
Type-Based Termination of Recursive Definitions and
Constructor Subtyping in Typed Lambda Calculi

Maria João Gomes Frade

Departamento de Informática

Escola de Engenharia

Universidade do Minho
2003

Dissertação submetida à Universidade do Minho para obtenção do
grau de Doutor em Informática, ramo de Fundamentos da Computação

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55603967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ao Zé.

ii

iii

Abstract

In type systems, a combination of subtyping and overloading is a way to achieve more precise
typings. This thesis explores how to use these mechanisms in two directions: (i) as a way to
ensure termination of recursive functions; (ii) as a way to capture in a type-theoretic context the
use of subtyping as inclusion between inductively defined sets.

The first part of the thesis presents a mechanism that ensures termination through types
and defines a system that incorporates it. More precisely, we formalize the notion of type-based
termination using a restricted form of type dependency (also known as indexed types). Every
datatype is replaced by a family of approximations indexed over a set of stages; then being in a
certain approximation means that a term can be seen as having a certain bound on constructor
usage. We introduce λ̂ , a simply typed λ-calculus à la Curry, supporting parametric inductive
datatypes, case-expressions and letrec-expressions with termination ensured by types. We show
that λ̂ enjoys important meta-theoretical properties, including confluence, subject reduction and
strong normalization. We also show that the calculus is powerful enough to encode many recursive
definitions rejected by existing type systems, and give some examples. We prove that this system
encompasses in a strict way Giménez’ λG , a system in which termination of typable expressions is
ensured by a syntactical condition constraining the uses of recursive calls in the body of definitions.

The second part of the thesis studies properties of a type system featuring constructor sub-
typing. Constructor subtyping is a form of subtyping in which an inductive type σ is viewed as a
subtype of another inductive type τ if each constructor c of σ is also a constructor of τ (but τ may
have more constructors), and whenever c : θ→σ is a declaration for σ, then c : θ′→τ is a declara-
tion for τ with θ ≤ θ′. In this thesis we allow for this form of subtyping in the system λCS, which
is a simply typed λ-calculus à la Curry, supporting mutually recursive parametric datatypes, case-
expressions and letrec-expressions. We establish the properties of confluence, subject reduction
and decidability of type checking for this calculus. As the system features general recursion, the
reduction calculus is obviously non-terminating. However, we sketch two ways of achieving strong
normalization. One way is to constrain the system to guard-by-destructors recursion, following
what is done for λG . The other way is to enrich the type system with stages (following the ideas
presented for λ̂) and enforcing termination through typing. Potential uses of constructor sub-
typing include proof assistants and functional programming languages. In particular, constructor
subtyping provides a suitable foundation for extensible datatypes, and is specially adequate to
re-usability. The combination of subtyping between datatypes and overloading of constructors
allows the definition of new datatypes by restricting or by expanding the set of constructors of
an already defined datatype. This flexibility in the definition of datatypes induces a convenient
form of code reuse for recursive functions, allowing the definition of new functions by restricting
or by expanding already defined ones. We enrich a calculus featuring constructor subtyping with
a mechanism to define extensible overloaded recursive functions by pattern-matching, obtaining
the system λCS+fun. We formalize the concept of well-formed environment of function declarations
and establish that under such environments the properties of confluence, subject reduction and
decidability of type-checking hold. Moreover, we prove that the requirements imposed for the
well-formed environments are decidable and show how standard techniques can still be used for
compiling pattern-matching into case-expressions.

iv

v

Resumo

Em sistemas de tipos, a combinação de mecanismos de subtipagem e de sobrecarga de construtores
permite alcançar tipagens mais precisas para os termos. Esta tese investiga a utilização destes
mecanismos, quer como forma de assegurar a terminação de funções recursivas, quer como forma
de captar subtipagem através de inclusão de conjuntos num sistema com tipos indutivos.

A primeira parte da tese apresenta um sistema de tipos capaz de assegurar a terminação de
funções recursivas, unicamente por tipagem. Mais concretamente, a noção de terminação baseada
em tipos é formalizada utilizando uma forma restrita de dependência de tipos, também conhecida
por tipos indexados. Cada tipo de dados é visto como uma famı́lia de aproximações, indexada por
um conjunto de ńıveis, fornecendo tais ńıveis indicações sobre o uso de construtores na formação
de termos. Esta forma de garantir terminação por tipos encontra-se formalizada no sistema λ̂

que é um cálculo lambda simplesmente tipado à la Curry, com tipos indutivos paramétricos, com
expressões de ponto fixo e de análise de casos. Demonstra-se que λ̂ é um cálculo bem comportado,
satisfazendo as propriedades de confluência, preservação de tipos ao longo da cadeia de redução, e
normalização forte. O sistema λ̂ permite codificar muitas definições recursivas que são rejeitadas
por outros sistemas com preocupações semelhantes de garantia de terminação. Em particular,
prova-se que este cálculo engloba de modo estrito o sistema λG de Giménez, um sistema em que
a terminação das expressões tipáveis é assegurada por uma condição sintáctica que restringe as
chamadas recursivas de funções.

Na segunda parte da tese, apresenta-se um sistema de tipos com subtipagem por construtores
e estudam-se as suas propriadades. A subtipagem por construtores é uma forma de subtipagem
na qual um tipo indutivo σ é visto como um subtipo de um outro tipo indutivo τ , se τ tiver mais
construtores do que σ. Neste trabalho, a subtipagem por construtores está presente no sistema
λCS, um cálculo lambda simplesmente tipado, à la Curry, com tipos inductivos paramétricos
e mutuamente recursivos, com expressões de ponto fixo e de análise de casos. Demonstra-se
que este cálculo é confluente, a tipagem é decid́ıvel e a redução preserva tipos. Para garantir
a normalização forte, são propostas duas abordagens: satisfação de uma condição sintáctica nas
definições recursivas (à semelhança de λG), ou enriquecimento do sistema de tipos com ńıveis
(à semelhança de λ̂) de forma a garantir terminação por tipagem. Esta forma de subtipagem
encontra aplicações nos sistemas de prova assistida e nas linguagens funcionais de programação.
Em particular, a subtipagem por construtores revela-se adequada para o tratamento de tipos
de dados extenśıveis. A combinação da subtipagem com a sobrecarga de construtores permite
que a definição de novos tipos de dados possa ser feita por restrição ou expansão do conjunto
de construtores de um tipo de dados já definido. Esta flexibilidade na definição de tipos de
dados induz uma forma de re-utilização de código adequada às funções recursivas, permitindo
que a definição de novas funções se possa fazer também por restrição ou expansão de funções já
definidas. Estes macanismos são estudados no âmbito do sistema λCS+fun, um cálculo lambda com
subtipagem por construtores e com definições recursivas sobrecarregadas e extenśıveis, definidas
por concordância de padrões num ambiente global. Define-se, para este cálculo, o conceito de
ambiente bem formado de funções, e demonstra-se que, para estes ambientes, as propriedades de
confluência, decidibilidade de tipagem e preservação de tipos são válidas. Também se demonstra
que os vários requisitos impostos para garantir a boa formação do ambiente global de funções
correspondem a propriedades decid́ıveis. Finalmente, descreve-se um algoritmo de compilação das
funções definidas por concordância de padrões para expressões com análise de casos.

vi

vii

Acknowledgments

First of all, I would like to thank José Manuel Valença and Gilles Barthe for having supervised
my research in the last years, sharing their knowledge with me.

Gilles Barthe taught me a lot about type theory and about research in general. I have been very
fortunate to have him as supervisor and as a friend. I thank Gilles Barthe for being a galvanizing
supervisor, always full of new ideas, enthusiasm and energy. Gilles provided me with many useful
contacts which have been very important not only for me but also for my university.

This work has benefited from fruitful collaborations with Tarmo Uustalu, Eduardo Giménez
and Luis Pinto. The results of this cooperation are reflected in the first part of this thesis. I am
very grateful to all of them. I am also grateful to Gustavo Betarte and Jan Zwanenburg for useful
discussions on extensible overloaded functions.

I would like to express my immense gratitude to Luis Pinto, for his constant support, encour-
agement and friendship, and for the time he spent on reading many of my manuscripts, correcting
my English, suggesting better explanations, and indicating technical problems.

I wish to specially thank Peter Dybjer who carefully and promptly read an earlier version of
this thesis, providing many helpful comments and remarks.

I would like to take this opportunity to thank everybody at the Informatics Department at the
University of Minho for the pleasant working environment. In particular, I would like to thank
the people of the Logic and Formal Methods group for their constant support, encouragement and
friendship.

Last but not least I want to thank my family for their support during the ups and downs of
the work on this thesis, and for all the rest that I cannot put into words.

viii

Contents

1 Introduction 1
1.1 Types in Programming Languages and Proof Assistants 1
1.2 Inductive Definitions . 4
1.3 Type-Based Termination . 6
1.4 Subtyping . 8
1.5 Constructor Subtyping . 9
1.6 Summary of Contributions . 11

I Type-Based Termination of Recursive Definitions 15

2 An Informal Account of Type-Based Termination of Recursive Defs. 17
2.1 Background . 17
2.2 Outline of Type-Based Termination . 20
2.3 Overview of This Part . 20

3 The System λ̂ 23
3.1 Datatypes . 23
3.2 Terms and Reduction . 23

3.2.1 Terms . 23
3.2.2 Reduction calculus . 24

3.3 Types, Subtyping and Typing . 27
3.3.1 Types and Subtyping . 27
3.3.2 The Typing System . 30

3.4 Some Examples . 33

4 Meta-Theoretical Results for λ̂ 39
4.1 Confluence . 39
4.2 Subject Reduction . 41
4.3 Strong Normalization . 45

4.3.1 Saturated sets and interpretation domains 45
4.3.2 Soundness w.r.t. the Semantics . 55

5 The System λG 59
5.1 Definition of λG . 59
5.2 From λG to λ̂ . 66

ix

x CONTENTS

6 Related Work and Conclusion 71
6.1 Related Work . 71
6.2 Conclusion . 74

II Constructor Subtyping 77

7 An Informal Account of Constructor Subtyping 79
7.1 Motivations and Difficulties . 79

7.1.1 Problematic Examples . 80
7.1.2 Strict Overloading . 81

7.2 Further Examples . 82
7.3 Adding Extensible Overloaded Functions . 87

7.3.1 An Example of Overloading . 87
7.3.2 An Example of Extensibility . 88

7.4 Overview of This Part . 89

8 The Core Calculus λCS 91
8.1 The System λCS . 91

8.1.1 Terms and Reductions . 91
8.1.2 Types and Subtyping . 94
8.1.3 The Typing System . 97

8.2 Confluence . 99
8.3 Subject Reduction . 101
8.4 Strong Normalization . 106

8.4.1 Guarded-by-Destructors Recursion . 106
8.4.2 Type-Based Termination . 109

8.5 Type Checking . 110
8.5.1 Motivation and Difficulties . 112
8.5.2 The System λa

CS . 114
8.5.3 The System λac

CS . 116
8.5.4 Decidability of Type Checking . 135

9 Extensible Overloaded Functions 139
9.1 The System λCS+fun . 139

9.1.1 Types and Terms . 139
9.1.2 Subtyping and Typing . 140
9.1.3 Definition of Functions . 141
9.1.4 Reduction Calculus . 143
9.1.5 Well-Formed Environments . 144

