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Abstract To study the evolution of ochratoxin A (OTA)
content from must to wine during the making of Port
Wine, grapes from the five most common varieties of
Port Wine were harvested and combined in equal per-
centages in order to perform microvinifications. Three
sets of assays were studied: a blank (A), where the most
common Port Wine-making process was used; in the
second (B), a solution of OTA was added to the initial
must; in the third (C), the grapes were aspersed with an
inoculating solution of OTA-producing fungi. Samples
were collected, in duplicate, on four different occasions
throughout the process. The influence of the addition of
SO, to the must was also assessed in each set. The
quantification of OTA was based on the standard ref-
erence method for wines (European Standard prEN
14133), which includes clean-up via immunoaffinity
columns and HPLC with fluorescence detection. The
limits of detection were 0.076 pg/l for wine and
0.114 pg/l for must. The method was validated by
assessing the precision, accuracy and by obtaining an
estimate of the global uncertainty. Overall, the levels of
OTA observed during the vinifications dropped by up to
92%, and no grapes used in this work were contami-
nated naturally.
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Introduction

The wine industry plays an important role in the Por-
tuguese economy, which is one of the reasons to search
for good quality standards in Portuguese wines. Besides
careful organoleptic characterization, wines are often
controlled for trace compounds that may eventually act
as contaminants and, therefore, be a source of concern
to the consumer. In recent years, there has been a
growing awareness of the presence of ochratoxin A
(OTA) in foodstuffs. OTA is a mycotoxin (potentially
toxic secondary metabolites derived from fungal con-
tamination) produced by strains of Aspergillus and
Penicillium. 1t is a potent nephrotoxin and hepatoxin
with teratogenic, mutagenic and immunosuppressive
effects [1], and has been classified as a possible human
carcinogenic [2]. Discovered in 1965 by Van der Merwe
et al [3], OTA was first reported in wine in 1995 by
Zimmerli and Dick [4] and, since then, investigations
into the presence of this compound in grapes, grape
juices, musts and wines have been triggered in several
countries worldwide (France [5], Japan [6], United
Kingdom [7], Portugal [8, 9], Italy [10], Chile [11],
Greece [12], South Africa [13], Spain [14], Brazil and
Argentina [15] and a global survey by Soleas et al [16],
amongst many others). Aspergillus ochraceus (in tropi-
cal climates) and Penicillium verrucosum (in temperate
and cold climates) are commonly recognized as the main
OTA producers [17]. Regarding grapes, the responsi-
bility for OTA contamination has been attributed to
black aspergilli (Mostly A. carbonarius, and A. niger
aggregate strains) [18-20]. The presence of this myco-
toxin has also been found in other commodities such as
cereals, beans, groundnuts, spices, dried fruits, coffee,
beer, cheese [21] and even cocoa [22], or products de-
rived from mainly non-ruminant animals [23], such as
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milk, pig blood, liver and kidney, and poultry meat [21].
This chain of contamination reaches up to humans, as
OTA has been found in human milk [1] and blood [24].
Thus, the main concern is the fact that human exposure
to OTA is more likely to be from low level contamina-
tion of a wide range of different foods than from high
level ingestion of a single food source. Although already
regulated for some foods, there is still no legal limit on
OTA in grape products. However, the Office Interna-
tional de la Vigne et du Vin (OIV) recommends a
maximum level in wine of 2 ug/l [25]. Values reported
for wines above this limit are scarce and refer to
southern Europe and North Africa regions (Mediterra-
nean climates), that are more prone to contamination
than those originating from central Europe [26, 27].
There is no evidence that OTA levels are above 2 pg/l in
Portuguese wines (Port Wine and Vinho Verde) [8, 9].

