
ARTICLE IN PRESS

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM
OpticsOptikOptik
Optik 116 (2005) 270–276
0030-4026/$ - se

doi:10.1016/j.ijl

�Fax: +351 2

E-mail addr
www.elsevier.de/ijleo
Programming matrix optics into Mathematica

José B. Almeida�

Escola de Ciências, Universidade do Minho, 4700-320 Braga, Portugal

Received 11 October 2004; accepted 20 January 2005
Abstract

The various non-linear transformations incurred by the rays in an optical system can be modelled by matrix
products up to any desired order of approximation. Mathematica software has been used to find the appropriate
matrix coefficients for the straight path transformation and for the transformations induced by conical surfaces, both
direction change and position offset. The same software package was programmed to model optical systems in seventh
order. A Petzval lens was used to exemplify the modelling power of the program.
r 2005 Elsevier GmbH. All rights reserved.

Keywords: Aberration; Matrix optics; Computer optics
1. Introduction

In previous papers [1,2] it was shown that it is possible
to determine coefficients for matrix modelling of optical
systems up to any desired order, computing power being
the only limiting factor. The second of those paper lists
the calculated seventh-order coefficients for systems
comprising only spherical surfaces.

The use of matrices for optical modelling of optical
systems under paraxial approximation is well known, see
for instance [3]. Other authors have shown the possibility
of extending matrix modelling to higher orders [4,5] and
the author has used in his previous work a different set of
coordinates which made feasible the implementation of
matrix models in personal computers.

The first part of the paper describes the calculations
necessary for the determination of matrix coefficients
and the manner these were performed with Mathematica
software [6]. The programming is general for surfaces
that can be described analytically and for whatever
e front matter r 2005 Elsevier GmbH. All rights reserved.

eo.2005.01.021

53678981.

ess: bda@fisica.uminho.pt (J.B. Almeida).
approximation is desired. The possibilities of the
modelling system are then exemplified with the study
of a Petzval lens’ aberrations.

A set of Mathematica functions needed for the
implementation of matrix models was defined and
assembled in a package which is described in its most
relevant aspects in the appendix.
2. Determination of expansion coefficients

2.1. Initialization

In this section, we explain how Mathematica can be
used to evaluate all the expansion coefficients needed for
further implementation of matrix models. The method is
explained with great generality and can be used up to
any degree of approximation and with all surfaces that
can be defined analytically.

First of all we must load two packages that will be
used further along:
Needs["Calculus‘VectorAnalysis‘"],
Needs["Optics‘expansion‘"].

https://core.ac.uk/display/55604012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.de/ijleo


ARTICLE IN PRESS
J.B. Almeida / Optik 116 (2005) 270–276 271
The first package is distributed standard with Mathema-
tica and is useful for performing vector operations. The
second one is a proprietary package which performs series
expansion in different way. The standard series expansion
for multi-variable functions sets the limit for each
variable’s exponent independently but not for the order
of the monomials. The expansion package sets a limit for
the monomials’ order, so that each variable’s exponent is
adjusted accordingly; for details see Appendix B.
2.2. Surface definition

The method is applicable to any surface which can be
defined by an equation of the type f ðx; y; zÞ ¼ 0: For
instance, a conic of revolution could be defined as

surface[x_, y_, z_] ¼ Sqrt[xˆ2 + yˆ2 + zˆ2]
+ e*z - r.

We are going to need the normal to the surface at any
point; this can be found applying gradient to the surface
expression
n ¼ Grad[surface[Xx, Yy, Zz],
Cartesian[Xx,Yy,Zz]].
2.3. Snell’s law

Snell’s law is usually written as scalar relationship
between sines of the angles the rays form with the
normal on both sides of the surface, but it can also be
expressed as a vector relationship using cross products
[2]. Let us define to unit vectors representing the ray
directions on the two sides of the surface:
v ¼ {s, t, Sqrt[1 - ŝ 2 - t̂ 2]},
v1 ¼ {s1, t1, Sqrt[1-s1̂ 2-t1̂ 2]}.
v and v1 represent the unit vectors, s, t, s1 and t1 are
direction cosines.

