : Nat → List Nat

from = bd((id + id M id) ◦ outNat)ceList Nat
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Example 3.10 (Length). The same can be said about the length function presented
in Example 2.2, which can be defined as

length : List A → Nat

length = bd((id + snd) ◦ outList)ceNat

This is an example of a function that can be defined both as a catamorphism from lists
(see Example 3.2) or as an anamorphism to naturals.

Example 3.11 (Map). Another example of a function that can be defined either as a
catamorphism or as an anamorphism is the map function, defined for polymorphic data
types in Section 3.1.1. Given a data type T A = µ(A?T ), and a function f : A → B, it
can also be defined as

T f : T A → T B

T f = bd((f ?T id) ◦ outT )ceT B

Example 3.12 (Repeat). As seen in Section 2.3, the data type List A contains also
totally defined infinite lists with elements of type A. As such, it is possible to define the
following anamorphism that generates infinitely many copies of a given value. The idea
is to take two copies of the input, one to put in the head of the list, and another to seed
the generation of the tail.

repeat : A → List A

repeat = bd(inr ◦ (id M id))ceList A

Example 3.13 (Plus). A more substantial example is the definition of plus as an
anamorphism. In this case, it helps to first define the Haskell version using unfold Nat.

plus :: (Nat, Nat) -> Nat

plus = unfold_Nat h

where h (Zero , Zero ) = Nothing

h (Succ n, Zero ) = Just (n, Zero)

h (Zero , Succ n) = Just (Zero, n)

h (Succ n, Succ m) = Just (Succ n, m)

The generation of the result stops when both arguments are zero. Otherwise it pro-
ceeds by decreasing one of the components of the seed. In the point-free style, pattern
matching on a type is achieved by judicious use of the out function. In this particular
case, since the input is a pair of naturals, out× out will be used in order to inspect both
arguments. To get the expected four alternatives, the result of this inspection can be
rearranged using the following auxiliary definition.

aux : (1 + Nat)× (1 + Nat) → 1× 1 + (Nat× 1 + (1× Nat + Nat× Nat))
aux = coassocr ◦ (distl + distl) ◦ distr
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The result of this function must then be converted into a value of type 1 + Nat ×
Nat. Notice that the rearranging function was already defined in order to make this
conversion easy, namely by grouping all the alternatives that yield a new seed into the
right summand. The final definition is

plus : Nat× Nat → Nat

plus = bd((! + (id× zero O (zero× id O succ× id))) ◦ aux ◦ (out× out))ceNat

Example 3.14 (Zip). A similar example is the zip function, that given a pair of lists
generates a list of pairs. A slightly different auxiliary function will be used, because in
this case the generation of the result only proceeds if both lists are non-empty, which
leads to a different rearranging of the pattern matching alternatives. Given

aux = coassocl ◦ (distl + distl) ◦ distr

zip can be defined as follows.

zip : List A× List B → List (A×B)
zip = bd((! + (fst× fst) M (snd× snd)) ◦ aux ◦ (out× out))ceList (A×B)

Laws. From the definition of the anamorphism as a hylomorphism it is possible to
derive the following laws to reason about this recursion pattern.

bd(outµF )ceµF = idµF Ana-Reflex

outµF ◦ bd(h)ceµF = F bd(h)ceµF ◦ h Ana-Cancel

bd(g)ceµF ◦ f = bd(h)ceµF ⇐ g ◦ f = F f ◦ h Ana-Fusion

bd(h)ceµF strict ⇐ h strict Ana-Strict

The uniqueness law for anamorphisms follows trivially from Ana-Cancel and Ana-

Fusion.
f = bd(g)ceF ⇔ outF ◦ f = Ff ◦ g Ana-Uniq

Since there are no strictness side conditions, this uniqueness law means that outµF is
a final F -coalgebra (a function of type A → F A for a carrier A) not only in the CPO⊥

category, but also in CPO. Given any h : A → F A, bd(h)ceµF is the unique function that
makes the following diagram commute.

A

bd(h)ceµF

��

h // F A

F bd(h)ceµF

��
µF

outµF

// F (µF )
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Expressiveness. Using Ana-Uniq it is easy to prove that any surjective function (a
function with right-inverse) can be defined as an anamorphism.

f = bd(F g ◦ outµF ◦ f)ceµF ⇐ f ◦ g = id

This result leads to the following definition of in as an anamorphism.

inµF : F µF → µF

inµF = bd(F outµF )ceµF

In-Def

The banana split can be dualized to anamorphisms, but the resulting law is not
useful for program optimization because in either case the resulting data structure is
only traversed once.

bd(g)ceµF O bd(h)ceµF = bd(F inl ◦ g O F inr ◦ h)ceµF Ana-Either

3.2.1 Splitting Hylomorphisms

Equipped with these recursion patterns, it is now possible to present one of the most
essential laws about hylomorphisms – the one that states their factorization into the
composition of a catamorphism with an anamorphism.

[[g, h]]F = (|g|)F ◦ bd(h)ceF Hylo-Split

This law follows directly from the definitions and Hylo-Compose. Notice that, tradition-
ally, hylomorphisms are defined using this equation, instead of directly using fixpoints.

Hylo-Split can be used to expose the call tree of a recursive definition as an inter-
mediate data structure, and to present the hylomorphism as the composition of two
functions: one that builds this data structure from the input (the anamorphism), and
another that traverses it in order to produce the result (the catamorphism). This fact
has some nice implications in program understanding. For example, looking at the fac-
torial definition as a hylomorphism, it is clear that this function is just the product of
all integers from the input n down to 1: the catamorphism is a function that multiplies
all numbers in a list, and the anamorphism is the function that generates the list with
all values between n and 1.

3.3 Paramorphisms

While catamorphisms encode the recursion pattern of iteration, paramorphisms encode
the notion of primitive recursion [Mee92]. The difference is that the latter can use both
the recursive call on a substructure of the input and the substructure itself to compute
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the result. For lists it can be implemented as follows.

para_List :: (a -> b -> List a -> b) -> b -> List a -> b

para_List f z Nil = z

para_List f z (Cons h t) = f h (para_List f z t) t

Definition. The definition of a paramorphism as a hylomorphism is known at least
since [MFP91]. The idea is that the anamorphism should make a copy of the parameter
of a recursive invocation to be passed intact into the catamorphism. This means that,
unlike the definition of catamorphism, the intermediate data type will no longer be
equal to the data type being consumed. Given an input of type µF , the functor that
generates the intermediate data structure is F ◦ (Id ×̂ µF ): every recursive occurrence
of the original type is replaced by a new recursive occurrence and a copy of the older
one that will be left intact when recursing. For example, a paramorphism over naturals
will have as intermediate data structure an element of type µ(1 +̂ Id ×̂ Nat), which is
isomorphic to a list of naturals.

Given a function g : F (A × µF ) → A, a paramorphism parameterized by g can
be generically defined using a hylomorphism as follows. Notice the use of the doubling
combinator (id M id) to replicate the substructures of the input value.

〈|g|〉µF : µF → A

〈|g|〉µF = [[g, F (id M id) ◦ outµF ]]µ(F◦(Id×̂µF ))

Para-Def

A diagram provides a better understanding of this definition.

µF

〈|g|〉µF

��

outµF // F (µF )
F (idMid)// F (µF × µF )

F (〈|g|〉µF×id)

��
A F (A× µF )g

oo

In Meertens’ original definition [Mee92], a paramorphism is encoded using a catamor-
phism that simultaneously produces a pair with the result and a (recursively computed)
copy of the input. In the end, the second component of the result is discarded.

〈|g|〉µF = fst ◦ (|g M in ◦ F snd|)µF Para-Cata

This definition is less comprehensible than the one using hylomorphisms, but will be
useful to prove the uniqueness law of paramorphisms. Uniqueness will then provide a
trivial proof that both definitions are indeed equivalent.

Example 3.15 (Factorial). The most well-known example of a paramorphism is the
factorial function: for a nonzero input n, it is defined as the result of multiplying n by
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the recursive result fact (n− 1).

fact : Nat → Nat

fact = 〈|one Omult ◦ (id× succ)|〉Nat

Example 3.16 (Sorted). Testing if a list is sorted is also a paramorphism, because the
head of the list must be compared with the head of the tail. and : Bool × Bool → Bool

implements logical conjunction, le : Nat×Nat → Bool tests if the first number is less or
equal then the second, and aux = assocl ◦ (id× swap).

sorted : List A → Bool

sorted = 〈|true O and ◦ ((true ◦ ! O le ◦ (id× head)) ◦ (isnil ◦ snd)?× id) ◦ aux|〉List A

Laws. Given Para-Def, most of the laws about paramorphisms can be derived from
the laws of hylomorphisms.

〈|inµF ◦ F fst|〉µF = idµF Para-Reflex

〈|g|〉µF ◦ inµF = g ◦ F (〈|g|〉µF M id) Para-Cancel

f ◦ 〈|g|〉µF = 〈|h|〉µF ⇐ f ◦ g = h ◦ F (f × id) ∧ f strict Para-Fusion

〈|g|〉µF strict ⇔ g strict Para-Strict

For example, Para-Reflex can be proved as follows.

266666666666666664

〈|inµF ◦ F fst|〉µF

= {Para-Def }
[[inµF ◦ F fst, F (id M id) ◦ outµF ]]µ(F◦(Id×̂µF ))

= {Hylo-Shift, F fst : F ◦ (Id ×̂ µF )
.→ F }

[[inµF , F fst ◦ F (id M id) ◦ outµF ]]µF

= {Functor-Comp, Prod-Cancel, Functor-Id }
[[inµF , outµF ]]µF

= {Hylo-Reflex }
idµF

These laws can also be proved using the definition Para-Cata, but some proofs become
more lengthy. For example, the proof of Para-Cancel is immediate from Para-Def, but
using Para-Cata we must argue as follows. Notice the need to prove that the second
component of the result of the catamorphism is indeed the (recursive) identity function.



60 Chapter 3: Recursion Patterns as Hylomorphisms

26666666666666666666666666666666664

〈|g|〉 ◦ in

= {Para-Cata }
fst ◦ (|g M in ◦ F snd|) ◦ in

= {Cata-Cancel }
fst ◦ (g M in ◦ F snd) ◦ F (|g M in ◦ F snd|)

= {Prod-Cancel, Prod-Reflex }
g ◦ F ((fst M snd) ◦ (|g M in ◦ F snd|))

= {Prod-Fusion, Para-Cata }
g ◦ F (〈|g|〉 M snd ◦ (|g M in ◦ F snd|))

= {Prod-Fusion }264 snd ◦ (g M in ◦ F snd)

= {Prod-Cancel }
in ◦ F snd

g ◦ F (〈|g|〉 M (|in|))
= {Cata-Reflex }

g ◦ F (〈|g|〉 M id)

The uniqueness law for paramorphisms is specified as follows.

f = 〈|g|〉µF ∧ g strict ⇔ f ◦ inµF = g ◦ F (f M id) ∧ f strict Para-Uniq

Unfortunately this law cannot be derived from the previous ones, as was the case with
catamorphisms and anamorphisms. Instead we must resort to the original proof by
Meertens [Mee92], based on the definition Para-Cata and the uniqueness of catamor-
phisms. The proof of the ⇒ implication is the same of Para-Cancel stated above. The
other implication can be proved as follows.

2666666666666666666666666666666666666664

f

= {Prod-Cancel }
fst ◦ (f M id)

= {Cata-Uniq, Prod-Strict, f strict, id strict }26666666666666666666664

(f M id) ◦ in

= {Prod-Fusion }
f ◦ in M in

= { f ◦ in = g ◦ F (f M id) }
g ◦ F (f M id) M in

= {Functor-Id }
g ◦ F (f M id) M in ◦ F id

= {Prod-Cancel }
g ◦ F (f M id) M in ◦ F snd ◦ F (f M id)

= {Prod-Fusion }
(g M in ◦ F snd) ◦ F (f M id)

fst ◦ (|g M in ◦ F snd|)
= {Para-Cata }

〈|g|〉

Meertens’ original proof did not include the strictness side conditions. Essentially,
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these are equivalent to Para-Strict, which can be proved as follows.
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g strict

⇒ { In-Strict, Snd-Strict, Strict-Comp, Prod-Strict }
g M in ◦ F snd strict

⇒ {Cata-Strict }
(|g M in ◦ F snd|) strict

⇒ {Fst-Strict, Strict-Comp, Para-Cata }
〈|g|〉 strict

2666666666664

〈|g|〉 strict

⇒ { In-Strict, Strict-Comp }
〈|g|〉 ◦ in strict

⇒ {Para-Cancel }
g ◦ F (〈|g|〉 M id) strict

⇒ {Comp-Strict }
g strict

Since the definition using a hylomorphism satisfies Para-Cancel, by uniqueness both
definitions are equal, at least for strict parameters.

Expressiveness. Since the expressive power of paramorphisms is greater than that of
catamorphisms, it is possible to express the latter using the former.

(|g|)µF = 〈|g ◦ F fst|〉µF Cata-Para

The proof is similar to that of Para-Reflex.
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〈|g ◦ F fst|〉µF

= {Para-Def }
[[g ◦ F fst, F (id M id) ◦ outµF ]]µ(F◦(Id×̂µF ))

= {Hylo-Shift, F fst : F ◦ (Id ×̂ µF )
.→ F }

[[g, F fst ◦ F (id M id) ◦ outµF ]]µF

= {Functor-Comp, Prod-Cancel, Functor-Id }
[[g, outµF ]]µF

= {Cata-Def }
(|g|)µF

As a final remark, it can be proved that any function of the appropriate type can be
defined as a paramorphism.

g = 〈|g ◦ inµF ◦ F snd|〉µF

As the proof shows, this result is only of theoretical interest. Notice that the resulting
function is not even recursive.
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〈|g ◦ inµF ◦ F snd|〉µF

= {Para-Cancel, In-Out-Iso }
g ◦ inµF ◦ F snd ◦ F (〈|g ◦ inµF ◦ F snd|〉µF M id) ◦ outµF

= {Functor-Comp, Prod-Cancel }
g ◦ inµF ◦ F id ◦ outµF

= {Functor-Id, In-Out-Iso }
g
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3.4 Apomorphisms

The apomorphism is the dual recursion pattern of the paramorphism, and therefore it
can express functions defined by primitive corecursion. Apomorphisms were introduced
independently by Vene and Uustalu [VU98] and Vos [Vos95]. While in an anamorphism
the coalgebra determines the arguments of the recursive calls, the parameter of an
apomorphism can also be used to determine directly the result without recursion. For
example, for naturals this recursion pattern can be encoded in Haskell as follows.

apo_Nat :: (a -> Maybe (Either a Nat)) -> a -> Nat

apo_Nat h a = case h a of Nothing -> Zero

Just (Left b) -> Succ (apo_Nat h b)

Just (Right n) -> Succ n

Definition. Given a function h : A → F (A + µF ), an apomorphism bd〈h〉ce can be
defined generically using a hylomorphism.

bd〈h〉ceµF : A → µF

bd〈h〉ceµF = [[inµF ◦ F (id O id), h]]µ(F◦(Id+̂µF ))

Apo-Def

The typing information is summarized in the following diagram.

A

bd〈h〉ceµF

��

h // F (A + µF )

F (bd〈h〉ceµF +id)

��
µF F (µF )

inµF

oo F (µF + µF )
F (idOid)

oo

Dually to paramorphisms, apomorphisms were initially defined using anamorphisms
and sums [VU98].

bd〈h〉ceµF = bd(h O F inr ◦ outµF )ceµF ◦ inl Apo-Ana

Example 3.17 (Plus). Using apomorphisms a more natural definition of plus can be
given. Unlike the definition using anamorphisms (presented in Example 3.13), where
both arguments were fully traversed recursively, with apomorphisms one of the argu-
ments can be immediately returned when the other reaches zero. The implementation
using apo Nat is

plus :: (Nat, Nat) -> Nat

plus = apo_Nat h

where h (Zero, Zero) = Nothing

h (Succ n, Zero) = Just (Right n)

h (n, Succ m) = Just (Left (n,m))
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In the point-free style it can be defined as follows. Some extra work is needed in order
to simulate the non disjunct pattern matching.

plus : Nat× Nat → Nat

plus = bd〈(id + coswap) ◦ coassocr ◦ (fst + in× id) ◦ distr ◦ (out× out)〉ceNat

Example 3.18 (Snoc). Appending an element to the end of a list can also be imple-
mented as an apomorphism. When the end of the list is reached, the singleton list with
the element is returned.

snoc : A× List A → List A

snoc = bd〈inr ◦ undistr ◦ coswap ◦ (id× nil + aux) ◦ distr ◦ (id× out)〉ceList A

This definition uses the following auxiliary rearranging function.

aux : A× (B × C) → B × (A× C)
aux = assocr ◦ (swap× id) ◦ assocl

Example 3.19 (Insert). Another good example of an apomorphism is the function
that inserts an element in an ordered list, since when the correct place is found the
function can return immediately.

insert : A× List A → List A

insert = bd〈inr ◦ undistr ◦ (inr O (inr O inl)) ◦ aux ◦ distr ◦ (id× out)〉ceList A

The definition of the auxiliary function is quite complex, mainly due to the need to
rearrange values.

aux = id× nil + ((id× cons) ◦ assocr + assocr ◦ (swap× id)) ◦ distl ◦ (le?× id) ◦ assocl

Laws. From the definition Apo-Def the following laws can be easily derived. They can
also be derived from Apo-Ana with some additional work.

bd〈F inl ◦ outµF 〉ce = idµF Apo-Reflex

outµF ◦ bd〈h〉ceµF = F (bd〈h〉ceµF O id) ◦ h Apo-Cancel

bd〈f〉ceµF ◦ g = bd〈h〉ceµF ⇐ f ◦ g = F (g + id) ◦ h Apo-Fusion

bd〈h〉ceµF strict ⇐ h strict Apo-Strict

The uniqueness law for apomorphisms is specified as follows.

f = bd〈h〉ceµF ⇔ outµF ◦ f = F (f O id) ◦ h Apo-Uniq
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Likewise to paramorphisms, a direct proof of uniqueness cannot be given using def-
inition Apo-Def and the basic hylomorphism laws. Instead, definition Apo-Ana and the
uniqueness law of anamorphisms must be used. The proof is similar to that of paramor-
phisms and will be omitted (see [VU98] for details). Since Apo-Cancel follows from
Apo-Def, by uniqueness this definition is equivalent to Apo-Ana.

Expressiveness. The fact that apomorphisms are at least as expressive as anamor-
phisms is clear in the following law.

bd(h)ceµF = bd〈F inl ◦ h〉ceµF Ana-Apo

Finally, similarly to paramorphisms, it can be proved that any function of the ap-
propriate type can be defined as an apomorphism.

h = bd〈F inr ◦ outµF ◦ h〉ceµF

3.5 Accumulations

Accumulations are binary functions that use the second parameter to store intermediate
results. The so called “accumulation technique” is typically used in functional program-
ming to derive efficient implementations of some recursive functions. In the next chapter
we will present several examples of using this technique, but with accumulations defined
in the curried style as higher order catamorphisms. Alberto Pardo defined (in the Set

category) a generic version of an uncurried accumulation recursion pattern, that can be
used for any inductive data type [Par03].

This recursion pattern can be implemented in Haskell for the Nat data type as follows.
Unlike the previous recursion patterns, this operator is parameterized by two functions.
The first is used to combine the recursive result and the accumulating parameter in
order to produce the result. The second determines how the accumulator is modified
between recursive calls.

accum_Nat :: ((Maybe a, b) -> a) -> (b -> b) -> (Nat, b) -> a

accum_Nat g t (Zero, x) = g (Nothing, x)

accum_Nat g t (Succ n, x) = g (Just (accum_Nat g t (n, t x)), x)

For example, plus can easily be implemented with this recursion operator, by treat-
ing the second argument as an accumulating parameter. There are two possible im-
plementations. The first does not take advantage of the accumulator, and uses it as a
constant parameter.

plus :: (Nat, Nat) -> Nat

plus = accum_Nat g id
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where g (Nothing, x) = x

g (Just n, x) = Succ n

The second increments the accumulator while traversing the first argument, and essen-
tially corresponds to a tail-recursive implementation of addition.

plus :: (Nat, Nat) -> Nat

plus = accum_Nat g Succ

where g (Nothing, x) = x

g (Just n, x) = n

Definition. This recursion pattern can be expressed as a hylomorphism using as in-
termediate structure a labeled variant of the input data type – all nodes of the input are
tagged with a value of the same type as the accumulating parameter. Assuming that
this type is X, the labeled variant of µF can be obtained by µ(F ×̂X). For example,
an accumulation over naturals uses the intermediate data type µ((1 +̂ Id) ×̂X). If CPO

was distributive, this data type would be isomorphic to non-empty lists with elements
of type X.

Given g : FA×X → A, and τ : F (µF )×X → F (µF ×X), an accumulation {|g, τ |}
can be defined generically as the following hylomorphism.

{|g, τ |}µF : µF ×X → A

{|g, τ |}µF = [[g, (τ M snd) ◦ (outµF × id)]]µ(F ×̂X)

Accum-Def

The typing information is depicted in the following diagram.

µF ×X
outµF×id

//

{|g,τ |}µF

��

F (µF )×X
τMsnd// F (µF ×X)×X

F {|g,τ |}µF×id

��
A F A×Xg

oo

As can be seen in this definition, τ is the function responsible for propagating the
accumulator to the recursive calls. This function should be proper for accumulation,
that is, it should be a natural transformation of type

τ : F ×̂X
.→ F ◦ (Id ×̂X) Tau-Nat

which guarantees that the propagated accumulation does not depend on the recursive
values of the data type. τ also cannot modify the shape of the data type, or the data
contained in it, as captured by the following restriction.

F fst ◦ τ = fst Tau-Cancel
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As shown in [Par00], this recursion pattern can also be defined in curried form as
a higher-order catamorphism, that is, one that returns a value of functional type. To
recover the expected type this catamorphism must be uncurried. According to Exp-Uniq,
that can be done by wrapping it with ap ◦ (· × id). The resulting definition is

{|g, τ |}µF = ap ◦ ((|g ◦ (F ap ◦ τ M snd)|)µF × id) Accum-Cata

Although rather incomprehensible, this alternative definition is useful to prove the
uniqueness law, and can be proved equivalent to Accum-Def.

Example 3.20 (Plus). As seen above, plus is one of the simplest examples of definitions
through accumulation. For naturals, in order for τ to be proper for accumulation, it
should have shape fst + id× φ, where φ : X → X. This is the reason why in the above
Haskell implementation a function of this type was required as parameter. The tail
recursive plus can be defined as follows.

plus : Nat× Nat → Nat

plus = {|(snd O fst) ◦ distl, (fst + id× succ) ◦ distl|}Nat

Example 3.21 (Reverse). It is possible to define an efficient tail recursive reverse func-
tion using accumulations. While traversing the input list, the current element is added
at the head of the accumulator. For lists, in order for τ to be proper for accumulation,
it should have shape (fst+assocr◦ (fstMφ◦ (fst× id)))◦distl, where φ : A×X → X. This
last function reflects the fact that the new value of the accumulator can only depend
on the head of the list and on its own current value. In the reverse function φ will be
instantiated with cons. The accumulation is encoded in the following auxiliary function.

aux = {|(snd O snd ◦ fst) ◦ distl, (fst + assocr ◦ (fst M cons ◦ (fst× id))) ◦ distl|}List A

The reverse function just needs to initialize the accumulator with the empty list.

reverse : List A → List A

reverse = aux ◦ (id M nil ◦ !)

Laws. Again, most of the laws about generic accumulations can be derived from the
definition as a hylomorphism. For example, the reflexivity law is defined and proved as
follows.

{|inµF ◦ fst, τ |}µF = fst Accum-Reflex
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{|inµF ◦ fst, τ |}µF

= {Accum-Def }
[[inµF ◦ fst, (τ M snd) ◦ (outµF × id)]]µ(F ×̂X)

= {Hylo-Shift, fst : F ×̂X
.→ F }

[[inµF , fst ◦ (τ M snd) ◦ (outµF × id)]]µF

= {Prod-Cancel }
[[inµF , τ ◦ (outµF × id)]]µF

= {Hylo-Fusion }26666664
F fst ◦ τ ◦ (outµF × id)

= {Tau-Cancel }
fst ◦ (outµF × id)

= {Prod-Def, Prod-Cancel }
outµF ◦ fst

[[inµF , outµF ]]µF ◦ fst

= {Hylo-Reflex }
fst

The following can also be easily proved.

{|g, τ |}µF ◦ (inµF × id) = g ◦ (F {|g, τ |}µF ◦ τ M snd) Accum-Cancel

f ◦ {|g, τ |}µF = {|h, τ |}µF ⇐ f ◦ g = h ◦ (F f × id) ∧ f strict Accum-Fusion

As expected, these laws can also be proved using the definition Accum-Cata. For
example, Accum-Cancel can be proved as follows.

2666666666666666666666666664

{|g, τ |} ◦ (in× id)

= {Accum-Cata, Prod-Functor-Comp }
ap ◦ ((|g ◦ (F ap ◦ τ M snd)|) ◦ in× id)

= {Cata-Cancel, Prod-Functor-Comp }
ap ◦ (g ◦ (F ap ◦ τ M snd)× id) ◦ (F (|g ◦ (F ap ◦ τ M snd)|)× id)

= {Exp-Cancel }
g ◦ (F ap ◦ τ M snd) ◦ (F (|g ◦ (F ap ◦ τ M snd)|)× id)

= {Prod-Fusion, Prod-Cancel }
g ◦ (F ap ◦ τ ◦ (F (|g ◦ (F ap ◦ τ M snd)|)× id) M snd)

= {Tau-Nat }
g ◦ (F ap ◦ F ((|g ◦ (F ap ◦ τ M snd)|)× id) ◦ τ M snd)

= {Functor-Comp, Accum-Cata }
g ◦ (F {|g, τ |} ◦ τ M snd)

For this recursion pattern it is more interesting to study left-strictness, because the
recursive parameter is the left element of the input pair. The following result holds.

{|g, τ |}µF , τ left-strict ⇔ g, τ left-strict Accum-Strict

Since this law is needed to prove uniqueness, the following proof is based on definition
Accum-Cata.
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g left-strict

⇒ { Lstrict-Def }
g ◦ (⊥× id) = ⊥ ◦ fst

⇒ {Ap-Lstrict, Lstrict-Strict }
g ◦ (F ap ◦ ⊥ × id) = ⊥ ◦ fst

⇒ {Prod-Def, τ left-strict }
g ◦ (F ap ◦ τ ◦ (⊥× id) M snd) = ⊥ ◦ fst

⇒ {Prod-Cancel, Prod-Fusion }
g ◦ (F ap ◦ τ M snd) ◦ (⊥× id) = ⊥ ◦ fst

⇒ { Lstrict-Def, Exp-Strict }
g ◦ (F ap ◦ τ M snd) strict

⇒ {Cata-Strict }
(|g ◦ (F ap ◦ τ M snd)|) strict

⇒ { Lstrict-Comp-Left, Ap-Lstrict }
ap ◦ ((|g ◦ (F ap ◦ τ M snd)|)× id) left-strict

⇒ {Accum-Cata }
{|g, τ |} left-strict

266666666666666666666666666666664

{|g, τ |} left-strict

⇒ { In-Strict, Lstrict-Comp-Left }
{|g, τ |} left-strict ◦ (in× id)

⇒ {Accum-Cancel }
g ◦ (F {|g, τ |} ◦ τ M snd) left-strict

⇒ { Lstrict-Def, Prod-Fusion }
g ◦ (F {|g, τ |} ◦ τ ◦ (⊥× id) M snd ◦ (⊥× id)) = ⊥ ◦ fst

⇒ {Prod-Cancel, τ left-strict }
g ◦ (F {|g, τ |} ◦ ⊥ ◦ fst M snd) = ⊥ ◦ fst

⇒ {Prod-Def, Prod-Functor-Comp }
g ◦ (F {|g, τ |} × id) ◦ (⊥× id) = ⊥ ◦ fst

⇒ { Lstrict-Def }
g ◦ (F {|g, τ |} × id) left-strict

⇒ {Comp-Lstrict }
g left-strict

In practice, verifying these strictness conditions is easy. As seen in the examples,
most parameters of accumulations are of the form (·O ·) ◦ distl. By definition any either
is strict, and distl is a left-strict function, which by Lstrict-Comp-Right leads necessarily
to a left-strict parameter.

The uniqueness law for accumulations is specified as follows.

f = {|g, τ |}µF ∧ g, τ left-strict
⇔

f ◦ (inµF × id) = g ◦ (Ff ◦ τ M snd) ∧ f, τ left-strict

Accum-Uniq

Similarly to paramorphisms, this law can be proved using the definition Accum-Cata.
However, since accumulations defined using Accum-Def also satisfy Accum-Cancel, both
definitions are equivalent provided that both g and τ are left-strict. The implication
⇒ and the strictness side conditions are equivalent, respectively, to Accum-Cancel and
Accum-Strict, already proved using that definition. For the⇐ implication the uniqueness
law of catamorphisms is used, as shown in the following calculation.
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f

= {Exp-Cancel }
ap ◦ (f × id)

= {Cata-Uniq, Exp-Strict, f left-strict }2666666666666666666666666664

f ◦ inµF

= {Exp-Fusion }
f ◦ (inµF × id)

= { f ◦ (inµF × id) = g ◦ (F f ◦ τ M snd) }
g ◦ (F f ◦ τ M snd)

= {Functor-Id, Exp-Cancel, Functor-Comp }
g ◦ (F ap ◦ F (f × id) ◦ τ M snd)

= {Tau-Nat }
g ◦ (F ap ◦ τ ◦ (F f × id) M snd)

= {Prod-Cancel, Prod-Def }
g ◦ (F ap ◦ τ ◦ (F f × id) M snd ◦ (F f × id))

= {Prod-Fusion, Exp-Fusion }
g ◦ (F ap ◦ τ M snd) ◦ F f

ap ◦ ((|g ◦ (F ap ◦ τ M snd)|)× id)

= {Accum-Cata }
{|g, τ |}

Besides Accum-Fusion, Pardo presents other specific fusion laws for this recursion
pattern. For example, a change in the accumulating parameter, by means of a function
f : X → Y , can be fused in the following way.

{|g, τ |}µF ◦ (id× f) = {|g ◦ (id× f), φ|}µF ⇐ τ ◦ (id× f) = F (id× f) ◦ φ

The proof uses the definition Accum-Def.
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{|g, τ |}µF ◦ (id× f)

= {Accum-Def }
[[g, (τ M snd) ◦ (outµF × id)]]µ(F ×̂Y ) ◦ (id× f)

= {Hylo-Fusion }266666666666666664

(τ M snd) ◦ (outµF × id) ◦ (id× f)

= {Prod-Functor-Comp }
(τ M snd) ◦ (id× f) ◦ (outµF × id)

= {Prod-Fusion, Prod-Def, Prod-Cancel }
(τ ◦ (id× f) M f ◦ snd) ◦ (outµF × id)

= { τ ◦ (id× f) = F (id× f) ◦ φ }
(F (id× f) ◦ φ M f ◦ snd) ◦ (outµF × id)

= {Prod-Absor, Prod-Functor-Comp }
(F (id× f)× id) ◦ (id× f) ◦ (φ M snd) ◦ (outµF × id)

[[g, (id× f) ◦ (φ M snd) ◦ (outµF × id)]]µ(F ×̂Y )

= {Hylo-Shift, id× f : F ×̂X
.→ F ×̂ Y }

[[g ◦ (id× f), (φ M snd) ◦ (outµF × id)]]µ(F ×̂X)

= {Accum-Def }
{|g ◦ (id× f), φ|}µF
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3.6 Summary

In this chapter we have shown how to define some typical recursion patterns using
hylomorphisms. This approach has several advantages:

• It avoid proofs by fixpoint induction – all the usual properties of the recursion
operators, including uniqueness, can be proved either using just a small set of laws
about hylomorphisms, or previously derived laws about other recursion operators.

• It increases the understanding of the recursion patterns – for the more advanced
operators, the definition using hylomorphisms is more understandable than the
original one using other recursion patterns. This is the case of paramorphisms and
accumulations, where the original definition using catamorphisms can be difficult
to understand.

• It also systematizes the proof of the strictness side conditions that characterize
initial recursion patterns in CPO – these can also be derived by calculation from
simple laws concerning the strictness of hylomorphisms and of the basic combina-
tors. To our knowledge, this is also the first time that the strictness side conditions
associated with generic accumulations are precisely stated.

The same technique can be applied to other recursion patterns. For example, his-
tomorphisms and generalized catamorphisms can also be defined using hylomorphisms.
The histomorphism recursion pattern (together with its dual – futumorphisms) was first
presented in [UV99]. It generalizes catamorphisms by allowing the result to depend not
only on the recursive result of applying the function to the immediate children of the
input, but also on the recursive result of any subterm. For example, it can be used to
define the Fibonacci function that, for a given n, depends on the value of applying it
to n− 1 and n− 2. The generalized catamorphisms is a “meta recursion pattern”, first
presented in [UVP01], that is parameterized by a comonad that encodes the recursive
call pattern of a specific recursion pattern. By changing the comonad, it can be used to
define catamorphisms, paramorphisms, or histomorphisms.



Chapter 4

Calculating Accumulations Using

Fusion

The main goal of this chapter is to revisit some classic work in the area of program
transformation using pure point-free calculations. The chapter is focused on the trans-
formation of programs by introducing new accumulating parameters, according to the
strategy initially proposed by Bird [Bir84], where the transformed programs are seen
as higher-order folds calculated systematically from a specification. We present a sys-
tematic approach to this program transformation technique, together with a substantial
number of examples. This systematization leads to a set of generic transformation
schemes, that can be used as shortcut optimization rules in an automatic program
transformation system.

Another goal is the improvement of the machinery that is used to perform point-free
calculations in a higher-order setting. Quoting Jeremy Gibbons [Gib94],

We are interested in extending what can be calculated precisely because
we are not interested in the calculations themselves [. . . ]

In other words, we aim at extending the calculus with new useful operators that help
reduce the burden of proofs just to the creative parts.

4.1 A Motivating Example

Consider the reverse function on lists. Obtaining the accumulator-based linear time
version of this function from the single-argument quadratic time version is a classic
example of a program transformation.