Several techniques for reducing the incidence of OTA
have been tried, both preventive and corrective. The
content of OTA has been studied in the processing of
foods like coffee [28, 29], wheat [30] and cocoa [31].
Focusing on grape products, the conditions and factors
required for the development of OTA have also been
assessed [32, 33], as well as the response to different
treatment strategies [34]. Since corrective measures ap-
plied in the final product, such as adsorption with
chemical agents [35, 36] and biodegradation [37, 38] are
yet to prove practical due to the associated degradation of
wine properties, the emphasis is currently on prevention.
However, although the fungi that produce OTA, the
chemical structure of it, and its stability and toxicity are
all known, its appearance and metabolic pathway is still
uncertain before and during winemaking. It is not clear
how the mycotoxin is distributed between the juice and
the skin in the grape, or how vinification affects its con-
tent in wines, despite a few studies on this subject. Belli
et al [39] noticed significant grape contamination from
setting to harvest; Fernandes et al [40] mentioned a de-
crease in OTA content during a Vinho Verde vinification
trial; Arici et al [41] followed the increase of OTA during
the production of grape juice from mouldy grapes.

No data has been published previously on the fate of
OTA during a specific vinification like that for Port
Wine. Hence, this work intended to study the evolution
of OTA content during the making of Port Wine (a
fortified wine in which fermentation is arrested at some
point) from the must to the wine.

Several analytical methodologies were attempted in
order to determine the OTA in the wine, such as
immunoaffinity columns (IAC) and HPLC-FD [42, 43],
solid-phase extraction (SPE) and reversed phase HPLC-
FD [44], SPE and HPLC-PDA or GC-MS [16], liquid—
liquid extraction (LLE) and HPLC-FD [45], liquid-phase
microextraction (LPME) with HPLC-FD [46], and
RP-HPLC-FD with no prior extraction [47]. A com-
parison of different methods was performed by Leitner
et al [48]. For grapes, Serra et al [49] studied several
extraction procedures prior to HPLC-FD. In the current
work, the quantification of OTA in both musts and wines
was based on the standard reference method for wines
[50], which includes prior extraction using immunoaf-
finity columns and determination by HPLC with fluo-
rescence detection. Some adaptations were made and are
described later. In order to validate this methodology we
evaluated the limits of detection, the precision, the
accuracy and estimated the global uncertainty associated
with the results, following the rules given in the
EURACHEM/CITAC Guide [51].

Experimental
Grape collection

Grapes from the five most representative red Port Wine
varieties (Tinta Roriz, Touriga Nacional, Touriga
Franca, Tinta Barroca and Tinto Cao) were collected at
harvest time and according to the rules commonly em-
ployed in viticulture, in Quinta de Santa Barbara,
property of the Centro de Estudos Vitivinicolas do
Douro (CEVD), located in the Douro region in the
north-east of Portugal (see Fig. 1 for quantities).

Fig. 1 General scheme for the Tinta Roriz i'i‘:l‘l.‘ll"iga Nacional Tou riéé Franca |Tinta Barroca| Tinto Cio
microvinification assays 52.5Kg 53Kg 54 Kg 53 Kg 50 Kg
| ¥ v v N ‘ " * vy L ‘ L. ‘ l' t
20.5 kg 20.5 kg 20.5 kg 20.5 kg 20.5 kg 20.5 kg
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FPW FPW FPW FPW FPW FPW
| Alb x2 A2b x2 Blb x2 B2b x2 Cib x2 C2b x2
PW PW PW PW PW PW

FPW - First Pressing Wine; PW -

Press Wine



Grapes and must contamination

The OTA contamination was derived by either spiking
with an alcoholic solution of OTA or inoculating with
an Aspergillus carbonarius spore suspension.

In the first case, a concentrated 18% ethanol OTA
solution was added to the grapes immediately after
crushing so that an average OTA concentration of about
4 ng/l was achieved. The inoculation was obtained by
spraying the grapes with a spore suspension (10° spores/
ml) furnished by the MUM culture collection (Univer-
sity of Minho, Braga, Portugal) [52] and then allowing
them to incubate in an isolate chamber at 20 °C, until
the first signs of damage to the grapes were observed
(after five days, in this case).