Snell’s law requires that the cross-product of the ray
direction with the surface normal, multiplied by the
refractive index be equal on both sides

u v � n ¼ v1 � n, (1)

where u represents the refractive index ratio of the two
media. We ask Mathematica to find the solutions of Eq.
(1) for the surface in question

Snell ¼ Solve½fu � CrossProduct½v; n�

¼ CrossProduct½v1; n�; surface½Xx; Yy; Zz� ¼¼ 0g,


fs1; t1; Zzg�.

Eq. (1) has four solutions, corresponding to positive
and negative angles, in the forward and the reverse
directions. The solutions found by Mathematica must be
scanned in order to find the appropriate one. We can
write the exact solution with two commands:
sd ¼ Simplify[s1 /. Snell[[3]]],
td ¼ Simplify[t1 /. Snell[[3]]],
which will output very long expressions very impractical
for use.
2.3.1. Series expansion

The solutions of Eq. (1) must be expanded in
series to the desired order of approximation for which
we use a function from the expansion package. Deal-
ing with axis-symmetric systems it is useful to
resort to complex coordinates; the two solutions
are thus combined into one single complex solution,
then expanded to the fifth order and sim-
plified:

sexpand ¼ Expansion[sd + I*td, s, t, Xx,
Yy, 5],
sexpand ¼

Simplify[PowerExpand[sexpand]].

The result of the Expansion function is a list of
coefficients, most of them zero. The expansion package
provides a function VectorBase which outputs a list
of all the monomials that can be built with the given list
of variables up to the desired order. This can be left-
multiplied by the coefficient list in order to get a
polynomial:

sexpand ¼ sexpand . VectorBase[s, t, x, y,
5].

2.3.2. Complex coordinates

Although combined into one single complex coordi-
nate in sexpand, the output ray direction cosines
are still expressed in terms of real input ray position and
direction coordinates; this must be corrected by an
appropriate coordinate change, followed by suitable
manipulation and simplification:
Apply[Plus,Simplify[MonomialList
[ComplexExpand[sexpand /.
{x -4 (X + Conjugate[X])/2,
y -4 (X - Conjugate[X])/(2*I),
s -4 (S + Conjugate[S])/2,
t -4 (S - Conjugate[S])/(2*I)}, {X,S},
TargetFunctions-4Conjugate],
{X, Conjugate[X], S, Conjugate[S]},
CoefficientDomain-
4RationalFunctions]]].
Mathematica will output an expression for the above
command, which is reproduced bellow in a slightly



ARTICLE IN PRESS
J.B. Almeida / Optik 116 (2005) 270–276272
different form:

Su �
ð1þ uÞX

r
þ

Suð1þ uÞXConjugateðSÞ

2r

�
uð1þ uÞX 2ConjugateðSÞ

2r2

þ
S2ðu þ u4ÞXConjugateðSÞ2

8r

�
Su2ð�1þ u2ÞX 2ConjugateðSÞ2

4r2

þ
u2ð�1þ u2ÞX 3ConjugateðSÞ2

8r3

�
Suð1þ uÞXConjugateðX Þ

2r2

þ
ð1þ uÞðe2 þ uÞX 2ConjugateðX Þ

2r3

�
S2u2ð�1þ u2ÞXConjugateðSÞConjugateðX Þ

4 r2

�
Suð1þ uÞð1þ e2 þ 2u � 2u2ÞX 2ConjugateðSÞConjugateðX Þ

4r3

þ
uð1þ uÞð2e2 þ u � u2ÞX 3ConjugateðSÞConjugateðX Þ

4r4

þ
S2 u2ð�1þ u2ÞXConjugateðX Þ

2

8r3

þ
Suð1þ uÞð2e2 þ u � u2ÞX 2ConjugateðX Þ

2

4r4

þ
ð1þ uÞð�3e4 þ u � 6e2u � u2 þ u3ÞX 3ConjugateðX Þ

2

8r5
.

All the coefficients resulting from similar operations
performed on a spherical surface up to the seventh order
have already been listed by the author [2] and the reader
is referred to that work for further elucidation.
2.4. Surface offset

We will now deal with the problem of the offset
introduced by the surface on the position coordinates;
the reader is again referred to the above mentioned work
for full explanation of this matter.