In this section this example will be used to briefly review different transformation
techniques for optimizing programs by introducing accumulating parameters. As seen
in Section 3.5, the resulting functions are called accumulations. However, the accumula-
tions derived here are quite different from the ones presented in that section, since they
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are in the curried form – the input data-structure is traversed using a catamorphism,
that outputs a function to be later applied to the accumulating parameter.

4.1.1 Transformation With Fold/Unfold Rules

Consider the typical definition of reverse in Haskell.

reverse :: List a -> List a

reverse Nil = Nil

reverse (Cons h t) = cat (reverse t, Cons h Nil)

In order to apply a fold/unfold rule-based transformation [BD77, PP96] we will start
with an equivalent definition using conditionals. The abbreviation wrap h = cons (h, nil)
will also be used. To simplify the presentation, when working in the pointwise style nil

will denote the empty list (the exact definition is nil ⊥1).

reverse l = if (isnil l) then nil

else (cat (reverse (tail l),wrap (head l)))

The transformation steps should be oriented by the so-called forced folding (or need-
for-folding) principle [Dar81], which states that after the unfold step, the program should
be manipulated so that a folding step can be applied to a different sub-expression.
Hopefully these manipulations will lead to improvements at all levels of the recursion
tree. We can try to apply this strategy directly to the above definition.26666666666666666666666666666666664

reverse l

= {definition of reverse }
if (isnil l) then nil

else (cat (reverse (tail l), wrap (head l)))

= {unfold }
if (isnil l) then nil

else (cat (if (isnil (tail l)) then nil

else (cat (reverse (tail (tail l)), wrap (head (tail l)))), wrap (head l)))

= {distributing of cat over the conditional }
if (isnil l) then nil

else (if (isnil (tail l)) then (cat (nil, wrap (head l)))

else (cat (cat (reverse (tail (tail l)), wrap (head (tail l)))), wrap (head l)))

= { associativity of cat }
if (isnil l) then nil

else (if (isnil (tail l)) then (cat (nil, wrap (head l)))

else (cat (reverse (tail (tail l)), cat(wrap (head (tail l)), wrap (head l)))))

At this point one would like to be able to fold the expression using the definition
of reverse; however, the presence of the expression wrap (head l) in both cases of the
conditional prevents this step. We must appeal to the generalization strategy [BD77],
according to which a new function definition is introduced.
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aux (l, y) = cat (reverse l, y)

This definition can indeed be transformed until a fold step is performed.266666666666666666666666666666664

aux (l, y)

= {definition of aux }
cat (reverse l, y)

= {unfold }
cat (if (isnil l) then nil

else (cat (reverse (tail l), wrap (head l))), y)

= {distributing cat over the conditional }
if (isnil l) then (cat (nil, y))

else (cat (cat (reverse (tail l), wrap (head l))), y)

= { associativity of cat }
if (isnil l) then (cat (nil, y))

else (cat (reverse (tail l), cat (wrap (head l), y)))

= { fold }
if (isnil l) then (cat (nil, y))

else (aux (tail l, cat (wrap (head l), y)))

The definition of cat can be used to simplify the resulting expression, yielding the
definition

aux (l, y) = if (isnil l) then y else (aux (tail l, cons (head l, y)))

Finally, since cat has a right-identity we have26666664
reverse l

= { right-identity of cat }
cat (reverse l, nil)

= {definition of aux }
aux (l, nil)

The definition of aux, together with this last equation, is the final result of the
transformation. In Haskell one would write

reverse :: List a -> List a

reverse l = aux (l, Nil)

aux :: (List a, List a) -> List a

aux (Nil, y) = y

aux (Cons h t, y) = aux (t, Cons h y)

Remark. Notice that the transformed program is tail-recursive, i.e. the result of the
recursive call is passed directly as the result of the invoking call. Linear tail-recursive
functions can be converted into iterative code (i.e. with recursion totally removed)
using a straightforward transformation scheme. Removal of recursion is a major goal



74 Chapter 4: Calculating Accumulations Using Fusion

of program transformation, even when it can be only partially achieved, as is the case
with functions over trees. In Section 4.2.3 it will be seen, for the case of binary trees,
that only one of the two recursive calls is made tail-recursive.

The asymptotic improvement in the execution time is a somewhat casual side-effect
of the transformation – it is a consequence of the associativity property of the append
operator, and the fact that it runs in linear time on the size of its first argument. In
Section 4.2.1 we consider the transformation of the function which calculates the product
of the numbers in a list. Since arithmetic product is calculated in constant time, this
transformation does not change the asymptotic execution time; however, it still is a
useful transformation since it produces a tail-recursive definition.

4.1.2 Transformation by Calculation

The first application of the calculational approach to program transformation, as popu-
larized by Richard Bird and Lambert Meertens in the mid-80s, was precisely the deriva-
tion of functions with accumulations from inefficient specifications [Bir84]. In this sem-
inal paper, Bird introduced the fundamental idea behind this transformation method:
first the recursive functions are specified using a standard recursion pattern; then fusion
is used together with the generalization strategy (as used in fold/unfold transforma-
tion), in order to derive a hopefully more efficient implementation with an accumulating
parameter. We remark that fusion was then called promotion and the fold recursion
pattern had not yet been isolated in a higher-order operator such as foldr.

The functions resulting from such transformations have two arguments (the second
of which is the accumulator). In order to be able to write them using the fold recursion
pattern, Bird resorted to currying: accumulations are written as higher-order folds,
returning a function as result. Apart from some refinements in the basic laws and
notation, this technique was later used by several authors [MFP91, HIT99, dMS99,
SdM03]. However, none of these works presents these calculations in pure point-free
style. Moreover, some of them don’t use the generic fusion law for catamorphisms
presented in Section 3.1. Instead, they use the pointwise specialization of this law for
particular data types, such as the following one for the curried foldr operator defined on
lists (with type (A → B → B) → B → List A → B).

f (foldr g e l) = foldr h c l

⇐
f strict ∧ f e = c ∧ ∀x, r · f (g x r) = h x (f r)

Turning now to our running example, we will start from where the application of the
generalization strategy led us in the previous section (except that the new function is
in curried style). Notice that, in the remaining of the chapter the name ft will be used
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to denote the accumulation obtained by transforming f .

reverset l y = cat (reverse l) y

Following the approach just described, in order to obtain the desired accumulation
the concatenation operator must be fused with the reverse function, using the above law.
For that, it is necessary to redefine reverse using the foldr operator.

reverse : List A → List A

reverse = foldr (λxr. cat r (wrap x)) nil

Dropping the accumulating parameter from our specification we get

reverset l = cat (foldr (λxr. cat r (wrap x)) nil l)

This is a suitable expression to apply fusion, with f instantiated to cat, the curried
version of the concatenation operator. Notice that, since cat is left-strict, cat is a strict
function due to Exp-Strict. In order to apply fusion there still remains two premises to
verify, which will in turn allow us to determine c and h.

cat nil = c

λxr. cat (cat r (wrap x)) = λxr. h x (cat r)

Notice the use of λ-abstraction to encode universal quantification.

Since nil is also a left-identity of concatenation, then c = id. In order to determine
h the calculation proceeds as follows.

λxr. cat (cat r (wrap x))
= { η-expansion }

λxr.λy. cat (cat r (wrap x)) y

= { associativity of cat }
λxr.λy. cat r (cat (wrap x) y)

= {definitions of cat, wrap }
λxr.λy. cat r (cons (x, y))

It is now fairly clear that h can be defined as

h x z = λy. z (cons (x, y))
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The result of applying the fusion law is thus the following higher-order fold.

reverset : List A → List A → List A

reverset = foldr (λxzy. z (cons (x, y))) id

After expanding the definition of foldr we get the curried version of the aux function cal-
culated in the previous section. It should be invoked as reverse l = reverse_t l Nil.

reverse_t :: List a -> List a -> List a

reverse_t Nil y = y

reverse_t (Cons h t) y = reverse_t t (Cons h y)

To sum up, the creative step involved in this technique is exactly the same as when
using fold/unfold transformations – writing the specification corresponds to using the
generalization strategy. However, for the particular technique of accumulations, any
experienced functional programmer should have no problem in writing them directly. A
major advantage of the calculational approach is that, by structuring recursion in fixed
patterns, it is possible, as will be largely exemplified in this chapter, to define laws that
combine in a single shortcut step whole sequences of transformation steps.

4.1.3 Transformation in the Point-free Style

The third method, which will be used extensively in the remaining of the chapter, differs
from the one presented above in that all the calculations are done in point-free. Before
this can be done, the initial specification needs to be written in the point-free style. The
reverse function can be defined as

reverse : List A → List A

reverse = (|nil O cat ◦ swap ◦ (wrap× id)|)List A

and the specification as
reverset = cat ◦ reverse

The derivation will be based on the generic fusion law Cata-Fusion. According to
this law (and since cat is strict), in order to obtain the desired definition of reverset,
which is a catamorphism (|h|), we must find a function h such that

cat ◦ (nil O cat ◦ swap ◦ (wrap× id)) = h ◦ FList cat = h ◦ (id + id× cat)

In both fold/unfold and the pointwise calculational transformations seen in the pre-
vious sections, one of the major steps was the application of the associativity property
of cat (this is in general the case for all transformations involving accumulations). So
the question arises of how to express this property in the point-free style.
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Consider an arbitrary operator ⊕. One possibility for expressing its associativity is
to use the equation

⊕ ◦ (id×⊕) ◦ assocr = ⊕ ◦ (⊕× id)

This formulation is not very practical because the operator which will be fused is in
curried form. As such, it is desirable to introduce new combinators particularly tailored
to express properties in a higher-order setting. For the particular case of associativity,
it suffices to introduce an uncurried composition operator.

comp (f, g) = f ◦ g

In the point-free style it can be defined using the exponential combinators.

comp : (CB ×BA) → CA

comp = ap ◦ (id× ap) ◦ assocr
Comp-Def

To show that this point-free definition implements the behavior specified in pointwise,
the following fact can be proved.

comp ◦ (f M g) = f ◦ g Comp-Pnt

26666666666666666666666666666666666664

comp ◦ (f M g)

= {Comp-Def, Exp-Fusion }
ap ◦ (id× ap) ◦ assocr ◦ ((f M g)× id)

= {Prod-Absor, Prod-Functor-Comp, Assocr-Nat }
ap ◦ (id× ap) ◦ (f × (g × id)) ◦ assocr ◦ ((id M id)× id)

= {Prod-Functor-Comp, Pnt-Def }
ap ◦ (f ◦ snd× id) ◦ (id× ap ◦ (g ◦ snd× id)) ◦ assocr ◦ ((id M id)× id)

= {Exp-Cancel }
f ◦ snd ◦ (id× g ◦ snd) ◦ assocr ◦ ((id M id)× id)

= {Prod-Def, Prod-Cancel, Assocr-Def }
f ◦ g ◦ snd ◦ snd ◦ (fst ◦ fst M (snd× id)) ◦ ((id M id)× id)

= {Prod-Cancel, Prod-Functor-Comp }
f ◦ g ◦ snd ◦ (snd ◦ (id M id)× id)

= {Prod-Def, Prod-Cancel }
f ◦ g ◦ snd

= {Pnt-Def }
f ◦ g

Using this combinator, associativity of ⊕ can be expressed more usefully by equation

⊕ ◦ ⊕ = comp ◦ (⊕×⊕)

The following calculation shows that the latter formulation is a consequence of the
former.
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26666666666666666666666666666666666664

@ ⊕ ◦ (id×⊕) ◦ assocr = ⊕ ◦ (⊕× id)

⊕ ◦ ⊕
= {Exp-Fusion }

⊕ ◦ (⊕× id)

= {@ }
⊕ ◦ (id×⊕) ◦ assocr

= {Exp-Cancel, Prod-Functor-Comp }
ap ◦ (⊕× id) ◦ (id× ap) ◦ (id× (⊕× id)) ◦ assocr

= {Prod-Functor-Comp }
ap ◦ (id× ap) ◦ (⊕× (⊕× id)) ◦ assocr

= {Assocr-Nat }
ap ◦ (id× ap) ◦ assocr ◦ ((⊕×⊕)× id)

= {Exp-Fusion }
ap ◦ (id× ap) ◦ assocr ◦ (⊕×⊕)

= {Comp-Def }
comp ◦ (⊕×⊕)

Equipped with this formulation of associativity, calculating the accumulation be-
comes very simple.

26666666666666666666666666666666666664

@ cat ◦ cat = comp ◦ (cat× cat)

† cat ◦ nil = id

‡ cat ◦ wrap = cons

cat ◦ (nil O cat ◦ swap ◦ (wrap× id))

= {Sum-Fusion }
cat ◦ nil O cat ◦ cat ◦ swap ◦ (wrap× id)

= { † }
id O cat ◦ cat ◦ swap ◦ (wrap× id)

= {@ }
id O comp ◦ (cat× cat) ◦ swap ◦ (wrap× id)

= {Swap-Nat, Prod-Functor-Comp }
id O comp ◦ swap ◦ (cat ◦ wrap× cat)

= { ‡, Prod-Functor-Comp }
id O comp ◦ swap ◦ (cons× id) ◦ (id× cat)

= {Sum-Absor }
(id O comp ◦ swap ◦ (cons× id)) ◦ (id + id× cat)

The result of the transformation is thus

reverset : List A → (List A → List A)
reverset = (|id O comp ◦ swap ◦ (cons× id)|)List A

To see that this is the expected point-free definition of reverset, it can be converted back
to pointwise with the following calculation.
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2666666666666666666666666664

reverset = (|id O comp ◦ swap ◦ (cons× id)|)List A

= {Cata-Cancel }
reverset ◦ inList = (id O comp ◦ swap ◦ (cons× id)) ◦ FList reverset

= {definitions of FList and inList }
reverset ◦ (nil O cons) = (id O comp ◦ swap ◦ (cons× id)) ◦ (id + id× reverset)

= {Sum-Fusion, Sum-Absor, Prod-Functor-Comp }
reverset ◦ nil O reverset ◦ cons = id O comp ◦ swap ◦ (cons× reverset)

= {Sum-Equal }
reverset ◦ nil = id ∧ reverset ◦ cons = comp ◦ swap ◦ (cons× reverset)

= { η-expansion, definitions of the basic combinators }
reverset nil = id ∧ reverset (cons (x, xs)) = (reverset xs) ◦ (cons x)

= { η-expansion, definitions of the basic combinators }
reverset nil y = id y ∧ reverset (cons (x, xs)) y = reverset xs (cons (x, y))

Remark. In this example, the solution to the premises of the Cata-Fusion law is not
unique, as the following calculation shows.2666666666666666666666666664

† cat ◦ nil = id

cat ◦ (nil O cat ◦ swap ◦ (wrap× id))

= {Sum-Fusion }
cat ◦ nil O cat ◦ cat ◦ swap ◦ (wrap× id)

= { † }
id O cat ◦ cat ◦ swap ◦ (wrap× id)

= {Exp-Cancel }
id O cat ◦ ap ◦ (cat × id) ◦ swap ◦ (wrap× id)

= {Swap-Nat, Prod-Functor-Comp }
id O cat ◦ ap ◦ swap ◦ (wrap× cat)

= {Prod-Functor-Comp, Sum-Absor }
(id O cat ◦ ap ◦ swap ◦ (wrap× id)) ◦ (id + id× cat)

This leads to the following definition of the accumulation.

reverset : List A → (List A → List A)
reverset = (|id O cat ◦ ap ◦ swap ◦ (wrap× id)|)

After converting it into pointwise we would get.

reverse_t :: List a -> List a -> List a

reverse_t Nil y = y

reverse_t (Cons h t) y = cat (reverse_t t (wrap h), y)

This is of course a useless transformation – the resulting function runs in quadratic
time and is not tail-recursive. This shows that some notion of a strategy is necessary
for the calculations to be relevant for our goals. The distinctive feature of a useful
transformation in this particular case is its use of the associativity property of append,
not used in the latter transformation.
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4.2 Calculating Accumulations in the Point-free Style

The methodology presented for deriving accumulations using the point-free style is still
not very amenable for mechanization: the calculations require human intervention, not
only to decide which law to apply at each point, but also to identify a good target to guide
the derivation. As seen in the last remark, it is possible to derive accumulations that are
not “better” than the original functions. As such, in this section we will present a set of
transformation schemes, categorized by data type, whose derivation is performed once
and for all, and that guarantee the usefulness of the transformation. To apply these
transformation schemes one has to prove very few side conditions (typically, just the
associativity of some operator), and thus could be used as shortcut optimization rules
in an automatic transformation system. The application of these rules is demonstrated
in a substantial number of examples.

We start by presenting a transformation scheme that encapsulates the methodology
for deriving accumulations in the calculational style using fusion. Among others, it is
presented also in [BdM97, HIT99], but is adapted here to the CPO setting. Given a
binary operator ⊕ : A×B → B it is defined as follows.

(|f |)µF x = (|g|)µF x e

⇐
⊕ ◦ f = g ◦ F ⊕ ∧ ⊕ (x, e) = x ∧ ⊕ left-strict

Cata-Accum

This scheme is too general to be useful, but will later be instantiated to more concrete
rules, to be applied in specific data types. In order to prove Cata-Accum, it should first
to converted into the point-free notation. The conclusion can be specified as

(|f |) = ap ◦ ((|g|) M e ◦ !)

Given that ⊕ has a right-identity e if ⊕◦ (idMe◦ !) = id, the calculation is rather trivial.
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† ⊕ ◦ (id M e ◦ !) = id

‡ ⊕ ◦ f = g ◦ F ⊕

(|f |)
= { † }

⊕ ◦ (id M e ◦ !) ◦ (|f |)
= {Prod-Fusion, Bang-Fusion }

⊕ ◦ ((|f |) M e ◦ !)

= {Exp-Cancel }
ap ◦ (⊕× id) ◦ ((|f |) M e ◦ !)

= {Prod-Absor }
ap ◦ (⊕ ◦ (|f |) M e ◦ !)

= {Cata-Fusion, ‡, Exp-Strict, ⊕ left-strict }
ap ◦ ((|g|) M e ◦ !)
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4.2.1 Tail-recursive Accumulations over Lists

Associative Operators. We start with the most classic example of applying the
accumulation strategy: to optimize the iteration of an associative operator over a list.
Given a left-strict associative operator ⊕ : B×B → B with right identity e, an element
c : 1 → B, and a function f : A → B, it is possible to transform a function

h : List A → B

h = (|c O⊕ ◦ swap ◦ (f × id)|)List A

into
ht : List A → B → B

ht = (|⊕ ◦ c O comp ◦ swap ◦ (⊕ ◦ f × id)|)List A

and replace every h l by ht l e.

This transformation is a consequence of Cata-Accum and the following calculation.2666666666666666666666666664

@ ⊕ ◦ ⊕ = comp ◦ (⊕×⊕)

⊕ ◦ (c O⊕ ◦ swap ◦ (f × id))

= {Sum-Fusion, ⊕ left-strict, Exp-Strict }
⊕ ◦ c O⊕ ◦ ⊕ ◦ swap ◦ (f × id)

= {@ }
⊕ ◦ c O comp ◦ (⊕×⊕) ◦ swap ◦ (f × id)

= {Swap-Nat }
⊕ ◦ c O comp ◦ swap ◦ (⊕×⊕) ◦ (f × id)

= {Prod-Functor-Comp }
⊕ ◦ c O comp ◦ swap ◦ (⊕ ◦ f ×⊕)

= {Prod-Functor-Comp, Sum-Absor }
(⊕ ◦ c O comp ◦ swap ◦ (⊕ ◦ f × id)) ◦ (id + id×⊕)

In order to see what is going on, both functions can be translated into the pointwise
style. It becomes clear that this transformation rule allows to convert the function

h nil = c

h (cons(x, xs)) = (h xs)⊕ (f x)

into the tail-recursive

ht nil y = c⊕ y

ht (cons(x, xs)) y = ht xs ((f x)⊕ y)

Example 4.1 (Reverse). It is immediate to see that the reverse function of Sec-
tion 4.1.3 can be transformed using this rule, with the expected result.

Example 4.2 (Product). Suppose we want to derive a tail-recursive implementation
of the following function that multiplies all the numbers in a list.
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product :: List Nat -> Nat

product Nil = Succ Zero

product (Cons h t) = mult (h, product t)

A straightforward implementation of this function in the point-free style is

product : List Nat → Nat

product = (|one Omult|)List Nat

The above transformation cannot be applied directly. However, since mult is a com-
mutative operator and given Prod-Functor-Id, the above definition is equivalent to the
following.

product = (|one Omult ◦ swap ◦ (id× id)|)List Nat

Now, the transformation can be applied straightforwardly, resulting in the following
accumulation (notice that as one is the unit of mult then mult ◦ one = id).

productt : List Nat → Nat → Nat

productt = (|id O comp ◦ swap ◦ (mult× id)|)List Nat

The final tail-recursive implementation in Haskell is

product :: List Nat -> Nat

product l = product_t l (Succ Zero)

product_t :: List Nat -> Nat -> Nat

product_t Nil y = y

product_t (Cons h t) y = product_t t (mult (h,y))

This example shows that it is not always immediate to apply the transformation
rule to catamorphisms with associative operators. For many operators (namely for
commutative ones) the redefinition of the initial specification is trivial. The next example
presents a situation where this is not so obvious.

Example 4.3 (Insertion Sort). Consider the insertion sort defined in Example 3.3

isort : List A → List A

isort = (|nil O insert|)List A

where the type of insert is A×List A → List A. This is clearly not an associative operator.
In order to apply the transformation scheme, the definition has to be considerably
modified. First, notice that

insert = merge ◦ (wrap× id)
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where merge is the (associative) merge function on sorted lists, which has the empty list
as its right identity. Taking into account that merge is also commutative, insertion sort
can be redefined as follows.

isort = (|nil Omerge ◦ swap ◦ (wrap× id)|)List A

This definition is already suitable for the above transformation, with the result (no-
tice that insert = merge ◦ wrap)

isortt : List A → List A → List A

isortt = (|id O comp ◦ swap ◦ (insert× id)|)List A

This means that insertion sort can be implemented as a tail-recursive definition.

isort :: (Ord a) => List a -> List a

isort l = isort_t l Nil

isort_t :: (Ord a) => List a -> List a -> List a

isort_t Nil y = y

isort_t (Cons h t) y = isort_t t (insert h y)

This example illustrates that the application of a transformation may require the intro-
duction of new functions (as in the generalization strategy). These may eventually be
eliminated after the shortcut is applied.

Operators With Associative Duals. The previous result can be generalized in
order to be applicable to a slightly more general class of programs. A binary operator
⊕ is said to have an associative dual operator � [BW82] if

(x⊕ y)⊕ z = x⊕ (y � z)

In point-free notation the above equality can be written as

⊕ ◦ ⊕ = comp ◦ (⊕×�)

Given a left-strict operator ⊕ : B × C → B with right identity e and associative
dual operator � : C × C → C, an element c : 1 → B, and a function f : A → C, then a
function

h : List A → B

h = (|c O⊕ ◦ swap ◦ (f × id)|)

can be transformed into

ht : List A → C → B

ht = (|⊕ ◦ c O comp ◦ swap ◦ (� ◦ f × id)|)
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by replacing every occurrence of h l by ht l e. The proof of this transformation rule is
similar to the previous one, because the associative dual law has a similar formulation
to associativity.

Example 4.4 (Tree Sorts). Consider again the following definition of insertion sort,
taken from Example 4.3.

isort = (|nil Omerge ◦ swap ◦ (wrap× id)|)List A

There is no reason which prevents an accumulator of a different type to be used,
such as, a binary search tree. Instead of using a particular type of tree, lets assume the
existence of an abstract type Tree A, that comes equipped with the following functions.

treeToList : Tree A → List A

that produces the sorted list of the elements stored in the tree,

mkTree : A → Tree A

that generates a tree with a single element, and

mergeTree : Tree A× Tree A → Tree A

that merges two trees. The function that inserts an element in a tree can be defined as
follows.

insertTree : A× Tree A → Tree A

insertTree = mergeTree ◦ (mkTree× id)

In order to use trees as accumulators, we now simply try to rewrite the definition of
isort in such a way that wrap can be replaced by mkTree. The following calculation uses as
hypothesis a property that we can reasonably expect to be verified by an implementation
of trees. 266666666666666664

† treeToList ◦mkTree = wrap

merge ◦ swap ◦ (wrap× id)

= { † }
merge ◦ swap ◦ (treeToList ◦mkTree× id)

= {Prod-Functor-Comp }
merge ◦ swap ◦ (treeToList× id) ◦ (mkTree× id)

= {Swap-Nat }
merge ◦ (id× treeToList) ◦ swap ◦ (mkTree× id)

By defining ⊕ = merge ◦ (id× treeToList) the sorting function can be defined as

sort = (|nil O⊕ ◦ swap ◦ (mkTree× id)|)List A
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Moreover, the reader will have no difficulty in accepting that the intended implemen-
tation of trees should be such that mergeTree is the associative dual operator of ⊕,
i.e.

(l ⊕ t1)⊕ t2 = l ⊕ (mergeTree t1 t2)

The conditions for applying the transformation are now verified, yielding the tail-
recursive function

sortt : List A → Tree A → List A

sortt = (|⊕ ◦ nil O comp ◦ swap ◦ (mergeTree ◦mkTree× id)|)List A

This definition may be further simplified taking into account the definition of insertTree

and that ⊕ ◦ nil = treeToList.

sortt = (|treeToList O comp ◦ swap ◦ (insertTree× id)|)

The pointwise implementation of this accumulation in Haskell is

sort_t :: (Ord a) => List a -> Tree a -> List a

sort_t Nil y = treeToList y

sort_t (Cons h t) y = sort_t t (insertTree h y)

Possible implementations of trees include ordinary binary search trees (with the
obvious ordered insertion operation and treeToList implemented by an inorder traversal)
and leaf trees (with treeToList implemented as a fold that, for each node converts both
left and right sub-trees to sorted lists and then merges them together). In both cases,
if insertion operations are designed to preserve a balanced shape, O(n lg n) sorting
algorithms result.

4.2.2 Other Accumulations over Lists

The above transformation scheme can be further generalized to allow for transforma-
tions that, while still based on compositions with associative operators (or having an
associative dual), do not result in tail-recursive functions.

Given a left-strict operator ⊕ : B×C → B with right identity e and associative dual
operator � : C ×C → C, an element c : 1 → B, and a function f : A → C, it is possible
to transform a function

h : List A → B

h = (|c O⊕ ◦ swap ◦ (f × g)|)

into
ht : List A → C → B

ht = (|⊕ ◦ c O comp ◦ swap ◦ (� ◦ f × k)|)
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and replace h l by ht l e if g and k are functions such that ⊕ ◦ g = k ◦ ⊕. Again, the
proof is omitted because it is similar to the previous ones.

The next example illustrates the application of this shortcut law. It also introduces
a new higher-order point-free operator (in the same spirit as comp). Again, it becomes
clear that enriching the calculus with such operators simplifies the calculations consid-
erably.

Example 4.5 (Initial Sums). Consider the following function (a slight variation of an
example from [HIT99]) that computes the initial sums of a list.

isums :: List Nat -> List Nat

isums Nil = Nil

isums (Cons h t) = map ((curry plus) h) (Cons Zero (isums t))

This definition can be optimized by introducing an accumulating parameter that, at
each point, will store the sum of all previous elements in the list. This accumulation
can be calculated by fusion from the equation

isumst = ⊕ ◦ isums

where
⊕ : List Nat× Nat → List Nat

⊕ (l, h) = List (plus h) l

Instead of applying fusion directly, the above transformation rule will be applied. First,
isums is defined in the point-free style as a catamorphism using the operator ⊕.

isums : List Nat → List Nat

isums = (|nil O⊕ ◦ swap ◦ (id× cons ◦ (zero ◦ ! M id))|)List Nat

It is also necessary to identify the right identity of ⊕ and its associative dual. The
former is obviously zero; the latter is � = plus since the following property holds.

(l ⊕ x)⊕ y = List (plus y) (List (plus x) l)
=

List (plus (plus (x, y))) l = l ⊕ (x� y)

To keep the presentation short, rather than expressing the operator ⊕ in the point-free
style and proving certain obvious properties about it, we will take these for granted
and concentrate on the interesting part of the point-free proof. In order to apply the
transformation a function k must be identified, such that

k ◦ ⊕ = ⊕ ◦ cons ◦ (zero ◦ ! M id)



4.2 Calculating Accumulations in the Point-free Style 87

For that it is convenient to express the following fact about ⊕ in the point-free calculus.

(cons (x, l))⊕ y = cons (plus (x, y), l ⊕ y)

The obvious choice is

⊕ ◦ (cons× id) = cons ◦ (plus×⊕) ◦ ((fst× id) M (snd× id))

However, likewise to associativity, a formulation of this property involving the curried
version of the operator would simplify calculations. This implies internalizing the split
combinator, which can be done in pointwise as split (f, g) = f M g, and in point-free by
the following equation.

split : (BA × CA) → (B × C)A

split = (ap× ap) ◦ ((fst× id) M (snd× id))
Split-Def

In Appendix A some properties about this function are presented, namely its interaction
with points, and the proof that it testifies the isomorphism BA × CA ∼= (B × C)A with
inverse fst• M snd•. With this definition, the above property can be expressed by the
equation

⊕ ◦ cons = cons• ◦ split ◦ (plus×⊕)

as the following calculation shows.
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† ⊕ ◦ (cons× id) = cons ◦ (plus×⊕) ◦ ((fst× id) M (snd× id))

⊕ ◦ cons

= {Exp-Fusion }
⊕ ◦ (cons× id)

= { † }
cons ◦ (plus×⊕) ◦ ((fst× id) M (snd× id))

= {Exp-Cancel, Prod-Functor-Comp, Prod-Absor }
cons ◦ (ap× ap) ◦ ((plus ◦ fst× id) M (⊕ ◦ snd× id))

= {Prod-Cancel, Prod-Def }
cons ◦ (ap× ap) ◦ ((fst ◦ (plus×⊕)× id) M (snd ◦ (plus×⊕)× id))

= {Prod-Functor-Comp, Prod-Fusion }
cons ◦ (ap× ap) ◦ ((fst× id) M (snd× id)) ◦ ((plus×⊕)× id)

= {Exp-Fusion, Exp-Absor }
cons• ◦ (ap× ap) ◦ ((fst× id) M (snd× id)) ◦ (plus×⊕)

= {Split-Def }
cons• ◦ split ◦ (plus×⊕)

It is now very easy to show that k = cons• ◦ split ◦ (id ◦ ! M id).
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† ⊕ ◦ cons = cons• ◦ split ◦ (plus×⊕)

§ plus ◦ zero = id

⊕ ◦ cons ◦ (zero ◦ ! M id)

= { † }
cons• ◦ split ◦ (plus×⊕) ◦ (zero ◦ ! M id)

= {Prod-Absor }
cons• ◦ split ◦ (plus ◦ zero ◦ ! M⊕)

= { § }
cons• ◦ split ◦ (id ◦ ! M⊕)

= {Bang-Fusion }
cons• ◦ split ◦ (id ◦ ! ◦ ⊕ M⊕)

= {Prod-Fusion }
cons• ◦ split ◦ (id ◦ ! M id) ◦ ⊕

Finally, the transformation can be applied in order to get the desired accumulation.
Notice that ⊕ ◦ nil = nil ◦ !.

isumst : List Nat → Nat → List Nat

isumst = (|nil ◦ ! O comp ◦ swap ◦ (plus× cons• ◦ split ◦ (id ◦ ! M id))|)List Nat

After converting this definition to pointwise Haskell we get the following implementation.

isums :: List Nat -> List Nat

isums l = isums_t l Zero

isums_t :: List Nat -> Nat -> List Nat

isums_t Nil y = Nil

isums_t (Cons h t) y = Cons (plus (h,y)) (isums_t t (plus (h,y)))

Although this is not a tail-recursive function, it runs in linear time rather than quadratic
time, as was the case for the initial specification.

4.2.3 Accumulations over Leaf-labeled Trees

We now turn to a different inductive type, that of leaf-labeled binary trees. In general,
folds over this type (functions whose result on a node is a function of the results on both
left and right sub-trees) cannot be made fully tail-recursive; however one of the two
recursive invocations can, in certain circumstances, be tail-recursive, if an accumulator
is used. The current value of the accumulator is passed unchanged to one of the recursive
calls, and the result of this call is then used as the new accumulator value for the second
call.

The data type of leaf-labeled binary trees can be defined by the following fixed point.

LTree A = µ(A +̂ Id ×̂ Id)
inLTree = leaf O branch
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In Haskell it can be defined as follows.

data LTree a = Leaf a | Branch (LTree a) (LTree a)

Given a left-strict associative operator ⊕ : B × B → B with right identity e, and a
function f : A → B, it is possible to transform a function

h : LTree A → B

h = (|f O⊕|)

into
ht : LTree A → B → B

ht = (|⊕ ◦ f O comp|)

with the guarantee that h t = ht t e.

This transformation rule is a direct consequence of Cata-Accum and the following
calculation. 266666666666666664

@ ⊕ ◦ ⊕ = comp ◦ (⊕×⊕)

⊕ ◦ (f O⊕)

= {Sum-Fusion, ⊕ left-strict, Exp-Strict }
⊕ ◦ f O⊕ ◦ ⊕

= {@ }
⊕ ◦ f O comp ◦ (⊕×⊕)

= {Sum-Absor }
(⊕ ◦ f O comp) ◦ (id +⊕×⊕)

Example 4.6 (Leaves). This rule can be used to optimize the definition of the O(n2)
left-to-right traversal function.

leaves :: LTree a -> List a

leaves (Leaf x) = wrap x

leaves (Branch l r) = cat (leaves l, leaves r)

This function can be easily defined in the point-free style as follows.

leaves : LTree A → List A

leaves = (|wrap O cat|)LTree A

Considering that cat ◦ wrap = cons, the transformation rule yields the following faster
O(n) version with accumulations.

leavest : LTree A → List A → List A

leavest = (|cons O comp|)LTree A

The implementation of this optimized version with explicit recursion is
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leaves :: LTree a -> List a

leaves t = leaves_t t Nil

leaves_t :: LTree a -> List a -> List a

leaves_t (Leaf x) y = Cons x y

leaves_t (Branch l r) y = leaves_t l (leaves_t r y)

Remark. This example had already been presented by Bird and de Moor in [BdM97],
using exactly the same point-free specification and result. However, their derivation is
mainly done in pointwise because the comp combinator was defined using this style,
preventing them to reason about associativity with pure point-free calculations.