Vinifications

Microvinification experiments were performed accord-
ing to the technologies currently employed in Port Wine
production, from the whole grape until the clarified
wine. First, the grapes are crushed, which produces a
combination of two phases: liquid (must) and solid
(pomace, comprising the skins and the seeds). When
programmed, a solution containing a sulphur dioxide
generator is added at this point. Then the mixture is
placed in an appropriate stainless steel chamber, where
fermentation will take place. For Port Wine, the fer-
mentation is arrested at a given point by the addition of
a 77% (v/v) alcohol distillate. This moment is deter-
mined by the density of the mixture needed to attain
certain properties of the wine (1.04 in this case), using
adequate charts. Then, the mixture is manually pressed
and the liquid part is collected (first pressing wine). The
remaining solid phase is further pressed mechanically to
yield the last liquid-phase collection (press wine).

The scheme used in this study for the microvinifica-
tion assays is displayed in Fig. 1.

The five grape varieties were combined in equal
parts to attain a total of 20.5 kg of grapes at the
beginning of each assay. Three main sets of assays (A—
C) were planned, and two distinct situations were
observed in each: with or without the addition of a
sulphur dioxide-generating agent. Assay A was the
blank, corresponding to the common-used vinification
process with no external OTA contamination; Assay B
corresponded to the spiking of the must and pomace
with the ethanolic OTA solution to obtain approxi-
mately 4 pg/l; in Assay C the grapes were inoculated
with the spore suspension. This scheme of assays was
performed in duplicate (experiments I and II), at an
average room temperature of 25 °C

Sampling

Must and wine samples were collected on four distinct
occasions during the vinification process: immediately
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after grape crushing (must); after the beginning of the
fermentation, controlled by the temperature and density
of the liquid—solid mixture (must); and twice after the
fermentation was arrested. These last two samples cor-
responded to first pressing wine and press wine.

Quantification of OTA

The methodology is based on the reference method for
wines, described in the European Standard prEN 14133
[50], comprising clean-up by immunoaffinity columns
followed by HPLC quantification. For musts, one
modification was made: in the clean-up, the initial ratio
of must:dilution solution (PEG) was 25:125 ml [42] (in-
stead of the typical 10:10 ml used for wines). Even so,
and due to logistic limitations, some adaptations had to
be made to the described procedures:

— The stock solution of OTA was prepared in toluene/
acetic acid (99:1, v/v) and the calibration standards,
six (0.2, 0.6, 2.0, 6.0, 12.0 and 20.0 ug/l) instead of the
proposed five, were obtained from that solution di-
luted in the mobile phase.

— After OTA clean-up using the immunoaffinity col-
umns, the ethanol was evaporated to dryness on the
rotary evaporator (instead of under nitrogen current),
and the content was re-dissolved in 1 ml of mobile
phase (instead of 250 pl).

— The HPLC injection volume was 118 pul instead of
100 pl.

All samples were injected in duplicate.

Chemicals

The OTA standard was purchased from Sigma (St.
Louis, MO, USA). Sodium hydrogen carbonate and
sodium chloride p.a. were from Panreac (Barcelona,
Spain) and polyethylene glycol 8000 MicroSelect was
from Fluka (Buchs, Switzerland). Acetonitrile HPLC
grade and methanol p.a. were furnished by Riedel-de
Haén (Seelze, Germany) and acetic acid glacial (100%)
by Merck (Darmstadt, Germany). Distilled water was
produced in our laboratory.