Mathematica will respond quicker if we perform shift
the coordinate origin, along the axis, to the geometrical
centre of the surface; this is the purpose of the three
following commands:

eq ¼ Solve[surface[x, y, z] ¼ ¼ 0, z],
z1 ¼ z /. eq[[2]],
z1 ¼ z1 - r/(-1 + e).
The ray coordinates on the point of incidence will
have to obey the two equations

x1 ¼ x þ
sz1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2 � t2
p ,
y1 ¼ y þ
tz1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2 � t2
p . (2)

The following commands will perform the necessary
calculations:

eqx ¼ x1 ¼ ¼ x + s*z1/Sqrt[1 - ŝ 2 - t̂ 2],
eqy ¼ y1 ¼ ¼ y + t*z1/Sqrt[1 - ŝ 2 - t̂ 2],
offset ¼ Solve[{eqx, eqy}, {x, y}].

The ray will usually intersect a surface in two points but
complex surfaces can be intersected in several points; the
relevant solution is the one that is closest to the surface
vertex plane, which will have to be selected from the
multiple solutions found by Mathematica:
xd ¼ Simplify[x /. offset[[2]]],
yd ¼ Simplify[y /. offset[[2]]].
2.4.1. Series expansion

The commands that follow reproduce a procedure similar
to what was explained in paragraphs 2.3.1 and 2.3.2:
xexpand

¼ Simplify[PowerExpand[Expansion
[xd + I*yd, s,

t, x1, y1, 5]],TimeConstraint-4
Infinity],
xexpand ¼ xexpand . VectorBase[s, t, x, y,
5],

Simplify[MonomialList[ComplexExpand
[xexpand /.

{x -4 (X + Conjugate[X])/2,

y -4 (X - Conjugate[X])/(2*I),

s -4 (S + Conjugate[S])/2,

t -4 (S - Conjugate[S])/(2*I)}, {X,S},

TargetFunctions-4Conjugate],

{X, Conjugate[X], S, Conjugate[S]},

CoefficientDomain-4RationalFunctions]].

The result is the following coefficient list:

ð�1þ e2ÞSX 2ConjugateðX Þ
2

8r3

�
,

S X 2ConjugateðSÞConjugateðX Þ

4r2
,

S2XConjugateðX Þ
2

4r2
,

�ðS2XConjugateðSÞConjugateðX ÞÞ

4r
,

�ðSXConjugateðX ÞÞ

2r
;X

�
.

The complete set of coefficients for the seventh-order
and spherical surfaces can be found on the paper
mentioned before. The same reference lists the coeffi-
cients for the reverse offset, which are determined in an
entirely similar manner.



ARTICLE IN PRESS

Fig. 1. Diagram of a Petzval lens.

J.B. Almeida / Optik 116 (2005) 270–276 273
2.5. Straight path

The use of direction cosines to define the ray
orientation renders a straight path into a non-linear
transformation, whose expansion must also be taken
care of. The procedure is similar to what was used above
and there are no mathematical complexities involved; we
will just list the commands and the final result
xexpand

¼ Simplify[PowerExpand[Expansion[x
+s*e/Sqrt[1 - ŝ 2 - t̂ 2]

+I*(y + t*e/Sqrt[1 - ŝ 2 - t̂ 2]), s,
t, x,

y, 5]]];
xexpand ¼ xexpand . VectorBase[s, t, x, y,
5],
Apart[xexpand /.
{x -4 (X + Conjugate[X])/2,

y -4 (X - Conjugate[X])/(2*I),

s -4 (S + Conjugate[S])/2,

t -4 (S - Conjugate[S])/(2*I)}, r].
The final output is

1
8 ð8eS þ 8X þ 4eS2ConjugateðSÞ þ 3eS3ConjugateðSÞ2Þ

3. Simulation of a Petzval lens

In this section we will use Mathematica to model a
complex lens using matrix optics. The chosen lens is a
Petzval design distributed with Oslo LT [7], which
reproduces an example from Walker [8]; this lens is
illustrated in Fig. 1 and is built with four elements made
of glasses BK7 and SF4.