4.2.4 Accumulations over Rose Trees

It is also possible to define rules for transforming folds over rose trees into accumulations.
Rose trees were introduced in Section 3.1.1, and can be defined in Haskell as follows.

data Rose a = Forest a (List (Rose a))

Given a left-strict associative operator ⊕ : B × B → B with right identity e, an
element c : 1 → B, a function f : A → B, then it is possible to transform

h : Rose A → B

h = (| ⊕ ◦ swap ◦ (f × (|c O⊕|)List B)|)Rose A

into
ht : Rose A → B → B

ht = (|comp ◦ swap ◦ (⊕ ◦ f × (|⊕ ◦ c O comp|)List (B→B))|)Rose A

such that h t = ht t e.

This is a consequence of Cata-Accum and the following calculation.
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@ ⊕ ◦ ⊕ = comp ◦ (⊕×⊕)

⊕ ◦ ⊕ ◦ swap ◦ (f × (|c O⊕|))
= {@ }

comp ◦ (⊕×⊕) ◦ swap ◦ (f × (|c O⊕|))
= {Swap-Nat, Prod-Functor-Comp }

comp ◦ swap ◦ (⊕ ◦ f ×⊕ ◦ (|c O⊕|))
= {Cata-Fusion, ⊕ left-strict, Exp-Strict }2666666666664

⊕ ◦ (c O⊕)

= {Sum-Fusion, ⊕ left-strict, Exp-Strict }
⊕ ◦ c O⊕ ◦ ⊕

= {@ }
⊕ ◦ c O comp ◦ (⊕×⊕)

= {Prod-Functor-Comp, Sum-Absor }
(⊕ ◦ c O comp ◦ (⊕× id)) ◦ (id + id×⊕)

comp ◦ swap ◦ (⊕ ◦ f × (|⊕ ◦ c O comp ◦ (⊕× id)|))
= {Sum-Absor }

comp ◦ swap ◦ (⊕ ◦ f × (|(⊕ ◦ c O comp) ◦ (id +⊕× id)|))
= {Cata-Map-Fusion }

comp ◦ swap ◦ (⊕ ◦ f × (|⊕ ◦ c O comp|) ◦ List ⊕)

= {Prod-Functor-Comp }
comp ◦ swap ◦ (⊕ ◦ f × (|⊕ ◦ c O comp|)) ◦ (id× List ⊕)

Example 4.7 (Postorder). Consider the following Haskell function that performs a
postorder traversal of a rose tree.

post :: Rose a -> List a

post (Forest x l) = cat (aux l, wrap x)

where aux Nil = Nil

aux (Cons h t) = cat (post h, aux t)

Notice that aux is the flatten function defined in the Example 3.4. The traversal can be
expressed in point-free style as follows.

post : Rose A → List A

post = (|cat ◦ swap ◦ (wrap× (|nil O cat|)List (List A))|)Rose A

This definition can be transformed into the following linear time accumulation. This
result was simplified assuming the usual facts about cat.

postt : Rose A → List A → List A

postt = (|comp ◦ swap ◦ (cons× (|id O comp|)List (List A→List A))|)Rose A

The optimized version can be implemented in Haskell as follows.

post :: Rose a -> List a

post r = post_t r Nil
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post_t :: Rose a -> List a -> List a

post_t (Forest x l) y = aux l (Cons x y)

where aux Nil y = y

aux (Cons h t) y = post_t h (aux t y)

4.3 Functions with more than one accumulator

Recall the accumulation pattern presented in Section 4.2.3 for leaf-trees. The value
of the accumulator received when processing a node was passed directly to one of the
recursive calls, and the result of this call was used as the accumulator value for the
second call. This is not however the only possibility. Certain functions require that the
value of the accumulator at the root is also received by the second recursive call. In this
situation two accumulators have to be used.

This section presents a concrete example of such a derivation, for the function that
determines the height of a binary tree. The example requires the introduction of another
point-free operator in the calculus. This is an alternative exponentiation operator that
implements a post composition: in addition to fA g = f◦g we will also define Af g = g◦f .

Given f : B → C, this combinator has the following point-free definition.

Af : AC → AB

Af = ap ◦ (id× f)
Pxe-Def

Likewise to the normal exponentiation, • will be used in superscript when the infor-
mation about the type is not relevant. Points can be used to see that this definition
implements the expected pointwise behavior.

•f ◦ g = g ◦ f Pxe-Pnt

2666666666666666666666666664

•f ◦ g

= {Pxe-Def, Pnt-Def }
ap ◦ (id× f) ◦ g ◦ snd

= {Exp-Fusion }
ap ◦ (id× f) ◦ (g ◦ snd× id)

= {Prod-Functor-Comp }
ap ◦ (g ◦ snd× id) ◦ (id× f)

= {Exp-Cancel }
g ◦ snd ◦ (id× f)

= {Prod-Def, Prod-Cancel }
g ◦ f ◦ snd

= {Pnt-Def }
g ◦ f
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This operator determines a contravariant functor, i.e.

•id = id •(f ◦ g) = •g ◦ •f

The following law relates it with the normal exponentiation.

f• ◦ •g = •g ◦ f• Pxe-Exp

2666666666666666666666666664

f• ◦ •g
= {Pxe-Def }

f• ◦ ap ◦ (id× g)

= {Exp-Absor }
f ◦ ap ◦ (id× g)

= {Exp-Cancel }
ap ◦ (f ◦ ap× id) ◦ (id× g)

= {Prod-Functor-Comp,Exp-Def }
ap ◦ (id× g) ◦ (f• × id)

= {Exp-Fusion }
ap ◦ (id× g) ◦ f•

= {Pxe-Def }
•g ◦ f•

Example 4.8 (Height). Consider the following straightforward implementation of the
height function.

height :: LTree a -> Nat

height (Leaf x) = Zero

height (Branch l r) = Succ (max (height l, height r))

This can be written as the following catamorphism, where max : Nat × Nat → Nat

computes the maximum of two naturals.

height : LTree A → Nat

height = (|zero ◦ ! O succ ◦max|)LTree A

The specification of heightt uses two accumulators: d stores the depth of the current
node while traversing the tree; and m stores the maximum depth so far. The specification
for fusion is thus, in pointwise and point-free respectively,

heightt t d m = max (plus (height t, d),m)

heightt = max• ◦ plus ◦ height

The following calculation shows how to derive the point-free specification.
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heightt t d m = max (plus (height t, d), m)

⇔ {definition of curry }
heightt t d m = max (plus (height t, d)) m

⇔ { η-reduction, definition of curry }
heightt t d = max (plus (height t) d)

⇔ {definition of composition }
heightt t d = (max ◦ (plus (height t))) d

⇔ { η-reduction, definition of exponentiation }
heightt t = max• (plus (height t))

⇔ {definition of composition }
heightt t = (max• ◦ plus ◦ height) t

⇔ { η-reduction }
heightt = max• ◦ plus ◦ height

This specification allows to apply fusion in two steps: first, plus is fused with height

to introduce the first accumulating parameter, and then max• is fused with the result
to introduce the second. For the first calculation the following properties about curried
plus, max, and succ need to be expressed in point-free style.

plus (max (x, y), z) = max (plus (x, z), plus (y, z))

plus (succ x, y) = plus (x, succ y)

The first is similar to the one that motivated the introduction of the split combinator in
Example 4.5, and can be written as follows.

plus ◦max = max• ◦ split ◦ (plus× plus)

For the second the new exponentiation combinator can be used.

plus ◦ succ = •succ ◦ plus

A simple calculation allows to obtain this as a consequence of a more conventional
point-free specification.

26666666666666666666664

† plus ◦ (succ× id) = plus ◦ (id× succ)

plus ◦ succ

= {Exp-Fusion }
plus ◦ (succ× id)

= { † }
plus ◦ (id× succ)

= {Exp-Cancel, Prod-Functor-Comp }
ap ◦ (id× succ) ◦ (plus× id)

= {Exp-Fusion,Pxe-Def }
•succ ◦ plus
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For the fusion of plus the calculation proceeds as follows. Notice that this operator
is strict due to Exp-Strict and the left strictness of plus.

2666666666666666666666666664

† plus ◦ succ = •succ ◦ plus

‡ plus ◦max = max• ◦ split ◦ (plus× plus)

§ plus ◦ zero = id

plus ◦ (zero ◦ ! O succ ◦max)

= {Sum-Fusion, plus strict }
plus ◦ zero ◦ ! O plus ◦ succ ◦max

= { §, † }
id ◦ ! O •succ ◦ plus ◦max

= { ‡ }
id ◦ ! O •succ ◦max• ◦ split ◦ (plus× plus)

= {Sum-Absor }
(id ◦ ! O •succ ◦max• ◦ split) ◦ (id + plus× plus)

The result of the first fusion is then

heightt = max• ◦ (|id ◦ ! O •succ ◦max• ◦ split|)LTree A

The second derivation makes use of the associativity of max and some laws about
the basic combinators, namely the following property relating the split function with
exponentiation.

split ◦ (f• × g•) = (f × g)• ◦ split Split-Exp

266666666666666666666666666666664

split ◦ (f• × g•)

= {Split-Def }
(ap× ap) ◦ ((fst× id) M (snd× id)) ◦ (f• × g•)

= {Exp-Fusion }
(ap× ap) ◦ ((fst× id) M (snd× id)) ◦ ((f• × g•)× id)

= {Prod-Fusion, Prod-Functor-Comp }
(ap× ap) ◦ ((fst ◦ (f• × g•)× id) M (snd ◦ (f• × g•)× id))

= {Prod-Def, Prod-Cancel }
(ap× ap) ◦ ((f• ◦ fst× id) M (g• ◦ snd× id))

= {Prod-Functor-Comp, Prod-Cancel, Exp-Def }
(ap× ap) ◦ ((f ◦ ap× id)× (g ◦ ap× id)) ◦ ((fst× id) M (snd× id))

= {Prod-Functor-Comp, Exp-Cancel }
(f × g) ◦ (ap× ap) ◦ ((fst× id) M (snd× id))

= {Exp-Absor, Split-Def }
(f × g)• ◦ split

Given this property, the calculation proceeds as follows. Notice that max• is strict
due to the left-strictness of max, Exp-Strict, and the definition of the exponentiation
operator.
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26666666666666666666666666666666666664

@ max ◦max = comp ◦ (max×max)

max• ◦ (id ◦ ! O •succ ◦max• ◦ split)

= {Sum-Fusion, max• strict }
max• ◦ id ◦ ! O max• ◦ •succ ◦max• ◦ split

= {Exp-Pnt, Pxe-Exp }
max ◦ ! O •succ ◦max• ◦max• ◦ split

= {Exp-Functor-Comp }
max ◦ ! O •succ ◦ (max ◦max)• ◦ split

= {@ }
max ◦ ! O •succ ◦ (comp ◦ (max×max))• ◦ split

= {Exp-Functor-Comp }
max ◦ ! O •succ ◦ comp• ◦ (max×max)• ◦ split

= {Split-Exp }
max ◦ ! O •succ ◦ comp• ◦ split ◦ (max• ×max•)

= {Sum-Absor }
( max ◦ ! O •succ ◦ comp• ◦ split) ◦ (id + max• ×max•)

This calculation yields the following accumulation.

heightt : LTree A → Nat → Nat → Nat

heightt = (|max ◦ ! O •succ ◦ comp• ◦ split|)

After expanding the definitions of the combinators, the following implementation is
obtained, where it is clear that one of the recursive calls has been made tail-recursive.

height :: LTree a -> Nat

height t = height_t t Zero Zero

height_t :: LTree a -> Nat -> Nat -> Nat

height_t (Leaf x) d m = max (d, m)

height_t (Branch l r) d m = height_t l (Succ d) (height_t r (Succ d) m)

Remark. The notion of post composition already appeared in [Gib99] as a means to
express some properties about higher-order functions. However, similarly to comp in
[BdM97], it was defined in the pointwise style, preventing pure point-free calculations.

4.4 Transforming Hylomorphisms into Accumulations

The goal of this section is to show that the application of the technique presented in
this chapter is not restricted to catamorphisms.

Example 4.9 (Factorial). To exemplify the application of the accumulation technique
to a function that cannot be directly defined as a catamorphism, consider the definition
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of factorial. As seen in Example 2.1, it can be defined as the following hylomorphism.

fact : Nat → Nat

fact = [[one Omult, (id + succ M id) ◦ outNat]]List Nat

Due to Hylo-Split this definition can be decomposed into

fact = (|one Omult|) ◦ bd((id + succ M id) ◦ outNat)ce

Since the catamorphism is the product function defined in the Example 4.2, it can be
transformed into the tail recursive function productt by introducing an accumulating
parameter. After applying Hylo-Split in the reverse order the following hylomorphism is
obtained.

factt : Nat → Nat → Nat

factt = [[id O comp ◦ swap ◦ (mult× id), (id + succ M id) ◦ outNat]]List Nat

This definition is necessarily tail-recursive because the catamorphism, that encodes all
computations done after recursion, is tail-recursive. In pointwise Haskell it corresponds
to the following implementation.

fact :: Nat -> Nat

fact n = fact_t n (Succ Zero)

fact_t :: Nat -> Nat -> Nat

fact_t Zero y = y

fact_t (Succ n) y = fact_t n (mult (Succ n, y))

4.5 Related Work

Hu, Iwasaki, and Takeichi have used a calculational approach to several program trans-
formation techniques, including deforestation [HIT96], tupling [HITT97], and accumu-
lations [HIT99]. In this latter work, the authors present a methodology for deriving
accumulations using fusion, where the expected structure of the catamorphisms param-
eter is used in order to facilitate the derivation. However, most of the expressions are
still defined in the pointwise style. Although the authors suggest that their method is
amenable to automation, they present no hints on how to do it.

Meijer, Fokkinga, and Paterson have introduced in [MFP91] a transformation rule
for deriving accumulations from functions defined over lists. Besides dealing with as-
sociative operators, it also covers operators with associative duals. This generality
complicates the formalization of the rule by not making the associativity properties ex-
plicit, and introducing side conditions whose mechanical verification is not trivial. The



98 Chapter 4: Calculating Accumulations Using Fusion

rule is expressed in a mixed style that includes both point-free and pointwise defini-
tions: the former is used for writing the catamorphisms, and the latter for defining the
(associativity-like) properties of the operators.

The transformation rule for lists and associative operators is strongly related to
the first duality theorem [Bir98], that states the conditions under which a foldr can be
converted into a foldl. The latter function is well known in the functional programming
community, and encodes precisely a (restricted) notion of tail-recursive accumulations
over lists. It can be defined as follows.

foldl_List :: (b -> a -> b) -> b -> List a -> b

foldl_List f z Nil = z

foldl_List f z (Cons h t) = foldl_List f (f z h) t

Given this definition, the first duality theorem says that, given an associative oper-
ator ⊕ with unit e, we have

foldr ⊕ e = foldl ⊕ e

From this theorem and some properties about maps, it is possible to derive the
following equivalent formulation of the transformation rule presented in Section 4.2.1.

foldr ⊕ c (List f l) = c⊕ (foldl⊕ e (List f l))

Notice that swap is not used in this rule because the binary operator in foldl takes its
parameters in the reverse order.

The work of Sheard and Fegaras on the derivation of accumulations [SF93] also
bears some similarities to ours (even though no fusion or point-free style are used). A
syntactic transformation algorithm is defined for recognizing folds that are amenable to
be implemented as accumulations, and automatically converts them into the respective
higher-order folds. For the particular case of lists, the transformation is similar to the one
defined in Section 4.2.1, with the occurrences of the associative operator being replaced
by composition. The authors also acknowledge similarities between this transformation
and the classic continuation-passing style transformation. The main advantage of this
approach is that the transformation algorithm can be generically applied to folds over
any data-type, as long as the involved operator is associative. As such, it also covers
the rule presented in Section 4.2.3 for transformation of functions over leaf trees.

Accumulations are usually defined as higher-order catamorphisms, and that was
also the approach followed in this chapter. However, using different recursion pat-
terns it is possible to define some accumulations without going into the higher-order
setting, with the advantage that some calculations may become simpler. That is the
case of the so-called downwards accumulations, functions that label each node of a data
structure by applying a function to its ancestors (i.e. information flows in a top-down
fashion). Malcolm used anamorphisms to define this kind of accumulations for infinite
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lists [Mal90], and later, Gibbons presented a generic definition that works for any regular
data type [Gib00]. The generic accumulation recursion pattern presented in Section 3.5
further generalizes this notion: Pardo defined a general transformation rule similar to
proposition Cata-Accum using this operator [Par03]. The problem with all these defini-
tions of accumulations is that none is as expressive as the one used here – for example,
it is not possible to define the accumulation of Example 4.6, where the value of the ac-
cumulator passed to one of the recursive calls depends on the result of another recursive
call.

Finally, there is also some research work in program transformation with accumula-
tions that is not concerned with their derivation from inefficient specifications, but rather
with studying fusion of functions already defined as accumulations [HIT99, Gib00, Par03,
Sve02].

4.6 Summary

In this chapter we have shown how the classic accumulation strategy can be applied us-
ing calculation in a pure point-free style. We have briefly compared this approach with
the standard fold/unfold transformations, and pointwise calculations. The main simi-
larity between all these techniques is the need for a creative step for writing the initial
specification that will be transformed (the generalization step of fold/unfold transfor-
mations). Our emphasis was on finding generic transformation schemes for various data
types, that can be used as shortcut optimization rules in an automatic transformation
system. We have also presented a point-free derivation of a function with two accu-
mulating parameters, that exposed the modularity of the calculational approach – the
accumulating arguments were introduced in separate, simpler fusion steps. Although
we have focused on a specific transformation strategy, it is our belief that exactly the
same approach can be applied to other transformation techniques, such as tupling.

In order to cope with calculations in a higher-order setting, we have felt the need
to internalize uncurried versions of some of the basic combinators as point-free defi-
nitions. This was the case for the composition and split combinators. Fundamental
properties, like the associativity of curried operators, can be succinctly expressed using
these definitions, leading to a major simplification in the calculations. We have also
introduced a new point-free exponentiation operator, equivalent to the right-sectioning
of the composition combinator.

As shown in Example 4.3, the main limitation of our approach is that sometimes it
is necessary to (non-trivially) change the initial definition of a program to enable the
application of the transformation rules.
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Remark. It turns out that the point-free definitions of both the uncurried composition
operator and the new exponentiation have already been proposed by McLarty in an
introductory book to category theory [McL95]. Our results were obtained independently,
and it was only close to the end of writing this thesis that we came to the knowledge of
this fact.



Chapter 5

Mechanizing Fusion

After the seminal work of Burstall and Darlington on program transformation using
fold/unfold rules [BD77], Wadler proposed an algorithm that used some of their ideas
to perform deforestation of functional programs [Wad88]. The core of this algorithm is a
set of transformation rules that manipulate the programs, in search of potential locations
where elimination of intermediate data structures can be performed. Naturally, some
trickery has to be used in order to avoid infinite unfolding of recursive definitions. As
seen in the last chapter, fusion rules can be used precisely to shortcut the fold/unfold
cycle, thus avoiding the need to track such infinite unfoldings. With this insight in mind,
a number of researchers tried to develop deforestation systems using shortcut fusion to
reproduce Wadler’s results. This chapter reviews some of these systems.

As presented in the first chapters, fusion rules come in two flavors: calculational
fusion, expressed in rules such as Cata-Fusion, where in order to fuse f with (|g|) one
must guess h such that some equation is verified; and acid rain fusion, where, provided
both the producer and the consumer are defined according to specific patterns, one can
immediately produce the result without any extra guessing. The first style is usually
called cold fusion, while the second one is called warm fusion, evoking the fact that it
is somehow easier to apply.

5.1 Warm Fusion

Although all calculations performed in this thesis are based on cold fusion, for a long
time warm fusion proved more effective for mechanical transformation. A restriction of
the acid rain rule to lists, the so called foldr/build rule, was the starting point for the first
successful deforestation system based on shortcut fusion, developed by Gill, Launchbury,
and Peyton Jones [GLJ93]. Due to its effectiveness and simplicity it is still used today
as an optimization in the Glasgow Haskell Compiler (GHC). The major drawback of
shortcut fusion is the need to define functions using specific recursion patterns. In

101
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the case of acid rain fusion the problem is even worst, since the parameters of some
of the recursion patterns must themselves be defined according to a specific pattern:
less work in guessing the result is achieved at the cost of more work in structuring
the input. For the foldr/build rule this problem was alleviated by Launchbury and
Sheard, who developed a mechanism to transform most useful recursive definitions into
the appropriate form [LS95].

Takano and Meijer used hylomorphisms to generalize and dualize the foldr/build rule
to work on any regular data type, originating the acid rain theorem [TM95] presented in
Section 2.4. Shortly after, Hu, Iwasaki, and Takeichi used this theorem to implement a
more generic system to perform deforestation using warm fusion [HIT96]. In the context
of this system, they developed one algorithm to derive hylomorphisms, to be presented
in Section 7.4, and another to find the polymorphic function transformers that enable
the application of the theorem. This system was later improved and baptized as the
HYLO system [OHIT97].

5.2 Cold Fusion: First Steps

To our knowledge, the first successful attempt to develop a mechanism for performing
cold fusion is due to Sheard and Fegaras [SF93]. Likewise to all systems presented so
far, their algorithm also operates at the pointwise level. In order to give an overview
of this work, we exemplify its use with the application to the fusion law for foldr, the
curried pointwise instance of catamorphisms for lists presented in Section 4.1.2. Notice
however that the method generalizes to folds over any regular data type (in fact, it also
covers mutually recursive types). Recall the type of this recursion pattern

foldr : (A → B → B) → B → List A → B

and the respective fusion law. As seen in that section, universal quantification can be
replaced by lambda abstraction. The strictness side conditions will be ignored in this
chapter because none of the systems handles them.

f (foldr g e l) = foldr h c l

⇐
c = f e ∧ λxr.h x (f r) = λxr.f (g x r)

The problem of using this law as a transformation rule, that is, as a rewrite rule
oriented from left to right, is that it contains variables in the right-hand side that are
not present in the left-hand side. This implies that one has to devise a method for
guessing their values, using the side condition to guide the process. Determining c

is not a problem because the side condition says exactly what its value is. The real
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challenge is guessing h, since it appears applied to f r. If instead of f r, h was applied
just to r, by η-simplification we would also immediately get its definition.

The solution proposed by Sheard and Fegaras is very simple and quite ingenious.
First, the variables x and r are replaced in the abstraction of the side-condition by
a couple of fresh variables, for example y and t. Then the bodies are transformed
using the rewriting system that characterizes the λ-calculus in question, but temporarily
augmented with two new rules, namely x  y, and f r  t. The left-hand side
immediately rewrites to λyt . h y t which by η-simplification is equal to h. If using this
augmented rewrite system all references to the old variables x and r are eliminated from
λxr.f (g x r), the desired definition for h is achieved. Otherwise, the conditions cannot
be verified, and fusion fails.

The algorithm used in [LS95] to derive a fold from a recursive definition is based on
the clever idea of trying to fuse it with the identity fold, and uses the above rewriting
technique to implement fusion. For example, the recursive definition of the length
function verifies the following equations, that will be oriented from left to right as
rewrite rules.

length(nil) = zero

length(cons x t) = succ(length t)

In order to derive the fold that implements this definition fusion can be applied to
the right-hand side of the following equation. Notice that foldr cons nil is equal to the
identity on lists.

length = λl.length(foldr cons nil l)

The side condition of the fusion law immediately gives the value to return when the
list is empty, namely length(nil) (zero after rewriting). To determine the function h, the
body of the abstraction λyt . length(cons x r) is transformed using the rewrite system
augmented with the rules x  y and length r  t. The following rewrite sequence
occurs.

length(cons x r) succ(length r) succ t

Since none of the original variables remains in the final term, fusion succeeds with the
following result.

length = foldr (λyt . succ t) zero

The main problem with this technique is that no completeness results are presented,
and it is difficult to understand exactly the class of expressions on which it will succeed.
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5.3 Higher-order Matching: the MAG System

Some of these ideas were later improved by Sittampalam and de Moor in MAG, a system
for program transformation based on cold shortcut fusion [dMS99, SdM03]. The system
is tailored to the Haskell language, and is powerful enough to automate in the pointwise
setting, for example, all the calculations used in Chapter 4. It has also been used with
success to implement optimizations using the tupling strategy.

This system is not fully automatic, but relies on the notion of active source: the
original (inefficient) Haskell definitions are stored together with sufficient hints (namely,
the specification that results from the generalization strategy, and the rewriting rules
that capture the creative steps of the derivation) that enable the system to derive the
efficient version. Basically MAG implements a term rewriting mechanism that, given
a set of transformation rules, tries to apply them in the order in which they appear in
the active source, repeating this process until no rule can be applied. For each rule it
tries to find a matching subexpression by searching from left-to-right and from largest-
to-smaller. MAG does not require the original functions to be defined directly as folds,
and instead uses the technique of trying to fuse the original definition with the identity
fold, as seen before.

In order to cope with the side conditions of the fusion rule, in particular the condition

λxr.h x (f r) = λxr.f (g x r)

one has to find a substitution for h such that both sides are equal. Since h is of
functional type, this problem is generically known as higher-order matching, and is
by itself a large research theme. To be more precise, the goal is to find a substitution for
h such that both sides are equal after βη-normalization. Last section presented a trick
that manages to reduce this particular instance of the problem to rewriting, but whose
effectiveness is difficult to access. On the contrary, Sittampalam and de Moor designed a
new mechanism to perform generic higher-order matching [dMS01], specifically tailored
to the context of program transformation.

Formally, given a pattern P without η-redexes, and a closed normal form term M ,
we want to find a substitution φ such that

beta(Pφ) ' M

where ' represents equality modulo α-equivalence and η-reduction, and beta(t) denotes
the β-normal form of t. The definition of beta for the case of application is

beta(MN) =

{
beta(L[beta(N)/x]) if beta(M) = λx.L

(beta(M))(beta(N)) otherwise
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If such a substitution exists, it is called a match. The biggest problem with higher-order
matching is that, in general, an infinite set of matches may exist. For example, matching
the pattern p x against a constant a leads to the following set of valid matches, where
none is an instance of another.

{[(λy.a)/p], [(λy.y)/p, a/x], [(λg.g a)/p, (λy.y)/x], [(λg.g(g a))/p, (λy.y)/x], . . .}

The first successful algorithm to solve this problem was defined by Huet and Lang
[HL78], by restricting the set of possible matches to second order terms. Terms of a
base type are of first order, and the order of a term of functional type is one plus
the order of the argument. This guarantees that there exists only a finite number of
incomparable matches. In the example above, only the first two substitutions fall under
this category. Unfortunately, this restriction is not reasonable in the context of program
transformation, namely when dealing with higher-order functions. For example, recall
the classic example of deriving the efficient, accumulator-based, version of the length
function. The parameter of the resulting fold is a function that takes another function
as argument. To guess this parameter one must find a third order match, that would
not be found by the algorithm of Huet and Lang.

The restriction imposed by de Moor and Sittampalam consists in replacing, in the
specification of the problem given above, beta by step, a function that approximates
β-normalization by applying β-reduction to all possible subterms that may occur in a
single bottom-up traversal of the pattern. Its definition for the case of application is

step(MN) =

{
L[step(N)/x] if step(M) = λx.L

(step(M))(step(N)) otherwise

The difference between the two functions is that beta is applied again to the result of
the substitution, since new β-redexes may result from it.

With this restriction the algorithm always returns a finite set of matches that includes
all second order matches, but possibly also some of order higher than two. In the example
given above, it would behave similarly to Huet and Lang’s algorithm and only return the
first two matches, since step((λg.g a)(λy.y)) 6= a, but in the derivation of the efficient
length it would output the desired third order match.

Apart from efficiency, which is always a problem in higher-order matching (even its
restriction to second order terms is known to be NP-hard), the main problem of this
algorithm is that, although there is a formal characterization of the set of matches it
returns, in practice it is difficult to understand why a particular match is or is not
returned. The reason for this is the unintuitive behavior of the step function. On the
contrary, with Huet and Lang’s algorithm the class of second-order terms is defined in
a precise and clear way.
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Later, the same authors developed a slightly different version of the matching al-
gorithm, tailored to find all third-order matches that occur in practical problems of
program transformation, in particular all of those involving the introduction of accu-
mulation parameters [SdM01]. As we have seen, this set is in general infinite, but by
imposing some syntactic restrictions on the patterns it is possible to guarantee that the
number of possible matches is finite. When these restrictions are not verified it is still
possible to resort to the first version of the algorithm.

In practice, likewise to Bird’s functional calculator, the main limitation of MAG
is precisely its rewriting system: since no completion, or termination checking, is per-
formed, the user must be careful about the order in which the transformation rules are
stated in the active source. As the authors put it [SdM03],

. . . to use MAG to mechanize a fusion derivation, one must first have
some idea of what the derivation will be – what MAG does for the programmer
is to deal with the details of the derivation, and to make it repeatable without
needing to store it with the program.

A limitation of both systems that use cold fusion, when compared for example with the
HYLO system, is that they only deal with folds, thus limiting their applicability.

5.4 Fusion in the Point-free Style

All these systems were developed for the pointwise setting. To our knowledge, the
only attempt to implement short-cut fusion in the point-free setting is due to Ross
Paterson [Pat], with a re-implementation of Bird’s functional calculator [Bir98]. The
latter system, to be presented in Section 9.1, is a very simple point-free calculator, that
does not support conditional laws and, as such, cannot handle fusion.

Paterson extended Bird’s calculator to handle conditional laws, and to give a distin-
guished treatment to identity and functors. If the user signals one of the constants as
a functor, the respective equations Functor-Id and Functor-Comp will be automatically
added as contractions to the system when performing simplifications. Although the
system is largely undocumented, some reverse engineering revealed a very sophisticated
pattern matching algorithm, that not only operates modulo associativity and identity,
but also modulo the functor laws. In particular, it uses the functor laws as expansions
rules when searching for a matching substitution. This implies using heuristics to avoid
expansion loops and trivial matchings, and some form of backtracking in order to ex-
plore different expansion alternatives. For example, suppose one adds Distl-Nat as the
rewrite rule

distl ◦ ((f + g)× h) (f × h + g × h) ◦ distl

then the system is able to produce the following reduction, where a and b are arbitrary
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functions.
distl ◦ (a× b) ((id× b) + (id× b)) ◦ distl ◦ (a× id)

In order to do so, the matching algorithm had to expand a to (id + id) ◦ a using Sum-

Functor-Id, and then expand ((id+ id)◦a)×b to ((id+ id)×b)◦(a× id) using Prod-Functor-

Comp. It also had to discard trivial matchings, such as replacing all three variables by
id after expanding a × b to ((id + id) × id) ◦ (a × b), since this yields a reduction that
does not change the expression.

In order to apply a law like Cata-Fusion as the rewrite rule

f ◦ (|g|)µF  (|h|)µF ⇐ f ◦ g = h ◦ F f

it must guess a value for h that satisfies the side condition. Given its sophisticated
matching algorithm, for some cases it succeeds in doing so, which means that, in practice,
it implements a point-free fusion algorithm.

We now give some examples of the abilities and limitations of this system concerning
fusion. Since it does not support variables of functor type, all the laws have to be
specialized to a specific type. The following examples all use lists. Consider the proof of
the Cata-Map-Fusion law specialized to lists. After applying Cata-Fusion to the left-hand
side of the equation

(|f |) ◦ (|inList ◦ (id + g × id)|) = (|h|)

and rewriting with Cata-Cancel and functor laws, we get the following side condition.

f ◦ (id + g × (|f |)) = h ◦ (id + id× (|f |))

Due to its ability to use Functor-Comp as an expansion during matching, the system will
temporarily expand the left-hand side to

f ◦ (id + g × id) ◦ (id + id× (|f |))

and trivially instantiate h with f ◦ (id + g × id), thus yielding the desired result. Un-
fortunately, since the only expansions performed concern the functor and identity laws,
sometimes this system cannot handle some very simple examples. Consider the proof of
the fact that the length of a list is not affected by mapping.

length ◦ (|inList ◦ (id + g × id)|) = length

length is defined as in Example 3.2, that is

length = (|inNat ◦ (id + snd)|)
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After applying fusion, and rewriting the side condition, we get the following matching
problem.

inNat ◦ (id + length ◦ snd) = h ◦ (id + id× length)

In this case the matching algorithm of Paterson would fail because it does not tem-
porarily use Prod-Cancel as an expansion rule, in order to rewrite length ◦ snd into
snd ◦ (id × length). Of course, the user is free to remove this law from the rewriting
system, or adding it as the expansion f ◦ snd snd ◦ (id× f), but that would still not
yield the desired result. Fusion would be applied with success, since the matching in
the side condition would now be

inNat ◦ (id + snd ◦ (g × length)) = h ◦ (id + id× length)

but then the system would not be able to prove the trivial fact that the resulting
catamorphism is equal to length.

(|inNat ◦ (id + snd ◦ (g × id))|)

5.5 Summary

This chapter presented a brief review of fusion mechanization. We have seen that al-
most all systems implemented so far use the pointwise style. Some of them are very
sophisticated: for example the MAG system can derive, given appropriate hints by the
user, all efficient accumulations presented in Chapter 4. To our knowledge, the only
system that implements fusion directly in the point-free style is due to Ross Paterson,
but is rather ad-hoc and largely undocumented. None of the systems handles strictness
side conditions.



Chapter 6

Pointless Haskell

This chapter describes a Haskell library for point-free programming with recursion pat-
terns. Following a typical joke about point-free programming, the library is called
Pointless Haskell. The implementation uses some non-standard extensions of the lan-
guage, but enables the use of a syntax almost identical to the standard theoretical one
presented in Chapter 2. This is achieved by introducing a restricted notion of structural
equivalence between types. It also provides support for defining polytypic recursion op-
erators, by improving the standard technique of defining data types explicitly as fixed
points of functors. A polytypic (or generic) definition denotes a function that accepts
a parameter of any regular data-type. It differs from a polymorphic one, because the
behavior of the function is not uniform, but depends on the structure of the input’s
type. The library also includes a generic mechanism to visualize the intermediate data
structures of hylomorphisms.