Apparatus

A 12-entry multi-extractor from Whatman (Brentford,
UK) with a D-70112 vacuum pump from KNF Neu-
berger (Freiburg-Munzingen, Germany) were used for
the clean-up. The immunoaffinity columns were Ochra-
test from Vicam (Watertown, MA, USA). A R-1140
rotary evaporator with a B-480 water bath and a B-169
vacuum system from Biichi (Flawil, Switzerland) as-
sisted by a Edwards RV3 high vacuum pump (Crawley,
UK) were used to evaporate the cleaned samples to
dryness.
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The HPLC was a Merck-Hitachi L-7250 (Tokyo,
Japan), equipped with a Merck-Hitachi F-1080 fluores-
cence detector, L-7250 programmable auto-sampler and
a Merck-Hitachi D-7000 interface. The data acquisition
employed HPLC System Manager (HSM) software,
Version 3.1 (Hitachi). A Macherey-Nagel (Diiren, Ger-
many) end-capped Superspher reversed-phase column
(Cyg) was used (dimensions 250x 4 1.D. x 4 um) with a
pre-column, at room temperature. The mobile phase was
isocratic water:acetonitrile:acetic acid (99:99:2, v/v/v) at
1 ml/min. The runtime was 13 min, with OTA detected
at 333 nm (excitation) and 460 nm (emission) wave-
lengths.

Results and discussion

The evolution of OTA concentration throughout the
vinification process (from the must to the wine) com-
monly-used to make Port Wine was assessed using the
aforementioned different approaches. The most signifi-
cant trends are described, and some comparisons are
made between experiments I and II, Assays A—C, and
also the replicate samples. The influence of the presence
of SO, was another feature. These findings may help
clarify the sources and main pathways of OTA in vine
and wine. Before the quantification, it is essential to
know the uncertainty associated with the analytical re-
sults. Therefore, the method was validated using the
usual parameters, and the global uncertainty (U) was
calculated.

Method validation

Linearity, precision and accuracy were studied in order
to validate the analytical method. Good linearity was
achieved within the calibration range chosen
(R°=0.9993). The limit of detection (LOD) was
calculated according to Miller and Miller [53] and
derived from the linearity parameters of the method
calibration (the sum of the intercept and three times
sy/X:[S(yi—yl-calc)Z/(n—2)]l/2, where y; represents the
experimental values, y ;e 18 calculated from the cali-
bration curve and » is the number of standards). For the
wines, the LOD was 0.076 pg/l, whereas the value was
higher (0.114 pg/l) for the musts. This discrepancy is
justified by the different dilutions for wines and musts
when undergoing immunoaffinity column clean-up, ex-
plained previously. The precision was evaluated by
determining the repeatability (coefficient of variation of
ten independent assays of the OTA standard 6.0 pg/l
performed under the same analytical conditions in the
same day) and the intermediate precision (coefficient of
variation of eight assays of OTA standard 6.0 ng/l per-
formed on different days). The results were 1.22 and
5.89%, respectively. The recoveries for assays performed
with six must samples and six wine samples spiked with

the 6.0 ug/l OTA standard accounted for the estimation
of the accuracy. For musts, the average recovery was
82.4+16.9% and for wines, 92.1 £11.7%. These results
are within the expected range for similar methodologies
and concentration ranges.

Based on these findings, and in complementary cal-
culations, the global uncertainty (U) associated with the
results was found [51] and plotted as a function of the
calibration range (Fig. 2).

Throughout almost the whole calibration range, U
remains below 10%. The values of U increase expo-
nentially when the concentration becomes very low
(below 2 pg/l), reaching just over 50% in the neighbor-
hood of the chromatographic LOD (and consequently
the LODs for musts and wine, which are derived from it,
as previously explained).

OTA from must to wine

As mentioned earlier, two equal experiments (I and II)
were performed following the proposed microvinifica-
tion scheme. Figure 3a,b shows the respective results
obtained.