9.2 Confluence . 148
9.3 Subject Reduction . 150
9.4 Strong Normalization . 155
9.5 Type Checking . 156

9.5.1 The System λa
CS+fun . 156

9.5.2 The System λac
CS+fun . 157

9.5.3 Decidability of Type Checking . 158
9.6 Decidability of Well-Formedness for Environments 159

CONTENTS xi

9.6.1 Decidability of Well-Typing . 159
9.6.2 Decidability of Non-Overlapping . 159
9.6.3 Decidability of Exhaustiveness . 160

9.7 The System λCS+def . 163
9.7.1 Types and Terms . 164
9.7.2 Subtyping and Typing . 164
9.7.3 Environments . 164
9.7.4 Reduction Calculus . 165
9.7.5 Meta-Theoretical Properties of λCS+def . 166

9.8 Compiling λCS+fun into λCS+def . 167

10 Related Work and Conclusion 173
10.1 Related Work . 173
10.2 Conclusion . 176

xii CONTENTS

List of Figures

3.1 Positive-negative occurrences of type variables or datatypes 28
3.2 Stage comparison rules λ̂ . 30
3.3 Subtyping rules for λ̂ . 30
3.4 Typing rules for λ̂ . 31
3.5 Positive-negative occurrences of a stage variable . 32

5.1 Strictly positive rules . 60
5.2 Guarded-by-destructors rules for λG . 62
5.3 Typing rules for λG . 65

8.1 Positive-Negative rules . 95
8.2 Strictly positive rules . 95
8.3 Subtyping rules for λCS . 97
8.4 Typing rules for λCS . 98
8.5 Guarded-by-destructors rules for λCS . 108
8.6 Typing rule for letrec-expressions in λGCS . 108
8.7 Typing rules for λ

ĈS
. 111

8.8 Rules for v . 117
8.9 Subtyping rules for λac

CS . 117
8.10 Typing rules for λac

CS . 118
8.11 The algorithm unify . 125
8.12 The algorithm unifyData . 125
8.13 The algorithm match . 126
8.14 The algorithm typeJudg . 128
8.15 The algorithm derivable . 136
8.16 The algorithm satisfiable . 137

9.1 Subtyping rules for λCS+fun . 140
9.2 Typing rules for λCS+fun . 141
9.3 Structurally smaller relation . 156
9.4 The algorithm typeJudg (for functions) . 157
9.5 Rules for overlap . 160
9.6 Rules for exh . 161
9.7 The algorithm translate . 168
9.8 The algorithm compile . 168

xiii

xiv LIST OF FIGURES

Chapter 1

Introduction

1.1 Types in Programming Languages and Proof Assistants

The central feature of type systems is their emphasis on classification of objects: in a type system,
objects do not exist in isolation, but always in relation to their types. This relationship between
objects and types is captured by judgments of the form a : σ denoting that a is an object of type
σ (or, a is an inhabitant of σ).

Type systems were first introduced by Russell [139], in the early 1900s, as a mean of avoiding
the logical paradoxes that threatened the foundations of mathematics.

In 1932/33 Church [36, 37] attempted to found mathematics on a logical system based on the
notions of function and function application. Church’s foundational attempt failed but originated
the pure theory of functions—the lambda calculus—where terms are built up from variables by λ-
abstraction (λx.a is the function of argument x and body a) and application (a b is the application
of the function a to b), and manipulated by the β reduction rule (λx.a) b →β a[x := b] that
indicates how to compute the value of a function for an argument. Not all computations lead to
results, and reduction sequences may not terminate: e.g. (λx.x x) (λx.x x) reduces to itself.

In 1940, Church introduced the typed lambda calculus [38, 39], in which functions are classified
with simple types that determine the type of their arguments and the type of the values they
produce, and can be applied only to arguments of the appropriate type. Terms are now of the
form (λxτ .aσ)τ→σ and (aτ→σ bτ)σ, writing types as superscripts. Typed λ-calculus is a theory of
total functions, as all reduction sequences starting from a typable term terminate. An important
consequence of termination is that the equational theory of typed λ-calculus is decidable: to
know whether two terms are equal w.r.t. β equality (the least equivalence relation to contain β

reduction) one just has to compare their normal forms (it follows from confluence that every term
has a unique normal form).

A different typed version of lambda calculus had been already introduced in 1934, by Curry,
for the combinatory logic [49]. In Curry’s approach to typed lambda calculus, terms are those of
the type-free theory (i.e. without any type annotation), whereas in Church’s approach terms are
annotated versions of the type-free terms.

Very important in the understanding of the language of type theory is the distinction between
canonical objects from the others. The canonical objects are the ones that represent the values
of the type. The canonical inhabitants of a type are defined as its closed objects in normal
form and provide a fundamental tool in the semantical understanding of a type. The notion of
computation is another basic concept of type theory which generates an equivalence relation—the

1

2 Chapter 1: Introduction

computational equality between the objects in the language of type theory. An important property
of computation is that every object has a unique value under computation and the objects which
are computationally equal have the same value. A type may be understood as consisting of its
canonical objects. In this sense, a judgment a : σ means that a computes into a canonical object
of type σ.

The meaning of type theory is explained in terms of computations. It is essential that the
computation relation enjoys some fundamental properties such as:

– confluence, which ensures that the way of computing objects is irrelevant, as all possible
ways lead to the same canonical expression (whenever there exists one);

– subject reduction, which ensures that the type of an object is preserved under reduction;

– strong normalization, which ensures that all reduction sequences starting from a typable
expression (object) terminate.

These properties are important as they ensure that the use of the objects of a type are in accordance
with the characterization of the types in terms of canonical inhabitants. Moreover, it implies the
decidability of the equational theory and consistency of the calculus as a logic.

The simply typed lambda calculus is simple and elegant but it has a weak expressive power.
Subsequent research has focused on extending simple typed lambda calculus to systems with
the same meta-theoretical properties, but with greater expressive power. Some of the major
landmarks are constructive type theory [97, 98] and pure type systems [16, 15], just to name two.
These extensions have contributed to the fact that during the twentieth century, types permeated
programming languages and have become standard tools in logic [86]. Below we briefly describe
the application of type systems to programming languages, and also their connection to logic.

Types in programming languages

Type systems are useful in programming because they provide partial specifications of the pro-
grams: a typed program specifies the set of admissible inputs and guarantees that the output will
be of a certain kind. In this sense, the checking that the type of a program matches the type
declared for it can be seen as a partial correctness verification. Type systems provided the basis
for typed programming languages. Types were first used in FORTRAN, in the 1950s, to make
very simple distinctions between integer and floating point representations of numbers. In the
1960s and early 1970s, type systems were used to classify also structured data such as arrays and
records, in programming languages like ALGOL-68 or PASCAL. Later, more sophisticated typed
languages appeared, such as ML, Miranda, Haskell, Modula, Java or C#.

The most obvious benefit of type checking is that it allows early detection of some programming
errors. Typing errors can be caught at compile time and can be fixed immediately. Besides, type
systems enforce disciplined programming. Type declarations constitute a form of documentation,
giving useful hints about the behavior of the functions. Moreover, this form of documentation is
always effective, since it is checked during every run of the compiler. In this sense, a type-checker
can also be an invaluable maintenance tool that (after some change in a program) helps to find the
places in a program where code needs to be fixed. Type checking can expose a surprisingly broad
range of errors. The ability to detect errors early has led to considerable improvements in the
productivity and quality of programming. The strength of this effect depends on the expressiveness
of the type system. But a type is by no means a complete specification of programs. To describe
and reason about programs in type theory one also needs logic.

1.1 Types in Programming Languages and Proof Assistants 3

Types in logic

The connection of type theory to logic is via the propositions-as-types principle that establishes a
precise relation between intuitionistic logic and computation. Intuitionistic logic is based on the
notion of proof—a proposition is true when we can provide a constructive proof of it. On this
basis, a proposition P can be seen as a type—the type of its proofs— and a proof of P as an
object of type P . Hence, a false proposition is interpreted as an empty type (i.e. a type that has
no inhabitants) and a true proposition as a non-empty type. The introduction and elimination
rules for implication correspond quite naturally to the λ-abstraction and application rules of term
formation in typed lambda calculus.

The correspondence between intuitionistic logic and lambda calculus is known as the Curry-
Howard isomorphism, and is at the core of constructive type theory. This isomorphism has been
expanded to new systems of types corresponding to various intuitionistic theories (second-order,
higher-order, many sorted). For instance: a proof of ∀x ∈ A.B(x) is a function that transforms
every object a of type A into a proof of B(a); and a proof of ∃x ∈ A.B(x) is a pair with an object
a of type A and a proof of B(a).

Types for programming and reasoning

The unifying view of a type system as a programming language and as a logic has important
applications in programming, because a type can be used to specify a programming problem.
When a type is seen as a specification, the inhabitants of the type are the programs that satisfy the
specification. For example, consider the specification given by the formula ∀x ∈ A.∃y ∈ B.R(x, y).
According to the intuitionistic interpretation of the logical connectives, given above, the proof of
this statement is a function that takes an object a of type A and yields an object ba of type B
together with a proof that R(a, ba) holds. Thus, a proof term of ∀x ∈ A.∃y ∈ B.R(x, y) contains
an algorithm to construct an element ba ∈ B for every a ∈ A such that R(a, ba) holds. This opens
the possibility of extracting programs from proofs. These programs are certified with their proof
of correctness.