Pointless Haskell can be seen as a domain specific language, in the sense that it
provides an [vDKV00]

[. . . ] executable specification language that offers, through appropriate
notations and abstractions, expressive power focused on, and usually re-
stricted to, a particular problem domain.

In fact, it is a domain specific embedded language [Hud96]. By embedding it in Haskell
we avoid the need to develop a new compiler or interpreter, and inherit all the infrastruc-
ture of this language. There are many advantages of using Haskell as a host language
[Ell99]. In our implementation, characteristics like higher-order features, parametric
polymorphism, laziness, and type classes played an essential role. The main disadvan-
tages are the need to sometimes compromise on the notation, the inability to provide
good “domain specific error” messages, and some little discrepancies in the semantic
domain.

All the Haskell code presented in this chapter was tested using version 6.2 of GHC.
Whenever we mention Haskell with extensions we mean the set of extensions switched
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on by the compiler’s flag -fglasgow-exts.

6.1 Implementing the Basic Concepts

Most of the primitive functions, basic combinators, and types presented in Chapter 2 are
already part of the Haskell 98 standard prelude [Jon03]. For example, the fundamental
categorical concepts of composition and identity are predefined as follows.

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . g) x = f (g x)

id :: a -> a

id x = x

The definition of the identity function stresses a subtle difference in the presentation
of the basic constants of the point-free style. In Chapter 2, functions like id or fst were
defined as families of monomorphic functions, indexed by the specific type they operate
on. Since most of the times this type can be easily inferred from the context, the indexes
are usually omitted. The Haskell type system is polymorphic. This means that a single
definition can be given for these functions, with the advantage that the specific types
are derived by the type inference mechanism.

The notion of functor is captured by a type constructor, and its action on arrows is
encoded in a type class. The verification of the functor laws cannot be guaranteed by
the language, and it is left to the programmer.

class Functor f where

fmap :: (a -> b) -> (f a -> f b)

There is also a polymorphic bottom value predefined: undefined. Since it will be
used often, it is convenient to define a shorter alias, with the advantage that it graphically
resembles the mathematical notation.

_L :: a

_L = undefined

Terminal object. The first problems arise when trying to define the terminal object.
Using the standard Haskell 98 it is not possible to define this type, because any type
declaration must have at least one constructor. The best approach would be the special
predefined unit data type (), that has a single constructor also called (). This is the
data type with the least number of elements that is possible to declare in standard
Haskell. However, since it has two elements, namely () and _L, it is not the terminal
object of our semantic domain. The same discussion applies to any isomorphic data type
with a single constructor without parameters. The problem can be solved by resorting
to Haskell extensions, since a data type without constructors can be declared.
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data One

The only element of this data type is _L and as such it is indeed a terminal object. ! and
the combinator · , that converts elements into points, can be implemented as follows.
Due to Haskell limitations the syntactic notation must be compromised.

bang :: a -> One

bang _ = _L

pnt :: a -> One -> a

pnt x = \_ -> x

Products. The main problem of using Haskell to host this library is that all its data
types are by default pointed and lifted, that is, every type has a distinct bottom element.
As noticed by several authors, this means that Haskell does not have true categorical
products because (⊥,⊥) 6= ⊥, neither true categorical exponentials because λx.⊥ 6=
⊥. As discussed in [DJ04], this fact complicates equational reasoning because many
standard laws about products and functions no longer hold.

Let us consider products for a moment. It is possible to write a Haskell function
that distinguishes _L from (_L,_L). For example, if the following function is applied to
(_L,_L) it returns 0, but when applied to _L it returns _L.

f :: (a,b) -> Int

f (_,_) = 0

If irrefutable matching was used instead of regular pattern matching, this distinction
would not be possible, because operationally no matching would be carried out until
one of the variables in the pattern was used. Irrefutable matching is a standard Haskell
feature activated by appending ~ to a pattern. The same applies to let expressions,
where the matching is always irrefutable. In short, none of the following functions can
distinguish _L from (_L,_L).

g :: (a,b) -> Int

g ~(_,_) = 0

h :: (a,b) -> Int

h x = let (_,_) = x in 0

As John Hughes notices in [Hug03], by restricting pattern matching over products to be
irrefutable and prohibiting the use of function seq (to be presented in Section 7.2), it is
possible to “pretend” that these values are equal. In point-free programming the only
way to inspect products is by using the destructors, that are predefined in Haskell as
follows. Since they can also not distinguish _L from (_L,_L), Haskell pairs can “safely”
be used to model products.
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fst :: (a,b) -> a

fst (x,_) = x

snd :: (a,b) -> b

snd (_,y) = y

The infix split and product combinators can be defined as follows.

infix 6 /\

(/\) :: (a -> b) -> (a -> c) -> a -> (b,c)

(/\) f g x = (f x, g x)

infix 7 ><

(><) :: (a -> b) -> (c -> d) -> (a,c) -> (b,d)

f >< g = f . fst /\ g . snd

To finalize the discussion about products, we would like to stress that, to our knowl-
edge, even with extensions it is not possible to define a Haskell data type that cor-
rectly models the cartesian product. For example, neither strictness annotations, nei-
ther newtype solve the problem. A strictness annotation, with the flag !, next to an
argument in a data type declaration forces its evaluation prior to the construction of
values of that type. Consider the following declaration.

data Pair a b = Pair !a !b

This data type does not implement cartesian product, but smashed product, where, given
any x, both (⊥, x) and (x,⊥) are identified with ⊥. The newtype keyword allows us
to define unlifted types. Unfortunately, it can only be used to “rename” an already
defined type, and thus its single constructor can only receive a single type as argument.
If syntactically possible, the following declaration would implement cartesian product.

newtype Pair a b = Pair a b

Sums. Unlike products, since sums are by definition lifted there is no problem in
representing them by a Haskell data type. The predefined Either data type is used.

data Either a b = Left a | Right b

New aliases are defined for the constructors.

inl :: a -> Either a b

inl = Left

inr :: b -> Either a b

inr = Right

The either combinator is also predefined.
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either :: (a -> c) -> (b -> c) -> Either a b -> c

either f _ (Left x) = f x

either _ g (Right y) = g y

Together with a more convenient infix alias for either, the infix sum combinator is also
defined.

infix 4 \/

(\/) :: (b -> a) -> (c -> a) -> Either b c -> a

(\/) = either

infix 5 -|-

(-|-) :: (a -> b) -> (c -> d) -> Either a c -> Either b d

f -|- g = inl . f \/ inr . g

Exponentials. Although Haskell does not have true categorical exponentials, the
Haskell functional type -> will be used to model them. Similarly to products, this
decision is harmless because the point-free combinators cannot distinguish between _L

and \_ -> _L. Again, the curry combinator is predefined

curry :: ((a, b) -> c) -> a -> b -> c

curry f x y = f (x, y)

and the application combinator can be defined as follows.

app :: (a -> b, a) -> b

app (f,x) = f x

An explicit exponentiation combinator is not defined because it just corresponds to the
left-sectioning of the composition operator, with the additional advantage of a similar
graphical notation.

Finally we have a guard combinator that operates on Haskell booleans. In order to
simulate the postfix syntax it must be used in a left-sectioning.

(?) :: (a -> Bool) -> a -> Either a a

p ? x = if p x then inl x else inr x

Examples. Equipped with these combinators, some useful isomorphisms can be de-
fined exactly as in Chapter 2.

swap :: (a,b) -> (b,a)

swap = snd /\ fst

assocr :: ((a,b),c) -> (a,(b,c))

assocr = fst . fst /\ snd >< id

distl :: (Either a b, c) -> Either (a,c) (b,c)

distl = app . ((curry inl \/ curry inr) >< id)
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It is also possible to define in the point-free style an explicitly recursive function,
such as the length function.

length :: [a] -> Int

length = (zero . bang \/ succ . length . tail) . (null?)

6.2 Programming with Explicit Functors

At least since [MH95], it is known how to implement generic versions of the recursion
patterns in Haskell by defining data types explicitly as fixed points of functors. The
implementation follows directly from the theoretical concepts presented in Section 2.3.
This style of programming was used to implement generic recursion patterns by several
authors [UVP01, Gib02], and is also followed, with some improvements, in our library.

The explicit fixpoint operator can be defined at the type level using newtype.

newtype Functor f => Mu f = Mu {unMu :: f (Mu f)}

The context of the definition restricts the application of Mu to members of the Functor

class. The use of newtype guarantees the strictness of Mu, and thus enforces the isomor-
phism between Mu f and f (Mu f). inn and out are aliases to the constructor and the
destructor of Mu.

inn :: Functor f => f (Mu f) -> Mu f

inn = Mu

out :: Functor f => Mu f -> f (Mu f)

out = unMu

As seen in Section 2.3, the data type of natural numbers is isomorphic to the fixed
point of the base functor 1 +̂ Id. Using Mu it can be defined in Haskell as follows.

newtype FNat x = FNat {unFNat :: Either One x}

instance Functor FNat

where fmap f = FNat . (id -|- f) . unFNat

type Nat = Mu FNat

The zero and successor constructors can then be implemented as expected.

zero :: One -> Nat

zero = inn . FNat . inl

sukc :: Nat -> Nat

sukc = inn . FNat . inr
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For parameterized data types, like List A, the base functor is obtained from a binary
type constructor by treating the first type variable as a constant.

newtype FList a x = FList {unFList :: Either () (a,x)}

instance Functor (FList a)

where fmap f = FList . (id -|- id >< f) . unFList

type List a = Mu (FList a)

The constructors of List can be implemented as follows.

nil :: One -> List a

nil = inn . FList . inl

cons :: (a, List a) -> List a

cons = inn . FList . inr

Using this style of programming polytypism comes for free, since the fundamental
recursion operators given in Chapter 2 and Chapter 3 can be generically defined as
follows.

hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b

hylo g h = g . fmap (hylo g h) . h

cata :: Functor f => (f a -> a) -> Mu f -> a

cata g = hylo g out

ana :: Functor f => (a -> f a) -> a -> Mu f

ana h = hylo inn h

Given these operators, the length and factorial functions can be defined as follows.

len :: List a -> Nat

len = cata g

where g = inn . FNat . (id -|- snd) . unFList

one :: One -> Nat

one = sukc . zero

fact :: Nat -> Nat

fact = hylo g h

where h = FList . (id -|- sukc /\ id) . unFNat . out

g = (one \/ mult) . unFList

These functions were presented in examples 3.2 and 2.1, respectively. Notice that, apart
from the constructors and destructors of the functor data types, the definitions are
exactly the same as in the examples.
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In order to define the remaining recursion patterns as hylomorphisms, the concept
of functor transformer can be used. A functor transformer is a type constructor with
kind (? → ?) → (? → ?), that given a functor returns another functor. It will be used to
capture the functor change that occurs, for example, in the definition of paramorphisms
using a hylomorphism. It was used in a similar context in [UVP01]. Recall the definition
of paramorphisms: for a data type µF , the functor that captures the shape of recursion
in the hylomorphism that implements it is F ◦ (Id ×̂ µF ). This specific functor change
can be captured by the following transformer, defined in the pointwise style as a new
data type.

newtype FPara f x = FPara {unFPara :: f (x, Mu f)}

instance Functor f => Functor (FPara f)

where fmap f = FPara . fmap (f >< id) . unFPara

If the base functor of the input of a paramorphism is f, then the intermediate data struc-
ture of the hylomorphism that implements it is Mu (FPara f). Using this transformer,
paramorphisms can be defined according to Para-Def.

para :: Functor f => (f (a, Mu f) -> a) -> Mu f -> a

para g = hylo (g . unFPara) (FPara . fmap (id /\ id) . out)

Using para, the factorial can be defined according to Example 3.15.

fact :: Nat -> Nat

fact = hylo g h

where h = FList . (id -|- sukc /\ id) . unFNat . out

g = (one \/ mult) . unFList

This approach has some disadvantages. First, since Haskell does not have structural
type equivalence, coercing constructors and destructors are used often. Sometimes,
this makes it difficult to translate a point-free definition to Haskell. To overcome this
problem, one could define tailored instances of the recursion operators for each data
type, as proposed in [Gib02]. However, this would preclude polytypism, one of the main
advantages of this approach. Second, it is impossible to use the recursion operators with
the standard Haskell types, such as lists or integers. Finally, the Functor instances must
be defined explicitly for every data type, when it is well known that the map function
can be easily defined generically by induction on the structure of the type.

6.3 A Point-free Programming Library

This section describes a solution to the problems of the initial approach presented above.
The solution is based on ideas developed previously in the context of polytypic program-
ming, namely in the PolyP library [NJ03]. It comprises a restricted notion of structural
equivalence between Haskell types.
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6.3.1 The PolyP Approach to Recursive Data Types

PolyP is a library that allows polytypic programming in Haskell [NJ03]. Other ap-
proaches to generic programming in Haskell have been proposed, such as derivable type
classes [HJ01], Generic Haskell [CHJ+01], “lightweight generics”[CH02] (all three built
upon Ralph Hinze’s approach to generic functional programming [Hin00]), or the “scrap
your boilerplate” technique [LJ03]. In the context of this library, the main advantage
of PolyP is its view of data types as fixed points of functors. However, instead of using
an explicit fixpoint operator, a multi-parameter type class [JJM97] with a functional
dependency [Jon00] is used to relate a data type d with its base functor f. We remark
that this is a non-standard Haskell feature provided as an extension. This class can be
defined as follows. The dependency means that different data types can have the same
base functor, but one data type can have at most one base functor. The use of the
primes will be justified later.

class (Functor f) => FunctorOf f d | d -> f

where inn’ :: f d -> d

out’ :: d -> f d

We would like to stress that PolyP is not directly used in the implementation of
Pointless Haskell. Some of its design choices would prevent a syntax similar to the one
described in the first chapters. For example, in PolyP all data types are parameterized,
which means that they are always generated from bifunctors and always determine a
type functor, as described in Section 3.1.1. Given the objectives of our library, that
would originate an unnecessarily complicated syntax, and as such we decided to reim-
plement the subset of PolyP we needed according to our own design principles. For
example, the FunctorOf class was simplified by restricting base functors to monofunc-
tors (a parameterized type can still be defined using the left-sectioning of a bifunctor).
Its methods were also reduced to the essential in and out functions.

The main advantage of using the FunctorOf class is that predefined Haskell types can
also be viewed as fixed points of functors. For integers and lists the following instances
can be defined.

instance FunctorOf FNat Int

where inn’ = (pnt 0 \/ succ) . unFNat

out’ = FNat . (bang -|- pred) . ((==0)?)

instance FunctorOf (FList a) [a]

where inn’ = (pnt [] \/ uncurry (:)) . unFList

out’ = FList . (bang -|- head /\ tail) . (null?)

With the exception of the hylomorphism, the definition of the recursion operators
must change slightly. For example, catamorphisms and anamorphisms must be redefined
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as follows, since the relation between a data type and its base functor must be explicitly
stated using the FunctorOf class.

cata :: FunctorOf f d => (f a -> a) -> d -> a

cata g = hylo g out’

ana :: FunctorOf f d => (a -> f a) -> a -> d

ana h = hylo inn’ h

With this approach it is possible to define, for example, the length function for
Haskell lists using anamorphisms (according to Example 3.10).

length :: [a] -> Int

length = ana h

where h = FNat . (id -|- snd) . unFList . out’

Obviously, it is still possible to work with data types declared explicitly as fixed
points of functors. For these, the instance of the FunctorOf class can be defined once
and for all.

instance (Functor f) => FunctorOf f (Mu f)

where inn’ = Mu

out’ = unMu

6.3.2 Polytypic Functor Instances

The PolyP approach to polytypic programming can also be used to avoid the explicit
definition of the map functions. The general idea is to describe functors using a fixed
set of combinators instead of arbitrary data types, and for these define the appropriate
instances of the Functor class.

The combinators follow directly from the definition of regular functors presented
in Chapter 2: we have the identity and constant functors, the lifting of the sum and
product bifunctors, and also the application of a functor to another functor. To allow
for a similar notation infix constructors will be used.

infixr 5 :+:

infixr 6 :*:

infixr 9 :@:

newtype Id x = Id {unId :: x}

newtype Const t x = Const {unConst :: t}

data (g :+: h) x = Inl (g x) | Inr (h x)

data (g :*: h) x = g x :*: h x

newtype (g :@: h) x = Comp {unComp :: g (h x)}

The Functor instances are trivial. Notice the use of class constraints to guarantee
that only instances of the Functor class are lifted.
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instance Functor Id

where fmap f (Id x) = Id (f x)

instance Functor (Const t)

where fmap f (Const x) = Const x

instance (Functor g, Functor h) => Functor (g :+: h)

where fmap f (Inl x) = Inl (fmap f x)

fmap f (Inr x) = Inr (fmap f x)

instance (Functor g, Functor h) => Functor (g :*: h)

where fmap f (x :*: y) = (fmap f x) :*: (fmap f y)

instance (Functor g, Functor h) => Functor (g :@: h)

where fmap f (Comp x) = Comp (fmap (fmap f) x)

Given this set of basic functors and functor combinators, there is no need to declare
new functor data types to capture the recursive structure of a data type. Instead, they
are declared using this basic set. For example, for integers and lists, the instances of the
FunctorOf class could be something like

instance FunctorOf (Const One :+: Id) Int

where inn’ (Inl (Const _)) = 0

inn’ (Inr (Id n)) = n+1

out’ 0 = Inl (Const _L)

out’ (n+1) = Inr (Id n)

instance FunctorOf (Const One :+: (Const a :*: Id)) [a]

where inn’ (Inl (Const _)) = []

inn’ (Inr (Const x :*: Id xs)) = x:xs

out’ [] = Inl (Const _L)

out’ (x:xs) = Inr (Const x :*: Id xs)

Unfortunately, this technique per se is not useful. The price to pay for not having
to define the Functor instances is an enormous growth in the use of coercing construc-
tors, rendering point-free programming almost impossible. That is the reason why the
above instances are now defined in the pointwise style. This problem can be solved by
implementing a mechanism to perform implicit coercion between structurally equivalent
data types, as described in the next section.

6.3.3 Implicit Coercion

To implement implicit coercion a multi-parameter type class is also used.
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class Rep a b | a -> b

where to :: a -> b

from :: b -> a

The first parameter should be a type declared using the basic set of functor combinators,
and the second is the type that results after evaluating those combinators. The func-
tional dependency imposes a unique result to evaluation. Unfortunately, a functional
dependency from b to a does not exist because, for example, a type A can be the result
of evaluating both Id A and A B.

The instances of Rep are also rather trivial. For example the identity and constant
functors can be evaluated as follows.

instance Rep (Id a) a

where to (Id x) = x

from x = Id x

instance Rep (Const a b) a

where to (Const x) = x

from x = Const x

Given a bifunctor ?, the type that implements (G ?̂ H) A is (G A) ? (H A). This means
that, for the case of products and sums, the types that implement G A and H A should
be computed prior to the resulting type. This evaluation order is guaranteed by using
class constraints.

instance (Rep (g a) b, Rep (h a) c) => Rep ((g :+: h) a) (Either b c)

where to (Inl x) = Left (to x)

to (Inr x) = Right (to x)

from (Left x) = Inl (from x)

from (Right x) = Inr (from x)

instance (Rep (g a) b, Rep (h a) c) => Rep ((g :*: h) a) (b, c)

where to (x :*: y) = (to x, to y)

from (x, y) = from x :*: from y

To ensure that context reduction terminates, standard Haskell requires that the con-
text of an instance declaration must be composed of simple type variables. In this
example, although that condition is not verified, reduction necessarily terminates be-
cause contexts always get smaller. In order to force the compiler to accept these dec-
larations, a non-standard type system extension must be activated with the option
-fallow-undecidable-instances.

The most difficult case is that of the composition combinator. To compute the type
that implements (G◦H) A we first determine the type B that implements H A, and then
return the type that implements G B. At the value level, we first apply the translation
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at the inner location (i.e, the value with type H A) using the map function for G, and
then translate the resulting value of type G B.

instance (Functor g, Rep (h a) b, Rep (g b) c) => Rep ((g :@: h) a) c

where to (Comp x) = to (fmap to x)

from y = Comp (fmap from (from y))

If G is a type functor instead of an expression involving functor combinators, the user
must provide an instance of Rep that explicitly tells the compiler how to implement a
value of type G B. In this cases the result is the value itself, and the instances are
trivial. For example, the following instance can be defined for lists.

instance Rep [a] [a]

where to = id

from = id

This situation could be avoided by using a different composition combinator for the
situation where G is a type functor. However, taking into account that, in practice,
the type functor of lists is usually the only one used to declare data types, that would
unnecessarily complicate the syntax.

A possible interaction with a Haskell interpreter could now be

> to (Id ’a’ :*: Const ’b’)

(’a’,’b’)

> from (’a’,’b’) :: (Id :*: Const Char) Char

Id ’a’ :*: Const ’b’

Since the same standard Haskell type can represent different functor combinations, the
expected result of the from function must be explicitly annotated. For example, another
possible interaction could be

> from (’a’,’b’) :: (Id :*: Id) Char

Id ’a’ :*: Id ’b’

Since this type-checking problem would occur frequently, we decided to annotate
most of the polytypic functions with the functor to which they should be specialized.
Types cannot be passed as arguments to functions, and so this is achieved indirectly
through the use of a “dummy” argument and another non-standard Haskell feature,
namely scoped type variables [JS02]. Since in Haskell only values of a concrete type
(that is, of kind ?) can be passed as arguments, it is not possible to state directly the
functor to which a function should be specialized. However, by using the type class
FunctorOf, together with its functional dependency, it suffices to pass as argument a
value of a data type that is the fixed point of the desired functor. Since recursive data
types can still be defined explicitly using Mu, there is always a convenient choice for this
parameter.

To start with, a polytypic map function is defined as follows.
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pmap :: (FunctorOf f d, Rep (f a) fa, Rep (f b) fb) =>

d -> (a -> b) -> (fa -> fb)

pmap (_::d) f =

to . (fmap :: (FunctorOf f d) => (a -> b) -> (f a -> f b)) f . from

It is also useful to have the isomorphisms in and out with implicit coercion. In fact,
this was the reason why the primes were used in the declaration of the FunctorOf class.

out :: (FunctorOf f d, Rep (f d) fd) => d -> fd

out = to . out’

inn :: (FunctorOf f d, Rep (f d) fd) => fd -> d

inn = inn’ . from

Since each data type has a unique base functor the following interaction is valid.

> out []

Left _L

> out [1,2,3]

Right (1,[2,3])

A polytypic hylomorphism can be defined using pmap. Notice the use of bottom
as the “dummy” argument to indicate the specific type to which a polytypic function
should be instantiated.

hylo :: (FunctorOf f d, Rep (f b) fb, Rep (f a) fa) =>

d -> (fb -> b) -> (a -> fa) -> a -> b

hylo (_::d) g h = g . pmap (_L::d) (hylo (_L::d) g h) . h

Notice that this type annotation is essentially the same that was stated using a
subscript in the theoretical notation. It is now possible to program with hylomorphisms
in a truly point-free style. For example, the definition of factorial given in Example 2.1
can be transcribed directly to Haskell.

fact :: Int -> Int

fact = hylo (_L :: [Int]) f g

where g = (id -|- succ /\ id) . out

f = one \/ mult

Since explicit fixed points can be used, it is possible to use hylo without having
to declare the type of intermediate data structure, nor the respective instance of the
FunctorOf class. For example, the Fibonacci function can be defined using a binary
shape tree as intermediate structure.

fib :: Int -> Int

fib = hylo (_L :: Mu (Const One :+: (Id :*: Id))) f g

where g = (bang -|- pred /\ pred . pred) . ((<=1)?)

f = one \/ plus
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Other recursion patterns can now be defined exactly as presented in Chapter 3, with
the functor that generates the intermediate data structure explicitly stated.

cata :: (FunctorOf f d, Rep (f a) fa, Rep (f d) fd) =>

d -> (fa -> a) -> d -> a

cata (_::d) g = hylo (_L::d) g out

ana :: (FunctorOf f d, Rep (f a) fa, Rep (f d) fd) =>

d -> (a -> fa) -> a -> d

ana (_::d) h = hylo (_L::d) inn h

This approach works equally well with data types defined using type functors, such
as rose trees. Given the expected declaration of a data type Rose a, with an appropriate
instance of FunctorOf

data Rose a = Forest a [Rose a]

instance FunctorOf (Const a :*: ([] :@: Id)) (Rose a)

where inn’ (Const x :*: Comp l) = Forest x (map unId l)

out’ (Forest x l) = Const x :*: Comp (map Id l)

the preorder traversal of rose trees can be defined exactly as in Example 3.8.

preorder :: Rose a -> [a]

preorder = cata (_L::Rose a) (cons . (id >< flatten))

flatten :: [[a]] -> [a]

flatten = cata (_L::[[a]]) (nil \/ cat)

One of the advantages of this approach is that, in order to declare the more advanced
recursion patterns, we no longer need to define the functor transformers – this results
from the ability to explicitly declare the intermediate data type as the fixed point of a
functor. For example, the implementations of paramorphisms and accumulations can
now be transcribed from their definitions.

para (_::d) g =

hylo (_L :: FunctorOf f d => Mu (f :@: (Id :*: Const d)))

g (pmap (_L::d) (id /\ id) . out)

accum (_::d) g t =

hylo (_L :: FunctorOf f d => Mu (f :*: (Const a)))

g ((t /\ snd) . (out >< id))

The types of these recursion operators are omitted because of their increasing complexity.
Finally, we present the definitions of the factorial as a paramorphism, and of addition as
an accumulation. Again, these are exactly the same as the ones presented in examples
3.15 and 3.20, respectively.
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fact :: Int -> Int

fact = para (_L::Int) g

where g = one \/ mult . (id >< succ)

plus :: (Int,Int) -> Int

plus = accum (_L::Int) g t

where t = (fst -|- id >< succ) . distl

g = (snd \/ fst) . distl

6.4 Visualization of Intermediate Data Structures

This section describes how to incorporate in Pointless Haskell a generic visualization
mechanism for the intermediate data structures of hylomorphisms. This mechanism is
based on GHood [Rei01], a graphical animation tool built on top of Hood [Gil00], the
Haskell Object Observation Debugger. This feature is based on previous work on the
visualization of recursion trees of Haskell functions [Cun03]. The section starts with a
brief review of Hood and GHood.

6.4.1 Hood and GHood

Hood is a portable debugger for full Haskell, based on the concept of observation of
intermediate data structures as they are passed between functions. Its author argues
that this model is the analog, in the functional paradigm, to the traditional debugging
method of breakpointing and variable examination used in imperative programming.

The starting point to the implementation of Hood was the non-standard unsafe
function trace, included in all major Haskell distributions. This function has the type
String -> a -> a, and its semantics is to print the first argument as a side effect
and then return the second argument. There are some problems with using trace for
debugging purposes [Gil00]:

• The biggest problem is that trace is strict in its first argument, and if we want to
output some of the terms being evaluated the strictness properties of the observed
program will inevitably change.

• The output tends to be incomprehensible partly due to the unintuitive ordering
of lazy evaluation, and partly to the strictness on the first argument that might
sometimes trigger the evaluation of other traces.

• Its insertion on the code tends to be invasive, due to the need to convey explicitly
the outputed data in the first argument.

In order to overcome these problems, a new combinator with a similar type was
developed:
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observe :: (Observable a) => String -> a -> a

However, its semantics is considerably different from trace. The label is no longer
used to output the observations, but only for identification purposes when multiple
observation points coexist in the same program. Instead of just returning the second
argument, it stores it into some persistent structure for later rendering. It behaves like
an id function that somehow remembers its argument. The class restriction will be
explained later. For now it suffices to know that there are predefined instances to most
standard types.

Consider the following example presented in [Gil00]. In order to trace the execution
of the following function that returns the digits of an integer

digits :: Int -> [Int]

digits = reverse .

map (‘mod‘ 10) .

takeWhile (/= 0) .

iterate (‘div‘ 10)

observe can be inserted at the places where inspection of the intermediate data struc-
tures is required.

digits :: Int -> [Int]

digits = observe "after reverse" . reverse .

observe "after map" . map (‘mod‘ 10) .

observe "after takeWhile" . takeWhile (/= 0) .

observe "after iterate" . iterate (‘div‘ 10)

If this function is called with the parameter 1234, the following trace results.

-- after iterate

1234 : 123 : 12 : 1 : 0 : _

-- after map

4 : 3 : 2 : 1 : []

-- after reverse

1 : 2 : 3 : 4 : []

-- after takeWhile

1234 : 123 : 12 : 1 : []

Notice that unevaluated subexpressions are represented by underscore. The implemen-
tation of the observe function manages to eliminate all the major weaknesses of trace:

• It guarantees that the strictness properties of the observed program do not change.

• The capture of information (triggered by the evaluation of observe) is decou-
pled from presentation. The observations are post-processed when the program
terminates, and are grouped by their labels into a structured presentation.
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Figure 6.1: GHood screenshot

• Due to the existence of predefined instances for most standard types and a very
simple, combinator based, approach to define new instances of the class Observable,
minimal changes to the program are required.

The implementation of observe is based on a helper function observer, defined as
a method of the class Observable. Implementing new instances of the class Observable
is rather straightforward due to the high-level combinators and monads included in the
library. For example, the predefined instance for lists is implemented as follows.

instance (Observable a) => Observable [a] where

observer (a:as) = send ":" (return (:) << a << as)

observer [] = send "[]" (return [])

Function send is responsible for storing the information into some persistent struc-
ture for later rendering. Besides collecting information about what constructors are
being observed, and where they are located in the data structure, the send function
also records when the observation was done. This temporal information, that is not
used by Hood’s rendering, was the departing point to the developing of GHood’s ani-
mation mechanism. Instead of a text-based visualization, GHood opted for a graphical
visualization based on a simple tree-layout algorithm. The major change to the original
library consisted of logging the events into a text file, so that they can be processed
by an external viewer (developed in Java). For the user there are no changes at all.
The final state of the animation for the same example presented above is displayed in
Figure 6.1.
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6.4.2 Instrumenting Hylomorphisms for Visualization

The key mechanism behind intermediate data structure visualization is the Hylo-Split

law, that factorizes a hylomorphism into the composition of a catamorphism with an
anamorphism. The application of this law exposes the virtual data structure that rep-
resents the recursion tree of the hylomorphism, and allows us to insert an observation
point in order to record its runtime evolution. Following this approach, a new version
of the hylomorphism can be defined, to be used when visualization is desired.

hyloO (_::d) g h = cata (_L::d) g .

observe "Recursion Tree" .

ana (_L::d) h

Notice that this function behaves exactly as the former hylomorphism definition, and
can replace it in any definition, as long as the data type d belongs to the Observable

class. For example, in order to observe the recursion tree of the factorial function, it
suffices to replace hylo by hyloO in the previous definition. The list that results from
observing fact 5 is shown in Figure 6.2, and as expected corresponds to the list of all
numbers from 5 downto 1.

fact :: Int -> Int

fact = hyloO (_L :: [Int]) f g

where g = (id -|- succ /\ id) . out

f = one \/ mult

Figure 6.2: Recursion tree of fact 5.

It is also possible to define observed versions of other recursion patterns. For exam-
ple, the definition of the observed catamorphism can be

cataO (_::d) f = hyloO (_L::d) f out
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In order to observe a hylomorphism whose intermediate data structure is given by
an explicit fixed point some additional work is required. Since Mu can be applied to
any arrangement of the functor combinators, a polytypic instance of the Observable

class must be defined. Such definition is the subject of the next section. Assuming its
existence, the recursion tree of the Fibonacci function can be visualized as follows.

fib :: Int -> Int

fib = hyloO (_L :: Mu (Const One :+: Id :*: Id)) f g

where g = (bang -|- pred /\ pred . pred) . ((<=1)?)

f = one \/ plus

The binary shape tree that results from observing fib 5 is presented in Figure 6.3.
Notice that the number of leaves corresponds to the output of the function.

Figure 6.3: Recursion tree of fib 5.

A couple of visualization related remarks should be made about this tree. First,
unlike the factorial example, the nodes of the tree are not tagged with constructor
names because in the fixpoint view they simply do not exist. Second, the thunks that
appear on the leaves correspond to unevaluated parts of the data structure. In this
particular case, they occur because the leaves contain values of type One, that cannot
be observed without raising an exception since they are undefined. This exposes a
minor drawback of the polytypic observation function, namely that it will be impossible
to distinguish an observation of the One data type from observations of unevaluated
structures. For example, consider the following definition of the length function.

length :: Observable a => [a] -> Int

length = cataO (_L::Mu (Const One :+: Const a :*: Id)) g

where g = zero \/ succ . snd

The recursion tree of len [1,2,3] is shown in Figure 6.4. Notice that, since this
function is polymorphic and does not need to evaluate the elements of the list, they are
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represented by unevaluated thunks. But the same happens with the empty list (the last
thunk in the sequence), since it is defined as the left injection of the bottom element.

Figure 6.4: Recursion tree of length [1,2,3].

The above definition of hyloO still suffers from an annoying limitation. Suppose that
one wants to observe a user-defined data type, for which an instance of the FunctorOf

class has already been defined. With the present definition of hyloO, the respective
instance of Observable must be defined, even if a generic observation for the isomorphic
fixed point already exists. In order to redirect the visualization to that instance, and
thus avoid the need to define a new one, the definition of hyloO is changed as follows.
Notice the use of the explicit type parameter, and the FunctorOf class, to force the
hylomorphism to build as intermediate structure an element of type Mu f instead of
the isomorphic element of type d. This is possible because f is simultaneously the base
functor of Mu f and d.

hyloO (_::d) g h = cata (_L::FunctorOf f d => Mu f) g .

observe "Recursion Tree" .

ana (_L::FunctorOf f d => Mu f) h

The utility of this trick is illustrated with a final example. Suppose that the instance
of FunctorOf for the Tree data type is already defined. It is well known that the quick-
sort algorithm can be defined as a hylomorphism using a binary tree as an intermediate
structure [Aug99].

qsort :: (Observable a, Ord a) => [a] -> [a]

qsort = hyloO (_L::Tree a) f g

where g = (id -|- fst /\ part) . out

f = nil \/ cat . (id >< cons) . assocr . (swap >< id) . assocl

Most of the work is done by the part function, of type (a,[a]) -> ([a],[a]), that
divides the tail into two lists: one keeps the elements that are smaller than the head of the
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input list, and the other the remaining elements. Even without declaring the Observable
instance for Tree, the binary search tree that models the recursion tree of this definition
can be visualized. Figure 6.5 shows the recursion tree of qsort [3,2,4,3,1].