Note that no natural contamination of OTA was
observed. That is, for the blank assays (A), no OTA was
detected, and therefore, these assays are not presented
when the results are displayed. Also, for Assay B, the
contamination of OTA by spiking could cover the in-
tended concentration (4 pg/l). As can be seen in the first
columns (corresponding to initial must, /M or after SO,
AS, when applicable), in experiment I, the contamina-
tion varied from 2.24 to 7.38 pg/l, and in experiment II,
from 3.36 to 7.91 ng/l. However, if we refer to average
values, these are, respectively, 4.70 and 5.44 pg/l. This
difference can be explained by the unpredictability of the
proportional yield of must to pomace produced after
grape crushing, which makes the sampling accuracy
quite troublesome. Furthermore, when the spiking
solution is mixed, the partition between the solids and
the must can be distinct. These problems were also no-
ticed in the inoculation assays (C). However, some
contamination was attained under the proposed condi-
tions, although, as expected, at much lower levels than
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Fig. 3a-b a OTA content a
throughout vinification in
experiment I (/M initial must,
AS after SO,, AF after start of
fermentation, FPW first
pressing wine, PW press wine,
Rep replicate). b OTA content
throughout vinification in
experiment II (/M initial must,
AS after SO,, AF after start of
fermentation, FPW first
pressing wine, PW press wine, AS
Rep replicate). Columns with
faint (gray rather than black)
outlines indicate values below
the LOD

OTA g/

OTA (pg/l)

the direct spiking. In fact, in experiment I, the average
contamination was 0.23 pg/l (min=0.11, max=0.39),
whereas for experiment II, the average OTA concen-
tration was even lower: 0.06 pg/l (min=0.05,
max =0.07). As already known, the conditions are even
more difficult to control in terms of fungal contamina-
tion. But if these values for Assay C are a good repre-
sentation of what happens in the vineyards, it is
apparent that the contamination (before the vinification)
is still well below the limit value of OIV (2 pg/l) for
wines.

The general trend for the evolution of OTA concen-
tration throughout the vinification process is clear.
Apart from one discrepant value in experiment I, Assay
C (perfectly acceptable in light of the global uncertainty
values for the concentrations mentioned), OTA levels
decreased markedly in all situations, as can be seen in
Fig. 3a,b. When summing up and averaging all of the
replicates from both experiments, distinguishing only
between Assays B and C and plotting the OTA decrease
as a function of the four sampling points chosen, this
tendency is even more recognisable (Fig. 4).

Clearly, the decrease in OTA is more pronounced
from the initial must to after the start of fermentation
(averages are 77% for Assay B and 56% for Assay C).
This was also the longest period of time between sample
collections (it took about 50 h for fermentations to start,
on average). From this point to the end of the fermen-
tation (about 25 h in average), where the liquid phase is
already considered to be “wine”, the reduction of OTA
reached 90 and 87% for Assays B and C, respectively,
which was then further reinforced after the final pressing
to yield a total reduction of 92% for both B and C. This
significant reduction can be explained by the partition of
OTA between the liquid and the solid phase during vi-
nifications. In fact, there must be extensive adsorption of

OAssay B, No SO2, Rep 1 b
OAssay B 502, Rep 1

E Assay B, No 502, Rep 2

M Assay B, SO2, Rep 2

O Assay C, No 502, Rep 1
O Assay C, 502, Rep 1
@ Assay C, No 502, Rep 2
W Assay C, 502, Rep 2
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OAssay B, No 502, Rep 1
OAssay B 502, Rep 1
@ Assay B No 502, Rep 2
B Assay B, 502, Rep 2

OTA (pg/D

OAssay C, No SO2, Rep 1
OAssay C, 502, Rep 1
EAssay C, No 502, Rep 2
W Assay C, 502, Rep 2

OTA (pa/D

OTA to the solid parts of the grapes. Fernandes et al
[40], who reported a decrease in OTA content from must
to wine, noted that the presence of biomass could favor
such a trend in the must, which could also be due to an
adsorption mechanism onto its surface, explained by the
overall negative charge in the cell walls and the acidic
nature of OTA [36]. Otteneder and Majerus [27] men-
tioned that grape juices are usually more contaminated
than wines, given the absence of a fermentation process.
Given the fact that the blank assays (A) did not present
detectable levels of OTA during the evolution from
grape to wine, it is safe to conclude that OTA is not
present in the initial grapes and, more importantly, is
not produced during the process. Current knowledge
that the presence of the toxin is due to the grapes or
other influences rather than the vinification itself agrees
with such findings. Geographic and meteorological
conditions, such as high temperature and humidity, are
often considered important for OTA development [10,
12]. Relationships to different grape treatments were