The formal language of type theory is used as a (functional) programming language, a specifi-
cation language (a specification is expressed as a type, the type of all correct programs satisfying
the specification) and a programming logic (which has rules for deducting the correctness of pro-
grams). So, type theory provides a unified framework for specifying, developing and reasoning
about functional programs. In type theory the problem of program correctness boils down to the
problem of type inhabitance. Furthermore, because all programs terminate, correctness, means
total correctness.

A practical application of the Curry-Howard isomorphism is the possibility of doing mathe-
matics on a computer by implementing the formal system of a typed lambda calculus. The first
systems of proof checking (type checking) based on the propositions-as-types principle were the
systems of the AUTOMATH project [52]. Modern systems provide computer assistance for the
interactive construction of proofs, aggregating to the proof checker a proof-development system
for helping the user to develop the proofs (i.e. to construct proof-terms). These systems are called
proof assistants. We can mention as examples of proof assistants, the systems Coq [125] and Lego
[92] which are based on versions of the calculus of constructions extended with inductive types,
the systems Alf [5] and Agda [42] which are based on Martin-Löf’s type theory, and the system
Nuprl [41] which is an implementation of extensional Martin-Löf’s type theory.

4 Chapter 1: Introduction

1.2 Inductive Definitions

Typed functional programming languages and proof assistants support mechanisms to declare
inductive datatypes and to define recursive functions, so that one can program with and reason
about elements of these datatypes, as functions defined over inductive types are usually recursive.
Directly related to recursion we have the problem of termination (normalization), which plays a
crucial role in the semantical understanding of the datatypes, as recursive definitions introduce
non-canonical elements.

We can define a new datatype d inductively by giving its constructors together with their
types. The constructors (which are the introduction rules of the datatype) give the more basic
or canonical ways of constructing one element of the new type d. The type of constructors must
be of the form τ1→ . . .→ τn→ d (with n ≥ 0), where the types τi can be function types (we are
considering higher-order datatypes). The datatype defined is the smallest set (of objects) closed
under its introduction rules. Informally speaking, the elements of a datatype are the objects that
can be obtained by a finite number of applications of the datatype constructors. A well-known
example of an inductive datatype, is the type Nat of natural numbers defined by:

data Nat = O : Nat

| S : Nat -> Nat

To program with and reason about a datatype we must have means to analyze its objects. The
elimination rules for the datatype express ways to use the objects of the datatype in order to define
objects of other types, and are associated to new computational rules. From the explanations given
before, it is natural to consider case analysis as a natural elimination rule for inductive types. For
instance, n : Nat means that n was introduced using either O or S, so we may define an object
case n of {O ⇒ b1 | S ⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

n : Nat b1 : σ b2 : Nat→σ

case n of {O⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case O of {O⇒ b1 | S⇒ b2} → ι b1
case (Sx) of {O⇒ b1 | S⇒ b2} → ι b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

Recursors

A safe way to express recursion without introducing non-normalizable objects is to associate an
elimination rule, with appropriate computational rules, to each inductive datatype. The elim-
ination rule associated with a datatype is a constant (recursor) that represents the structural
induction principle for the elements of the datatype, and the computation rule associated to it
defines a safe recursive scheme for programming, known as primitive recursion. For example, the
recursor for Nat, nat elim, has the following typing rule:

a : θ f : Nat→θ→θ n : Nat

nat elim a f n : θ

To make sure that the functions compute in a correct way, the reduction rules associated to
nat elim are

nat elim a f O → a

nat elim a f (Sx) → f x (nat elim a f x)

1.2 Inductive Definitions 5

An example of the use of nat elim is the definition of the function that doubles a natural number

let double n = nat_elim O (fun x y -> S (S y)) n

This approach is adopted by the traditional presentations of type-based proof development systems
[46, 54, 90, 112], and guarantees the logical consistency of the system. However, codifying recursive
functions in terms of elimination constants can be rather difficult, and is quite far from the way
we are used to program.

General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for Nat fixpoint expressions is

f : Nat→ θ ` e : Nat→ θ

` (letrec f = e) : Nat→ θ

and the associated computation rule is

(letrec f = e) (c~a) →µ e[f := (letrec f = e)] (c~a)

With pattern-matching and fixpoint operators the function double can be written as follows

let rec double n = case n of

O -> O

| (S x) -> S (S (double x))

end

This is a much more pleasant (and flexible) way of programming, but leaves to the programmer
the responsibility of writing terminating programs (if that is what he wants). Of course, this
approach opens the door to the introduction of non-normalizable objects, but it raises the level of
expressiveness of the language.

On positivity

While functional programming languages allow non-terminating functions, proof development sys-
tems based on the Curry-Howard analogy only allow terminating functions, both to guarantee the
decidability of type checking and to avoid problems related to the consistency of the logical system.

As illustrated above, general recursion permits the definition of non-terminating functions.
So does the possibility of declaring non well-founded datatypes, as illustrated by the following
example of a non-normalizing term taken from [65]:

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω �β case (C t) of {C⇒ λf. f (C t)} → ι (λf. f (C t)) t →β t (C t) →β Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

6 Chapter 1: Introduction

In order to banish non-well-founded elements from the language, proof assistants usually im-
pose a strict positivity condition on the possible forms of the introduction rules of the inductive
datatypes. This condition states that the datatype under definition can only occur in the domain
of its constructors in a strict positive position, i.e. it never appear on the left side of some ar-
row. (It is however possible to relax the strict positivity condition, see e.g. [101, 4]) Notice that
the strict positivity condition still permits functional recursive arguments in the constructors. A
well-known example of a higher-order datatype is the type Ord of ordinal notations:

data Ord = Zero: Ord

| Succ : Ord -> Ord

| Lim : (Nat -> Ord) -> Ord

Here, the constructor Lim has a function as argument.

1.3 Type-Based Termination

The tension between termination and expressiveness (and simplicity) is an issue in the design
of proof-development systems. On the one hand, the use of recursors is theoretically sound and
enables the representation of a large class of functions. On the other hand, such a codification
introduces some rigidity in the language of type theory. Programming with elimination rule is
rather inconvenient and is quite far from the way we are used to program.

In some recent works, recursive functions are described in terms of a pattern-matching oper-
ator (case) and a general fixpoint operator (let-rec), in the style of functional programming
languages. In this approach, the function plus could be introduced as follows:

let rec plus n m = case m of

O -> n

| (S p) -> (S (plus n p))

end

which is more readable than the codification of plus using the recursor for Nat:

let plus n m = nat_elim n (fun p r -> (S r)) m

However, in general, there is no guarantee that a recursive function defined with the fixpoint
operator will always terminate.

Looking for a good compromise between termination and presentation issues, [44] suggested
that recursors should be replaced by case-expressions and a restricted form of fixpoint expressions,
see also [67]. The restriction is imposed through a predicate Gf on untyped terms. This predicate
enforces termination by constraining all recursive calls to be applied to terms structurally smaller
than the formal argument x of f —for instance, a pattern variable issued from a case-expression
on x. The restricted typing rule for fixpoint expressions hence becomes:

f : Nat→ θ ` e : Nat→ θ

` (letrec f = e) : Nat→ θ
if Gf (e)

This alternative approach, called guarded-by-destructors recursion in [67], has been implemented
in the Coq system. Several years of experiments carried out with Coq have shown that it actually
provides much more palatable representations of recursive functions.

1.3 Type-Based Termination 7

However, the use of an external predicate G on untyped terms suffers from several weaknesses.
In particular, the guard predicate is very sensitive to syntax, quite weak, and hard to implement1.
In order to circumvent those weaknesses, some authors have proposed semantically motivated type
systems that ensure the termination of recursive definitions through typing [66, 8, 17]. The idea,
which already occurs in Mendler’s work [106], consists in regarding an inductive type d as the least
fixpoint of a monotonic operator −̂d on types, and to enforce termination of recursive functions
by requiring that the definition of f : α̂d→ θ, where α may be thought as a subtype of d, only
relies on structurally smaller function calls, embodied by a function fih : α→ θ. This approach
to terminating recursion, which we call type-based, offers several advantages over the guarded by
destructors approach. In particular, it addresses all the above-mentioned weaknesses.

In this thesis, we have devised a mechanism that ensures termination by typing and define
a system that incorporates it: λ̂ , a simply typed λ-calculus that supports type-based recursive
definitions. Although heavily inspired from previous work by Giménez [66] and closely related
to recent work by Amadio and Coupet [8], the technical machinery behind our system puts a
slightly different emphasis on the interpretation of types. More precisely, we formalize the notion
of type-based termination using a restricted form of type dependency (a.k.a. indexed types), as
popularized by Xi and Pfenning [141, 142]. This leads to a simple and intuitive system which
is robust under several extensions, such as mutually inductive datatypes and mutually recursive
function definitions.

The basic idea is to proceed as follows:

• First, every datatype d is replaced by a family of approximations indexed over a set of stages,
which are used to record a bound on the “depth” of values. Here, we adopt a simple minded
approach and let stages range over the syntax

s := ı | ŝ | ∞

where ı ranges over stage variables, the hat operator −̂ is a function mapping a stage to its
“successor” and ∞ is the stage at which the iterative approximation process converges to
the datatype itself. On the stages, we introduce an ordering relation, and induced by this
relation on stages we have a subtyping relation on types stating that a given approximation
of a datatype is always included in the next one.

• Second, a recursive definition of a function, say f : d → θ should be given by a term e

constructing a function g′ : dı̂ → θ from g : dı→ θ, where ı ranges over stages (in other
words, e should be stage-polymorphic).

In order to illustrate the machinery, let us consider the inductive type Nat whose constructors
are O : Nat and S : Nat→Nat. Constructors are overloaded, in the sense that we also have O : Natŝ

and S : Nats→Natŝ. The typing rules are

` O : Natŝ
` n : Nats

` S n : Natŝ

and, as an approximation of a datatype is always included in the next one, we also have

` n : Nats

` n : Natŝ

1In fact, some versions of Coq accept non-terminating recursive definitions.