Figure 6.5: Recursion tree of qsort [3,2,4,3,1].

6.4.3 Polytypic Observable Instances

In order to explain how a generic observer can be defined, the definition of << is expanded
in the following definition of the Observable instance for lists.

instance (Observable a) => Observable [a] where

observer (a:as) = send ":" (do {a’ <- thunk a

as’ <- thunk as

return (a’:as’)})

observer [] = send "[]" (return [])

The first parameter of the send function is the tag that labels the intermediate nodes
of the tree. As already mentioned, this tag will be ignored in the visualization of values
declared explicitly using the fixpoint operator. The second parameter is a value in the
state ObserverM, that is executed by the send function in order to evaluate a term and
simultaneously collect information for the renderer. Function thunk is invoked for each
child in a node, and graphically it will trigger a new branch in the tree. Even without
presenting more details, it is clear that the monadic code follows the structure of the
type, and so it should be possible to define generically a function for embedding a value
into ObserverM. In order to make this idea more precise, the desired instance for the
fixpoint view of the list data type is presented.

instance Observable a => Observable (Mu (Const One :+: Const a :*: Id))

where observer (Mu (Inl (Const x))) =

send "" (do x’ <- thunk x
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return (Mu (Inl (Const x’))))

observer (Mu (Inr (Const x :*: Id y))) =

send "" (do x’ <- thunk x

y’ <- thunk y

return (Mu (Inr (Const x’ :*: Id y’))))

Notice that the thunk function is invoked for every recursive occurrence of the data type
and, in case of parameterized types, also at the content nodes (signaled by a constant
in the base functor).

Following the PolyP approach, a class to contain the new polytypic function is first
defined. For a data type µF , this function will be responsible for embedding a value
of type F (µF ) into the state monad ObserverM. It receives as parameter a monadic
function that should be applied when the functor is the identity. The need for this
parameter will be justified later.

class FunctorO f

where fmapO :: (a -> ObserverM b) -> f a -> ObserverM (f b)

The instances for the basic set of functor combinators can be defined as follows.

instance FunctorO Id

where fmapO f (Id x) = do x’ <- f x

return (Id x’)

instance Observable a => FunctorO (Const a)

where fmapO f (Const x) = do x’ <- thunk x

return (Const x’)

instance (FunctorO f, FunctorO g) => FunctorO (f :+: g)

where fmapO f (Inl x) = do x’ <- fmapO f x

return (Inl x’)

fmapO f (Inr x) = do x’ <- fmapO f x

return (Inr x’)

instance (FunctorO f, FunctorO g) => FunctorO (f :*: g)

where fmapO f (x :*: y) = do x’ <- fmapO f x

y’ <- fmapO f y

return (x’ :*: y’)

instance (FunctorO g, FunctorO h) => FunctorO (g :@: h)

where fmapO f (Comp x) = do x’ <- fmapO (fmapO f) x

return (Comp x’)

Since thunk should only be applied at recursive values, it cannot be blindly applied at
each occurrence of the identity functor. Due to the composition combinator, the identity
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functor may also occur in other positions. For example, the following functor can also
be used to model lists.

Id :@: (Const One :+: Const a :*: Id)

The parameterization with a monadic function and the instance implementation for the
composition guarantees that, if we invoke fmapO with thunk as parameter to an element
of this type, it will only be applied to the rightmost identity (the one that denotes the
recursive occurrence).

The name fmapO comes from the fact that this function closely resembles a monadic
map [Fok94]. Given a monad M and a functor F , the monadic map is a function of
type (A → M B) → (F A → M (F B)) that distributes a monadic operation through
the functor. Likewise to ordinary map, this is a well known polytypic function (over the
structure of F ), and is offered in the libraries of some generic programming languages,
namely Generic Haskell [CHJ+01]. The only place where fmapO differs from a monadic
map is in the treatment of the constant functor, where it applies thunk instead of the
return function.

Given fmapO, the implementation of the Observable instance for Mu is very simple.

instance (Functor f, FunctorO f) => Observable (Mu f)

where observer (Mu x) = send "" (do x’ <- fmapO thunk x

return (Mu x’))

Finally, the trivial instance of Observable for the terminal data type is defined.
Remember that it is not possible to observe the only value of this type, unless an
exception is raised. In practice that will never happen, and an unevaluated thunk will
be displayed instead.

instance Observable One

where observer _ = _L

6.5 Summary

This chapter presented a Haskell library that can be used to program with recursion
patterns in a point-free and polytypic style. The implementation of polytypic abilities
is similar to the one in the PolyP library. To enable a truly point-free style, we defined
an implicit coercion mechanism that encodes a limited form of structural equivalence
between types. The implementation required some extensions to the standard Haskell
type system. If used without care, these extensions can make type-checking undecidable.
By introducing type annotations similar to the ones used in the theoretical notation this
problem was avoided. The main disadvantage of using this library is that, again due to
the heavy use of extensions, the error messages displayed by the compiler are of limited
help for the programmer.
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We have also shown how to implement a generic mechanism for visualizing inter-
mediate data structures of hylomorphisms. This feature is very useful for program
understanding, since it graphically exposes the intermediate data structure that results
from the factorization of a hylomorphism using the Hylo-Split law. Since it is based on
Hood, the implementation preserves the strictness properties of the original program.
This feature is also very useful to identify opportunities to apply the Hylo-Shift law.
For example, in the visualization of the length function, the existence of unevaluated
thunks means that, in fact, the type that parameterizes the hylomorphism can be sim-
plified into a natural number, by shifting all work into the anamorphism side. Notice
that the visualized tree looks like an element of type List 1 that is isomorphic to Nat.

The Pointless Haskell library is available for download from the following web page.

http://wiki.di.uminho.pt/bin/view/Alcino/PointlessHaskell
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Chapter 7

Deriving Point-free Definitions

This thesis advocates the use of the point-free style and recursion patterns for program
calculation and transformation. However, it is a fact that most programmers use explicit
recursion instead of recursion patterns, and probably no one uses a pure point-free style.
In this chapter we show how pointwise definitions can be converted into the point-free
style, and how to replace explicit recursion by hylomorphisms. The idea is to enable
one to program in one style, and automatically move to the other in order to perform
proofs and calculations. A useful comparison here is that of mathematical transforms
such as the Fourier transform or the Laplace transform, which allow to express functions
in different domains in which certain manipulations are easier to perform.

The well-known equivalence between simply-typed λ-calculus (with pairs and ter-
minal object) and cartesian closed categories was first suggested by Lambek [Lam80].
This equivalence includes a translation from pointwise terms to categorical combinators,
that was later used by Curien to define a new implementation technique for functional
languages – the categorical abstract machine [Cur93]. This translation is also the start-
ing point to our point-free derivation mechanism. We show how it can be extended
to handle sums and recursion. For recursion two different techniques will be used: a
direct encoding of the fixpoint operator using hylomorphisms; and the hylomorphism
derivation algorithm of Hu, Iwasaki, and Takeichi [HIT96]. We also show how this core
λ-calculus can be used to encode structured types and pattern matching. In practice,
this means that the translation can be applied to a reasonable subset of most modern
functional programming languages, namely Haskell. A standard denotational semantics
of λ-calculus based on pcpos is assumed.

7.1 Typed λ-Calculi and Cartesian Closed Categories

This section briefly presents a typed λ-calculus with products and a terminal object,
and its translation to cartesian closed categories. Given a set of base types Σ, types are

135
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determined by the following grammar, where α ∈ Σ.

A ::= α (Base types)
| 1 (Terminal type)
| A×A (Pairs)
| A → A (Functions)

The set of raw typed λ-terms is given by the following grammar, were c denotes a
constant with type ∆(c), and x ranges over variables.

M ::= ? (Unit)
| c (Constant)
| x (Variable)
| λx : A.M (Abstraction)
| (MM) (Application)
| 〈M,M〉 (Pairing)
| fst(M) (First projection)
| snd(M) (Second projection)

The usual notions of free and bound variable are defined on terms. FV(M) denotes
the set of free variables in M , and M [N/x] the capture-avoiding substitution of N for
the free occurrences of x in M . Typing rules are expressed in terms of typing judgments
Γ ` M : A, where M is a term, A a type, and Γ is a typing context – a list of type
declarations for the free variables in M . All variables in a context are assumed to be
different, and can be reordered implicitly. The valid type judgments of this λ-calculus
are those that can be derived from the following set of typing rules. A term in a valid
type judgment is said to be well typed.

Γ ` ? : 1 Γ ` c : ∆(c) Γ, x : A ` x : A

Γ, x : A ` M : B

Γ ` λx : A.M : A → B

Γ ` M : A → B Γ ` N : A

Γ ` MN : B

Γ ` M : A Γ ` N : B

Γ ` 〈M,N〉 : A×B

Γ ` M : A×B

Γ ` fst(M) : A

Γ ` M : A×B

Γ ` snd(M) : B

The equational theory of this typed λ-calculus is the least typed congruence gen-
erated by the following equations (modulo α-equivalence). It will be denoted by =λ.
Typing information is given in the η-equations since they can only be applied to terms
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of a specific type.

M =λ ? ⇐ M : 1 Eta-Unit

(λx : A.M)N =λ M [N/x] Beta-Func

M =λ λx : A.Mx ⇐ M : A → B ∧ x 6∈ FV(M) Eta-Func

fst(〈M,N〉) =λ M ∧ snd(〈M,N〉) = N Beta-Pair

M =λ 〈fst(M), snd(M)〉 ⇐ M : A×B Eta-Pair

Example 7.1 (Swap). To exemplify the use of =λ, the isomorphism between A × B

and B ×A is proved. The same proof was given in the point-free style in Chapter 2.

swap : A×B → B ×A

swap = λx.〈snd(x), fst(x)〉

26666666666666666666664

swap (swap M)

=λ {Definition of swap }
(λx.〈snd(x), fst(x)〉) ((λx.〈snd(x), fst(x)〉) M)

=λ {Beta-Func }
(λx.〈snd(x), fst(x)〉) 〈snd(M), fst(M)〉

=λ {Beta-Func }
〈snd(〈snd(M), fst(M)〉), fst(〈snd(M), fst(M)〉)〉

=λ {Beta-Pair }
〈fst(M), snd(M)〉

=λ {Eta-Pair }
M

Translation

The translation from the typed λ-calculus (pointwise) to the internal language of a carte-
sian closed category (point-free) is rather ingenious. It is detailed in many text books
on the subject [LS86, Pie91, AL91, Cro93]. The way variables are handled resembles the
translation of the lambda calculus into the de Bruijn notation [dB72], where variables
are represented by integers that “measure” the distance to the abstraction were they
where bound. In the present case, the typing context that contains the bound variables
is represented by a left-nested pair, and a variable will be replaced by the path to its
position in that tuple.

We begin with the interpretation of types. The function that translated types and
typing contexts to objects will be denoted by O( · ). It is assumed that each base type
A in Σ is represented by an object in the category, denoted by O(A). For the remaining
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types the translation is defined as expected.

O(1) = 1

O(A×B) = O(A)×O(B)
O(A → B) = O(B)O(A)

Assuming that ε denotes the empty context, the object that represents a typing
context is generated as follows.

O(ε) = 1

O(Γ, x : A) = O(Γ)×O(A)

The translation from λ-terms to morphisms in the category will be denoted by the
function M( · ). To be more precise, this function operates on typing judgments. A
judgment Γ ` M : A will be interpreted as a morphism

M(Γ ` M : A) : O(Γ) → O(A)

according to the following rules. In order to simplify the presentation, type annotations
are omitted from the basic categorical combinators.

M(Γ ` ? : 1) = !
M(Γ ` c : A) = c ◦ !
M(Γ, x : A ` x : A) = snd

M(Γ, y : A ` x : B) = M(Γ ` x : B) ◦ fst ⇐ x 6= y

M(Γ ` λx : A.M : A → B) = M(Γ, x : A ` M : B)
M(Γ ` MN : A) = ap ◦ (M(Γ ` M : B → A) MM(Γ ` N : B))
M(Γ ` 〈M,N〉 : A×B) = M(Γ ` M : A) MM(Γ ` N : B)
M(Γ ` fst(M) : A) = fst ◦M(Γ ` M : A×B)
M(Γ ` snd(M) : B) = snd ◦M(Γ ` M : A×B)

Notice that in the rules for application and projections, the type of M can be obtained
by type inference using the rules presented before.

The translation of a closed term M : A → B is the point that represents it in the
category, that is, a morphism of type 1 → O(B)O(A). As seen in Chapter 2, since the
category is cartesian closed, this point can be converted into the expected morphism
of type A → B using Pnt-Cancel. As such, for closed terms of functional type the
translation is defined as follows.

ap ◦ (M(` M : A → B) ◦ ! M id)

Example 7.2 (Identity). For example, the identity function λx : A.x is translated
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into
snd : 1 → AA

Since this is a closed term of functional type, it is possible to convert the result to a
morphism of type A → A and prove that it is indeed equivalent to id.

2666666666664

ap ◦ (snd ◦ ! M id)

= {Prod-Absor }
ap ◦ (snd× id) ◦ (! M id)

= {Exp-Cancel }
snd ◦ (! M id)

= {Prod-Cancel }
id

Example 7.3 (Swap). For the swap function defined in Example 7.1 we get the fol-
lowing translation.

snd ◦ snd M fst ◦ snd : 1 → B ×AA×B

Again, since it is of functional type, some simple calculations show that it is equivalent
to the expected definition.
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ap ◦ (snd ◦ snd M fst ◦ snd ◦ ! M id)

= {Prod-Absor }
ap ◦ (snd ◦ snd M fst ◦ snd× id) ◦ (! M id)

= {Exp-Cancel }
(snd ◦ snd M fst ◦ snd) ◦ (! M id)

= {Prod-Fusion }
snd ◦ snd ◦ (! M id) M fst ◦ snd ◦ (! M id)

= {Prod-Cancel }
snd M fst

Soundness

It can be shown that this translation is sound, i.e, that all equivalences proved using
= λ can also be proved in the categorical setting using the equational theory presented
in Chapter 2. Because of its length we omit the full proof of this fact. The interested
reader can check it, for example, in [Cur93, Mar96]. Since the equational laws related
to products have a direct correspondence in the categorical side, the most interesting
part of the proof concerns Beta-Func and Eta-Func. The fundamental result is that the
concept of substitution is replaced by that of composition. Consider the following typing
rule for substitution.

Γ, x : A ` M : B Γ ` N : A

Γ ` M [N/x] : B
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Assuming that the object that results from the translation of a context or a type is
denoted by the same identifier, we have that

M(Γ, x : A ` M : B) : Γ×A → B

M(Γ ` N : A) : Γ → A

M(Γ ` M [N/x] : B) : Γ → B

Then, it can be proved by structural induction on M that

M(Γ ` M [N/x] : B) = M(Γ, x : A ` M : B) ◦ (id MM(Γ ` N : A))

The soundness of the translation concerning Beta-Func follows trivially from this
lemma.
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M(Γ ` (λx : A.M)N : B)

= {Translation of application }
ap ◦ (M(Γ ` (λx : A.M) : A → B) MM(Γ ` N : A))

= {Translation of abstraction }
ap ◦ (M(Γ, x : A ` M : B) MM(Γ ` N : A))

= {Prod-Absor, Exp-Cancel }
M(Γ, x : A ` M : B) ◦ (id MM(Γ ` N : A))

= {Above lemma }
M(Γ ` M [N/x] : B)

7.2 Sums

We will now enrich this λ-calculus with sums.

A ::= . . .

| A + A (Sums)

At the term level, it is augmented with case analysis and injections.

M ::= . . .

| case(M,M,M) (Case analysis)
| inlA(M) (First injection)
| inrA(M) (Second injection)

The typing rules for these constructs are as follows.

Γ ` L : A + B Γ ` M : A → C Γ ` N : B → C

Γ ` case(L,M,N) : C

Γ ` M : A

Γ ` inlA(M) : A + B

Γ ` M : B

Γ ` inrB(M) : A + B
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Typically, the case expression will be used together with lambda abstractions, in the
form case(L, λx : A.M, λy : B.N). In Haskell, and assuming that sum is implemented
by the Either data type, this expression corresponds to

case L of (Left x ) -> M ; (Right y ) -> N

Concerning the equational theory, the following equivalences hold.

case(inl(L),M, N) =λ ML ∧ case(inr(L),M, N) =λ NL Beta-Case

MN =λ case(N,λx : A.M(inl(x)), λy : B.M(inr(y)))
⇐

x, y 6∈ FV(M) ∧ N : A + B ∧ M strict

Eta-Case

Given the pcpo semantics, a case expression diverges when its first argument diverges.
This fact justifies the strictness side condition in Eta-Case.

Translation

Our approach to the translation of sums is slightly different from other published works,
such as [Cro93]. The injections are handled straightforwardly.

M(Γ ` inl(M) : A + B) = inl ◦M(Γ ` M : A)
M(Γ ` inr(M) : A + B) = inr ◦M(Γ ` M : B)

The case translation is more difficult. We will first give an intuition of how it works.
Notice that case(L,M,N) : C is equivalent to (M ON)L (defined in a mixed, pointwise
and point-free, style). This equivalence exposes the fact that a case is just an instance
of application, and as such its translation exhibits the same top level structure:

O(Γ)
M(Γ`MON)MM(Γ`L)// O(CA+B × (A + B))

ap // O(C)

The question remains of how to combine M(Γ ` M : A → C) and M(Γ ` N : B →
C) in order to obtain the equivalent of M(Γ ` M ON : A + B → C). Our solution is
based on the internalization of the either combinator, that can be defined as follows.

either : CA × CB → CA+B

either = (ap O ap) ◦ (fst× id + snd× id) ◦ distr
Either-Def

To show that this definition is correct we show that its action on a pair of points yields
the expected result. This calculation uses some properties about distr that are stated
and proved in Appendix A.

either ◦ (f M g) = f O g Either-Pnt
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266666666666666666666666666666664

either ◦ (f M g)

= {Either-Def }
(ap O ap) ◦ (fst× id + snd× id) ◦ distr ◦ (f M g)

= {Exp-Fusion, Sum-Functor-Id }
(ap O ap) ◦ (fst× id + snd× id) ◦ distr ◦ ((f M g)× (id + id))

= {Distr-Nat }
(ap O ap) ◦ (fst× id + snd× id) ◦ ((f M g)× id + (f M g)× id) ◦ distr

= {Sum-Functor-Comp, Prod-Functor-Comp, Prod-Cancel }
(ap O ap) ◦ (f × id + g × id) ◦ distr

= {Pnt-Def, Sum-Absor, Exp-Cancel }
(f ◦ snd O g ◦ snd) ◦ distr

= {Sum-Absor, Distr-Snd }
(f O g) ◦ snd

= {Pnt-Def }
f O g

Notice that, given f : A → B, in the definition f = f ◦ snd the projection snd has
type 1 × A → A. However, the above proof is independent of this fact, and thus the
following more general law is also valid.

either ◦ (f ◦ snd M g ◦ snd) = (f O g) ◦ snd Either-Const

Given this combinator, the translation of the case is defined as

M(Γ ` case(L,M,N) : C)
=

ap ◦ (either ◦ (M(Γ ` M : A → C) MM(Γ ` N : B → C)) MM(Γ ` L : A + B))

Example 7.4 (Coswap). In order to exemplify the translation of sums, consider its
application to the pointwise definition of coswap.

coswap : A + B → B + A

coswap = λx.case(x, λy.inr(y), λz.inl(z))

The following result is obtained.

ap ◦ (either ◦ (inr ◦ snd M inl ◦ snd) M snd) : 1 → B + AA+B

The following calculation shows that this expression corresponds to the definition Coswap-

Def.
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ap ◦ (ap ◦ (either ◦ (inr ◦ snd M inl ◦ snd) M snd) ◦ ! M id)

= {Prod-Absor, Exp-Cancel }
ap ◦ (either ◦ (inr ◦ snd M inl ◦ snd) M snd) ◦ (! M id)

= {Either-Const }
ap ◦ ((inr O inl) ◦ snd M snd) ◦ (! M id)

= {Prod-Absor, Exp-Cancel }
(inr O inl) ◦ snd ◦ (id M snd) ◦ (! M id)

= {Prod-Cancel }
inr O inl

Soundness

To prove that this translation is sound concerning Beta-Case and Eta-Case, the following
facts should be proved using the equational theory of categorical combinators.

M(Γ ` case(inl(L),M, N)) = M(Γ ` ML)
M(Γ ` case(inr(L),M,N)) = M(Γ ` NL)

M(Γ ` MN) = M(Γ ` case(N,λx : A.M(inl(x)), λy : B.M(inr(y))))
⇐

x, y 6∈ FV(M) ∧ N : A + B ∧ M strict

To simplify the proof it is convenient to restate the laws for sums using the in-
ternalized version of the either combinator. Sum-Cancel can be defined and proved as
follows.

•inl ◦ either = fst ∧ •inr ◦ either = snd Either-Cancel
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•inl ◦ either

= {Pxe-Def }
ap ◦ (id× inl) ◦ either

= {Exp-Fusion, Prod-Functor-Comp }
ap ◦ (either × inl)

= {Prod-Functor-Comp, Either-Def, Exp-Cancel }
(ap O ap) ◦ (fst× id + snd× id) ◦ distr ◦ (id× inl)

= {Distr-Cancel }
(ap O ap) ◦ (fst× id + snd× id) ◦ inl

= {Sum-Absor, Sum-Cancel }
ap ◦ (fst× id)

= {Exp-Fusion, Exp-Reflex }
fst

As usual, we omit the similar proof for right injection. Notice that, due to Exp-Equal,
Either-Cancel can alternatively be defined in uncurried form as follows.

ap ◦ (either × inl) = ap ◦ (fst× id)
ap ◦ (either × inr) = ap ◦ (snd× id)

Either-Cancel-Alt
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For the remaining laws, namely Sum-Reflex and Sum-Fusion, a formulation using
either is more difficult due to the strictness side conditions. First, notice that both these
laws can be replaced by the following, that resembles Eta-Case at the point-free level.
The proof of this equivalence is quite easy and is omitted.

f ◦ inl O f ◦ inr = f ⇐ f strict Eta-Sum

Strict application. Consider a strict application operator sap : BA×A → B defined
by the following equations.

sap (f, x) =

{
⊥ if x = ⊥
f x otherwise

Then sap : BA → BA is a strictify operator, that transforms any function into its strict
version. The experienced Haskell programmer certainly recognizes this function, since it
is predefined in the language as follows, and is widely used to avoid unneeded laziness.

($!) :: (a -> b) -> (a -> b)

f $! x = x ‘seq‘ f x

This implementation uses the standard seq function, that verifies the following equa-
tions. Notice that this function cannot be defined within the language, but must be
provided by all compilers and interpreters.

seq x y =

{
⊥ if x = ⊥
y otherwise

Given strict f it is obvious that sap f = f . In general, given a function f : A → BC

that returns a strict function, sap ◦ f = f holds. A function of this type returns a strict
function if its uncurried version is right-strict. This concept is formalized as follows.

f right-strict ⇔ f ◦ (id×⊥) = ⊥ ◦ snd Rstrict-Def

sap ◦ f = f ⇐ ap ◦ (f × id) right-strict Sap-Cancel

Likewise to seq, it is not possible to define sap in general using the basic set of
categorical combinators. However, for the particular case of arguments of sum type it
can be defined. In Section 2.2 we have seen that distr ◦ undistr = id, but the same is not
true for undistr ◦ distr : A× (B + C) → A× (B + C). Given a value (x,⊥), distr returns
⊥ and thus undistr cannot recover the initial value, and also returns ⊥. This fact, that
makes CPO a non-distributive category, can be used to define the following instance of
sap for sums.

sap : C(A+B) × (A + B) → C

sap = ap ◦ undistr ◦ distr
Sap-Def
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If the second component of the input pair is not ⊥, the function in the first component
is applied to it. Otherwise, undistr ◦ distr returns ⊥C(A+B)×(A+B) = (⊥C(A+B) ,⊥A+B),
and since ⊥C(A+B) is the function that always returns bottom, the application yields
⊥C , as desired.

With the strictify operator, Eta-Sum can be restated, without an explicit strictness
side-condition, as f ◦ inl O f ◦ inr = sap f . This law can now be internalized using the
either combinator.

either ◦ (•inl M •inr) = sap Eta-Either
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either ◦ (•inl M •inr)

= {Either-Def }
(ap O ap) ◦ (fst× id + snd× id) ◦ distr ◦ (•inl M •inr)

= {Exp-Fusion, Sum-Functor-Id }
(ap O ap) ◦ (fst× id + snd× id) ◦ distr ◦ ((•inl M •inr)× (id + id))

= {Distr-Nat }
(ap O ap) ◦ (fst× id + snd× id) ◦ (((•inl M •inr)× id) + ((•inl M •inr)× id)) ◦ distr

= {Prod-Functor-Comp, Prod-Cancel }
(ap O ap) ◦ (•inl× id + •inr × id) ◦ distr

= {Pxe-Def, Sum-Absor }
(ap ◦ (ap ◦ (id× inl)× id) O ap ◦ (ap ◦ (id× inr)× id)) ◦ distr

= {Exp-Cancel }
(ap ◦ (id× inl) O ap ◦ (id× inr)) ◦ distr

= {Sum-Fusion, Ap-Lstrict, Lstrict-Strict }
ap ◦ ((id× inl) O (id× inr)) ◦ distr

= {Undistr-Def }
ap ◦ undistr ◦ distr

= {Sap-Def }
sap

Given this basic set of laws the soundness proof is much easier. As expected, the
proof concerning the Beta-Case equations uses the cancellation law of either.
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M(Γ ` case(inl(L), M, N))

= {Translation of case }
ap ◦ (either ◦ (M(Γ ` M) MM(Γ ` N)) MM(Γ ` inl(L)))

= {Translation of injection }
ap ◦ (either ◦ (M(Γ ` M) MM(Γ ` N)) M inl ◦M(Γ ` L))

= {Prod-Absor }
ap ◦ (either × inl) ◦ ((M(Γ ` M) MM(Γ ` N)) MM(Γ ` L))

= {Either-Cancel-Alt }
ap ◦ (fst× id) ◦ ((M(Γ ` M) MM(Γ ` N)) MM(Γ ` L))

= {Prod-Absor, Prod-Cancel }
ap ◦ (M(Γ ` M) MM(Γ ` L))

= {Translation of application }
M(Γ ` ML)
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The soundness proof concerning Eta-Case uses the following lemma, stating that a
variable that is not used in a term can be removed from the context.

M(Γ, x : A ` M) = M(Γ ` M) ◦ fst ⇐ x 6∈ FV(M) Drop-Var

This can be proved by structural induction on the shape of M , as shown in [Mar96] for
the cartesian closed subset. The extension of this proof to cover sums is trivial.

Another fact about the translation is that a strict function of type A → B is con-
verted into a function Γ → BA that returns a strict function. As such, due to Sap-Cancel

the following lemma holds.

sap ◦M(Γ ` M) = M(Γ ` M) ⇐ M strict Strict-Trans

We first prove that

M(γ ` λx : A.M(inl(x))) = •inl ◦M(Γ ` M)
M(γ ` λx : A.M(inr(x))) = •inr ◦M(Γ ` M)

⇐ x 6∈ FV(M) Aux
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M(Γ ` λx : A.M(inl(x)))

= {Translation of abstraction }
M(Γ, x : A ` M(inl(x)))

= {Translation of application }
ap ◦ (M(Γ, x : A ` M) MM(Γ, x : A ` inl(x)))

= {Drop-Var, x 6∈ FV(M) }
ap ◦ (M(Γ ` M) ◦ fst MM(Γ, x : A ` inl(x)))

= { Injection translation }
ap ◦ (M(Γ ` M) ◦ fst M inl ◦M(Γ, x : A ` x))

= {Variable translation }
ap ◦ (M(Γ ` M) ◦ fst M inl ◦ snd)

= {Prod-Def }
ap ◦ (M(Γ ` M)× inl)

= {Prod-Functor-Comp, Exp-Fusion }
ap ◦ (id× inl) ◦M(Γ ` M)

= {Pxe-Def }
•inl ◦M(Γ ` M)

Soundness concerning Eta-Case can then be proved by the following calculation.
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M(Γ ` case(N, λx : A.M(inl(x)), λy : B.M(inr(y))))

= {Translation of case }
ap ◦ (either ◦ (M(Γ ` λx : A.M(inl(x))) MM(Γ ` λy : B.M(inr(y)))) MM(Γ ` N))

= {Aux, x 6∈ FV(M), y 6∈ FV(M) }
ap ◦ (either ◦ (•inl ◦M(Γ ` M) M •inr ◦M(Γ ` M)) MM(Γ ` N))

= {Prod-Fusion }
ap ◦ (either ◦ (•inl M •inr) ◦M(Γ ` M) MM(Γ ` N))

= {Eta-Either }
ap ◦ (sap ◦M(Γ ` M) MM(Γ ` N))

= {Strict-Trans }
ap ◦ (M(Γ ` M) MM(Γ ` N))

= {Translation of application }
M(Γ ` MN)

7.3 Explicit Recursion

Instead of working with a fixed set of base types and a set of constants to manipulate
them, we will incorporate in our λ-calculus the theory of recursive data types presented
in Section 2.3. To be more specific, at the type level we have

A ::= . . .

| µ(F ) (Recursive data type)

where F is a regular functor, whose operation on types is defined as expected. At
the term level the generic constructor and destructor, and the fixpoint operator are
introduced.

M ::= . . .

| in(M) (Constructor)
| out(M) (Destructor)
| fix(M) (Fixpoint)

The typing rules are

Γ ` M : F (µ(F ))
Γ ` in(M) : µ(F )

Γ ` M : µ(F )
Γ ` out(M) : F (µ(F ))

Γ ` M : A → A

Γ ` fix(M) : A

The characterization of the fixpoint operator includes the following equation (for a
complete theory see [SP00]).

fix(M) =λ M(fix(M)) Beta-Fix
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Translation

The translation of the constructors and destructors is trivial.

M(Γ ` in(M) : µ(F )) = in ◦M(Γ ` M : F (µ(F )))
M(Γ ` out(M) : F (µ(F ))) = out ◦M(Γ ` M : µ(F ))

For the fixpoint operator the translation uses the definition of fix using a hylomor-
phism, presented in section 2.4. The intermediate data structure of the hylomorphism
is a stream of functions of type A → A.

M(Γ ` fix(M) : A) = [[ap, id M id]] ◦M(Γ ` M : A → A)

Example 7.5 (Repeat). We now give a simple example of translating a recursive
function defined over a recursive data type. Consider the function that given an element
generates an infinite stream with copies of that value. It is quite similar to the one
defined in Example 3.12 for lists. As seen in Section 2.4, streams of elements of type A

are defined as the fixed point of A ×̂ Id. In the point-free style this function could be
defined as follows.

repeat : A → Stream A

repeat = bd(id M id)ceStream A

Using the λ-calculus presented this chapter, a possible definition is

repeat : A → Stream A

repeat = λx.fix(λy.in(〈x, y〉))

By applying the translation rules to this definition we get the following point-free ex-
pression. In this case, the intermediate data structure of the hylomorphism that encodes
fix is a stream of functions of type Stream A → Stream A.

fix ◦ in ◦ (snd ◦ fst M snd) : 1 → (Stream A)A

The following calculation shows that this expression is indeed equivalent to the above
anamorphism.



7.3 Explicit Recursion 149
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ap ◦ (fix ◦ in ◦ (snd ◦ fst M snd) ◦ ! M id)

= {Prod-Absor, Exp-Cancel }
fix ◦ in ◦ (snd ◦ fst M snd) ◦ (! M id)

= {Prod-Absor, Prod-Reflex }
fix ◦ in ◦ (snd× id) ◦ (! M id)

= {Exp-Fusion, Prod-Cancel }
fix ◦ in

= {Fix-Def, Hylo-Fusion }264 (id M id) ◦ in = (id× in) ◦ (in M id)

= {Prod-Fusion, Prod-Absor }
in M in = in M in

[[ap, in M id]]

= {Prod-Absor, in× id : A× Id
.→ (Stream A → Stream A)× Id }

[[ap ◦ (in× id), id M id]]

= {Exp-Cancel, Ana-Def }
bd(id M id)ce

Example 7.6 (Repeat). Notice that the repeat function can also be defined as follows.

repeat : A → Stream A

repeat = fix(λy.λx.in(〈x, y x〉))

In this case, the translation rules yield the following point-free expression.

fix ◦ in ◦ (snd M ap ◦ (snd ◦ fst M snd))

To prove that this is also equal to the expected anamorphism, some simplifications are
first performed.
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ap ◦ (fix ◦ in ◦ (snd M ap ◦ (snd ◦ fst M snd)) ◦ ! M id)

= {Prod-Def }
ap ◦ (fix ◦ in ◦ (snd M ap ◦ (snd× id)) ◦ ! M id)

= {Prod-Def, Prod-Cancel }
ap ◦ (fix ◦ in ◦ (snd ◦ (snd× id) M ap ◦ (snd× id)) ◦ ! M id)

= {Prod-Fusion, Exp-Fusion }
ap ◦ (fix ◦ in ◦ (snd M ap) ◦ snd ◦ ! M id)

= {Exp-Fusion,Prod-Def, Prod-Cancel }
ap ◦ (fix ◦ in ◦ (snd M ap) ◦ snd M id)

= {Fix-Def, Hylo-Fusion }
ap ◦ ([[ap, in ◦ (snd M ap) ◦ snd M id]] M id)

= {Prod-Absor, Hylo-Shift, † }
ap ◦ ([[ap ◦ (in ◦ (snd M ap) ◦ snd× id), id M id]] M id)

= {Exp-Cancel }
ap ◦ ([[in ◦ (snd M ap) ◦ snd, id M id]] M id)

= {Hylo-Shift, snd : A× Id
.→ Id, Prod-Cancel }

ap ◦ ([[in ◦ (snd M ap), id]] M id)
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Concerning †, notice that

in ◦ (snd M ap) ◦ snd× id : ((Stream A)A .→ (Stream A)A)× Id → A× Id

and notice also that, in the final hylomorphism, the intermediate data structure is µ(Id).
Ana-Uniq can be used to prove that this strange expression is indeed equivalent to the
expected anamorphism.266666666666666664

out ◦ ap ◦ ([[in ◦ (snd M ap), id]] M id)

= {Hylo-Cancel }
out ◦ ap ◦ (in ◦ (snd M ap) ◦ [[in ◦ (snd M ap), id]] M id)

= {Prod-Absor, Exp-Cancel }
out ◦ in ◦ (snd M ap) ◦ ([[in ◦ (snd M ap), id]] M id)

= { In-Out-Iso, Prod-Fusion, Prod-Cancel }
id M ap ◦ ([[in ◦ (snd M ap), id]] M id)

= {Prod-Absor }
(id× ap ◦ ([[in ◦ (snd M ap), id]] M id)) ◦ (id M id)

7.4 Deriving Hylomorphisms from Recursive Definitions

This last example shows that calculating with the derived point-free expressions can
sometimes be quite difficult. This is largely due to the fact that hylomorphisms are
introduced only to encode the fixpoint operator, yielding definitions very different from
those one would get if making the derivation by hand. Ideally, one would like the
resulting hylomorphisms to be more informative about the original function definition,
in the sense that the intermediate data structure should model its recursion tree.