100-
90 -
804
704
601
50+
40
304
204
10+

OTA decrease (%)

IM or AS AF FPW PW
Sample

Fig. 4 Overall trend; average of all replicates for Assays B and C
(% decrease in OTA)
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Table 1 Comparison between
overall replicates of assays B
and C (SO, versus no SO,)

Samples

Assay B Assay C

OTA content + SD (pug/l) OTA content + SD (pg/l)

No SO, With SO, No SO, With SO,
Initial Must or After SO, 3914+1.39 6.22+1.68 0.20+0.16 0.06+0.03
After Fermentation of start 0.86+0.24 0.43+0.35 0.05+0.06 0.01+£0.09
First Pressing Wine 0.40+0.14 0.56+£0.10 0.03+0.04 0.01+0.01
Press Wine 0.37+0.11 0.45+0.12 0.02+0.03 0.00+0.00

searched for, and Lo Curto et al [34] reported that the
use of some synthetic pesticides can reduce OTA levels.
However, Battilani and Pietri [32] found discrepant re-
sults in grapes from the same locations and undergoing
the same treatments. Bau et al [17] stated that the risk of
OTA production increases with the ripening of the
grapes, which means that good sanitary state is essential
to preventing higher wine contamination. Finally,
Esteban et al [33] studied the effects of temperature and
incubation time on the production of OTA and discov-
ered that for A. carbonarius strains at 15-20 °C, five -
days was enough to observe contamination, which is in
accordance with the findings of this study, although
20 days was the optimum time. Clearly there is still a lot
to investigate and improve before reaching sound con-
clusions on OTA behavior with respect to grape and
wine contamination.

To determine the influence of the addition of a SO,
generator at the beginning of the vinification, the same
summing up and averaging of experiments I and II was
performed, plotting the concentration of OTA in the
must and wine throughout the vinification and sepa-
rately comparing Assays B and C. Table | shows the
results.

Apparently, for Assay B, the OTA values are some-
what higher when SO, is present. However, the initial
difference of about 37% is diluted by the end of the
vinification, and can be also attributed to the difficulties
of sampling at this stage, mentioned before. For Assay
C, the initial ratio is the opposite, with the samples
without SO, having higher OTA content, with differ-
ences >35%. However, given the much lower concen-
trations involved, the uncertainties of the values could
make this difference meaningless. Hence, based on these
results, the influence of SO, can be considered to be
negligible for the conditions used in this study. Overall,
although this wine has particular characteristics, such as
the high sugar and ethanol (about 19% for red) contents
and the nature of the arrest of the vinification process, it
seems that these parameters have no influence on the
trends and pathways of OTA contamination.

Conclusions

A strong and consistent decrease in OTA concentration
was noticed throughout the microvinification process,
up to 92% in both direct OTA-spiked and grape fungal

inoculation assays (which induced OTA levels of up to
0.35 pg/l within five days). Most of the OTA probably
stays in the pomace (solid parts) and the biomass,
through adsorption mechanisms. The collected grapes
had no intrinsic OTA (the blank assays showed no
contamination), which rules out the production of OTA
during the vinification process employed for Port Wine
production. Tracing the OTA levels in the remaining
solids and establishing a thorough mass balance is crit-
ical to further clarifying the origins and pathways of
OTA contamination from grape to wine. The addition
of a SO,-generating agent did not seem to influence the
overall trend. The analytical method established for this
study showed good validation parameters. However,
near the limits of detection, the global uncertainty
associated with the results rose to over 50%. In terms of
actual field conditions, and given the proposed maxi-
mum limit of 2 pg/l set by the OIV for wine consump-
tion, this work may contribute to reducing any concern
over the contamination of the final product, redirecting
some of this concern toward the less studied and (we
suppose) much more highly contaminated solid residue
(and its applications).