3.1. Initialization

The model uses a proprietary package named Sphericl

which defines all the functions needed for implementation of
matrix models of spherical systems, along with some other
useful functions. The package is described in Appendix A.
Needs["Optics‘Sphericl‘"].
The two glasses used for the individual elements are
defined by lists of their refractive indices at three
wavelengths, namely 587.56, 486.130 and 656.270 nm:
bk7 ¼ {1.5168, 1.522376, 1.514322},
f4 ¼ {1.616592, 1.62848, 1.611645}.
3.2. Lens definition

The two functions Lens[] and Distance[]
provide the matrices corresponding to the ray transfor-
mations induced by a single element in air and a straight
path; they are multiplied successively, in reverse order
relative to the transformations, in order to model the
lens:
Table[lens[i]

¼ Lens[f4[[i]],-18.44,-40.23,3] .
Distance[35].
Lens[bk7[[i]],41.42,103.08,8] .
Distance[25].

Lens[bk7[[i]],-72.05,-92.6,7] .
Distance[4].

Lens[bk7[[i]],53.12,-799.9,10] .
Distance[60],{i,1,3}].
The last factor, Distance[60], corresponds to the
distance from the aperture stop to the first surface. The
Table[] function is used to generate models for all
three wavelengths.

3.3. Image coordinates

The optimization performed by Oslo determined an
image plane position at 3.787202mm from the last
surface, so there is one last product to make in order to
find the overall system matrices for the three wave-
lengths:
Table[image[i] ¼

Distance[3.787202].lens[i],{i,1,3}].
The system matrices must be right-multiplied by the
vector base in order to generate the coordinates and the
higher order monomials for the image plane. The
function Terms[] is responsible for generating a
complex vector base from the given coordinates:
Table[imagex[i] ¼ (image[i].Terms
[{x,s}])[[1]],{i,1,3}].
List imagex[i] is a 3 element vector, whose

elements are the complex position coordinates for each
of the three wavelengths. We can isolate the tangential
and sagittal components by making the input coordinate
real or imaginary and simultaneously taking the real or
imaginary parts, respectively:
Table[timage[i] ¼ ComplexExpand
[Re[imagex[i]]],{i,1,3}],



ARTICLE IN PRESS
J.B. Almeida / Optik 116 (2005) 270–276274
Table[simage[i] ¼ ComplexExpand
[Im[imagex[i]/. x-4I x]],{i,1,3}].
3.4. Ray analysis

Finally, we perform some ray analysis by plotting ray
intercept curves for two different values of the field
given by the variable s; the results are shown in Fig. 2:
Fig.

!58

figur
2. R

7.56

e is
Table[timage0 ¼ timage[1] /. x -4 0,

Plot[{timage[1] - timage0, timage[2] -
timage0,
timage[3] - timage0}, {x, -23, 23},

PlotRange -4 {Automatic, {-0.5, 0.5}},

PlotStyle -4 {{Thickness[0.01]},
{Thickness[0.01],
Dashing[{0.04}]}, {Thickness[0.01],

Dashing[{0.04, 0.04, 0.003, 0.04}]}},
AxesStyle -4 Thickness[0.005],

AxesLabel -4 {"mm", "mm"}], {s, 0, 0.09,
0.087155}].
4. Conclusion

All the calculations needed for matrix modelling
optical systems were successively programmed with
Mathematica without limitations for surface shapes or
degree of approximation. The program for the determi-
nation of series expansion coefficients was run in less
than 1 h for the seventh-order and spherical surfaces.
Other surface shapes have already bean used and these
include conicals and toroids.

After calculation, the coefficients have been incorpo-
rated in a Mathematica package which runs fast and
-20 -10 10 20
mm

-0.4

-0.2

0.2

0.4

mm

-20 -10 10 20
mm

-0.4

-0.2

0.2

0.4

mm

ay intercept curves for three wavelengths: green

nm, blue !486.130 nm, red !656.270 nm. Top

for on-axis incidence, bottom figure for 5� field angle.
avoids the need to re-calculate over and over. This
package is fast and allows the simulation of very
complex optical systems; one such example was demon-
strated in the form of a Petzval lens.

Work is now going on to extract more possibilities from
the software, namely for plotting wavefronts and ray-
densities, and will be the object of other publications.

Appendix A. The ‘‘Sphericl’’ package

This package provides all the functions needed for the
implementation of seventh-order matrix models of optical
systems. Some auxiliary functions are also defined in order
to facilitate other optical system calculations. This
appendix describes in detail the fundamental functions
and gives only short mentions of the others.