Hu, Iwasaki, and Takeichi have defined an algorithm that derives such hylomor-
phisms from an explicitly recursive definition [HIT96]. This algorithm was developed to
be used in the fusion system HYLO [OHIT97], that uses the acid rain laws presented in
Section 2.4 to perform deforestation. Basically, the algorithm mechanizes the informal
process that has been used to derive hylomorphisms in Section 2.4. It has several limi-
tations, namely it can not handle mutual or nested recursion, but it covers most of the
useful function definitions.

In the present context, the idea is to use this algorithm in a stage prior to the
point-free translation defined in the previous sections. First, a pointwise hylomorphism
is derived, and then the translation is applied to the algebra and the coalgebra that
parameterize it. The main difference between the presentation given in [HIT96] and the
one given here lies in the underlying λ-calculus. While the original formulation allowed
for user defined types a la Haskell and general pattern matching, in our λ-calculus
data types are declared as fixed points, and pattern matching is restricted to sums. In
[OHIT97] some extensions were made in order to cover more language constructs, but
since we found some errors in those extensions the presentation will be restricted to the
basic algorithm presented in [HIT96].
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The hylomorphism derivation can be summarized as follows. Given a single-parameter
recursive function defined using fixpoint

fix(λf.λx.L) : A → B

we will define three transformations: one to derive the functor that generates the inter-
mediate data type (F), a second one to derive the algebra (A), and another one for the
coalgebra (C). The above function will be translated into the following hylomorphism,
where a dot on top of an identifier signals the creation of a fresh variable.

[[λż.A(L, z), λx.C(L)]]µ(F(L)) : A → B

Some restrictions are imposed on the syntax used to define recursive functions. The
first is that the definition must be a closed expression, that is FV(L) = {f, x}. This
restriction guarantees that the algebra and the coalgebra are also closed. If that was not
the case, it would be necessary to propagate the typing context inside the hylomorphism.
This can only be achieved by changing the intermediate data structure, in a similar way
to the accumulation recursion pattern presented in Section 3.5. Of course, the algebra
and the coalgebra would also need to be modified, and the translation would produce
hylomorphisms as unmanageable as the ones obtained by direct encoding of the fixpoint
operator.

The second restriction is that the body L of the function fix(λf.λx.L) to be translated
must be defined in two stages, according to the following grammar.

L ::= case(M,λx.L, λx.L) ⇐ f 6∈ FV(M)
| N

N ::= ?

| c

| x ⇐ x 6= f

| (f N) ⇐ f 6∈ FV(N)
| (N N)
| 〈N,N〉
| g(N) ⇐ g ∈ {fst, snd, inl, inr, in, out}

Notice that M denotes the grammar of the full λ-calculus defined in the previous sec-
tions, and that x ranges over variables. Throughout this section, we also assume that f

is the distinguished identifier of the variable in the first abstraction of the fixpoint.
A function is thus defined by a decision tree, implemented by case analysis on the

input, whose leaves are the different possible outputs. Although it may seem very
restrictive, this grammar covers a lot of interesting functions, as we will shortly see.
One of the main limitations in expressiveness is the absence of abstractions, which
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prevents the definition of some higher-order functions, like the accumulations defined in
Chapter 4.

The three transformations are now presented in turn. To be precise, they should be
defined over typing judgments, but to simplify the presentation the contexts and types
will be omitted. The transformation that generates the functor is defined as follows.

F(case(L, λx.M, λy.N)) = F(M) +̂ F(N)
F(?) = 1

F(c) = 1

F(x : A) = A

F(f M) = Id

F(M N) = F(M) ×̂ F(N)
F(〈M,N〉) = F(M) ×̂ F(N)
F(g(M)) = F(M) ⇐ g ∈ {fst, snd, inl, inr, in, out}

This transformation yields a summand for each path along the decision tree. Each
summand signals the presence of a recursive invocation using the identity functor. It
also has place-holders for the input-dependent information that should be propagated
unchanged from the coalgebra to the algebra. Since abstractions are not allowed, a
constant functor of appropriate type is introduced for every variable outside a recursive
invocation.

The definition of the coalgebra is very simple. It uses the same case analysis pattern
of the original function in order to put all the relevant information in the correct places.

C(case(L, λx.M, λy.N)) = case(L, λx.inl(C(M)), λy.inr(C(N)))
C(?) = ?

C(c) = ?

C(x) = x

C(f M) = M

C(M N) = 〈C(M), C(N)〉
C(〈M,N〉) = 〈C(M), C(N)〉
C(g(M)) = C(M) ⇐ g ∈ {fst, snd, inl, inr, in, out}

The generation of the algebra is a little more complicated, because each variable
and recursive call must be replaced by the path to the place where it was stored by the
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coalgebra. In order to achieve this, an accumulator with the current path is used.

A(case(L, λx.M, λy.N), E) = case(E, λẋ.A(M,x), λẏ.A(N, y))
A(?,E) = ?

A(c, E) = c

A(x,E) = E

A(f M, E) = E

A(M N, E) = (A(M, fst(E)) A(N, snd(E)))
A(〈M,N〉, E) = 〈A(M, fst(E)),A(N, snd(E))〉
A(g(M), E) = g(A(M), E) ⇐ g ∈ {fst, snd, inl, inr, in, out}

Without further optimizations, these transformations generate some redundancy in
the intermediate data structure of the hylomorphism. In fact, it is not necessary to store
elements of type 1 for all constants. A useful simplification that can be implemented
over pairing and application, is to create a tuple only if variables or recursive calls appear
on both sub-terms. We briefly show how to implement this simplification on pairs. The
definition for application is similar. Notice that the occurrence of a recursive call is
signaled by the presence of the free variable f . For the intermediate data type we have

F(〈M,N〉) =


F(M) if FV(N) = ∅
F(N) if FV(M) = ∅
F(M) ×̂ F(N) otherwise

and for the coalgebra and algebra:

C(〈M,N〉) =


C(M) if FV(N) = ∅
C(N) if FV(M) = ∅
〈C(M), C(N)〉 otherwise

A(〈M,N〉, E) =

{
〈A(M,E),A(N,E)〉 if FV(N) = ∅ ∨ FV(M) = ∅
〈A(M, fst(E)),A(N, snd(E))〉 otherwise

We now give three examples of using this translation.

Example 7.7 (Repeat). By applying this algorithm to the fixpoint definition of repeat

fix(λf.λx.in(〈x, f x〉))

previously given in Example 7.6, we get

[[λz.A(in(〈x, f x〉), z), λx.C(in(〈x, f x〉))]]µ(F(in(〈x,f x〉)))
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After evaluating the three transformations

F(in(〈x, f x〉)) = F(〈x, f x〉)
= F(x) ×̂ F(f x)
= A ×̂ id

C(in(〈x, f x〉)) = C(〈x, f x〉)
= 〈C(x), C(f x)〉
= 〈x, x〉

A(in(〈x, f x〉), z) = in(A(〈x, f x〉, z))
= in(〈A(x, fst(z)),A(f x, snd(z))〉)
= in(〈fst(z), snd(z)〉)

the following hylomorphism is obtained.

[[λz.in(〈fst(z), snd(z)〉), λx.〈x, x〉]]µ(A×̂Id)

This pointwise expression can be converted into the following point-free definition.

repeat = [[ap ◦ (in ◦ (fst ◦ snd M snd ◦ snd) ◦ ! M id), ap ◦ (snd M snd ◦ ! M id)]]µ(A×̂Id)

Unlike with the direct translation of the fixpoint operator, it is now very easy to prove
that this hylomorphism is equivalent to the anamorphism bd(id M id)ce, as the following
calculations shows.
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ap ◦ (in ◦ (fst ◦ snd M snd ◦ snd) ◦ ! M id)

= {Prod-Absor, Exp-Cancel }
in ◦ (fst ◦ snd M snd ◦ snd) ◦ (! M id)

= {Prod-Fusion, Prod-Cancel }
in ◦ (fst M snd)

= {Prod-Reflex }
in

26666664
ap ◦ (snd M snd ◦ ! M id)

= {Prod-Absor, Exp-Cancel }
(snd M snd) ◦ (! M id)

= {Prod-Fusion, Prod-Cancel }
id M id

Example 7.8 (Length). Consider now the pointwise definition of length.

length : List A → Nat

length = fix(λf.λl.case(out(l), λx.in(inl(?)), λy.in(inr(f(snd(y))))))

The hylomorphism derivation algorithm yields the following definition.

[[λz.case(z, λx.in(inl(?)), λy.in(inr(y))), λl.case(out(l), λx.inl(?), λy.inr(snd(y)))]]µ(1+̂Id)
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After converting the algebra and the coalgebra into the point-free style we get

length = [[β, γ]]µ(1+̂Id)

where

β = ap ◦ (ap ◦ (either ◦ (in ◦ inl ◦ ! M in ◦ inr ◦ snd) M snd) ◦ ! M id)

γ = ap ◦ (ap ◦ (either ◦ (inl ◦ ! M inr ◦ snd ◦ snd) M out ◦ snd) ◦ ! M id)

The following calculations show that this hylomorphism is equivalent to the anamor-
phism defined in the Example 3.10.
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ap ◦ (ap ◦ (either ◦ (inl ◦ ! M inr ◦ snd ◦ snd) M out ◦ snd) ◦ ! M id)

= {Prod-Absor, Exp-Cancel }
ap ◦ (either ◦ (inl ◦ ! M inr ◦ snd ◦ snd) M out ◦ snd) ◦ (! M id)

= {Bang-Fusion, Either-Const }
ap ◦ ((inl ◦ ! O inr ◦ snd) ◦ snd M out ◦ snd) ◦ (! M id)

= {Prod-Absor, Exp-Cancel }
(inl ◦ ! O inr ◦ snd) ◦ snd ◦ (id× out ◦ snd) ◦ (! M id)

= {Prod-Cancel }
(inl ◦ ! O inr ◦ snd) ◦ out

= {Sum-Def, Bang-Reflex }
(id + snd) ◦ out2666666666666666666666666664

ap ◦ (ap ◦ (either ◦ (in ◦ inl ◦ ! M in ◦ inr ◦ snd) M snd) ◦ ! M id)

= {Prod-Absor, Exp-Cancel }
ap ◦ (either ◦ (in ◦ inl ◦ ! M in ◦ inr ◦ snd) M snd) ◦ (! M id)

= {Bang-Fusion, Either-Const }
ap ◦ ((in ◦ inl ◦ ! O in ◦ inr) ◦ snd M snd) ◦ (! M id)

= {Prod-Absor, Exp-Cancel }
(in ◦ inl ◦ ! O in ◦ inr) ◦ snd ◦ (id M snd) ◦ (! M id)

= {Prod-Cancel, Sum-Fusion }
in ◦ (inl ◦ ! O inr)

= {Sum-Def, Bang-Reflex }
in ◦ (id + id)

= {Sum-Functor-Id }
in

Example 7.9 (Map). In order to apply the hylomorphism derivation to the definition
of the map function for lists, the first parameter should be treated as a constant, since
the derivation algorithm can only handle functions with one parameter. Given a function
g : A → B, map can be defined as follows.

map g : List A → List B

map g = fix(λf.λx.case(out(x), λy.in(inl(?)), λz.in(inr(〈g(fst(z)), f(snd(z))〉))))

The derived pointwise hylomorphism uses a redundant intermediate data structure,
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because the derivation algorithm is blind to the fact that only the first projection of z

must be propagated.
map g = [[β, γ]]µ(1+̂A×List A×̂Id)

where
β = λx.case(x, λy.in(inl(?)), λz.in(inr(〈g(fst(fst(z))), snd(z)〉)))
γ = λx.case(out(x), λy.inl(?), λz.inr(〈z, snd(z)〉))

This fact does not complicate the calculations because the expected intermediate data
structure is easily obtained by shifting a natural transformation. After converting the
hylomorphism parameters into the point-free style, and performing simplifications sim-
ilar to the ones in the previous examples, we get the following definition.

[[in ◦ (id + g ◦ fst× id), (id + id M snd) ◦ out]]µ(1+̂A×List A×̂Id)

Using Prod-Functor-Comp, Sum-Functor-Comp, Hylo-Shift and the fact

id + fst× id : 1 +̂ A× List A ×̂ Id
.→ 1 +̂ A ×̂ Id

it can be transformed into

[[in ◦ (id + g × id), (id + fst× id) ◦ (id + id M snd) ◦ out]]µ(1+̂A×̂Id)

Finally, by applying Sum-Functor-Comp, Prod-Absor, Prod-Reflex, and Cata-Def, the ex-
pected catamorphism is obtained.

map g = (|in ◦ (id + g × id)|)List A

7.5 Pattern Matching and Structured Types

An important feature of most modern functional programming languages is pattern
matching. Usually it is used together with structured types, that is, types declared as
collections of constructors, in the style allowed by the Haskell data keyword [Jon87]. It
is well-known how to implement an algorithm for calculating the isomorphic fixpoint of
a structured type [NJ03]. In Section 2.3 we informally described how to determine the
base functor and the isomorphism in from the constructors. The inverse is also easy to
implement: a constructor can be defined in terms of in, the injections, and pairs, using
the λ-calculus defined in this chapter. For example, the constructors of the Nat and List

data types can be defined as follows.

zero : Nat

zero = in(inl(?))
succ : Nat → Nat

succ = λx.in(inr(x))
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nil : List A

nil = in(inl(?))
cons : A× List A → List A

cons = λx.in(inr(〈fst(x), snd(x)〉))

In practice, this means that by replacing every occurrence of a constructor by its
“fixpoint definition”, it suffices to have pattern matching over the generic constructor in,
sums, pairs, and the constant ?. In the remaining of this section we show how to imple-
ment such a mechanism, but with some limitations: there can be no repeated variables
in the patterns, no overlapping, and the patterns must be exhaustive. Syntactically, the
following construct is introduced. It matches an expression against a set of patterns,
binds all the variables on the matching one, and returns the respective right-hand side.

M ::= . . .

| match(M, {P → M, . . . , P → M})

The syntax of patterns is determined by the following grammar. Notice that patterns
are equivalent up to α-conversion.

P ::= ?

| x

| 〈P, P 〉
| in(P )
| inl(P )
| inr(P )

A matching is well-typed if, for each pattern, there exists a typing context containing
all its variables, such that the type of the pattern is the same as that of the matching
expression. This construct is merely syntactic sugar, and it is possible to translate a
well-typed matching into the core λ-calculus previously defined using a term rewriting
system.

The rudiments of rewriting theory will be presented with a little more detail in the
next chapter, but to understand the translation the following concepts suffice. The
application of the substitution θ to M is denoted by Mθ. A term L is an instance of
M if there exists a substitution θ such that L = Mθ. A term rewriting system R is a
set of rewrite rules with shape M  N , indicating that instances of M may be replaced
in any context by instances of N . This means that the final rewrite relation extends R

through the following inference rules, where f is any function symbol.

M  N

Mθ  Nθ

M  N

f(. . .M . . .) f(. . . N . . .)

We will now give the rules of the term rewriting system that encodes the required
translation. Matching over ? succeeds trivially. There can only be one pattern in the
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set due to the non-overlapping constraint.

match(M, {? → N}) N

Matching over a variable, binds the variable and triggers a substitution in the right-
hand side. Again, due to the non-overlapping constraint the set of patterns must be a
singleton.

match(M, {x → N}) N [M/x]

For pairs, components are matched in turns. The chosen order is irrelevant, but after
matching one projection with a specific pattern, the other one must only be matched
against the pairing patterns.

match(M, {〈P1, Q1,1〉 → N1,1

. . .

〈P1, Q1,j〉 → N1,j

. . .

〈Pi, Qi,1〉 → Ni,1

. . .

〈Pi, Qi,k〉 → Ni,k})

 

match(fst(M), {P1 → match(snd(M), {Q1,1 → N1,1

. . .

Q1,j → N1,j})
. . .

Pi → match(snd(M), {Qi,1 → Ni,1

. . .

Qi,k → Ni,k})})

To match over a sum type case analysis is used. Due to the exhaustiveness require-
ment, the set of patterns can be partitioned into two disjoint sets, containing terms
whose outermost constructor is inl and inr, respectively.

match(M, {inl(P1,1) → N1,1,

. . . ,

inl(P1,i) → N1,i,

inr(P2,1) → N2,1,

. . . ,

inr(P2,j) → N2,j})

 

case(M,λẋ.match(x, {P1,1 → N1,1,

. . . ,

P1,i → N1,i}),
λẏ.match(y, {P2,1 → N2,1,

. . . ,

P2,j → N2,j}))

Finally, when matching a value of a recursive type, the out function is used in order
to expose its top level structure.

match(M, {in(P1) → N1,

. . . ,

in(Pi) → Ni})
 

match(out(M), {P1 → N1,

. . . ,

Pi → Ni})

Notice that this rewrite relation is guaranteed to terminate because the patterns
always get smaller. We now give some examples of how to use this construct.

Example 7.10 (Assocr). Pattern matching is particularly useful to implement book-
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keeping functions, namely when one needs to rearrange information in tuples. For
example associativity for products can now be implemented as follows.

assocr : (A×B)× C → A× (B × C)
assocr = λt.match(t, {〈〈x, y〉, z〉 → 〈x, 〈y, z〉〉})

The above rewrite rules allow us to derive the following, not so intuitive, definition in
the core λ-calculus.

λt.match(t, {〈〈x, y〉, z〉 → 〈x, 〈y, z〉〉})
 λt.match(fst(t), {〈x, y〉 → match(snd(t), {z → 〈x, 〈y, z〉〉})})
 λt.match(fst(t), {〈x, y〉 → 〈x, 〈y, snd(t)〉〉})
 λt.match(fst(fst(t)), {x → match(snd(fst(t)), {y → 〈x, 〈y, snd(t)〉〉})})
 λt.match(fst(fst(t)), {x → 〈x, 〈snd(fst(t)), snd(t)〉〉})
 λt.〈fst(fst(t)), 〈snd(fst(t)), snd(t)〉〉

By translating this definition into the point-free style and performing some routine
calculations, the expected definition Assocr-Def is obtained.

Example 7.11 (Distr). Another interesting example is the implementation of distribu-
tivity.

distr : A× (B + C) → (A×B) + (A× C)
distr = λx.match(x, {〈y, inl(z)〉 → inl(〈y, z〉)

〈y, inr(z)〉 → inr(〈y, z〉)})

The translation of the matching clause proceeds as follows.

λx.match(fst(x), {y → match(snd(x), {inl(z) → inl(〈y, z〉)
inr(z) → inr(〈y, z〉)})})

 
λx.match(snd(x), {inl(z) → inl(〈fst(x), z〉)

inr(z) → inr(〈fst(x), z〉)})

 
λx.case(snd(x),λw.match(w, {z → inl(〈fst(x), z〉)})

λv.match(v, {z → inr(〈fst(x), z〉)}))

 
λx.case(snd(x),λw.inl(〈fst(x), w〉)

λv.match(v, {z → inr(〈fst(x), z〉)}))

 
λx.case(snd(x),λw.inl(〈fst(x), w〉)

λv.inr(〈fst(x), v〉))

After translating this expression into the point-free style we get

ap◦(ap ◦ (either ◦ (inl ◦ (fst ◦ snd ◦ fst M snd) M inl ◦ (fst ◦ snd ◦ fst M snd)) M snd ◦ snd)◦!Mid)

The following calculation shows that it is indeed equivalent to distr.
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ap ◦ (ap ◦ (either ◦ (inl ◦ (fst ◦ snd ◦ fst M snd) M inl ◦ (fst ◦ snd ◦ fst M snd)) M snd ◦ snd) ◦ ! M id)

= {Prod-Absor, Exp-Cancel, Prod-Def }
ap ◦ (either ◦ (inl ◦ (fst ◦ snd× id) M inl ◦ (fst ◦ snd× id)) M snd ◦ snd) ◦ (! M id)

= {Exp-Fusion, Prod-Fusion }
ap ◦ (either ◦ (inl M inr) ◦ fst ◦ snd M snd ◦ snd) ◦ (! M id)

= {Prod-Fusion, Prod-Cancel, Prod-Def }
ap ◦ (either ◦ (inl M inr)× id)

= {Prod-Functor-Id, Either-Def, Exp-Cancel }
(ap O ap) ◦ (fst× id + snd× id) ◦ distr ◦ ((inl M inr)× id)

= {Sum-Functor-Id, Distr-Nat }
(ap O ap) ◦ (fst× id + snd× id) ◦ ((inl M inr)× id + (inl M inr)× id) ◦ distr

= {Sum-Functor-Comp, Prod-Functor-Comp, Prod-Cancel }
(ap O ap) ◦ (inl× id + inr × id) ◦ distr

= {Sum-Absor, Exp-Cancel }
(inl O inr) ◦ distr

= {Sum-Reflex }
distr

Example 7.12 (Length). Assume that lists are declared using constructors nil and
cons, the length function can be defined in a high-level, Haskell-like, style.

length : List A → Nat

length = fix(λf.λl.match(l, {nil → zero,

cons 〈h, t〉→ succ(f(t))}))

By replacing the constructors with the definition given above, and applying some β-
reductions we get the following definition

fix(λf.λl.match(l, {in(inl(?)) → in(inl(?)),
in(inr(〈h, t〉)) → in(inr(f(t)))}))

After rewriting this into the core λ-calculus the definition given in Example 7.8 is ob-
tained.

Example 7.13 (Fibonacci). The advantage of using pattern matching together with
the structured view of data types is even more evident when nested matching is needed.
One such example is the fibonacci definition.

fib : Nat → Nat

fib = fix(λf.λn.match(n, {zero → succ(zero),
succ(zero) → succ(zero),
succ(succ(y)) → plus(〈f(y), f(succ(y))〉)}))

By expanding the constructors and eliminating the pattern matching, we get the follow-
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ing less intuitive definition.

fix(λf.λn.case(out(n),λx.in(inr(in(inl(?)))),
λy.case(out(y),λz.in(inr(in(inl(?)))),

λw.plus(〈f(w), f(in(inr(w)))〉))))

Finally, after transforming this definition into the point-free style and simplifying the
result, the following definition of fibonacci is obtained.

fib : Nat → Nat

fib = [[one O (one O plus), (id + (id + id M succ) ◦ out) ◦ out]]µ(1+̂(1+̂Id×̂Id))

7.6 Summary

In this chapter we have developed a mechanism to translate a function defined in a core
functional programming language into the programming style presented in Chapter 2.
Starting from the standard translation of the simply typed λ-calculus into cartesian
closed categories, we have shown how to enrich it with case analysis over sums, and
generalized recursion. The translation of the former is based on the internalization of
the either combinator, and for the latter the hylomorphism encoding of the fixpoint
operator was used. Although the resulting expressions are quite verbose, and sometimes
quite intricate, they can be simplified by calculation. We have also shown how to enrich
the core λ-calculus with a limited form of pattern matching that simplifies the definition
of functions in many cases.

We have shown how to adapt the hylomorphism derivation algorithm first presented
in [HIT96] to our λ-calculus. This algorithm enables the derivation of more tractable
hylomorphisms, provided that the functions are defined with a special restricted syntax.
When combined with pattern matching, this syntax corresponds to the one typically
used to define most recursive functions in languages like Haskell.
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Chapter 8

Decidability of Equality

One of the initial claims of this thesis, and one that is usually referred in the literature,
is that point-free reasoning is more amenable to mechanization when compared to the
pointwise style. The goal of this chapter is to shed some light on this question. We
point to some relevant theoretical achievements and discuss some of the difficulties in
implementing a decision procedure for point-free equations.

To be more specific, the chapter addresses the problem of deciding equality in almost
bicartesian closed categories – categories with terminal object, products, exponentials,
and non-empty coproducts – thus covering the set of basic categorical combinators pre-
sented in Chapter 2. Notice that we mention coproducts and not sums, which means
that for this chapter all the issues concerning strictness will be set aside in the presen-
tation. The subject already presents enough difficulties, even with this simplification.
However, for the sake of coherence with the remaining chapters of the thesis, coproducts
will still be referred as sums.

Due to the equivalence between the typed λ-calculus (with pairs, sums, and terminal
object) and almost bicartesian closed categories, it is indifferent to study decidability in
either formalism. In Chapter 7 only the translation from pointwise to point-free terms
was presented, but it is straightforward to define and prove the soundness of the converse
translation. The focus of the chapter will be on term rewriting systems, since this is
a natural and well-established way of implementing both program transformation and
equational reasoning.

In fact, almost all the research concerning decidability of equality in almost bicarte-
sian closed categories has been carried out in the equivalent typed λ-calculus. The
chapter starts by presenting some of problems that occur when using standard rewriting
to implement a decision procedure in this setting. We then present an overview of the
first decidability proof, that uses an expansionary rewrite system to normalize point-
wise terms. An equivalent solution based on normalization by evaluation is also briefly
discussed. Finally, the few known results about point-free normalization are presented.

163
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8.1 Equational Reasoning and Term Rewriting Systems

Given an equational theory E, we say that the equality M = N is valid in E (denoted
E ` M = N) iff M = N is derivable from the set of equations E using the following
rules, where f is any function symbol and θ is a substitution.

M = M

M = N

N = M

L = M M = N

L = N

M = N

Mθ = Nθ

M = N

f(. . .M . . .) = f(. . . N . . .)

A theory E is decidable iff there is an algorithm which can determine if E ` M = N

for any M and N . One of the classic ways of deciding equality is through rewriting
[Klo92, Pla93]. The basic idea is to orient equations in E into rules M  N , in order
to obtain a term rewriting system R, which hopefully can be used to decide equality
in E. As mentioned in Section 7.5, the rewrite relation extends the set R through the
following inference rules.

M  N

Mθ  Nθ

M  N

f(. . .M . . .) f(. . . N . . .)

A redex of L is a subterm that is an instance of the left-hand side of a rewrite rule.  ∗ is
defined as the reflexive transitive closure of  . A term M is reducible if there is a term
N such that M  N . If that is not the case, then M is irreducible. If M  ∗ N and N

is irreducible then N is a normal form of M . A term rewriting system is terminating if
has no infinite rewriting sequences.

It is convenient to define the relation M ! N to mean M  N or N  M , and its
reflexive transitive closure!∗. We also write M ↓ N if there exists a term L such that
M  ∗ L and N  ∗ L, and M ↑ N if there exists a L such that L ∗ M and L ∗ N .
A term rewriting system is confluent if, for all terms M and N , if M ↑ N then M ↓ N .
It is locally confluent if for all terms L, M , and N , if L M and L N then M ↓ N .
One of the easiest ways to prove confluence is through Newman’s lemma, that states
that if a term rewriting system is locally confluent and terminating then it is confluent.

Suppose that a term L can be rewritten using two different rules M1  N1 and
M2  N2. This means that L has two redexes R1 = M1θ1 and R2 = M2θ2. Moreover,
suppose that R1 is a subterm of R2 but does not occur in a variable position of M2,
that is, θ2 does not contain the substitution R1/x for any variable x. The two terms
that result from rewriting L in this situation are called a critical pair. To prove local
confluence it suffices to show that all critical pairs have common normal forms.

A term rewriting system is Church-Rosser if, for all terms M and N , M !∗ N iff
M ↓ N . It is a well-known result that a term rewriting system is Church-Rosser iff it
is confluent. This result gives us a procedure for decidability in the equational theory
that originated R. Since M = N iff M !∗ N , it is only necessary to show that M and
N have a common normal form in order to decide if they are equal. However, in order
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to get an effective equality decision procedure, it is also convenient that the rewriting
system is terminating.

8.2 Normalization by Rewriting

Recall the equational theory of the core λ-calculus presented in the previous chapter.
Consider how these equations should be oriented to produce a term rewriting system.
β-equations can be oriented as contraction rules, i.e. rules that reduce the size of the
terms. From that theory we get the following set of rules.

(λx : A.M)N  M [N/x]

fst(〈M,N〉) M ∧ snd(〈M,N〉) N

case(inl(L),M,N) ML ∧ case(inr(L),M, N) NL

It is not so obvious how η-equations should be treated. These equalities can be inter-
preted in two different ways, leading to different orientations as rewrite rules [dCK93]:

• In an operational way, stating possible optimizations in a program. For instance,
if Eta-Pair is oriented as a contraction rule, it can be used to replace the term
〈fst(M), snd(M)〉 by the more efficient M .

• In a theoretical way, making explicit the relation between a term and its type. For
example, if Eta-Func is oriented as an expansion rule

M  λx : A.Mx ⇐ M : A → B ∧ x 6∈ FV(M)

a term M : A → B will be embedded in an abstraction, making clear that it is of
functional type, even without type inference.

Due to Eta-equations, decidability of equality in the presence of products and ter-
minal object was for a long time an open problem. The first equation to raise problems
was Eta-Pair, also known as surjective pairing. After initial evidence by Klop [Klo80]
that using this equation as a contraction rule breaks confluence of an untyped λ-calculus
with products and fixpoints, Pottinger proved confluence and termination in the typed
scenario [Pot81]. However, when tackling the decision problem for cartesian closed cate-
gories, Lambek and Scott [LS86] showed that adding the terminal object, together with
Eta-Unit, to a rewriting system containing either Eta-Func or Eta-Pair as contraction
rules breaks confluence. Adam Obtulowicz is credited by these authors as being the
first to point out this problem. Given any type A, the critical pairs that arise in this
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rewriting system are the following.

〈fst(M), snd(M)〉 : 1×A

Eta-Unit
u5 u5 u5

uu u5 u5 u5 Eta-Pair
(h(h(h

(((h(h(h(h

〈?, snd(M)〉 M

〈fst(M), snd(M)〉 : A× 1

Eta-Unit
u5 u5 u5

uu u5 u5 u5 Eta-Pair
(h(h(h

(((h(h(h(h

〈fst(M), ?〉 M

(λx : 1.Mx) : 1 → A

Eta-Unit
u5 u5 u5

uu u5 u5 u5 Eta-Func
'g'g

'''g'g'g'g

(λx : 1.M?) M

(λx : A.Mx) : A → 1

Eta-Unit
u5 u5 u5

uu u5 u5 u5 Eta-Func
(h(h

(((h(h(h(h

λx : A.? M

One had to wait until the nineties to see a proof of decidability for cartesian closed
categories. Curien and Di Cosmo showed that it is possible to guarantee that all the
offending critical pairs have common normal forms by extending, in a non-trivial way,
the contractive reduction system [CdC91]. By non-trivial we mean using an infinite set
of reduction rules that can be described in a finite way.

A few years later a much simpler solution, without any additional rules, was achieved
just by using the η-equations as expansionary rewrite rules. Although in the past sev-
eral authors had suggested reversing the traditional order of these equations, it was
only in the beginning of the last decade that a renewed and sustained interest in expan-
sions occurred, followed by (more or less independent) results showing confluence and
termination for the λ-calculus with pairs and terminal object [dCK93, Dou93, JG95].

8.2.1 Expansionary Systems

The expansionary term rewriting system for deciding equality in a cartesian closed
category can be obtained by orienting the η-equations as follows.

M  ? ⇐ M : 1

M  λx : A.Mx ⇐ M : A → B ∧ x 6∈ FV(M)

M  〈fst(M), snd(M)〉 ⇐ M : A×B
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However, this is not enough to ensure termination because the following reduction loops
may occur. Notice that in the first reduction sequence the last term is equal to the first
by α-equivalence.

λx : A.M  λy : A.(λx : A.M)y  λy : A.M [y/x]

MN  (λx : A.Mx)N  MN

〈M,N〉 〈fst(〈M,N〉), snd(〈M,N〉)〉 〈M, snd(〈M,N〉)〉 〈M,N〉

fst(M) fst(〈fst(M), snd(M)〉) fst(M)

snd(M) snd(〈fst(M), snd(M)〉) snd(M)

In order to avoid these loops one must avoid expansion of terms that are already
abstractions or pairs, and that are either applied or projected. As such, the correct
definition of the rewrite rules for functions and pairs is:

M  λx : A.Mx ⇐


M : A → B

x 6∈ FV(M)
M is not a λ-abstraction
M is not applied

M  〈fst(M), snd(M)〉 ⇐


M : A×B

M is not a pair
M is not projected

There are some disadvantages in using expansions. Besides being type directed, the
last side conditions mean that the rewrite relation is no longer a congruence, which
makes difficult both the proofs of confluence and the implementation of the rewriting
system. We will now present some examples of derivations (and normal forms) using
this rewrite system, including some of the critical pairs that arose in the contractive
system. Notice that the normal forms obtained with this system correspond to the long
βη-normal forms of Huet [Hue76].

M : A → 1  λx : A.Mx  λx : A.?

M : A → (B → C)  λx : A.Mx  λx : A.λy : B.(Mx)y
M : (A → B) → C  λx : A → B.Mx  λx : A → B.M(λy : A.xy)
M : 1×A  〈fst(M), snd(M)〉  〈?, snd(M)〉
M : A× (B × C)  〈fst(M), snd(M)〉  〈fst(M), 〈fst(snd(M)), snd(snd(M))〉〉

8.2.2 Coping With Sums.

Both Dougherty [Dou93], and Di Cosmo and Kesner [dCK93] showed that it is possible to
also add Beta-Case as a contraction to this rewriting system without breaking confluence.
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The latter authors went a little further by showing how to handle weak sums [dCK94].
Weak sums are characterized by the following restriction of Eta-Case.