8 Chapter 1: Introduction

Finally recursive functions from Nat to θ are constructed with the following typing rule:

f : Natı→θ ` e : Nat̂ı→θ

` (letrec f = e) : Nat→θ

where ı is fresh w.r.t. θ. As shown in Part I, such recursive functions are terminating and, despite
its simplicity, this mechanism is powerful enough to capture course-of-value primitive recursion.

1.4 Subtyping

While strong typing has been recognized as one of the big successes in computer science, it also
imposes stringent limits to the expressiveness of typed languages, as each object has a single type.
Consequently, several authors have repeatedly advocated the use of subtyping in typed functional
programming languages, see e.g. [57, 73], and proof-development systems, see e.g. [9, 91, 117].

A basic mechanism to enhance the flexibility of type systems is to endorse the set of types with
a subtyping relation ≤ and to enforce a subsumption rule

a : τ τ ≤ σ
a : σ

which makes the bridge between the typing relation and the subtyping relation. This rule tells us
that, if τ ≤ σ (pronounced “τ is a subtype of σ” or “σ is a supertype of τ”), then every element
a of τ is also an element of σ.

The subtyping relation τ ≤ σ captures different concepts, accordingly to the interpretation we
give to types: when τ and σ represent sets, then an element belonging to τ also belongs to σ;
when τ and σ represent object descriptions, then an object with interface τ can be safely used
where an object with interface σ is expected; when τ and σ represent propositions, then a proof
of proposition τ is also a proof of proposition σ; when τ and σ represent specifications, then a
program satisfying specification τ also satisfies specification σ. As a result, type systems with
subtyping provide flexible and expressive frameworks in which to develop programs, proofs or
specifications.

Subtyping is a powerful abstraction that permeates computer science. To mention only two
examples, subtyping plays a crucial role in object-oriented languages [1, 72, 114] and specification
languages [50, 74]. The basic idea of subtyping, as embodied in the subtyping relation τ ≤ σ

between types, is that every inhabitant a of τ is also an inhabitant of σ. Consequently, the main
importance of subtyping is that it allows substitutivity: if τ is a subtype of σ, then elements of
type τ can be safely used where an element of type σ is required.

The subtype relation is formalized as a collection of inference rules for deriving the subtyping
statements τ ≤ σ, and it should be guided by the principle that in any context where an expression
of type σ is required, an expression of type τ should be allowed too. It follows naturally from this
principle that the subtyping relation should be reflexive and transitive:

τ ≤ τ
τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3
The subtyping between base types should be introduced by axioms; and for each form of type
(function types, datatypes, record types,. . .) adequate subtyping rules should formalize situations
where it is safe to allow elements of one type of this form to be used where another is expected.
For instance, the subtype relationship between function types is described by the rule

τ ′ ≤ τ σ ≤ σ′

τ→σ ≤ τ ′→σ′

1.5 Constructor Subtyping 9

The intuition is that, if we have a function f of type τ→σ, then we know that f accepts elements
of type τ and returns elements of type σ; thus, f will also accept elements of a subtype τ ′ of τ , and
we can view the elements returned by f belonging to any supertype σ′ of σ. That is, any function
of type τ → σ can also be viewed as having type τ ′→ σ′. So, function subtyping is covariant in
the result type and contravariant in the argument type.

There are several approaches to subtyping which serve different purposes. Well-known forms
of subtyping include: coercive subtyping, declarative subtyping, structural subtyping, and record
subtyping.

1.5 Constructor Subtyping

In this thesis, we study another form of subtyping, called constructor subtyping, which formalizes
the view that an inductively defined set τ is a subtype of an inductively defined set σ if σ has
more constructors than τ . As such, constructor subtyping captures in a type-theoretic context the
ubiquitous use of subtyping as inclusion between inductively defined sets.

In its simplest instances, constructor subtyping enforces subtyping from natural numbers to
integers or from non-empty lists over σ to lists over σ. Moreover, it is adequate to work with
mutually recursive datatypes such as odd and even numbers. In this context, constructor subtyping
provides a solution to the problem of datatypes in typed λ-calculi with subtyping. An important
application of constructor subtyping is thus typed functional programming languages, where the
theoretical issues underpinning the interactions between subtyping and datatypes have prevented
a long-recognized need for subtyping.

In more elaborate instances, the usefulness of constructor subtyping is largely demonstrated
by its ability to express concisely and accurately a variety of formal languages. In this context,
constructor subtyping provides an appropriate framework for formal verification of programs and
protocols and is directly relevant to the design of type theory-based proof-development systems.

In fact, the idea of constructor subtyping can already be found in T. Coquand’s paper on
pattern-matching [44], where it is suggested that constructor subtyping is useful to represent
rather faithfully Kahn’s natural semantics [84]. The idea is also explored, from a somewhat dif-
ferent perspective, in the context of ABEL, a specification language developed at Oslo University
[50]. This work emphasizes the expressibility of the framework and suggests a paradigm, called ter-
minating generator induction (TGI), which provides a pattern-matching-like facility for recursive
definitions.

Constructor subtyping combines subtyping between datatypes and overloading of constructors.
In order to integrate constructor subtyping safely to typed λ-calculus, maintaining properties such
as subject reduction and confluence of reductions in the resulting system, one needs to constrain
the overloading of constructors to strict overloading [24], guaranteeing coherence between domain
and codomain of overloaded constructors. Let us illustrate this with an example enforcing odd
and even numbers to naturals.

data Even = O : Even

| S : Odd -> Even

data Odd = S : Even -> Odd

sub Even <= Nat

sub Odd <= Nat

10 Chapter 1: Introduction

The constructor S is strictly overloaded, as we have S:Nat->Nat, S:Even->Odd, S:Odd->Even, but
also Even≤ Nat and Odd≤ Nat. Note Even and Odd are mutually recursive datatypes.

Constructor subtyping is specially adequate for re-usability, allowing the definition of new types
by restricting or by expanding the set of constructors of an already defined datatype. Moreover, it
can help to avoid partial functions, as it provides some facilities in defining more accurate types.

In order for constructor subtyping to be usable in practice, one must allow users to define
overloaded and extensible recursive functions. More precisely, recursive definitions must be: over-
loaded (i.e. to have several types) and extensible (i.e. to be scalable from a datatype to another
datatype). In addition, we would prefer that, unlike in many object-oriented programming lan-
guages, the computational behavior of recursive functions does not depend on typing. One reason
is that we are eventually interested in extending the mechanism to dependent types and that
letting reduction depend on typing would create a circularity—in dependent type systems, typing
depends on reduction through the conversion rule.

Let us now show how constructor subtyping and overloaded definitions may be used to enhance
expressiveness and re-usability of a functional language. For instance, we can define the type of
positive naturals NatP by restricting Nat

data NatP = S : Nat -> NatP

sub NatP <= Nat

With this declaration we have overloaded the constructor S and forced NatP to be a subtype
of Nat. We have that O is of type Nat and (S O) is, simultaneously, of type NatP and Nat,
by subsumption. This form of more accurate typing is very useful to avoid introducing partial
functions. For example, the division operator over natural numbers can be precisely typed with
type Nat -> NatP -> Nat as the division by zero is not defined.

div : Nat -> NatP -> Nat

div x y = if (less x y) then 0

else S (div (minus x y) y)

less : Nat -> Nat -> Bool

less x 0 = False

less (S x) (S y) = less x y

less 0 (S y) = True

minus : Nat -> Nat -> Nat

minus x 0 = x

minus (S x) (S y) = minus x y

An example of a datatype defined by expansion of the set of constructors is the type of integers
Int which extends the datatype Nat with a constructor Neg that builds the negative integers from
the positive naturals.

data Int extends Nat = Neg : NatP -> Int

With this declaration we force Nat to be a subtype of Int. The constructors of Int are O , S, and
Neg. With the capacity of overloading constructors the datatype Ord of ordinal notations could
also be presented as an extension of Nat as follows:

1.6 Summary of Contributions 11

data Ord extends Nat = S : Ord -> Ord

| Lim : (Nat -> Ord) -> Ord

The coherent combination of subtyping and the mechanism of expanding and contracting
datatypes has an associated form of code reuse for functions on datatypes, allowing also the
definition of new functions by restricting or by expanding already defined ones. To illustrate this,
consider we have the predecessor function defined over NatP.

pred : NatP -> Nat

pred (S x) = x

We can extend the definition of pred to work on integers just by adding the appropriate compu-
tational rules for the new constructors.

pred : Int -> Int

pred O = Neg (S O)

pred (Neg x) = Neg (S x)

Another typical example of an overloaded recursive function is addition. Assume we have the
following declaration for the addition of natural numbers

add : Nat -> Nat -> Nat

add O y = y

add (S x) y = S (add x y)

We can completely reuse this program to define addition for even and odd numbers by just
declaring:

add : Even -> Even -> Even

add : Odd -> Even -> Odd

Note how overloading is essential here, for the second equation to be well-typed. We can also
reuse the definition of addition for natural numbers by restricting the set of computational rules
that can be used, giving a more specific type to the function.

add : NatP -> Nat -> NatP

Note that this type could not be achieved by subsumption. Finally, we can extend the definition
of add to work on integers just by adding the computational rule for the negative integers.

add : Int -> Int -> Int

add (Neg (S x)) y = if x == O then pred y

else add (Neg x) (pred y)

The Part II of this thesis, devoted to the study of constructor subtyping systems, proposes a
way of adding overloaded extensible definitions in the style illustrated above.

1.6 Summary of Contributions

This thesis is concerned with the meta-theoretical study of two typed λ-calculi with inductive
types:

12 Chapter 1: Introduction

• the first calculus deals with a simply-typed λ-calculus where termination of recursive defini-
tions is ensured by types. The results concerning this calculus are presented in the first part
of this thesis and are based on:

G. Barthe, M. J. Frade, E. Giménez, L. Pinto and T. Uustalu. Type-based termi-
nation of recursive definitions. In Mathematical Structures in Computer Science,
volume 14, number 1, pages 97–141, 2004. Cambridge University Press.

• the second calculus deals with a simply typed λ-calculus that supports constructor subtyping
and overloaded definitions. The results concerning this calculus are presented in the second
part of this thesis and are based on:

G. Barthe and M. J. Frade. Constructor subtyping. In D. Swiestra, editor, Pro-
ceedings of ESOP’99, volume 1576 of Lecture Notes in Computer Science, pages
109–127. Springer-Verlag 1999.