The package makes use of the axis symmetry to
reduce matrix size to 40
 40; so all the coordinates are
assumed to be complex. One ray, at any specific position
is characterized by one complex position coordinate and
on complex direction cosine coordinate.

A.1. Terms

The function builds the 40-element vector base with
all the coordinate monomials that have non-zero
coefficients in axis-symmetric systems:
Terms[r_List] :¼ Module[{x,s,ray},
s ¼ r[[2]] ; x ¼ r[[1]]; ray ¼ {x, s,
x̂ 2*Conjugate[x],
x̂ 2*Conjugate[s], s*x*Conjugate[x],

s*x*Conjugate[s], ŝ 2*Conjugate[x],
ŝ 2*Conjugate[s],

x̂ 3*Conjugate[x]̂ 2,
x̂ 3*Conjugate[s]*Conjugate[x],

x̂ 3*Conjugate[s]̂ 2,
s*x̂ 2*Conjugate[x]̂ 2,

s*x̂ 2*Conjugate[s]*Conjugate[x],
s*x̂ 2*Conjugate[s]̂ 2,

ŝ 2*x*Conjugate[x]̂ 2,
ŝ 2*x*Conjugate[s]*Conjugate[x],

ŝ 2*x*Conjugate[s]̂ 2,
ŝ 3*Conjugate[x]̂ 2,

ŝ 3*Conjugate[s]*Conjugate[x],
ŝ 3*Conjugate[s]̂ 2,

x̂ 4*Conjugate[x]̂ 3,
x̂ 4*Conjugate[s]*Conjugate[x]̂ 2,

x̂ 4*Conjugate[s]̂ 2*Conjugate[x],
x̂ 4*Conjugate[s]̂ 3,

s*x̂ 3*Conjugate[x]̂ 3,
s*x̂ 3*Conjugate[s]*Conjugate[x]̂ 2,

s*x̂ 3*Conjugate[s]̂ 2*Conjugate[x],
s*x̂ 3*Conjugate[s]̂ 3,

ŝ 2*x̂ 2*Conjugate[x]̂ 3,

ŝ 2*x̂ 2*Conjugate[s]*Conjugate[x]̂ 2,



ARTICLE IN PRESS
J.B. Almeida / Optik 116 (2005) 270–276 275
ŝ 2*x̂ 2*Conjugate[s]̂ 2*Conjugate[x],

ŝ 2*x̂ 2*Conjugate[s]̂ 3,
ŝ 3*x*Conjugate[x]̂ 3,

ŝ 3*x*Conjugate[s]*Conjugate[x]̂ 2,

ŝ 3*x*Conjugate[s]̂ 2*Conjugate[x],
ŝ 3*x*Conjugate[s]̂ 3,

ŝ 4*Conjugate[x]̂ 3,
ŝ 4*Conjugate[s]*Conjugate[x]̂ 2,

ŝ 4*Conjugate[s]̂ 2*Conjugate[x],
ŝ 4*Conjugate[s]̂ 3},
ray].

A.2. Otherlines

All the transformation matrices have a common
structure characterized by two lines of series expansion
coefficients followed by 38 lines of elements derived
from the former by algebraic operations. The other-
lines[] function is an internal function which accepts
as input any 40
 40 matrix and outputs another matrix
with the same first two lines and lines 3–40 built
according to the common rules.

It is impossible to list all the implementation lines for
this function, for reasons of size; we will then resort to
an explanation of the procedures for determining the
coefficients for one of the 38 lines.

Suppose we want to find the coefficients for a line which
corresponds to the monomial X jConjugate ½X �kSl

Conjugate½S�m: We start by defining a square matrix t of
dimension 40, with known elements on the first two rows:
t ¼ IdentityMatrix[40],
t[[1]] ¼ Table[a[i],{i,1,40}],
t[[2]] ¼ Table[b[i],{i,1,40}].
The matrix is right-multiplied by the vector base of
coordinate monomials and the first two elements of the
product are isolated:
X1 ¼ (t . Terms[{X, S}])[[1]],
S1 ¼ (t . Terms[{X, S}])[[2]].
The procedure then involves determining the product

X1̂ j Conjugate[X1]̂ k S1̂ l Conjugate[S1]̂ m

and selecting just the terms up to the seventh order. The
same procedure must be repeated for all the 38 lines.