Acknowledgements The authors wish to thank the support of the
INIAP—Instituto Nacional de Investigagdo Agraria e das Pescas
(Portugal), through the Program AGRO, Medida 8.1, and all the
personnel and facilities at the Centro de Estudos Vitivinicolas do
Douro (Peso da Régua, Portugal) and the Instituto dos Vinhos do
Douro e Porto (Porto, Portugal).

References

—

. Hohler D (1998) Z Erndhrungswiss 37:2-12
2. IARC (1993) Monographs on evaluation of carcinogenic risks
to humans, vol 56. IARC, Geneva, Switzerland
3. Van Der Merwe K1J, Steyn PS, Fourie L, Scott DB, Theron JJ
(1965) Nature 205:1112
. Zimmerli B, Dick R (1995) J Chromatogr B 666:85-89
. Ospital M, Cazabeil J-M, Betbeder AM, Tricard C, Creppy E,
Medina B (1998) Rev Fr Oenol 169:16-18
. Ueno Y (1998) Mycotoxins 47:25-32
. MacDonald S, Wilson P, Barnes K, Damant A, Massey R,
Mortby E, Shepherd MJ (1999) Food Addit Contam 16:253—
260
8. Festas I, Herbert P, Santos L, Cabral M, Barros P, Alves A
(2000) Am J Enol Vitic 51:150-154
9. Ratola N, Martins L, Alves A (2004) Anal Chim Acta 513:319—
324
10. Pietri A, Bertuzzi T, Pallaroni L, Piva G (2001) Food Addit
Contam 18:647-654

W B

~N



I1.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.

23.

24.

25.
26.
. Otteneder H, Majerus P (2000) Food Addit Contam 17:793—
28.
29.
30.

31.
. Battilani P, Pietri A (2002) Eur J Plant Pathol 108:639-643

Saelzer R, Vega M, Retamal A, Rios G, Herlitz E (2002)
Noticias Técnicas del Laboratorio 2:6-9

Soufleros EH, Tricard C, Bouloumpasi EC (2003) J Sci Food
Agric 83:173-179

Shephard GS, Fabiani A, Stockenstrém S, Mshicileli N, Sew-
ram V (2003) J Agr Food Chem 51:1102-1106

Belli N, Marin S, Duaigiies A, Ramos AJ, Sanchis V (2004)
J Sci Food Agric 84:591-594

Rosa CAR, Magnoli CE, Fraga ME, Dalcer AM, Santana
DMN (2004) Food Addit Contam 21:358-364

Soleas GJ, Yan J, Goldberg DM (2001) J Agr Food Chem
41:2733-2740

Bau M, Bragulat MR, Abarca ML, Minguez S, Cabaiies FJ
(2004) Int J Food Microbiol 98:125-130

Abarca ML, Accensi F, Bragulat MR, Cabaifies FJ (2001)
J Food Protect 64:903-906

Cabaiies FJ, Accensi F, Bragulat MR, Abarca ML, Castella G,
Minguez S, Pons A (2002) Int J Food Microbiol 79:213-215
Serra R, Abrunhosa L, Kozakiewicz Z, Venancio A (2003) Int
J Food Microbiol 88:63-68

Monaci L, Palmisano F (2004) Anal Bioanal Chem 378:96-103
Tafuri A, Ferracane R, Ritieni A (2004) Food Chem 88:487—
494

Monaci L, Tantillo G, Palmisano F (2004) Anal Bioanal Chem
378:1777-1782

Thuvander A, Paulsen JE, Axberg K, Johansson N, Vidnes A,
Enghardt-Barbieri H, Trygg K, Lund-Larsen K, Jahrl S,
Widenfalk A, Bosnes V, Alexander J, Hult K, Olsen M (2001)
Food Chem Toxicol 39:1145-1151