However, the calculus presented in this thesis is different from the one in that paper in the
following respect: in the calculus studied in this work

– we do not have records;

– we do not have any kind of type annotations on terms: the calculus is à la Curry;

– the calculus features general recursion and we consider the problem of achieving termi-
nation;

– we aggregate a theory of definitions which is flexible enough to support overloaded
definitions and that it is extensional.

Below we briefly summarize our main contributions with respect to these two calculi.

Part I In this part, we have devised a mechanism that ensures termination by typing and define
a system that incorporates it. We introduce λ̂ , a simply typed λ-calculus à la Curry, supporting
parametric inductive datatypes, case-expressions and letrec-expressions with termination ensured
by types. We show that λ̂ enjoys important meta-theoretical properties, including confluence,
subject reduction and strong normalization. We also show that the calculus is powerful enough to
encode many recursive definitions rejected by existing type systems, and give some examples. We
prove that this system encompasses in a strict way Giménez’ λG [67], a system in which termination
of typable expressions is ensured by a syntactical condition constraining the uses of recursive calls
in the body of definitions.

Part II In this part, we introduce and study the properties of a type system featuring constructor
subtyping. We define the system λCS, a simply typed λ-calculus, à la Curry, supporting mutually
recursive parametric datatypes, constructor subtyping, case-expressions and letrec-expressions.
We establish the properties of confluence, subject reduction and decidability of type-checking
for this calculus. As the system features general recursion, the reduction calculus is obviously
non-terminating. However, we sketch two ways of achieving strong normalization. One way is
constraining the system to guard-by-destructors recursion, following what is done for λG . The
other way is enriching the type system with stages (following the ideas presented for λ̂) and
enforcing termination through typing.

1.6 Summary of Contributions 13

We enrich a calculus featuring constructor subtyping with a mechanism to define extensible
overloaded functions. We define the system λCS+fun a simply typed λ-calculus with mutually re-
cursive parametric datatypes, constructor subtyping and extensible overloaded recursive functions
defined by pattern-matching. We formalize the concept of well-formed environment of function
declarations. We establish the properties of confluence, subject reduction and decidability of type-
checking for this calculus. Moreover, we prove that the requirements imposed for the well-formed
environments are decidable properties. In what concerns termination, we just provide a simple
criterion inspired from [44]. Furthermore, we conjecture that the standard compilation of pattern-
matching into case-expressions extends to our setting. We define λCS+def as a mild variation of
λCS+fun: recursive functions defined by pattern-matching are replaced by case-expressions and
recursive function definitions. We establish the properties of confluence, subject reduction and
decidability of type-checking for λCS+def and we describe the translation from λCS+fun to λCS+def .

14 Chapter 1: Introduction

Part I

Type-Based Termination of

Recursive Definitions

15

Chapter 2

An Informal Account of

Type-Based Termination of

Recursive Definitions

2.1 Background

Most functional programming languages (ML, Haskell, etc) and proof development systems based
on the proofs-as-programs paradigm of logic (Coq, HOL, PVS, etc) rely on powerful type theories
featuring inductive types such as natural numbers or lists. Those languages come equipped with a
mechanism for recursive definition of functions. However, there are significant differences between
the mechanisms used in functional programming languages and in proof development systems.

The first difference concerns the termination of recursive functions. While in functional pro-
gramming languages recursive functions are allowed to diverge, in proof development systems
non-terminating functions must be banished from the language, as they almost always lead to
logical paradoxes.

The second difference concerns how recursive definitions are introduced. In functional program-
ming languages, recursive functions are described in terms of a pattern-matching operator (case)
and a general fixpoint operator (let-rec). For example, the addition of two natural numbers
could be introduced as follows:

let rec plus n m = case m of

O -> n

| (S p) -> (S (plus n p))

end

On the other hand, in the traditional presentations of type-based proof development systems
[46, 54, 90, 112], a recursive function f : d → θ on an inductive type d is defined by means
of the elimination rule of d, where both pattern matching and recursion are built into a single
scheme which ensures termination. In this approach, the function plus can be encoded using the
elimination rule of natural numbers nat elim : θ → (Nat→ θ → θ)→ Nat→ θ, which corresponds
to the primitive recursion scheme:

let plus n m = nat_elim n (fun p r -> (S r)) m

17

18 Chapter 2: An Informal Account of Type-Based Termination of Recursive Defs.

This approach is theoretically sound. However practice has shown that eliminators are rather
cumbersome to use, whereas case-expressions and fixpoint expressions lead to more concise and
readable definitions. Looking for a good compromise between termination and presentation issues,
[44] suggested that recursors should be replaced by case-expressions and a restricted form of
fixpoint expressions, see also [67]. The restriction is imposed through a predicate Gf on untyped
terms. This predicate enforces termination by constraining all recursive calls to be applied to
terms smaller than the formal argument x of f—for instance, a pattern variable issued from a
case expression on x. The restricted typing rule for fixpoint expressions hence becomes:

f : Nat→ θ ` e : Nat→ θ

` (letrec f = e) : Nat→ θ
if Gf (e) (∗)

This alternative approach, called guarded-by-destructors recursion in [67], has been implemented
in the Coq system. Several years of experiments carried out with Coq have shown that it actually
provides much more palatable representations of recursive functions.

However, the use of an external predicate G on untyped terms suffers from several weaknesses:

1. The guard predicate is too syntax-sensitive and too weak.
The acceptance of a recursive definition becomes too sensitive to the syntactical shape of
its body. Sometimes, a small change in the definition could make it to no longer satisfy
the guardedness condition. As an example, consider the following modification of the plus

function, where the condition is no longer satisfied because of the introduction of a redex in
the definition:

let comp f g x = (f (g x))

let rec plus n m = case m of

O -> n

| (S p) -> (comp S (plus n) p)

end

In addition, the guard predicate rejects many terminating recursive definitions such as the
Euclidean division, Ackermann’s function, or functions that swap arguments, such as sub-
typing algorithms for higher-order languages

let rec sub a a’ =

case a a’ of

(base b) (base b’) -> sub_base b b’

| (fun b1 b2) (fun b’1 b’2) -> (sub b’1 b1) && (sub b2 b’2)

| ... -> ...

end

2. The guard predicate is hard to implement and hard to extend.
The guardedness condition is among the main sources of bugs in the implementation of the
proof system. In order to improve the number of definitions accepted by the system, the
guardedness condition has become more and more complicated hence prone to errors.

Besides, it is easier to extend the type system than to extend the guardedness condition: type
conditions are expressed as local constraints associated to each construction of the language
whereas the guard predicate yields global constraints.

2.1 Background 19

3. The guard predicate is often defined on normal forms.
Often the guard predicate is defined on normal forms only, which renders the typing rule (∗)
useless in practice. Subsequently, the typing rule (∗) is usually replaced by the more liberal
typing rule

f : Nat→ θ ` e : Nat→ θ

` (letrec f = e) : Nat→ θ
if Gf (nf e)

where nf is the partial function associating to an expression its normal form. Now the
modified rule introduces two further complications:

(a) The new guard condition leads to inefficient type-checking.
Verifying the guardedness condition makes type-checking less efficient as the body of
a recursive definition has to be reduced to be checked—expanding previously defined
constants like the constant comp in the example above.

(b) The new guard condition destroys strong normalization.
For example, the normal form of the following definition satisfies the guardedness con-
dition, but not the definition itself:

let K x y = x

let rec diverging_id n = case n of

O -> K n (diverging_id n)

| (S p) -> S (diverging_id p)

end

There is an infinite reduction sequence for the term diverging id O:1

diverging id O→ (K O (diverging id O))→ (K O (K O (diverging id O)))→ . . .

One solution to this problem (the solution has been considered for Coq) is to store
recursive definitions with their bodies in normal forms, as enforced by the rule

f : Nat→ θ ` e : Nat→ θ

` (letrec f = (nf e)) : Nat→ θ
if Gf (nf e)

but the rule has severe drawbacks: (1) proof terms become huge (because terms are
usually much smaller than their normal forms, in particular since all definitions have
been unfolded in the latter); (2) the expressions being stored are not those constructed
interactively by the user; (3) the modified typing rule for fixpoint expressions is not
syntax-directed, i.e. one cannot guess the expression e appearing in the premise from
the conclusion of the rule.

In order to circumvent those weaknesses, some authors have proposed semantically motivated
type systems that ensure the termination of recursive definitions through typing [66, 8, 17]. The
idea, which already occurs in Mendler’s work [106], consists in regarding an inductive type d as
the least fixpoint of a monotonic operator −̂d on types, and to enforce termination of recursive
functions by requiring that the definition of f : α̂d→ θ, where α may be thought as a subtype
of d, only relies on structurally smaller function calls, embodied by a function fih : α→ θ. This
approach to terminating recursion, which we call type-based, offers several advantages over the
guarded-by-destructors approach. In particular, it addresses all the above-mentioned weaknesses.

1In fact, Coq 7.2 accepts this definition of diverging id!

20 Chapter 2: An Informal Account of Type-Based Termination of Recursive Defs.

2.2 Outline of Type-Based Termination

In this work we introduce λ̂ , a simply typed λ-calculus that supports type-based recursive defini-
tions. Although heavily inspired by previous work by Giménez [66] and closely related to recent
work by Amadio and Coupet [8], the technical machinery behind our system puts a slightly differ-
ent emphasis on the interpretation of types. More precisely, we formalize the notion of type-based
termination using a restricted form of type dependency (a.k.a. indexed types), as popularized by
[141, 142]. This leads to a simple and intuitive system which is robust under several extensions,
such as mutually inductive datatypes and mutually recursive function definitions; however, such
extensions are not treated here.

The basic idea is to proceed as follows:

• First, every datatype d is replaced by a family of approximations indexed over a set of stages,
which are used to record a bound on the “depth” of values. Here, we adopt a simple minded
approach and let stages range over the syntax

s ::= ı | ŝ | ∞

where ı ranges over stage variables, the hat operator −̂ is a function mapping a stage to its
“successor” and ∞ is the stage at which the iterative approximation process converges to
the datatype itself.

• Second, a recursive definition of a function, say f : d → θ should be given by a term e

constructing a function g′ : dı̂ → θ from g : dı→ θ, where ı ranges over stages (in other
words, e should be stage-polymorphic).