These are lengthy calculations which must be performed
only once. The function otherlines[] incorporates the
results of those calculations and is fast to operate.
A.3. Refraction

This is an internal function which receives as input the
refractive indices of the two media and the curvature
radius and outputs a transformation matrix whose
second line contains the expansion coefficients for
Snell’s law according to paragraph 2.3:
refraction[n1_, n2_, r_] : ¼

Module[{matrix,u},
matrix ¼ IdentityMatrix[40];
u ¼ n1/n2;
matrix[[2]]

¼ {(u-1)/r,u,(û 2-u)/(2 r̂ 3),(û 2-u)/(2
r̂ 2),(û 2-u)/(2

r
ˆ2),(û 2-u)/(2 r),0,0, (û 4-u)/(8
r̂ 5),(û 4-û 2)/(4

r
ˆ4),(û 4-û 2)/(8 r̂ 3),(û 4-û 2)/(4
r̂ 4),u(2û 3-3 u + 1)/(4 r̂ 3),

(
û 4 - û 2)/(4 r̂ 2),(û 4-û 2)/(8 r̂ 3),(û 4-
û 2)/(4 r̂ 2),(û 4-u)/(8

r
),0,0,0, (û 6-u)/(16 r̂ 7),û 2 (3û 4 - 2û 2
- 1)/(16 r̂ 6),3

u
ˆ4(û 2-1)/(16 r̂ 5),(û 6-û 4)/(16 r̂ 4),
û 2(3 û 4-2 û 2-1)/(16

r
ˆ6),u(9û 5-10û 3 + 1)/(16 r̂ 5),û 2(9 û 4-
11 û 2 + 2)/(16 r̂ 4), 3

u
ˆ4(û 2-1)/(16 r̂ 3),3 û 4(û 2-1)/(16
r̂ 5),û 2(9 û 4-11 û 2+2)/(16

r
ˆ4), u(9 û 5-10 û 3+1)/(16 r̂ 3),û 2(3 û 4-
2 û 2-1)/(16

r
ˆ2),û 4(û 2-1)/(16 r̂ 4),3 û 4(û 2-1)/(16
r̂ 3), û 2(3 û 4-2

u
ˆ2-1)/(16 r̂ 2),u(û 5-1)/(16 r),0,0,0,0},
otherlines[matrix]].

A.4. Screen

This is an external function which is used internally
to determine the surface offset and externally to deal
with spherical image surfaces. The structure is similar to
the previous one but now its the first line which is
defined
Screen[r_] :¼ Module[{matrix},
matrix ¼ IdentityMatrix[40];
matrix[[1]] ¼ {1,0,0,0,1/
(2r),0,0,0,0,0,0,
1/(8 r̂ 3),0,0,0,1/(4
r),0,0,0,0,0,0,0,0,1/(16
r̂ 5),0,0,0,0,1/(16 r̂ 3),0,0,0,0,3/(16
r),0,0,0,0,0},
otherlines[matrix]].
A.5. Back

This is an internal function used to determine the
reverse offset.

back[r_] :¼ Module[{matrix},
matrix ¼ IdentityMatrix[40],



ARTICLE IN PRESS
J.B. Almeida / Optik 116 (2005) 270–276276
matrix[[1]] ¼ {1,0,0,0,-1/
(2r),0,0,0,0,0,0,
-1/(8 r̂ 3),1/(4 r̂ 2),0,1/(4 r̂ 2),-1/(4r),
0,0,0,0,0,0,0,0,-1/(16 r̂ 5),3/(16 r̂ 4),
-1/(8 r̂ 3),0,3/(16r̂ 4),-7/(16 r̂ 3),1/(4
r̂ 2),
0,-1/(8 r̂ 3),1/(4 r̂ 2),-3/
(16r),0,0,0,0,0};
otherlines[matrix]].