OIV (2002) Reduction de L’Ochratoxine A dans les Vins,
Resolution CST 1/2002. Office International de la Vigne et du
Vin, Paris, France

Zimmerli B, Dick R (1996) Food Addit Contam 13:655-668

798

Heilmann W, Rehfeldt AG, Rotzoll F (1999) Eur Food Res
Technol 209:297-300

De Moraes MHP, Luchese RH (2003) J Agr Food Chem
51:5824-5828

Scudamore KA, Banks J, MacDonald SJ (2003) Food Addit
Contam 20:1153-1163

Bankole SA, Adebanjo A (2003) Afr J Biotechnol 2:254-263

33.
34.

35.
36.

37.
. Abrunhosa L, Serra R, Venancio A (2002) J Agr Food Chem

39.
40.

41.
42.

43.

44.
45,

46.

47.

48.

49.

50.

S1.

52.

53.

411

Esteban A, Abarca ML, Bragulat MR, Cabaiies FJ (2004) Res
Microbiol 155:861-866

Lo Curto R, Pellicano T, Vilasi F, Munafo P, Dugo G (2003)
Food Chem 84:71-75

Dumeau F, Trioné D (2000) Rev Fr Oenol 95:37-38
Castellari M, Versari A, Fabiani A, Parpinello GP, Galassi S
(2001) J Agr Food Chem 49:3917-3921

Varga J, Rigd K, Téren J (2000) Int J Food Microbiol 59:1-7

50:7493-7496

Belli N, Pardo E, Marin S, Farré G, Ramos AJ, Sanchis V
(2004) J Sci Food Agric 84:541-546

Fernandes A, Venancio A, Moura F, Garrido J, Cerdeira A
(2003) Aspects Appl Biol 68:73-80

Arici M, Giumiis T, Kara F (2004) Food Control 15:597-600

Visconti A, Pascale M, Centonze G (1999) J Chromatogr A
864:89-101

Castellari M, Fabbri S, Fabiani A, Amati A, Galassi S (2000)
J Chromatogr A 888:129-136

Jornet D, Busto O, Guasch J (2000) J Chromatogr A 882:29-35
Aboul-Enein HY, Kutluk OB, Altiokka G, Tungel M (2002)
Biomed Chromatogr 16:470-474

Gonzalez-Penias E, Leache C, Viscarret M, Pérez de Obanos A,
Araguas C, Lopez de Cerain A (2004) J Chromatogr A
1025:163-168

Dall’Asta C, Galaverna G, Dossena R, Marchelli R (2004)
J Chromatogr A 1024:275-279

Leitner A, Zo6llner P, Paolillo A, Stroka J, Papadopoulou-
Bouraoui A, Jaborek S, Anklam E, Lindner W (2002) Anal
Chim Acta 453:33-41

Serra R, Mendonga C, Abrunhosa L, Pietri A, Venancio A
(2004) Anal Chim Acta 513:41-47

European Committee for Standardization (2001) CEN/TC 275
Food analysis—Horizontal methods, prEN14133. European
Committee for Standardization, Brussels, Belgium

Ellisson SLR, Rosslein M, Williams A (eds) (2000) EURA-
CHEM/CITAC Guide, Quantifying uncertainty in analytical
measurement, 2nd edn. LGC, Teddington, UK

Santos IM, Lima N (2001) World J Microbiol Biotechnol
17:215-220

Miller JC, Miller JN (1988) In: Chalmers RA, Masson M (eds)
Statistics for analytical chemistry, 2nd edn. Ellis Harwood,
Chichester, UK



	Sec1
	Sec2
	Sec3
	Fig1
	Sec4
	Sec5
	Sec6
	Sec7
	Sec8
	Sec9
	Sec10
	Sec11
	Sec12
	Fig2
	Fig3
	Fig4
	Sec13
	Ack
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	Tab1
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR38
	CR39
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45
	CR46
	CR47
	CR48
	CR49
	CR50
	CR51
	CR52
	CR53