In order to illustrate the machinery involved, let us consider the inductive type Nat whose
constructors are o : Nat and s : Nat→Nat. The typing rules are

` o : Natŝ
` n : Nats

` s n : Natŝ

and, as an instance of the subsumption rule,

` n : Nats

` n : Natŝ

Finally recursive functions from Nat to θ are constructed with the following typing rule:

f : Natı→θ ` e : Nat̂ı→θ

` (letrec f = e) : Nat→θ

where ı is fresh wrt. θ. As shall be shown later, such recursive functions are terminating and,
despite its simplicity, this mechanism is powerful enough to capture course-of-value primitive
recursion.

2.3 Overview of This Part

The remainder of this part is organized as follows.
In Chapter 3 we formally present the system λ̂ , a simply typed λ-calculus supporting inductive

types and recursive function definitions with termination ensured by types. We also show that the

2.3 Overview of This Part 21

calculus is powerful enough to encode many recursive definitions rejected by existing type systems,
and give some examples.

In Chapter 4 we show that λ̂ is well-behaved enjoying important meta-theoretic properties.
In particular the reduction calculus is confluent, and enjoys subject reduction and strong normal-
ization.

In Chapter 5 we introduce λG , a system in which termination of typable recursively defined
functions is ensured by a syntactical condition G constraining the uses of recursive calls in the
body of definitions, and prove that λ̂ strictly extends the system λG .

In Chapter 6 we review related work and conclude.

22 Chapter 2: An Informal Account of Type-Based Termination of Recursive Defs.

Chapter 3

The System λ̂

In this Chapter, we introduce λ̂ , a simply typed lambda calculus featuring strongly positive,
finitely iterated parametric inductive types (in the sense of, e.g., [96]) and type-based termination
of recursive definitions. The calculus is à la Curry: terms come without any type annotations.

3.1 Datatypes

Datatypes and constructors are named: we assume given two finite sets D of datatype identifiers
and C of constructor identifiers. On datatypes, we assume a stratification that ensures that the
dependency relation between datatypes is well-founded. Hence each datatype d is assigned a
stratum str(d) ∈ N. Datatypes and constructors may only accept a fixed number of arguments,
so we stipulate that every datatype identifier d (resp. constructor c) has a fixed arity ar(d) ∈ N
(resp. ar(c) ∈ N) that indicates the number of parameters taken by d (resp. c). Finally, we require
that every datatype d ∈ D comes equipped with a set C(d) ⊆ C of constructors, and if d 6= d′ then
C(d) ∩ C(d′) = ∅.

For the sake of clarity, we adopt the following naming conventions: d, d′, di, . . . range over D
and c, c′, ci, . . . range over C.

3.2 Terms and Reduction

3.2.1 Terms

Terms are built from variables, abstractions, applications, constructors, case-expressions and recur-
sive definitions. Assume we have a denumerable set VE of (object) variables, and let x, x′, xi, y, . . .
range over VE .

Notation 3.2.1 For every set A, we let A∗ denote the set of lists over A, and [] denote the empty
list. ~a ranges over A∗ if a ranges over A. #~a denotes the length of ~a, and ~a[i] denotes, when it
exists, the ith element of ~a. For convenience, we will sometimes write lists in the form [a1, . . . , an]
instead of a1 . . . an.

Definition 3.2.2 (Terms) The set E of terms is given by the abstract syntax

E 3 a, b ::= x | λx. a | a b | c | case a of {c1 ⇒ b1 | . . . | cn ⇒ bn} | letrec x = e

where in the clause for case-expressions it is assumed that {c1, . . . , cn} = C(d) for some d ∈ D.

23

24 Chapter 3: The System λ̂

Notation 3.2.3 Sometimes we write case a of {~c ⇒ ~b} as an abbreviation of case a of {c1 ⇒
b1| . . . |cn ⇒ bn} and c~a as an abbreviation of c a1 . . . aar(c)

Definition 3.2.4 The set of free variables of an expression e, denoted by FV(e), is defined by
induction on the structure of e as follows:

FV(x) = {x}
FV(c) = ∅

FV(λx.a) = FV(a)\{x}
FV(a b) = FV(a) ∪ FV(b)

FV(case a of {c1 ⇒ b1 | . . . | cn ⇒ bn}) = FV(a) ∪ FV(b1) ∪ . . . ∪ FV(bn)
FV(letrec x = e) = FV(e)\{x}

A variable x is said to occur free or to be free in e if x ∈ FV(e). A variable in e that is not free
in e is said to be bound or to occur bound in e. An expression with no free variables is said to
be closed.

The usual conventions for omitting parentheses are adopted: application is left associative and
the scope of λ extends to the right as far as possible. We identify terms that are equal up to a
renaming of bound variables (or α-conversion). Moreover we assume standard variable convention
[14], so, all bound variables are chosen to be different from free variables.

Definition 3.2.5 (Term substitution) A term substitution is a function from VE to E. We
write [x1 := e1, . . . , xn := en] (or briefly [~x := ~e]) for the substitution mapping xi to ei for
1 ≤ i ≤ n, and mapping every other variable to itself.

Given a term a ∈ E and a type substitution S = [~x := ~e], we write S(a) or a[~x := ~e] to denote
the term obtained by the simultaneous substitution of terms ei for the free occurrences of variables
xi in a.

Remark 3.2.6 In the application of a substitution to a term, we rely on a variable convention.
The action of a substitution over a term is defined, as usual, with possible changes of bound
variables.

We now present a result which allows us to reorder substitutions.

Lemma 3.2.7 If x 6= y and x 6∈ FV(b) then

e[x := a][y := b] = e[y := b][x := a[y := b]]

Proof. By induction on the structure of e. 2

3.2.2 Reduction calculus

The reduction calculus is given by β-reduction for function application, ι-reduction for case analysis
and µ-reduction for unfolding recursive definitions—only allowed in the context of application to
a constructor application.

Definition 3.2.8 (Reductions)

1. β-reduction →β is defined as the compatible closure of the rule

(λx. e) e′ →β e[x := e′]

3.2 Terms and Reduction 25

2. ι-reduction →ι is defined as the compatible closure of the rule

case (ci ~a) of {c1 ⇒ e1 | . . . | cn ⇒ en} →ι ei ~a

where #~a = ar(ci).

3. µ-reduction →µ is defined as the compatible closure of the rule

(letrec f = e) (c ~a) →µ e[f := (letrec f = e)] (c ~a)

where #~a = ar(c).

4. The terms of the forms (λx.a) b, case (ci ~a) of {~c ⇒ ~b} and (letrec f = e) (c~a) are called
β-redexes, ι-redexes and µ-redexes, with a[x := b], bi ~a and e[f := (letrec f = e)] (c~a)
being their contracta, respectively. As expected we call βιµ-redex to a term that is either a
β-redex, an ι-redex or a µ-redex .

5. βιµ-reduction →βιµ is defined as →β ∪ →ι ∪ →µ. �βιµ and =βιµ are respectively defined
as the reflexive-transitive and the reflexive-symmetric-transitive closures of →βιµ. We say
that e reduces to e′ (or e computes into e′) whenever e�βιµ e

′. One defines similarly the
relations �β, �ι, �βι, =β, =ι and =βι.

Remark 3.2.9 In the formulation of the β- and µ-reduction rules, we rely on a variable conven-
tion: in the β-rule, the bound variables of e are assumed to be different from the free variables of
e′; in the µ-rule, the bound and the free variables of e are assumed to be different.

The mechanics of the reduction calculus is illustrated by the following example.

Example 3.2.10 Consider the inductive type of natural numbers Nat with C(Nat) = {o, s}, a(o) =
0 and a(s) = 1. Let plus ≡ (letrec plus = λx. λy. case x of {o ⇒ y | s ⇒ λx′. s (plus x′ y)}). The
following is a reduction sequence that computes one plus two.

plus (s o) (s (s o))
→µ (λx. λy. case x of {o ⇒ y | s ⇒ λx′. s (plus x′ y)}) (s o) (s (s o))
�β case s o of {o ⇒ s (s o) | s ⇒ λx′. s (plus x′ (s (s o)))}
→ι (λx′. s (plus x′ (s (s o)))) o

→β s (plus o (s (s o)))
→µ s ((λx. λy. case x of {o ⇒ y | s ⇒ λx′. s (plus x′ y)}) o (s (s o)))
�β s (case o of {o ⇒ s (s o) | s ⇒ λx′. s (plus x′ (s (s o)))})
→ι s (s (s o))

Term substitution has some useful properties with respect to reducibility.

Lemma 3.2.11 (Substitution lemma for reductions)

1. e→βιµ e
′ ⇒ e[x := a]→βιµ e

′[x := a]

2. a→βιµ a
′ ⇒ e[x := a]�βιµ e[x := a′]

3. e→βιµ e
′ ∧ a→βιµ a

′ ⇒ e[x := a]�βιµ e
′[x := a′]

Proof.

26 Chapter 3: The System λ̂

1. By induction on the structure of e. Assume e→βιµ e
′. e can neither be a variable nor a

constructor.

• Case e ≡ e1 e2. There are four possibilities:

– e1 →βιµ e′1 and e′ ≡ e′1 e2. In this case we have e1[x := a]→βιµ e′1[x := a] by
induction hypothesis. So, (e1 e2)[x := a] = e1[x := a] e2[x := a] →βιµ e′1[x :=
a]e2[x := a] = (e′1 e2)[x := a].

– e2→βιµ e
′
2 and e′ ≡ e1 e

′
2. Similar.

– e1 ≡ (λy.b) with x 6≡ y and y 6∈ FV(a), and e′ ≡ b[y := e2]. In this case we have
e[x := a] = (λy.b[x := a]) (e2[x := a])→βιµ b[x := a][y := e2[x := a]]. Finally by
Lemma 3.2.7 we can conclude that b[x := a][y := e2[x := a]] = b[y := e2][x := a] =
e′[x := a].

– e1 ≡ (letrec y = b), e2 ≡ (c ~a′) with x 6≡ y and y 6∈ FV(a), and e′ ≡ b[y := (letrec y =
b)] (c ~a′). In this case we have e[x := a] = (letrec y = b[x := a]) (c

−−−−−−→
a′[x := a])→βιµ

b[x := a][y := (letrec y = b[x := a])] (c
−−−−−−→
a′[x := a]). Finally by Lemma 3.2.7 we can

conclude that b[x := a][y := (letrec y = b[x := a])] (c
−−−−−−→
a′[x := a]) = b[y := (letrec y =

b)][x := a] (c
−−−−−−→
a′[x := a]) = e′[x := a].