A.6. Surface

This is an external function which receives as input
the refractive indices of the two media and outputs the
transformation matrix for a surface; it is built as the
product of three matrices:
Surface[n1_, n2_, r_]
:¼ back[r] . refraction[n1, n2, r] .
Screen[r].
A.7. Distance

This is an external function which receives as input
the distance travelled along the axis and outputs the
matrix for the straight path transformation:
Distance[t_] :¼ Module[{matrix},
matrix ¼ IdentityMatrix[40],
matrix[[1]] ¼ {1,t,0,0,0,0,0,t/
2,0,0,0,0,0,
0,0,0,0,0,0,3t/
8,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,5 t/16},
otherlines[matrix]].
A.8. Other functions

Auxiliary functions include Lens[], for the matrix of
a single element lens in air, functions for gaussian
constants, conjugates, etc.

Appendix B. The ‘‘expansion’’ package
BeginPackage["Optics‘expansion‘"]
Expansion::usage
¼ "Expansion[e,{x,y,z,t},o] finds the
coefficients of the series

expansion of expression e in variables
x,y,z,t up to the order o".
VectorBase::usage

¼ "VectorBase[{x,y,z,t},o] outputs a
vector with all the {x,y,z,t} monomials

of grade not higher than o".
Begin["‘Private‘"];
Expansion[a_, {ax_, ay_, rx_, ry_}, o_]

:¼ Module[{final, ser1, ser2, ser3, ser4},
final ¼ {};

ser1 ¼ Series[a, {ax, 0, o}];

For½i ¼ 0; iooþ 1; iþþ;

ser2 ¼ Series[Coefficient
[ser1, ax, i], {ay, 0, o}];

For½j ¼ 0; jooþ 1� i; jþþ;

ser3 ¼ Series[Coefficient[ser2,
ay, j], {rx, 0, o}];

For½k ¼ 0; kooþ 1� i� j; kþþ;

ser4 ¼ Series[Coefficient[ser3,
rx, k], {ry, 0, o}];

For½u ¼ 0; uooþ 1� i� j� k; uþþ;
final ¼ AppendTo[final,
Coefficient[ser4,ry,u]*ax̂ i*
aŷ j*rx̂ k*rŷ u];

]]]]; final].
VectorBase[{ax_, ay_, rx_, ry_}, o_]

:¼ Module[{final, final ¼ {};
For½i ¼ 0; iooþ 1; iþþ;

For½j ¼ 0; jooþ 1� i; jþþ;
For½k ¼ 0; kooþ 1� i� j; kþþ;

For½u ¼ 0; uooþ 1� i� j� k; uþþ;

final ¼ AppendTo[final,
ax̂ i*aŷ j*rx̂ k*rŷ u];
]]]]; final]
End[]; EndPackage[].

References

[1] J.B. Almeida, The use of matrices for third order modeling

of optical systems, In: K.P. Thompson, L.R. Gardner

(Eds.), International Optical Design Conference; Proc.

SPIE 3482 (1998) 917–925.

[2] J.B. Almeida, General method for the determination of

matrix coefficients for high order optical system modeling,

J. Opt. Soc. Am. A 16 (1999) 596–601.

[3] A. Gerrard, J.M. Burch, Introduction to Matrix Methods

in Optics, Dover Publications, New York, 1994.

[4] M. Kondo, Y. Takeuchi, Matrix method for nonlinear

transformation and its application to an optical lens

system, J. Opt. Soc. Am. A 13 (1996) 71–89.

[5] V. Lakshminarayanan, S. Varadharajan, Expressions for

aberration coefficients using nonlinear transforms, Opto-

metry Vision Sci. 74 (1997) 676–686.

[6] Mathematica 4.0, Wolfram Research, Inc., 1999.

[7] Oslo LT—version 5, Optics design software, Sinclair

Optics, Inc., 1995.

[8] B.H. Walker, Optical Engineering Fundamentals,

McGraw-Hill, New York, 1995.


	Programming matrix optics into Mathematica
	Introduction
	Determination of expansion coefficients
	Initialization
	Surface definition
	Snellaposs law
	Series expansion
	Complex coordinates

	Surface offset
	Series expansion

	Straight path

	Simulation of a Petzval lens
	Initialization
	Lens definition
	Image coordinates
	Ray analysis

	Conclusion

	The 
	Outline placeholder
	Terms
	Otherlines
	Refraction
	Screen
	Back
	Surface
	Distance
	Other functions


	The 
	References