M = case(M,λx : A.inl(x), λy : B.inr(y)) ⇐ M : A + B Eta-Wsum

Comparing with the laws that characterize sums in the point-free setting, this law corre-
sponds just to the reflexivity law Sum-Reflex, while Eta-Case also captures Sum-Fusion.
Adding Eta-Wsum as a contraction breaks confluence, as the following critical pair shows.
Notice that, unlike for the cartesian fragment, this example does not involve the terminal
object.

case(M,λx : A → B.inl(x), λy : C.inr(y))

Eta-Func

�O

��
�O Eta-Wsum

+k+k+k+k

+++k+k+k+k+k+k+k+k

case(M,λx : A → B.inl(λz : A.xz), λy : C.inr(y)) M

The problem with this critical pair is that inl(x) is not a normal form with respect to
the expansionary cartesian subset of the rewriting rules. The solution of Di Cosmo
and Kesner was to postpone the rewriting until the normal form of the case analysis
argument(s) is reached. The following rule, where ‖M‖ denotes the normal form of M

w.r.t. expansion rules Eta-Func, Eta-Pair, and Eta-Unit, can thus be added to the system
without breaking confluence.

case(M, ‖λx : A.inl(x)‖, ‖λy : B.inr(y)‖) M

Unfortunately, this simple trick cannot be used for the more general Eta-Case.

The first proof of decidability for almost bicartesian closed categories was achieved by
Neil Ghani, by orienting Eta-Case as an expansion [Gha95]. In order to give an overview
of his solution, we will first present the problems that arise from using Eta-Case as an
expansionary rewrite rule. Notice that Eta-Case can alternatively be defined as follows.

M [N/z] =λ case(N,λx : A.M [inl(x)/z], λy : B.M [inr(y)/z])
⇐

x, y 6∈ FV(M) ∧ N : A + B

By orienting this equation from left to right we get an expansionary rewrite rule.
First, notice that this rule can only be applied to free subterms of sum type. N is a free
subterm of M if none of its free variables is bound in M . Notice also that the rule is
highly non-local, in the sense that N is expanded to the head of the term. If N is the
first argument of a case expression new redexes will be generated that must be rewritten
using Beta-Case. Take, for example, the following term.

λx : A + A.〈case(x, λy : A.y, λz : A.z), ?〉
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The whole term is not a redex because it does not contain any free subterm of sum type.
In this case, a possible redex is the pair because x : A+A is a free subterm of sum type.
After the expansion we get the term

λx : A + A.case(x, λw : A.〈case(inl(w), λy : A.y, λz : A.z), ?〉,
λk : A.〈case(inr(k), λy : A.y, λz : A.z), ?〉)

which in turn, after rewriting with Beta-Case, leads to the following normal form. Notice
how the case expression was expanded into the head of the reduct, by exchange with
the pair constructor.

λx : A + A.case(x, λw : A.〈w, ?〉, λk : A.〈k, ?〉)

Per se, this rule is not enough to guarantee confluence. When a redex contains
several free subterms of sum type we get a set of normal forms that only differ in the
order of eliminating the subterms through case analysis. For example, the term

〈case(M,λx : A.x, λy : A.y), case(N,λz : B.z, λw : B.w)〉

where M : A + A and N : B + B, originates the following critical pair.

case(M, λx : A.case(N,λz : B.〈x, z〉, λw : B.〈x,w〉),
λy : A.case(N,λz : B.〈y, z〉, λw : B.〈y, w〉))

case(N, λx : A.case(M,λz : B.〈z, x〉, λw : B.〈w, x〉),
λy : A.case(M,λz : B.〈z, y〉, λw : B.〈w, z〉))

Ghani’s solution to this problem consisted in decomposing the full expansionary
equational theory into two different relations: the first is a terminating rewrite relation
that adds to the cartesian subset just the equation Eta-Wsum as an expansion, together
with a set of contraction rules to simplify combinations of case with all the constructors;
the second is a conversion relation that implements an algebra of case analysis, which
identifies terms that only differ in the order of the elimination of sums. By embedding
the rewrite relation into the conversion relation, proved decidable by showing that each
term has a (finite, enumerable) set of related terms, the full expansionary rewrite relation
is shown to be decidable.

To be more specific, the rewrite relation contains the following expansions that,
depending on the type of the redex, are disallowed for unit, pairs, abstractions, case
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expressions, projected and applied terms, and terms subject to case analysis.

M  ? ⇐ M : 1

M  λx : A.Mx ⇐ M : A → B ∧ x 6∈ FV(M)

M  〈fst(M), snd(M)〉 ⇐ M : A×B

M  case(M,λx : A.inl(x), λy : B.inr(y)) ⇐ M : A + B

The rewriting relation contains also the following contractions. Notice that the set of
rules capturing the interaction of case with all the constructors (including case itself),
implements Sum-Fusion in pointwise terms.

fst(〈M,N〉) M

snd(〈M,N〉) N

fst(case(L, λx : A.M, λy : B.N)) case(L, λx : A.fst(M), λy : B.fst(N))

snd(case(L, λx : A.M, λy : B.N)) case(L, λx : A.snd(M), λy : B.snd(N))

(λx : A.M)N  M [N/x]

case(L, λx : A.M, λy : B.N)P  case(L, λx : A.MP, λy : B.NP )

case(inl(L), λx : A.M, λy : B.N) M [L/x]

case(inr(L), λx : A.M, λy : B.N) N [L/y]

case(case(L, λx : A.M, λy : B.N), λz : C.P, λw : D.Q) 

case(L, λx : A.case(M,λz : C.P, λw : D.Q),
λy : B.case(N,λz : C.P, λw : D.Q))

The role of the conversion relation is to handle the equalities generated by equation
Eta-Case for the particular case when the free subterm N is the first argument of a
case analysis, taking into account the simplification of the new redexes using Beta-Case.
Thus, deciding the equality of the critical pair given above will now be done by the
conversion relation. The author defines a function to compute equivalent terms under
the conversion relation, but we omit its presentation here. To show that two terms are
equal, their normal forms according to the rewrite relation are first computed. Then,
the respective sets of equivalent terms under the conversion relation are compared.

8.3 Normalization by Evaluation

Although rewriting is the most well-known technique to perform normalization and de-
cide equality of λ-terms other approaches exist. Rewriting is intensional in the sense
that it always operates at the syntactic level. In this section we briefly present normal-
ization by evaluation, an extensional and reduction-free technique to normalize closed
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terms, first introduced by Berger and Schwichtenberg [BS91]. By extensional we mean
that it operates on “semantic” values of a specific meta-language and returns a syntactic
representation of their normal form (initially it was even presented as an inverse of the
evaluation functional). It is reduction-free because all needed β-reductions will be im-
plicitly carried out by the concrete implementation of the meta-language. This typically
allows substantial performance gains when compared to rewriting.

The implementation of normalization by evaluation uses two type-dependent and
mutually recursive functions. The first, typically called reify and denoted by ↓, maps
values to syntactic terms, and the second, called reflect and denoted by ↑, converts
terms back into values. Normalization of a term is achieved by reifying its value. We
will now present the definition of these functions for the simply typed λ-calculus with
products and terminal object introduced in Section 7.1. Syntactic terms will be denoted
by the grammar introduced in that section. For values bold font will be used, with the
keywords pair(·, ·), fst, and snd for pairs and @ for application. α denotes an arbitrary
base type.

↓α v = v

↓1 v = ?

↓A→B v = λx.↓B (v@(↑A (x))) with x fresh
↓A×B v = 〈↓A (fst(v)), ↓B (snd(v))〉

↑α t = t

↑1 t = ?

↑A→B t = λx.↑B (t(↓A (x)))
↑A×B t = pair(↑A (fst(t)), ↑B (snd(t)))

To exemplify the normalization process, consider an arbitrary value f of type A×A →
A×A, with A a base type. This value is reified as follows.

↓A×A→A×A f = λx.↓A×A (f@↑A×A (x))
= λx.↓A×A (f@pair(↑A (fst(x)), ↑A (snd(x))))
= λx.〈↓A (fst(f@pair(fst(x), snd(x)))), ↓A (snd(f@pair(fst(x), snd(x))))〉
= λx.〈fst(f@pair(fst(x), snd(x))), snd(f@pair(fst(x), snd(x)))〉

Consider now that the concrete value f to be normalized is the identity function.
Then the meta-level interpreter would reduce the resulting term to the expected nor-
mal form λx.〈fst(x), snd(x)〉. But if f is the swap function then the normal form is
λx.〈snd(x), fst(x)〉. To give another example, consider the normalization of the identity
function of type BA → BA. The meta-level reductions are performed as the calculation
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proceeds.
↓(A→B)→(A→B) (λz.z) = λx.↓A→B ((λz.z)@↑A→B (x))

= λx.↓A→B (↑A→B (x))
= λx.↓A→B (λz.↑B (x↓A (z)))
= λx.↓A→B (λz.xz)
= λx.λy.↓B (λz.xz)@↑A (y))
= λx.λy.(λz.xz)@y

= λx.λy.xy

Notice that the normal forms obtained with normalization by evaluation are exactly the
same produced by the expansionary rewrite system presented in the last section.

The most well known application of normalization by evaluation is type-directed par-
tial evaluation [Dan96], where this technique is used to efficiently decompile specialized
programs. In this paper, Danvy already describes an extension to handle sum types,
which unfortunately does not guarantee unique normal forms. The first proof of de-
cidability for almost bicartesian closed categories using normalization by evaluation is
due to Altenkirch, Dybjer, Hofmann, and Scott[ADHS01]. To guarantee unique nor-
mal forms, they defined a generalization of the case construct that allows simultaneous
analysis of several terms. Interestingly, this parallel case had already been suggest by
Ghani [Gha95] as a way to eliminate the conversion relation and directly obtain unique
normal forms.

Unfortunately, although the proof presented in [ADHS01] is clearly constructive, the
functions reflect and reify are presented in such an abstract way that makes the imple-
mentation of a concrete algorithm for normalization not obvious. Only very recently,
Balat, Di Cosmo, and Fiore managed to present an extension to Danvy’s original al-
gorithm that performs extensional normalization with sums [BdCF04]. Although the
definition of their normal forms was guided by [ADHS01], they use the standard case
analysis construct. In practice this means that their algorithm only computes normal
forms modulo a conversion relation, a situation that already arose in the expansionary
rewrite system proposed by Ghani [Gha95].

Implementing normalization by evaluation in a statically typed language like Haskell
is not trivial, due to the type-dependence of both reify and reflect. Some implementa-
tions have been proposed, namely in [Ros98] where the type-dependence is tackled by
using type classes, and in [Rhi99] where an explicit syntactic characterization of types
parameterizes both functions. This last technique is also used in the implementation
proposed in [BdCF04] for OCaml [Rém02]. But in order to handle sums and to fix the
relative positions between the case construct and lambda abstractions (the first should
be lifted as high as possible), some sophisticated control operators had to be used. These
operators, initially proposed in [GRR95], generalize both exceptions and continuations.
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8.4 Normalization in the Point-Free Setting

An excellent study about rewriting in the point-free setting is due to Thérèse Hardin
[Har89]. This subsumes another study published at the same time by Hirofumi Yokouchi
[Yok89]. The main objective of this study was to provide a theoretical basis for the
implementation of the categorical abstract machine, and it was thus mainly concerned
with simulating β-reduction in the point-free setting. Its main result was that indeed it
can be simulated by the application of the law

ap ◦ (f M g) = f ◦ (id M g) Beta

oriented from left to right, followed by rewriting with the following confluent system
(denoted by Subst).

(f ◦ g) ◦ h f ◦ (g ◦ h)

id ◦ f  f

f ◦ id f

fst ◦ (f M g) f

snd ◦ (f M g) g

(f M g) ◦ h f ◦ h M g ◦ h

fst M snd id

fst ◦ f M snd ◦ f  f

f ◦ h f ◦ (h ◦ fst M snd)

Notice that, within the equational theory of cartesian closed categories, Beta is
equivalent to Exp-Cancel, as the following calculations show.

26666664
ap ◦ (f M g)

= {Prod-Absor }
ap ◦ (f × id) ◦ (id M g)

= {Exp-Cancel }
f ◦ (id M g)

266666666666666664

ap ◦ (f × id)

= {Prod-Def }
ap ◦ (f ◦ fst M snd)

= {Exp-Fusion }
ap ◦ (f ◦ (fst× id) M snd)

= {Beta }
f ◦ (fst× id) ◦ (id M snd)

= {Prod-Absor, Prod-Reflex }
f

Unfortunately, this study didn’t take into account neither sums nor terminal object,
and was carried out in an untyped setting. For example, Klop’s counterexample is
pointed out as a proof of non-confluence when Beta is added to Subst. To be a complete
theory of cartesian closed categories, Subst still misses the equations that characterize
the terminal object, namely Bang-Fusion and Bang-Reflex, and the remaining exponential



174 Chapter 8: Decidability of Equality

laws, namely Beta and Exp-Reflex. Notice that, although both Prod-Reflex and Prod-

Fusion can be replaced just by the following law (that corresponds to the pointwise
Eta-Pair), all three must be added to the rewriting system in order to recover confluence.

fst ◦ f M snd ◦ f = f ⇐ f : A → B × C Eta-Prod

Hardin achieves better confluence results by restricting the analysis to the subset
of categorical terms that results from the translation, presented in Section 7.1, from a
λ-calculus with products into cartesian closed categories. For this subset the confluence
of Subst augmented with Beta was proved.

Interestingly, when trying to get a confluent system with similar power to Subst+Beta

for unrestricted terms, Hardin suggests using Prod-Reflex as an expansion rule, but
discards this hypothesis immediately because it has no operational sense (remember
that the goal of the study was to provide a theoretical basis for the implementation of
an abstract machine). A similar rule was also suggested by Yakouchi, but only to be
applied to a curried function (in this case it is guaranteed that the domain is a pair).

f  f ◦ (fst M snd)

Although Klop’s counterexample is not valid in a typed setting, the critical pairs
presented in Section 8.2, involving the terminal object, can be easily adapted to prove
non-confluence of a contractive rewrite system for point-free combinators. First we
have to be clear about what we mean by contractive. As seen above, products can be
characterized either by Prod-Reflex and Prod-Fusion, or just by Eta-Prod. The same
applies to exponentiation and to the terminal object, which means that Exp-Reflex, Exp-

Fusion, Bang-Reflex, and Bang-Fusion can be replace by the following equations in a
complete theory of cartesian closed categories.

ap ◦ (f × id) = f ⇐ f : A → CB Eta-Exp

f = !A ⇐ f : A → 1 Eta-Bang

A contractive system for point-free combinators results from orienting η-equations
and all cancellation laws from left to right. Among the critical pairs that exist in this
system we have, for example,

! M snd ◦ f fst ◦ f M snd ◦ f
Eta-Bangoo o/ o/ o/ o/ o/ o/ o/ Eta-Prod ///o/o/o/o/o/o/o f

given f : A → 1×B, and

! ap ◦ (f × id)
Eta-Bangoo o/ o/ o/ o/ o/ o/ o/

Eta-Exp ///o/o/o/o/o/o/o f
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for f : A → 1B. Notice that in the first case fst ◦ f : A → 1 and in the second
ap ◦ (f × id) : A × B → 1. One could think that by using the reflex and fusion laws
instead of these, a finer grain of control can be achieved, and these critical pairs avoided.
For example, for products we can try to use a partially contractive system by orienting
Prod-Reflex and Prod-Fusion as follows.

(f M g) ◦ h f ◦ h M g ◦ h

fst M snd id

Notice that the fusion law is being used as a safe expansion rule, since this orientation
guarantees termination. Unfortunately, as already mentioned for the Subst system, this
orientation creates the critical pair

fst ◦ f M snd ◦ f (fst M snd) ◦ f
Prod-Fusionoo o/ o/ o/ o/ o/ o/ o/ Prod-Reflex ///o/o/o/o/o/o/o f

whose elimination implies adding again Eta-Prod as a contraction to the system, making
impossible to avoid the offending critical pairs involving the terminal object. Similar
problems exist with exponentiation.

It seems reasonable to suggest that using Eta-Prod and Eta-Exp as expansions rules
would result, similarly to what happens in the pointwise setting, in a decision proce-
dure for cartesian closed categories. The critical pairs mentioned above would indeed
disappear, but unfortunately new ones would appear. For example, given a function
f : A×B → C we would have

f ◦ (fst M snd) f ◦ id
Eta-Prodoo o/ o/ o/ o/ o/ o/ o/ Id-Nat ///o/o/o f

The problem is that now we are dealing with functions, which are characterized not
only by their range type but also by their domain type. As mentioned before, the role
of expansionary rewrite rules is to make explicit the relation between a term and its
type. But when using Eta-Prod and Eta-Exp as expansions only the type of the range
becomes explicit. For instance, in a correct expansionary system, a function of type
f : A×B → C ×D should be rewritten into

(fst ◦ f M snd ◦ f) ◦ (fst M snd)

However, it is not clear how to define the rules of such a system, and even less clear
how to state precisely the side conditions that would ensure termination. As expected,
additional problems would arise from trying to handle sums. Let us recall the exchange
law Abides.

(f M g) O (h M i) = (f O h) M (g O i)
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A correct derivation in an expansionary rewrite system would transform the left-hand
side as follows.

(f M g) O (h M i)
 fst ◦ ((f M g) O (h M i)) M snd ◦ ((f M g) O (h M i))
 (fst ◦ ((f M g) O (h M i)) ◦ inl O fst ◦ ((f M g) O (h M i)) ◦ inr) M snd ◦ ((f M g) O (h M i))
 (f O h) M snd ◦ ((f M g) O (h M i))
 (f O h) M (snd ◦ ((f M g) O (h M i)) ◦ inl O snd ◦ ((f M g) O (h M i)) ◦ inr)
 (f O h) M (g O i)

Unfortunately, by applying the same rewriting strategy to the right-hand side of the
equation it would yield as normal form the left-hand side. This example seems to
suggest that, perhaps unsurprisingly, in the presence of sums, an expansionary rewrite
system would also not produce unique normal forms in the point-free setting. Probably,
some kind of conversion relation is again needed, in which we guess the Abides law itself
would play a key role.

In all this discussion the problems raised by the associativity of composition were
ignored. For the cartesian subset, Hardin’s research suggests that by orienting Comp-

Assoc as
(f ◦ g) ◦ h f ◦ (g ◦ h)

confluence is preserved. In fact, the offending critical pairs presented above are in-
dependent of this law. But in the presence of sums, this orientation would prevent
some necessary applications of Sum-Fusion, thus leading to new critical pairs. In an
expansionary system, treating composition as a binary combinator would, for exam-
ple, also difficult the detection of projected or applied terms. In both cases, a better
approach would be to use equational rewriting modulo associativity. Typically, this in-
volves flattening the composition operator, and developing special matching algorithms.
A possible implementation is described in Section 9.1, when presenting Bird’s functional
calculator.

8.5 Summary

In this chapter we have presented some theoretical results concerning the decidability
of equality in almost bicartesian closed categories, both in the point-free and pointwise
styles. The main conclusion of this study is that, so far, there is no evidence supporting
the commonly accepted claim that the point-free style is more amenable to mechaniza-
tion. In fact, the only known decision procedures are defined at the pointwise level, and
we have shown some of the difficulties that arise when trying to implement a rewriting
system to decide equality directly in the point-free style.



Chapter 9

Towards the Mechanization of

Point-free Calculations

Very few theorem provers have been developed with the specific aim of reasoning about
functional programs. Most never left the prototype stage, and practically all of them
are tailored to reason about programs written in the pointwise style, and to interac-
tive induction-based proofs. Among these we point out Sparkle [dMvEP01], a semi-
automatic tactic-based theorem prover for Clean [PvE98], a lazy functional language
very similar to Haskell. This is a full-featured tool, with a sophisticated graphical
user-interface and a powerful hint mechanism to suggest tactics to the user, that can
automatically prove most trivial goals. The reasoning process takes place in a subset of
Clean, that shares the same lazy graph-rewriting semantics of the full language.

Although many authors argue that the point-free equational reasoning style is more
amenable to mechanization, even fewer systems seem to have been developed using this
approach. The development of a generic interactive Equational Reasoning Assistant for
Haskell was initiated by Andy Gill [Gil95], and later continued by Noel Winstanley
[Win98], but the project seems to have been abandoned. Anyway, its only goal was
to assist the user during the interactive construction of the proof, and no attempt was
made towards mechanization. In fact, to our knowledge, the only attempt to develop
such a tool is due to Richard Bird, and is described as a programming project in the last
chapter of his introductory book on Haskell [Bir98]. This system is based on a previous
undocumented implementation by Mike Spivey.

This chapter starts precisely by presenting this system. We will then show how it
can be modified in order to automate some of the calculations performed in the thesis.
In particular, we show how a simple rewriting system can be used to simplify most of the
point-free expressions that result from the derivation algorithm presented in Chapter 7.
Our implementation differs from Bird’s since we reuse Haskell pattern matching abilities,
together with the Scrap Your Boilerplate generic programming library [LJ03] to simplify

177
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the implementation of rewriting strategies.

9.1 Birds’s Functional Calculator

In Bird’s functional calculator expressions can be variables (to be used in rewrite rules),
constants, or can be built from simpler expressions using composition as the only distin-
guished combinator. No commitment is made to a particular set of constants, like the
ones characterizing almost bicartesian closed categories. Not even identity gets a spe-
cial treatment. All expressions are of functional type, and constants can be higher-order
functions taking any number of (uncurried) arguments. However, no type-inference is
ever performed, and thus the calculator cannot use type information to guide the rewrit-
ing process. This excludes, for example, any attempt to encode Eta-Prod as an expansion
rule. The data type of expressions is defined as follows.

data Expr = Var VarName | Con ConName [Expr] | Compose [Expr]

deriving (Eq, Show)

type VarName = Char

type ConName = String

Notice the use of lists to encode constants with an arbitrary number of arguments.
The intention to define a rewriting system modulo Comp-Assoc results in the use of
lists to represent compositions of expressions. Of course, this data type per se does
not guarantee the expected behavior of composition, and a couple of invariants must
be imposed on it: the argument of Compose must be of length at least two, and it
cannot contain an element also built with Compose. In order to guarantee this invariant,
composition of expressions must always be defined using the following function instead
of the constructor.

compose :: [Expr] -> Expr

compose xs = if null (tail xs) then head xs

else Compose (concat (map decompose xs))

decompose :: Expr -> [Expr]

decompose (Var v) = [Var v]

decompose (Con f xs) = [Con f xs]

decompose (Compose xs) = xs

The equational theory that models the constants of the system will be captured by
a set of (named) laws. A law is always oriented from left to right as a rewriting rule.
Bird defined a parser that converts laws expressed in a user-friendly syntax, similar to
the one used throughout this thesis, into the following abstract data type.

type Law = (LawName, Expr, Expr)

type LawName = String
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Typically, one is only interested in the final result of the rewriting process, but in order
to inform the user of its progress, calculations are modeled by the following type that
stores all intermediate steps.

type Calculation = (Expr, [Step])

type Step = (LawName, Expr)

When rewriting finishes, calculations are rendered in a style similar to the one used in
the proofs of this thesis, by interleaving expressions with the name of the appropriate
law that allowed the calculation to progress.

The rewriting engine receives a list of laws and an expression in order to produce
a calculation. The orientation of the laws is fixed by the user, but there are still some
design decisions to be made: first, if two laws are applicable, which one will be cho-
sen; second, in which order subexpressions will be matched against the laws; and third,
should preference be given to laws or subexpressions when trying to progress with the
calculation (i.e., should a law be tried exhaustively with every possible subexpression or
vice-versa). The first decision is indirectly left to the user, since the system simply picks
the first in the list. The searching of matching subexpressions is fixed from left-to-right
(both in compositions and the arguments of constants) and from largest-to-smaller. This
means that all subsegments of a composition are tried before the individual subexpres-
sions. Concerning the last decision, Bird decided to partition the list of laws into two
lists: the laws in the first will be tried in sequence with all possible subexpressions, and
afterwards each subexpression is tried in sequence with each law of the second. Thus,
the final type of the calculation function is

calculate :: ([Law], [Law]) -> Expr -> Calculation

The global list of laws provided by the user is automatically partitioned into the two
lists. The first list will contain the laws that reduce the complexity of the expression,
the so-called basic laws. As explained above, these will always be tried first during the
rewriting process. The complexity measure is given by the number of subexpressions,
as encoded by the following definition.

complexity :: Expr -> Int

complexity (Var v) = 1

complexity (Con f xs) = 1

complexity (Compose xs) = length xs

Function calculate is used both for the simplification of expressions and for proving
equalities. In the later case, it is just applied to both expressions, and the final result
compared with syntactic equality. The key part of the rewriting engine is an algorithm
for matching modulo associativity. Most of it is a fairly standard accumulator-based
matching algorithm, except for the interesting case of matching two compositions. Given



180 Chapter 9: Towards the Mechanization of Point-free Calculations

two lists of lengths m and n respectively, if m > n then they cannot be matched. If
matching was modulo associativity and identity then this would not be the case, since
some of the variables in the first list could be substituted by the identity function. If
m ≤ n then each element of the first has to be matched with a non-empty segment
of the second. The following function generates all possible pairs of expressions to be
matched. If m > n it returns an empty list.

align :: [Expr] -> [Expr] -> [[(Expr, Expr)]]

align xs ys = [zip xs (map compose zs) | zs <- partitions (length xs) ys]

Function partitions generates all possible partitions of the second list into m expres-
sions, and has the following type.

partitions :: Int -> [a] -> [[[a]]]

Although simple, given the appropriate list of laws this calculator is powerful enough
to automate many calculations, as the author demonstrates in [Bir98]. Of course, the
user must be very careful with the order and the orientation of laws given to the calcula-
tor, since the tool does not attempt to perform any completion or termination checking.
One of its major limitations is the absence of conditional rules, since it is not possible
to express laws like Cata-Fusion.

As seen in Chapter 7, the expressions that result from the pointwise to point-free
translation are quite complex. Naturally, some experiments were made to see if this
calculator could be used to mechanize their simplification. Unfortunately, such attempts
were not successful due to the absence of typing information and the fixed rewriting
strategy. In the remaining of this chapter we show how to implement a prototype
calculator without such limitations. We also show how it can be used to perform the
desired simplifications. The generic programming library used in the implementation is
first briefly reviewed.

9.2 Scrap Your Boilerplate

Most of the functional programs that operate on large data types typically perform
relevant operations only at specific locations, but must have a lot of “boilerplate” code
in order to handle the traversal through the data structure. Scrap Your Boilerplate
(SyB) is a generic programming library developed by Lämmel and Peyton Jones [LJ03],
whose goal is precisely to allow the specification of this boilerplate code once and for
all, leaving for the programmer the implementation of just the interesting parts.

The generic programming technique supported by SyB has some nice properties:

• It is simple, in the sense that very few theoretical concepts have to be mastered
in order to use it. The library includes also very few functions.
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• It is general, since it can handle arbitrary data types, namely parameterized,
mutually-recursive, and nested ones. It also subsumes other programming para-
digms, such as term rewriting.

• It supports data type evolution, because very little code must be modified if a
data type changes. In the Haskell distributions where it is natively supported, like
GHC, no code has to be changed at all.

The implementation of this library required two Haskell extensions, both provided
by most popular Haskell distributions. The first is rank-2 polymorphism, that will be
used to implement generic traversals whose arguments must be polymorphic functions.
The second is a type-safe cast with signature

cast :: (Typeable a, Typeable b) => a -> Maybe b

that given an argument x of type a, compares the types a and b and returns Just x

if they are equal, or Nothing otherwise. This function cannot be defined in standard
Haskell. Class Typeable contains types for which a type representation can be obtained
(to be compared for equality in cast), and its implementation can be automatically
derived in GHC at least for all monomorphic types.

In order to understand precisely what is meant by boilerplate we will present a very
simple example. Consider the following data type of geometrical figures, that allows
figures to be built by grouping other figures.

data Point = Point Int Int

data Figure = Circle Point Int

| Rectangle Point Point

| Group Name [Figure]

data Name = Name String

A function that displaces a picture by a given vector can be defined as follows.

move :: Point -> Figure -> Figure

move d (Circle p r) = Circle (moveP d p) r

move d (Rectangle p q) = Rectangle (moveP d p) (moveP d q)

move d (Group n l) = Group n (map (move d) l)

moveP :: Point -> Point -> Point

moveP (Point dx dy) (Point x y) = Point (x+dx) (y+dy)

The only interesting part of this definition corresponds to function moveP, where the
displacement of a point is defined. On the contrary, move is pure boilerplate code since
it just encodes a standard traversal of the data type Figure.
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9.2.1 Implementing Generic Transformations

In order to avoid the explicit definition of such boilerplate code, SyB provides a set of
generic traversal combinators, such as

everywhere :: Data a => (forall b . Data b => b -> b) -> a -> a

that given a polymorphic transformation, applies it to every node in a data structure
while traversing it in a bottom-up manner. The need for the Data constraint will be
explained later. Notice the use of a rank-2 type to guarantee that the parameter is
indeed polymorphic.

Taken alone, this function is not very useful. The only true polymorphic function
of type forall b . b -> b is the identity function, which in turn implies that this
traversal could only behave as the identity. However, using the cast function it is
possible to define the following function, that transforms a monomorphic function of
type b -> b into a full polymorphic one, that operates as the original when its argument
is of type b and as the identity otherwise.

mkT :: (Typeable a, Typeable b) => (b -> b) -> a -> a

mkT f = case (cast f) of Just g -> g

Nothing -> id

Equipped with this function it is now possible to define move just as follows.

move :: Point -> Figure -> Figure

move d = everywhere (mkT (moveP d))

When a node of type Point is found moveP is applied. In the remaining nodes no
transformation is applied, because mkT (moveP d) behaves as the identity.

The question remains of how to define generically recursive traversals like everywhere.
These will be defined using a small set of non-recursive one-layer traversals belonging to
the class Data. One such traversal is gmapT, that given a polymorphic transformation
applies it to all the immediate children of a value.

class Typeable a => Data a where

gmapT :: (forall b . Data b => b -> b) -> a -> a

If one wants to use SyB with a particular type, it is necessary that this type belongs
to class Data. For example, the instance declaration for Figure is as follows.

instance Data Figure where

gmapT f (Circle p r) = Circle (f p) (f r)

gmapT f (Rectangle p q) = Rectangle (f p) (f q)

gmapT f (Group n l) = Group (f n) (f l)

For lists we have a similar definition.



9.2 Scrap Your Boilerplate 183

instance Data a => Data [a] where

gmapT f [] = []

gmapT f (x:xs) = f x : f xs

From these examples, it is clear what was meant by one-layer and non-recursive – just
compare this definition with that of the map function.

Using gmapT it is now possible to define different generic traversals. everywhere is
defined as follows.

everywhere :: Data a => (forall b . Data b => b -> b) -> a -> a

everywhere f x = f (gmapT (everywhere f) x)

For example, a top-down traversal could also be defined.

everywhere’ :: Data a => (forall b . Data b => b -> b) -> a -> a

everywhere’ f x = gmapT (everywhere’ f) (f x)

Interestingly, this technique of defining recursive traversals in two steps, first a one-
layer map and then tying the recursive knot, is similar to that of modeling a recursive
data type as a fixed point of a functor, as presented in Chapter 2.

9.2.2 Generic Queries

The same design pattern can be applied to other kinds of boilerplate code. Consider,
for example, a function that collects all names of grouped figures in a list. In this case,
a generic query should be used instead of a generic transformation. First, a function to
extend monomorphic queries into polymorphic ones is defined. It is necessary to specify
a default value to return when the input is not of type b.

mkQ :: (Typeable a, Typeable b) => r -> (b -> r) -> a -> r

mkQ d q a = case (cast a) of Just b -> q b

Nothing -> d

The class Data is then extended with a new non-recursive one-layer map, that collects
in a list the results of querying all children.

class Typeable a => Data a where

gmapT :: (forall b . Data b => b -> b) -> a -> a

gmapQ :: (forall b . Data b => a -> r) -> a -> [r]

The definition of gmapQ is also very easy. For example, for figures the instance of
the Data class can be extended as follows.

gmapT f (Circle p r) = [f p, f r]

gmapT f (Rectangle p q) = [f p, f q]

gmapT f (Group n l) = [f n, f l]
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Recursive querying traversals can be defined using gmapT. For example, the following
combines the recursive results at each node using the first argument.

everything :: (r -> r -> r) -> (forall b . Data b => b -> r) -> a -> r

everything k f x = foldl k (f x) (gmapQ (everything k f) x)

The function that collects all names of grouped figures can now be defined as follows.
Notice that only the interesting case of querying a value of type Name is specified.

names :: Figure -> [String]

names = everything (++) ([] ‘mkQ‘ aux)

where aux (Name s) = [s]

9.2.3 Monadic Transformations

For the implementation of our point-free calculator SyB will be used to get rid of yet
another kind of boilerplate code, where transformations are parameterized by a monad.
To be more specific we are interested in a special kind of monad, whose interface is
captured by the MonadPlus class.

class Monad m => MonadPlus m where

mzero :: m a

mplus :: m a -> m a -> m a

There is no agreement about the laws these functions should verify, but to our
purposes they should be interpreted as follows: mzero denotes failure or no result in
a computation, and mplus a non-deterministic choice between two computations. A
particular instance of this class – the data type Maybe – will be used to represent partial
computations. In this case, mplus is biased towards the first argument.

instance MonadPlus Maybe where

mzero = Nothing

Nothing ‘mplus‘ x = x

x ‘mplus‘ _ = x

For this monad some additional functions can be defined, such as the guard function
that, given a predicate, returns mzero if it is not verified.

guard :: MonadPlus m => Bool -> m ()

For example, suppose that we add squares to our figure data type. Assuming that a
square is represented by a point and the size of its side, the new declaration is

data Figure = Circle Point Int

| Rectangle Point Point

| Square Point Int

| Group Name [Figure]
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Notice that previously defined functions using the traversal combinators, such as
move and names, do not need to be changed in order to handle this new declaration.
Suppose now that we want to define a function that traverses this data type and trans-
forms one square Rectangle into a Square. Again, this function has a lot of boilerplate
but the only interesting part can be encoded in the following monadic transformation.
fail is a standard function of the Monad class, that for MonadPlus monads just returns
mzero.

square :: Figure -> Maybe Figure

square (Rectangle (Point x1 y1) (Point x2 y2)) =

do guard (abs (x2-x1) == abs (y2-y1))

return (Square (Point (min x1 x2) (min y1 y2)) (abs (x2-x1)))

square _ = fail "Not a square!"