• Case e ≡ (λy.b) with x 6≡ y and y 6∈ FV(a). The only case here is b→βιµ b
′ so, the

result follows by induction hypothesis.

• Case e ≡ case b of {~c⇒ ~e}. The proof of this case is very similar to the case where e is
an application.

2. By induction on the structure of e.

3. Directly from properties 1 and 2.

2

Definition 3.2.12 (Strongly normalizing terms) Let a ∈ E.

1. The term a is in normal form if it does not contain any βιµ-redex, i.e., if there is no term
b such that a→βιµ b.

2. The term a strongly normalizes if there is no infinite βιµ-reduction sequence starting with
a.

3. The set SN of strongly normalizing terms is inductively defined by the following clause:

If b ∈ SN for all term b such that a→βιµ b, then a ∈ SN.

It follows from the above definition that the set SN is not empty, since VE ⊆ SN; and that if e
is strongly normalizing and e�βιµ e

′, then e′ is also strongly normalizing. Moreover, observe that
any subterm of a strongly normalizing term is also strongly normalizing, since the βιµ-reduction
relation is compatible with respect to the formation of terms.

3.3 Types, Subtyping and Typing 27

3.3 Types, Subtyping and Typing

3.3.1 Types and Subtyping

Assume now given two denumerable sets VT of type variables and VS of stage variables. Adopt the
naming conventions that α, α′, αi, β, δ, . . . range over VT and ı, , . . . range over VS . Proceeding
from these, we define stage and type expressions. Stage expressions are built of stage variables, a
symbol for the successor function on stages, and a symbol for the limit stage. A type expression
is either a type variable, a function type expression or a datatype approximation expression.

Definition 3.3.1 (Stages and types)

1. The set S of stage expressions is given by the abstract syntax:

S 3 s, r ::= ı | ŝ | ∞

2. The set T of type expressions is given by the abstract syntax:

T 3 σ, τ ::= α | τ→σ | ds ~τ

where in the last clause, the length of ~τ is exactly ar(d).

The usual conventions of omitting parentheses are adopted: the type constructor→ is right asso-
ciative.

Notation 3.3.2 Very often we write ~τ→σ as an abbreviation for τ1→ . . .→ τn→σ, and d~σ as
an abbreviation for d∞ ~σ.

Every datatype is seen as a family of approximations indexed over a set of stages. The hat
operator maps stage to its successor and ∞ is the stage at which the iterative approximation
process converges to the datatype itself. So, datatypes are equipped with size information given
by the stages which are used to record a bound on the “depth” of values. Stages play a central
role in the definiton of restrictive typing rules in which only terminating functions are typable.
The rougth idea is that a recursive function is accepted as terminating if the sizes of arguments
to recursive calls are bounded by the size of the function input.

Definition 3.3.3 (Type and stage substitutions)

1. A type substitution is a function from VT to T . We write [α1 := σ1, . . . , αn := σn] (or
briefly [~α := ~σ]) for the substitution mapping αi to σi for 1 ≤ i ≤ n, and mapping every
other type variable to itself. We write τ [~α := ~σ] to denote the type obtained by replacing
simultaneously each variable αi in τ with σi.

2. A stage substitution is a function from VS to S. We write [ı1 := s1, . . . , ın := sn] (or briefly
[~ı := ~s]) for the substitution mapping ıi to si for 1 ≤ i ≤ n, and mapping every other stage
variable to itself. We write τ [~ı := ~s] to denote the type obtained by replacing simultaneously
each stage variable ıi in τ with si.

In order to present the typing rules for constructors and case-expressions, we have to have a
means to fixing the intended typings of the constructors. To this end, we introduce the notions of
constructor scheme, constructor declaration and constructor scheme instantiation.

28 Chapter 3: The System λ̂

Definition 3.3.4 (Constructor scheme) The set CS of constructor schemes is given by the
abstract syntax:

ς ::= ∀ ~α.∀~ı. σ

where ~α are the free type variables of σ and ~ı are the free stage variables of σ.

Definition 3.3.5 (Constructor declaration) There is a map D : C→CS such that, for every
d ∈ D and c ∈ C(d),

D(c) = ∀ ~α.∀ ı. ~σ→dı̂~α

where:

1. #~α = ar(d) and #~σ = ar(c);

2. every occurrence of d in σi is of the form dı~α;

3. every occurrence of ı in σi is of the form dı~α;

4. each σi is positive w.r.t. dı~α, i.e. dı~α pos σi , see Figure 3.1;

5. each σi is positive w.r.t. αj, i.e. αj pos σi see Figure 3.1;

6. any d′ 6= d ∈ D appearing in ~σ satisfies str(d′) < str(d).

(pos0)
θ pos θ

(pos1)
θ 6= α

θ pos α

(pos2)
θ neg τ θ pos σ

θ pos τ → σ

(pos3)
θ pos τi (1 ≤ i ≤ ar(d))

θ pos ds~τ

(neg1)
θ 6= α

θ neg α

(neg2)
θ pos τ θ neg σ

θ neg τ → σ

(neg3)
θ neg τi (1 ≤ i ≤ ar(d))

θ neg ds~τ

where θ ranges over type variables and datatypes.

Figure 3.1: Positive-negative occurrences of type variables or datatypes

The last condition ensures that only finitely iterated inductive definitions are permitted (ex-
cluding mutual induction) and is made use of in the model construction (Definition 4.3.16) in the
proof of strong normalization.

A constructor declaration D(c) = ∀ ~α.∀ ı. ~σ→dı̂~α specifies the possible typings for constructor
c ∈ C(d): ~α are the parameters of the datatype, ı the stage variable for the datatype d and ~σ is
a possible typing for the arguments of the constructor. Note that, because of conditions 2 and
3, D(c) defines c as a way of transforming values in a given approximation of a datatype, dı~α, in
values of the next approximation, dı̂~α.

3.3 Types, Subtyping and Typing 29

Observe that type parameters may appear only positively in the argument types of the con-
structors. This makes it possible to parameterize the type of lists with respect to the type of
elements, binary trees with respect to the type of node labels, arbitrarily branching trees with
respect to the type of node labels, but not with respect to the branching type.

Example 3.3.6 Consider Bool,Nat, List,Tree,Ord,Maybe,BTree,DTree ∈ D, with ar(Bool) =
ar(Nat) = ar(Ord) = 0 and ar(List) = ar(Tree) = ar(Maybe) = ar(BTree) = ar(DTree) = 1. We have

C(Bool) = {true, false} D(true) = ∀ ı. Bool̂ı

D(false) = ∀ ı. Bool̂ı

for the datatype of booleans;

C(Nat) = {o, s} D(o) = ∀ ı. Nat̂ı

D(s) = ∀ ı. Natı→Nat̂ı

for the datatype of natural numbers;

C(List) = {nil, cons} D(nil) = ∀α.∀ ı. List̂ıα

D(cons) = ∀α.∀ ı. α→Listıα→List̂ıα

for lists;

C(Tree) = {branch} D(branch) = ∀α.∀ ı. α→List(Treeıα)→Treeı̂α

for finitely branching trees;

C(Ord) = {zero, succ, lim}
D(zero) = ∀ ı. Ordı̂

D(succ) = ∀ ı. Ordı→Ordı̂

D(lim) = ∀ ı. (Nat→Ordı)→Ordı̂

for ordinals (or better said, for ordinal notations);

C(Maybe) = {nothing, just} D(nothing) = ∀α.∀ ı. Maybeı̂α

D(just) = ∀α.∀ ı. α→Maybeı̂α

for the datatype maybe;

C(BTree) = {void, bnode} D(void) = ∀α.∀ ı. BTreeı̂α

D(bnode) = ∀α.∀ ı. α→BTreeıα→BTreeıα→BTreeı̂α

for binary trees; and

C(DTree) = {empty, node} D(empty) = ∀α.∀ ı. DTreeı̂α

D(node) = ∀α.∀ ı. α→(Bool→DTreeıα)→DTreeı̂α

for decision trees. That is, binary trees where at each node one has a value and a boolean function.
In traversing a decision tree the boolean function determines which subtree to choose.

Each particular legal typing for the arguments of a constructor is obtained by instantiating
the associated constructor declaration. The concept of instance of a constructor declaration is
formally defined as follows.

Definition 3.3.7 (Instance and domain) Let d ∈ D, c ∈ C(d), s ∈ S and ~τ ∈ T such that
#~τ = ar(d). Assume D(c) = ∀ ~α.∀ ı. ~σ→dı̂~α. An instance of c w.r.t. s and ~τ is defined as follows

Insts~τ (c) = ~σ[ı := s][~α := ~τ]→dŝ~τ

A domain of c w.r.t. s and ~τ is defined as follows

Doms
~τ (c) = ~σ[ı := s][~α := ~τ]

30 Chapter 3: The System λ̂

We now turn to the typing system. On the stages, we introduce a comparison relation. Impor-
tantly, the stage comparison rules state that all stages beyond the limiting stage are equivalent.
On top of the stage comparison relation, another set of rules defines a subtyping relation on
types. A crucial fact stated by these rules is that a given approximation of a datatype is always
included in the next one. This cumulative character is reflected by a chain of subtyping relations
dı~τ ≤ dı̂~τ ≤ d̂ı̂~τ ≤ . . . ≤ d∞~τ that can be derived by those rules.

Definition 3.3.8 (Stage comparison and subtyping) τ is a subtype of σ, written τ ≤ σ,
is defined by the rules of Figure 3.3, where s 4 r is defined by the rules of Figure 3.2.

(refl)
s 4 s

(trans)
s 4 r r 4 p

s 4 p
(hat)

s 4 ŝ
(infty)

s 4∞

Figure 3.2: Stage comparison rules λ̂

(refl)
σ ≤ σ

(data)
s 4 r τi ≤ τ ′i (1 ≤ i ≤ ar(d))

ds~τ ≤ dr ~τ ′
(func) τ ′ ≤ τ σ ≤ σ′

τ→σ ≤ τ ′→σ′

Figure 3.3: Subtyping rules for λ̂

Notation 3.3.9 We write ~σ ≤ ~τ , if #~σ = #~τ and σ[i] ≤ τ [i] for i = 1..#~σ.