The following function will be used to convert a monomorphic transformation into
a polymorphic one. In this case, mzero is returned if the type of the input value is
different from b.

mkMp :: (MonadPlus m, Typeable a, Typeable b) => (b -> m b) -> a -> m a

A new one-layer map must also be added to the Data class.

gmapMo :: MonadPlus m => (forall b . Data b => b -> m b) -> a -> m a

This function applies a transformation to at most one immediate subterm. It returns
mzero if the transformation can not be applied to any of them. gmapMo can be used
to define a generic traversal that applies a transformation to at most one subterm of a
data structure.

once :: (MonadPlus m, Data a) => (forall b . Data b => b -> m b) -> a -> m a

once f x = f x ‘mplus‘ (gmapMo (once f) x)

To square a single rectangle we can now use the following expression. If there are
no square rectangles inside a figure it returns Nothing.

once (mkMp square)

It may seem that in order to benefit from SyB one has to implement a lot of one-layer
maps for each data type. As seen in the examples, these are also pure boilerplate and,
in fact, they can be defined as instances of a more fundamental traversal scheme, whose
definition is quite intricate and will be omitted. As such, it suffices to implement this
single traversal. Furthermore, in GHC this definition can be automatically derived, and
thus SyB can be used for free.
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9.3 A Typed Point-free Calculator

In this section we present a prototype rewriting system for typed point-free combinators.
Although its design is inspired in Bird’s functional calculator, presented in Section 9.1,
the implementation is quite different and simpler due to the use of the SyB library. Our
goal is to show that in practice, and in spite of the theoretical limitations pointed out in
the previous chapter, it is very easy to define a working system that mechanizes some
point-free calculations.

We begin by defining the abstract syntax data type that models our set of combi-
nators. BANG represents !, and ARROW can be used to declare additional constants. Its
usage will become clear later. Following Bird’s design principle, composition is encoded
using lists.

data Term = ID Type | Comp [Term]

| BANG Type

| FST Type | SND Type | Term :/\: Term

| INL Type | INR Type | Term :\/: Term

| AP Type | Curry Term

| IN Type | OUT Type

| Hylo Type Term Term

| ARROW Name Type

Since we are interested in typed terms, constants are tagged with their type. Types
are represented by the following abstract syntax, where recursive data types are re-
stricted to polynomial functors.

data Type = One | Type :*: Type | Type :+: Type | Type :-> Type | Mu Funct

data Funct = Id | Const Type | Funct :**: Funct | Funct :++: Funct

Type inference for point-free terms is encoded in the function

infer :: Term -> Maybe Type

The implementation of this function becomes very easy by using some special features
of the Maybe monad, namely guards and pattern matching inside do expressions (when
matching fails Nothing is immediately returned). For example the implementation for
the split combinator is defined as follows.

infer (f :/\: g) = do (a :-> b) <- infer f

(c :-> d) <- infer g

guard (a == c)

return (a :-> (b :*: d))

Notice that variables are absent from the data type Term. The reason is that we will
not develop a matching algorithm from scratch, but instead reuse the native matching
mechanism of Haskell. Suppose that the type of rewriting rules was defined as
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type Rule = Term -> Maybe Term

where Maybe is used to capture the fact that applying a rule may fail. One example of
such a rule could be

prod_reflex :: Rule

prod_reflex (FST a :/\: SND _) = return (ID a)

prod_reflex _ = fail "Product reflexivity not applicable"

This definition assumes that input terms are correctly typed, and as such it is not
necessary to check that the types of FST and SND are the same.

Strategies are defined as functions that combine and transform rules into new rules.
Function once defined in Section 9.2.3 using SyB is an example of a fundamental strat-
egy. Similarly to the figure example presented in that section, it is possible to define a
rewrite rule to apply Prod-Reflex at most once inside a given term simply as follows.

once (mkMp prod_reflex)

Another useful strategy consists in trying to repeatedly apply a rule until it fails.

many :: Rule -> Rule

many r = (r ‘andthen‘ many r) ‘orelse‘ return

This definition uses the following basic combinators.

orelse :: Rule -> Rule -> Rule

orelse f g x = f x ‘mplus‘ g x

andthen :: Rule -> Rule -> Rule

andthen r g e = r e >>= g

The first tries to apply the first rule, and in case it fails tries to apply the second. The
second applies the first rule, and then feeds its result into the second.

For example, using many it is possible to define a rewriting system that applies
Prod-Reflex exhaustively inside a term.

many (once (mkMP prod_reflex))

Unfortunately, this approach does not allow a correct implementation of rules in-
volving composition. For example, suppose Prod-Fusion was implemented as follows.

prod_fusion :: Rule

prod_fusion (Comp ((f :/\: g) : h : l)) =

return (Comp ((Comp [f, h] :/\: Comp [g, h]) : l))

prod_fusion _ = fail "Product fusion not applicable"

In a rule like once (mkMp prod fusion) fusion would only be tried at the beginning of
compositions. In order to solve this problem, and still be able to reuse matching, the
definition of Rule is generalized as follows.
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type Rule = Data a => a -> Maybe a

Now it is possible to have rewrite rules with different input types. Of course, mkMp must
be used in order to get the desired polymorphic type.

prod_reflex :: Rule

prod_reflex = mkMp aux

where aux (FST a :/\: SND _) = return (ID a)

aux _ = fail "Product reflexivity not applicable"

prod_fusion :: Rule

prod_fusion = mkMp aux

where aux ((f :/\: g) : h : l) =

return ((Comp [f, h] :/\: Comp [g, h]) : l)

aux _ = fail "Product fusion not applicable"

By invoking once prod_reflex on a term, at most one subterm of type Term will
be transformed. But if once prod_fusion is invoked, fusion will be tried in a subterm
of type [Term]. Since the subterms of a list are its head and its tail, once will also
try to apply its argument to all suffixes of a list. This means that prod_fusion will be
attempted not only at the beginning of a composition, but also at arbitrary positions
inside the list.

It may seem that, using the boilerplate library, we manage to reimplement Bird’s
calculator in a couple of lines, but a closer inspection reveals that the functionality we
get is not quite the same. First, the matching algorithm is not as powerful as Bird’s. For
example, in the implementation of Prod-Fusion variable h will only be matched against
a single term, while with Bird’s matching algorithm it could be matched against any
subsequence of the remaining list. In practice, for this particular equational theory,
this is not a problem. This feature is only relevant for the fusion laws, and for those
a single application to a sequence of functions can always be replaced by a sequence of
applications to one function at the time.

Unlike Bird’s calculator, our prototype does not store the intermediate steps of
calculation, returning to the user just the final result. This a drawback when defining
interactively the rewriting strategy to be used.

The more serious limitation is that the invariant of composition is not automatically
guaranteed. Recall that the argument of Comp must be of length at least two, and it
cannot contain an element also built with Comp. Given the rewrite rule

comp_inv :: Rule

comp_inv = (mkMp aux1) ‘orelse‘ (mkMp aux2)

where aux1 (Comp [x]) = return x

aux1 _ = fail "Not applicable"

aux2 (Comp l : m) = return (l++m)

aux2 _ = fail "Not applicable"
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the following rule can be used to repair a term in order to satisfy the invariant.

repair :: Rule

repair = many (once comp_inv)

But when implementing an arbitrary rewriting strategy, namely one that uses rules that
change the cardinality of a composition, the user must carefully introduce applications
of comp_inv in order to maintain the invariant.

The major advantage of our prototype, besides typing information, is the ability to
define flexible rewriting strategies, instead of having a fixed top-down left-to-right as in
Bird’s calculator. This advantage came for free from using the SyB library, and it was
fundamental to implement the rewriting system presented in the next section.

9.4 Simplification of Terms Translated from Pointwise

As an example of using the above prototype calculator, we will show how to simplify
terms obtained with the translation defined in Chapter 7. Since the goal is to simplify
expressions, the fundamental technique will be a contractive rewriting system that covers
the equational theory of almost bicartesian closed categories, with the exception of the
equations characterizing the terminal object. This is a terminating, but not confluent
system. However, since we are not interested in proving equalities, confluence is not a
very relevant property.

Previous section already presented the implementation of some rewrite rules, namely
Prod-Reflex and Prod-Fusion. The remaining can be implemented in a similar fashion.
For example, Prod-Cancel and Eta-Prod are defined as follows.

prod_cancel :: Rule

prod_cancel = mkMp aux

where aux (FST _ : (f :/\: g) : l) = return (f:l)

aux (SND _ : (f :/\: g) : l) = return (g:l)

aux _ = fail "Product cancellation not applicable"

eta_prod :: Rule

eta_prod = mkMp aux

where aux (Comp (FST _ : f) :/\: Comp (SND _ : g)) =

do guard (f == g)

return (Comp f)

aux _ = fail "Surjective pairing not applicable"

The last rule shows another limitation of reusing the Haskell pattern matching mecha-
nism. Since no repeated variables can appear in the left-hand side of a definition, it is
necessary to use a guard to ensure that the rule can be applied.
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The full contractive rewriting system can be implemented as follows. Notice that
comp_inv is given the highest application priority so that the composition invariant is
correctly maintained.

simplify :: Rule

simplify = many (once comp_inv ‘orelse‘ once id_nat ‘orelse‘

once beta ‘orelse‘ once exp_reflex ‘orelse‘

once exp_fusion ‘orelse‘ once eta_exp ‘orelse‘

once prod_cancel ‘orelse‘ once prod_reflex ‘orelse‘

once prod_fusion ‘orelse‘ once eta_prod ‘orelse‘

once sum_cancel ‘orelse‘ once sum_reflex ‘orelse‘

once sum_fusion ‘orelse‘ once eta_sum)

By careful inspection of the examples presented Chapter 7, namely Example 7.8
concerning the length function, it can be seen that the key move in the simplification
process is the application of law Either-Const as the following rewrite rule.

either ◦ (f ◦ snd M g ◦ snd) (f O g) ◦ snd

To identify possible applications of this rule it is better to consider either as constant.
In fact, its definition was only expanded in more contrived examples, namely in Exam-
ple 7.11 concerning distr. As such, the ARROW constructor will be used to encode this
function, which means that the above rewrite rule is implemented as follows.

either_const :: Rule

either_const = mkMp aux

where aux (ARROW "either" _ : (Curry (Comp f) :/\: Curry (Comp g)) : l) =

do (SND (c :*: a)) <- return (last f)

(SND (_ :*: b)) <- return (last g)

let expr = Comp (init f) :\/: Comp (init g)

return (Curry (Comp [expr, SND (c :*: (a :+: b))]) : l)

aux _ = fail "Either const not applicable"

This implementation assumes that terms type-check correctly before being subject to
simplification, and so the type of either is not verified. Again, due to pattern matching
limitations, it is necessary to explicitly access the last expression in a composition in
the right-hand side of the rule definition.

Unfortunately, after translating pointwise definitions into the point-free style it is
not usually possible to apply this rule immediately. One of the reasons is the existence
of “uninformative” arrows to the terminal object, that using Eta-Bang can be replaced
by more useful ones. In particular, this is the case of arrows !A×1 that can be replaced
by snd, thus increasing the chances to apply Either-Const. The problem of implementing
Eta-Bang as an expansion is that a useful function has to be guessed by looking at the
type. This cannot be done in general, but for this particular application the following
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implementation suffices. Notice that this is the only rule for which type information is
necessary.

eta_bang :: Rule

eta_bang = mkMp aux

where aux (BANG One) = return (ID One)

aux (BANG (a :*: One)) = return (SND (a :*: One))

aux (BANG (One :*: a)) = return (FST (One :*: a))

aux _ = fail "Bang expansion not possible"

bangs :: Rule

bangs = many (once eta_bang)

In some examples it is still necessary to perform some additional simplifications in
order to be able to apply Either-Const: cancellation of products and exponentials, and
application of Prod-Fusion as a rewrite rule oriented from right to left. Since this last
rule tries to break a split into a composition of smaller expressions it is denoted as
product fission. These simplifications are encoded in the following rewriting system.

reduce :: Rule

reduce = many (once comp_inv ‘orelse‘ once beta ‘orelse‘

once prod_cancel ‘orelse‘ once prod_fission)

The correct implementation of product fission is a bit tedious because it is necessary
to implement matching modulo identity. Notice the insertion of a stop condition to
avoid infinite applications of the rule.

prod_fission :: Rule

prod_fission = mkMp aux

where aux (Comp f :/\: Comp g) =

do guard (last f == last g)

return (Comp [Comp (init f) :/\: Comp (init g), last f])

aux (ID _ :/\: ID _) = fail "Cannot perform fission for ever"

aux (Comp f :/\: g) =

do guard (last f == g)

(_ :-> a) <- infer g

return (Comp [Comp (init f) :/\: ID a, g])

aux (f :/\: Comp g) =

do guard (last g == f)

(_ :-> a) <- infer f

return (Comp [ID a :/\: Comp (init g), f])

aux (f :/\: g) =

do guard (f == g)

(_ :-> a) <- infer f

return (Comp [ID a :/\: ID a, f])

aux _ = fail "Product fission not applicable"
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After one application of Either-Const it may be necessary to simplify the term be-
fore trying to apply it again. As such, the strategy that was used to eliminate either

interleaves rewriting with the system reduce with applications of either-const.

eithers :: Rule

eithers = many (reduce ‘andthen‘ once either_const)

Finally, all these systems are combined in order to define the following rewriting
system.

bangs ‘andthen‘ eithers ‘andthen‘ simplify

This system simplifies correctly all the examples presented in Chapter 7, with the excep-
tion of Example 7.11 (which implies expanding the definition of either). Notice that the
abstract syntax defined above does not include the derived combinators for products,
sums, and exponentials. It is very simple to extend it, and to define a strategy to insert
them in the resulting expressions. By doing so, we would get exactly the same final
definitions as in the mentioned examples.

9.5 Summary

This chapter shows that, in practice, despite all the negative results pointed out in
Chapter 8, it is possible to implement useful rewriting systems for point-free expressions.
For example, given some user guidance, Bird’s functional calculator can automate many
of the proofs presented in this thesis, provided no type information and conditional rules
(such as fusion) are needed. Building on this experience, we developed a prototype of
a typed functional calculator, on which we managed to implement a rewriting system
that, thanks to type information, is able to effectively simplify most of the point-free
expressions obtained with the translation defined in Chapter 7. The implementation of
this prototype was very simple thanks to the SyB generic programming library.
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Conclusions and Future Work

This thesis advocates a methodology for equational reasoning about functional pro-
grams, where functions should first be converted into a point-free style of programming
with recursion patterns before being subject to calculations. Since recursion patterns
are already well studied, we have focused on issues related to the point-free style. Within
this context, our main contributions are:

• [Chapter 4] A framework for performing point-free calculations with higher-order
functions based on the internalization of some basic combinators. This frame-
work was used to implement Bird’s accumulation strategy using a pure point-free
style. Without internalizations, such point-free calculations would be considerably
longer, and less attractive when compared to the equivalent pointwise ones.

• [Chapters 7, 9] A mechanism to translate pointwise code into the point-free style,
that can be applied to a λ-calculus rich enough to represent the core functionality
of a real functional programming language. The translation is based on the well-
known equivalence between simply typed λ-calculi and cartesian closed categories
suggested by Lambek. This equivalence was extended in order to cover sums and
the fixpoint operator. Although none of its components is completely new, it
is the first time they are put together in order to build a complete translation.
In Chapter 9 it is also shown how to use rewriting to simplify the expressions
that result from this translation. Interestingly, the effectiveness of this translation
results from the use of internalizations in order to give a more concise encoding
for sums.

• [Chapter 6] Pointless Haskell – a library that enables programming in a pure point-
free style within Haskell. The utility of having such a library can be questioned
given that we have proposed a methodology based on using point-free exclusively
for calculations, but when proving by hand it is very useful to be able to understand
or type check the expressions being manipulated. We have used it precisely for
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that purpose in some calculations in the thesis. Since it is embedded in Haskell, it
also allows one to take any existent program and translate into point-free just the
definitions that will be subject to calculation. When combined with the mechanism
for deriving point-free hylomorphisms, this library can also be used for program
understanding purposes: given a recursive definition it allows one to graphically
visualize its recursion tree, since it corresponds to the intermediate data structure
of the derived hylomorphism. It is also useful to identify possible applications
of the Hylo-Shift law since it shows unevaluated thunks: these usually suggest
possible simplifications of the intermediate data structure, by shifting work from
the catamorphism into the anamorphism.

A final contribution of the thesis is an accurate picture of the state of the art of
reasoning by calculation in the point-free style, which hopefully clarifies some common
misconceptions. Particularly relevant is the study presented in Chapter 8, that somehow
contradicts the general assumption that calculations in this style are more amenable to
mechanization than those in pointwise. As seen in Chapter 9 with Bird’s functional
calculator, and our own prototype system, it is indeed quite easy to implement a rewrite
system for point-free expressions. However, the only known procedures to decide equality
in almost bicartesian closed categories (whose equational theory equals that of our basic
set of combinators, if strictness is not taken into account) are defined for pointwise terms.
Similarly, as shown in Chapter 5, in the context of program transformation using short-
cut fusion almost all the implemented systems operate on pointwise definitions, and
the only known system designed for point-free is a prototype and is not based on solid
theoretical foundations.

On Strictness

Although some progress has been made in this work with the use of the left-strictness
concept, one problem of our approach is that the treatment of strictness issues is still not
satisfactory. This problem is particularly evident in the uniqueness laws. The strictness
side conditions that characterize some of these laws restrict their application to strict
functions, which means that reasoning about full CPO must be taken with special care.
In practice, this means that uniqueness laws may not give a precise characterization
of a recursion pattern, and proofs using these laws may not exist. In Section 3.1 we
gave an example of this problem, by showing that the fusion law for catamorphisms
cannot be derived from its uniqueness. Similar problems occur with other laws. For
example, in Section 3.1.1, we presented a proof of Cata-Map-Fusion that was based on the
hylomorphism definition of catamorphisms and the Hylo-Shift law. The traditional proof
of Cata-Map-Fusion in Set is based on Cata-Fusion. If the same tactic was attempted
in CPO, unnecessarily strictness side conditions would be required, as the following
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calculation shows. 26666666666666666664

(|f |)TB ◦ T g

= {Map-Def }
(|f |)TB ◦ (|inT ◦ (g ?T id)|)TA

= {Cata-Fusion, Cata-Strict, f strict }26666664
(|f |)TB ◦ inT ◦ (g ?T id)

= {Cata-Cancel }
f ◦ (id ?T (|f |)TB) ◦ (g ?T id)

= {Bifunctor-Comp }
f ◦ (g ?T id) ◦ (id ?T (|f |)TB)

(|f ◦ (g ?T id)|)TA

This problem happens in many other laws like, for example, Cata-Split, where the
traditional proof using Cata-Uniq would imply the strictness of both catamorphisms, or
the proof of the last fusion law concerning accumulations (presented in Section 3.5).

But always relying on the hylomorphism definition may also not be a good proof
strategy. For example, although the definition using hylomorphisms is more understand-
able, for paramorphisms and accumulations we had to resort to their definition using
catamorphisms in order to prove uniqueness. Since no direct proof was found in terms of
the definition and the basic set of laws about hylomorphisms, this seems to suggest that
this set may not be a complete characterization of this recursion pattern, and should
be extended. However, when trying to do the same proofs using directly the fixpoint
definition and fixpoint induction we faced similar problems: for example, the suggestion
given in [Mei92] for proving paramorphism uniqueness using direct fixpoint induction
clearly does not work.

Future Work

Naturally, the problems identified above point to some of the most interesting theoretical
tasks to pursue in the future.

Mechanization. In the context of the proposed reasoning methodology, the most
important task concerns mechanization. First, it would be desirable to find a direct
decision procedure for almost bicartesian closed categories using point-free combinators.
Chapter 8 raises some problems that occur when trying to define an expansionary rewrite
system in this setting, but also gives some suggestions that deserve further investigation:
to expand based on both the domain and range of an arrow, to define normal forms up to
the Abides law, and to use rewriting modulo associativity of the composition operator.
Second, in order to implement fusion, it is necessary to define automatic procedures
to solve for unknowns in equations. As seen in Chapter 5, at the pointwise level, the
fusion side-condition determines a higher-order matching problem, that has already
been shown to be decidable under restrictions broad enough to cover most interesting
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problems. Unfortunately, this approach does not make sense at the point-free level. We
intend to explore the use of narrowing to tackle this problem [Pla93]: narrowing extends
rewriting precisely by allowing variables in the terms subject to manipulation, and is
implemented using unification instead of pattern matching.

Strictness. Concerning strictness, it is important to study changes in the base cat-
egory in order to better suit the Haskell semantic domain, where all types are lifted.
But prior to this, it is necessary to untangle the mess concerning the strictness side-
conditions in the laws that characterize recursion patterns. Specially useful would be
the existence of uniqueness laws that can be used to reason about non-strict functions as
well. In the seminal “bananas paper” [MFP91] that pioneered the point-free calculus in
CPO, Meijer, Fokkinga, and Patterson defined the uniqueness law for catamorphisms
as follows.

f = (|g|)µF ⇔ f ◦ in = g ◦ F f ∧ f ◦ ⊥ = (|g|)µF ◦ ⊥

Although this version of the law covers non-strict functions, it has been subsequently
discarded by most authors in favor of the one presented in this thesis, because it is very
difficult to verify in practice the side-condition concerning bottom, unless the functions
are indeed strict. We intend to study if this version of the law can help with the above
mentioned problems. For example, so far it is not clear how it can be used to prove
Cata-Map-Fusion without imposing strictness side conditions.

Internalizations. The use of internalizations turned out to be a key aspect of the the-
sis. They were used in different contexts, namely to simplify proofs about higher-order
features and to simplify the translation from pointwise to point-free. Since we are now
using internalized versions of the basic combinators, it is also useful to have “internal-
ized” versions of the laws that characterize them, in order to avoid working directly with
the definitions. This was the case in Chapter 7, where we used this technique in order
to prove the soundness of the pointwise to point-free translation concerning sums. We
think this approach can be a step forward towards an even purer point-free calculus, in
the sense that variables are also eliminated from laws, and as such it deserves further in-
vestigation. Going in the opposite direction, we also think that the concept of point can
be used to smoothly integrate pointwise features in our calculus. For example, they can
be used to show (using point-free calculations) that the combinators have the expected
pointwise behavior. We intend to explore their usage in proofs where the pointwise style
is clearly more practical, namely those concerning bookkeeping functions.

Inwards Fusion. Chapter 4 shows how to apply Bird’s accumulation strategy using
pure point-free calculations. We intend to apply the same methodology to other program
transformation techniques, namely in the elimination of nested recursion patterns. Some
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progress has already been made in establishing laws for this kind of “inwards fusion”. A
simple example that is already covered is the transformation of the following specification
of the list filtering function, that uses an auxiliary recursive function.

filter :: (a -> Bool) -> [a] -> [a]

filter p l = case (until p l) of [] -> []

(x:xs) -> x:(filter p xs)

until :: (a -> Bool) -> [a] -> [a]

until p [] = []

until p (x:xs) | p x = x:xs

| otherwise = until p xs

This specification can be converted into the following direct recursive function.

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x:(filter p xs)

| otherwise = filter p xs

In this example no gains in efficiency are achieved, but we have already studied other ex-
amples where that happens, such as the classic example of computing a list of factorials,
first optimized by Burstall and Darlington using fold/unfold transformations [BD77].

Tools. On the practical side there are also some tasks to be pursued. First, the proto-
type implementation [Pro95] of the pointwise to point-free translation mechanism must
be improved. Given the λ-calculus defined in Chapter 7, with the extensions to struc-
tured types and pattern matching, it will be possible to use this tool to convert a subset
of Haskell into the point-free style. The resulting code can be executed using the Point-
less Haskell library presented in Chapter 6. Besides deploying it as a stand-alone tool,
we intend to include the translation as a refactoring in the Haskell Refactorer project
[LRT03], so that programmers can interactively convert between both styles within they
favorite text editor. Second, we also intend to upgrade our prototype typed point-free
calculator presented in Chapter 9 into a rewriting tool that operates on concrete point-
free syntax, combining the active source concept of MAG with the flexibility to define
various rewriting strategies using a simple tactic language.

Visual Programming. In this thesis we do not advocate the direct use of the point-
free style in programming, since definitions can easily become very long and impossible
to understand. This is a consequence of the need to frequently use bookkeeping ex-
pressions to rearrange values, and the “unnatural” use of a textual representation for
point-free programs. Both problems could be alleviated by using some sort of visual
programming language, since the combinators can be better understood as connectors
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in a kind of data-flow diagram, and bookkeeping can easily be defined in a “play with re-
wiring” style. Preliminary studies, carried out to assess the viability of such a language,
suggest promising applications of graph rewriting in the manipulation of such diagrams,
for example in the conversion of “pointwise like” re-wiring graphs into pure point-free
diagrams. One of the biggest challenges of this task, is how to visually represent in a
natural and understandable way the higher-order features of the language.
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Additional Laws and Proofs

f ◦ ap = ap ◦ (f• × id) Ap-Nat

26666664
ap ◦ (f• × id)

= {Exp-Def }
ap ◦ (f ◦ ap× id)

= {Exp-Cancel }
f ◦ ap

•f ◦ g = g ◦ (id× f) Pxe-Absor

2666666666664

•f ◦ g

= {Pxe-Def }
ap ◦ (id× f) ◦ g

= {Exp-Fusion }
ap ◦ (id× f) ◦ (g × id)

= {Prod-Functor-Comp, Exp-Cancel }
g ◦ (id× f)

split ◦ (f M g) = f M g Split-Pnt

26666666666666666666664

split ◦ (f M g)

= {Split-Def }
(ap× ap) ◦ (fst× id M snd× id) ◦ (f M g)

= {Exp-Fusion }
(ap× ap) ◦ (fst× id M snd× id) ◦ ((f M g)× id)

= {Prod-Fusion, Prod-Functor-Comp, Prod-Cancel }
(ap× ap) ◦ (f × id M g × id)

= {Pnt-Def, Prod-Absor, Exp-Cancel }
f ◦ snd M g ◦ snd

= {Prod-Fusion, Pnt-Def }
f M g

split ◦ (fst• M snd•) = id Split-Iso-Left
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2666666666666666666666666664

split ◦ (fst• M snd•)

= {Split-Def }
(ap× ap) ◦ (fst× id M snd× id) ◦ (fst• M snd•)

= {Exp-Fusion }
(ap× ap) ◦ (fst× id M snd× id) ◦ ((fst• M snd•)× id)

= {Prod-Fusion, Prod-Functor-Comp, Prod-Cancel }
(ap× ap) ◦ (fst• × id M snd• × id)

= {Exp-Def, Prod-Absor, Exp-Cancel }
fst ◦ ap M fst ◦ ap

= {Prod-Fusion, Prod-Reflex }
ap

= {Exp-Reflex }
id

(fst• M snd•) ◦ split = id Split-Iso-Right

26666666666666666666664

(fst• M snd•) ◦ split

= {Split-Def }
(fst• M snd•) ◦ (ap× ap) ◦ (fst× id M snd× id)

= {Prod-Fusion, Exp-Absor }
fst ◦ (ap× ap) ◦ (fst× id M snd× id) M snd ◦ (ap× ap) ◦ (fst× id M snd× id)

= {Prod-Def, Prod-Cancel }
ap ◦ fst ◦ (fst× id M snd× id) M ap ◦ snd ◦ (fst× id M snd× id)

= {Prod-Cancel, Exp-Fusion }
ap ◦ fst M ap ◦ snd

= {Exp-Cancel, Prod-Cancel }
id

distl ◦ (inr × id) = inr ∧ distl ◦ (inl× id) = inl Distl-Cancel

2666666666664

distl ◦ (inl× id)

= {Distl-Def }
ap ◦ ((inl O inr)× id) ◦ (inl× id)

= {Prod-Functor-Comp, Sum-Cancel }
ap ◦ (inl× id)

= {Exp-Cancel }
inl

2666666666664

distl ◦ (inr × id)

= {Distl-Def }
ap ◦ ((inl O inr)× id) ◦ (inr × id)

= {Prod-Functor-Comp, Sum-Cancel }
ap ◦ (inr × id)

= {Exp-Cancel }
inr

distr ◦ (id× inr) = inr ∧ distr ◦ (id× inl) = inl Distr-Cancel



201

266666666666666664

distr ◦ (id× inl)

= {Distr-Def }
(swap + swap) ◦ distl ◦ swap ◦ (id× inl)

= {Swap-Nat, Distl-Cancel }
(swap + swap) ◦ inl ◦ swap

= {Sum-Def, Sum-Cancel }
inl ◦ swap ◦ swap

= {Swap-Iso }
inl

266666666666666664

distr ◦ (id× inr)

= {Distr-Def }
(swap + swap) ◦ distl ◦ swap ◦ (id× inr)

= {Swap-Nat, Distl-Cancel }
(swap + swap) ◦ inr ◦ swap

= {Sum-Def, Sum-Cancel }
inr ◦ swap ◦ swap

= {Swap-Iso }
inr

(fst + fst) ◦ distl = fst Distl-Fst

26666666666666666666666666666666666664

(fst + fst) ◦ distl

= {Distl-Def }
(fst + fst) ◦ ap ◦ ((inl O inr)× id)

= {Ap-Nat }
ap ◦ ((fst + fst)• × id) ◦ ((inl O inr)× id)

= {Prod-Functor-Comp, Sum-Fusion, (fst + fst)• strict }
ap ◦ (((fst + fst)• ◦ inl O (fst + fst)• ◦ inr)× id)

= {Exp-Absor, Sum-Def, Sum-Cancel }
ap ◦ ((inl ◦ fst O inr ◦ fst)× id)

= {Prod-Cancel, Prod-Def }
ap ◦ ((fst ◦ (inl× id) O fst ◦ (inr × id))× id)

= {Exp-Fusion }
ap ◦ ((fst ◦ inl O fst ◦ inr)× id)

= {Sum-Fusion, fst strict, Sum-Reflex }
ap ◦ (fst× id)

= {Exp-Cancel }
fst

(snd + snd) ◦ distr = snd Distr-Snd

266666666666666664

(snd + snd) ◦ distr

= {Distr-Def }
(snd + snd) ◦ (swap + swap) ◦ distl ◦ swap

= {Sum-Functor-Comp, Swap-Def, Prod-Cancel }
(fst + fst) ◦ distl ◦ swap

= {Distl-Fst }
fst ◦ swap

= {Swap-Def, Prod-Cancel }
snd

distl ◦ ((f + g)× h) = (f × h + g × h) ◦ distl Distl-Nat
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2666666666666666666666666666666666666666664

(f × h + g × h) ◦ distl

= {Distl-Def, Ap-Nat }
ap ◦ ((f × h + g × h)• × id) ◦ ((inl O inr)× id)

= {Prod-Functor-Comp, Sum-Fusion, (f × h + g × h)• strict }
ap ◦ (((f × h + g × h)• ◦ inl O (f × h + g × h)• ◦ inr)× id)

= {Exp-Absor, Sum-Def, Sum-Cancel }
ap ◦ ((inl ◦ (f × h) O inr ◦ (g × h))× id)

= {Prod-Functor-Comp, Exp-Fusion }
ap ◦ ((inl ◦ (id× h) ◦ f O inr ◦ (id× h) ◦ g)× id)

= {Sum-Absor, Prod-Functor-Comp }
ap ◦ ((inl ◦ (id× h) O inr ◦ (id× h))× id) ◦ ((f + g)× id)

= {Pxe-Absor }
ap ◦ ((•h ◦ inl O •h ◦ inr)× id) ◦ ((f + g)× id)

= {Sum-Fusion, •f strict, Prod-Functor-Comp }
ap ◦ (•h× id) ◦ ((inl O inr)× id) ◦ ((f + g)× id)

= {Pxe-Def, Exp-Cancel }
ap ◦ (id× h) ◦ ((inl O inr)× id) ◦ ((f + g)× id)

= {Prod-Functor-Comp, Distl-Def }
distl ◦ ((f + g)× h)

distr ◦ (f × (g + h)) = (f × g + f × h) ◦ distr Distr-Nat

2666666666664

distr ◦ (f × (g + h))

= {Distr-Def }
(swap + swap) ◦ distl ◦ swap ◦ (f × (g + h))

= {Swap-Nat,Distl-Nat }
(swap + swap) ◦ (g × f + h× f) ◦ distl ◦ swap

= {Prod-Functor-Comp, Swap-Nat }
(f × g + f × h) ◦ (swap + swap) ◦ distl ◦ swap

(•inl O •inr) ◦ either = id Either-Iso-Right

2666666666666666666666666664

(•inl M •inr) ◦ either

= {Either-Def }
(•inl M •inr) ◦ (ap O ap) ◦ (fst× id + snd× id) ◦ distr

= {Prod-Fusion, Pxe-Absor }
(ap O ap) ◦ (fst× id + snd× id) ◦ distr ◦ (id× inl) M (ap O ap) ◦ (fst× id + snd× id) ◦ distr ◦ (id× inr)

= {Distr-Cancel }
(ap O ap) ◦ (fst× id + snd× id) ◦ inl M (ap O ap) ◦ (fst× id + snd× id) ◦ inr

= {Sum-Absor, Sum-Cancel }
ap ◦ (fst× id) M ap ◦ (snd× id)

= {Exp-Fusion, Exp-Reflex }
fst M snd

= {Prod-Reflex }
id
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[GRR95] Carl Gunter, Didier Rémy, and Jon Riecke. A generalization of exceptions
and control in ML-like languages. In Proceedings of the 7th international
conference on Functional Programming Languages and Computer Architec-
ture, pages 12–23. ACM Press, 1995.

[Hag87] Tatsuya Hagino. A Categorical Programming Language. PhD thesis, Uni-
versity of Edinburgh, 1987.
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