Lemma 3.3.10 If σ ≤ τ and τ ≤ θ, then σ ≤ θ.

Proof. By induction on the sum of the derivations heights of σ ≤ τ and τ ≤ θ. 2

Lemma 3.3.11 If r̂ 4 ŝ, then r 4 s.

Proof. By induction on the proof of p 4 ŝ, one can show that p 4 ŝ implies p 4 s or p = ŝ from
where the claim can be inferred by instantiating p = r̂. 2

3.3.2 The Typing System

In order to define the typing relation between terms and type expressions, we need the concepts
of context and judgment.

Definition 3.3.12 (Contexts and judgments)

3.3 Types, Subtyping and Typing 31

(var)
Γ ` x : σ

if (x : σ) ∈ Γ

(abs)
Γ, x : τ ` e : σ

Γ ` λx. e : τ→σ

(app) Γ ` e : τ→σ Γ ` e′ : τ
Γ ` e e′ : σ

(cons)
Γ ` c : Insts~τ (c)

if c ∈ C(d)

(case)
Γ ` e′ : dŝ~τ Γ ` ei : Doms

~τ (ci)→θ (1 ≤ i ≤ n)
Γ ` case e′ of {c1 ⇒ e1 | . . . | cn ⇒ en} : θ

if C(d) = {c1, . . . , cn}

(rec)
Γ, f : dı~τ→θ ` e : dı̂~τ→θ[ı := ı̂] ı pos θ

Γ ` (letrec f = e) : ds~τ→θ[ı := s]
if ı not in Γ, ~τ

(sub) Γ ` e : σ σ ≤ σ′

Γ ` e : σ′

Figure 3.4: Typing rules for λ̂

1. A context Γ is a finite set of assumptions {x1 : τ1, . . . , xn : τn} such that the xis are
pairwise distinct elements of VE and τi ∈ T . Γ can be seen as a partial function so, we write
dom(Γ) = {x1, . . . , xn} and Γ(xi) = τi. Usually we drop the curly brackets and write simply
x1 : τ1, . . . , xn : τn. Moreover, whenever it is written Γ, x : τ or Γ,Γ′ it is assumed that
(x : τ) 6∈ Γ and Γ ∩ Γ′ = ∅.

2. A typing judgment is a triple of the form Γ ` e : σ, where Γ is a context, e is a term and
σ is a type expression.

The definition of the typing relation itself depends on that of subtyping.

Definition 3.3.13 (Typing)

1. A typing judgment is derivable if it can be inferred from the rules of Figure 3.4 where the
positivity condition ı pos σ in the (rec) rule is defined in Figure 3.5.

2. A term e ∈ E is typable if Γ ` e : σ is derivable for some context Γ and type σ.

The rules (var), (abs), and (app) come from the standard simply typed λ-calculus. The rule
(sub) is present in any λ-calculus with subtyping and provides a link between the subtyping and
typing relations. The remaining rules—(cons), (case) and (rec)—deserve some comments.

The (cons) rule says that applying a constructor of a given datatype to values in an approxima-
tion of the datatype gives a value that is guaranteed to be an element in the next approximation.
Observe that constructors are stage-polymorphic.

32 Chapter 3: The System λ̂

(sp1) ı pos α

(sp2)
ı neg τ ı pos σ
ı pos τ → σ

(sp3)
ı pos τi (1 ≤ i ≤ ar(d))

ı pos ds~τ

(sn1) ı neg α

(sn2)
ı pos τ ı neg σ
ı neg τ → σ

(sn3)
ı nocc s ı neg τi (1 ≤ i ≤ ar(d))

ı neg ds~τ

Figure 3.5: Positive-negative occurrences of a stage variable

The (case) rule says that the converse is also true: any value in the approximation next to
some given one is a result of applying one of the constructors of the datatype to values in the
given approximation and can therefore be subjected to case analysis.

The (rec) rule, finally, says that any systematic way of extending a function defined on a given
approximation of a datatype to work also on the next approximation induces a function defined on
the whole datatype, the limit of the approximations. The premise of this rule involves an implicit
universal quantification over the set of all stages (freshness condition) and incarnates the step of
induction, taking the function from stage ı to stage ı̂.

Despite its simplicity, this rule is powerful enough to capture course-of-value primitive recur-
sion. If we have computed the predecessor x′ : dı~τ of an input x : dı̂~τ within the body of the
recursive function f , we can use the fact that dı~τ ≤ dı̂~τ to type x′ : dı̂~τ by subsumption, and then
compute its predecessor again. Going on like this, we can analyze arbitrarily deep the input x
to obtain subcomponents which can then be used as arguments to recursive calls of f since they
inhabit dı~τ . An example of a function which has a course-of-value recursion implementation is the
function that tests if a natural number is even or not (see Example 3.4.2).

A feature of the (rec) rule, we have not mentioned yet, is that the stage variable ı can occur
in the codomain of the function f . The fact that θ may depend on ı enables the type system to
track stage dependencies between input and output of the function, providing a means to achieve
more precise typings. This feature is very valuable for defining functions where the argument to
the recursive call is derived from the input argument through another function. An example of
such a function is the Euclidean division (see Example 3.4.4), where argument to the recursive call
of div is the result of a subtraction. However, the occurrences of ı in θ are restricted to positive
positions, by the side condition ı pos θ. Indeed, if we simply drop this side condition we can
type non-terminating functions. This condition is a form of guaranteeing covariance between the
stage approximation of the domain and the codomain of function f . In other words, the type of
the codomain of a recursive function can only monotonically depend on the type of the function
domain. We make use of this positivity condition when proving the soundness of the typing system
(see Theorem 4.3.30 and Lemma 4.3.29).

To better help the comprehension of λ̂ we show in extenso a typing derivation for ` plus :
Nats→Nat→Nat, where s can be any stage, in particular ∞.

Example 3.3.14 Consider again the addition of two natural numbers:

plus ≡ (letrec plus = λx. λy. case x of {o ⇒ y | s ⇒ λx′. s (plus x′ y)})

3.4 Some Examples 33

The function plus can be shown to have type Nats→Nat→Nat as follows

Γ2 ` x : Nat̂ı
(var)

Γ2 ` y : Nat
(var)

(3.1) (3.2)
Γ3 ` s (plus x′ y) : Nat

(app)

Γ2 ` λx′. s (plus x′ y) : Natı→Nat
(abs)

Γ2 ` case x of {o ⇒ y | s ⇒ λx′. s (plus x′ y)} : Nat
(case)

Γ1 ` λx.λy.case x of {o ⇒ y | s ⇒ λx′. s (plus x′ y)} : Nat̂ı→Nat→Nat
2× (abs)

` plus : Nats→Nat→Nat
(rec)

where
Γ1 ≡ plus : Natı→Nat→Nat

Γ2 ≡ plus : Natı→Nat→Nat, x : Nat̂ı, y : Nat

Γ3 ≡ plus : Natı→Nat→Nat, x : Nat̂ı, y : Nat, x′ : Natı

Γ3 ` s : Nat∞→Nat∞̂
(cons)

Nat∞→Nat∞̂ ≤ Nat∞→Nat∞

Γ3 ` s : Nat→Nat
(sub)

(3.1)

and

Γ3 ` plus : Natı→Nat→Nat
(var)

Γ3 ` x′ : Natı
(var)

Γ3 ` plus x′ : Nat→Nat
(app)

Γ3 ` y : Nat
(var)

Γ3 ` plus x′ y : Nat
(app)

(3.2)

3.4 Some Examples

In order to illustrate the mechanics and expressive power of our calculus, we now give a few
examples of programming. We start from simple recursive definitions that are definable in all
useful existing systems.

Example 3.4.1 (Standard examples)

• The concatenation of two lists and the concatenation of a list of lists.

append ≡ (letrec append:Listıτ→List τ→List τ = λx:Listı̂τ . λy:List τ .

case x of {nil ⇒ y

| cons ⇒ λz:τ . λx
′
:Listıτ . cons z (append x′ y)︸ ︷︷ ︸

:List τ

}
) : Listsτ→List τ→List τ

conc ≡ (letrec conc:Listı(List τ)→List τ = λx:Listı̂(List τ).

case x of {nil ⇒ nil

| cons ⇒ λz:List τ . λx
′
:Listı(List τ). append z (conc x′)︸ ︷︷ ︸

:List τ

}
) : Lists (List τ)→List τ

34 Chapter 3: The System λ̂

• The addition of two ordinals.

add ≡ (letrec add :Ordı→Ord→Ord = λx:Ordı̂ . λy:Ord.

case x of {zero ⇒ y

| succ ⇒ λx′:Ordı . succ (add x′ y)︸ ︷︷ ︸
:Ord

| lim ⇒ λx′:Nat→Ordı . lim (λz:Nat. add (x′ z)︸ ︷︷ ︸
:Ordı

y

︸ ︷︷ ︸
:Ord

)

︸ ︷︷ ︸
:Ord∞̂≤Ord

}
) : Ords→Ord→Ord

Observe that in the types inferred for all these functions, the stage s can be any stage. In fact, the
minimal type is achieved when s is ∞, because s does not occur in the codomain of these functions.
So, we could simply have dropped the stage s in these examples.

The following examples illustrate the use of recursive calls on deep components of the formal
argument of the function.

Example 3.4.2 (Examples of course-of-value recursion)

• The predicate that decides if a natural number is even or not may be defined as follows. This
program involves a recursive call on a deep recursive component of the argument value. To
type it, therefore, the subsumption rule has to be used. This is an example of course-of-value
primitive recursion.

even ≡ (letrec even :Natı→Bool = λx:Natı̂ .

case x of {o ⇒ true

| s ⇒ λx′
:Natı≤Natı̂

. case x′ of {o ⇒ false

| s ⇒ λx′′:Natı . even x′′︸ ︷︷ ︸
:Bool

}

}
) : Nats→Bool

• The function that takes a decision tree T and a list of booleans, determining a path in T,
and returns the node last visited.

ans ≡ (letrec ans :DTreeıα→List Bool→Maybeα = λx:DTreeı̂α.λl:List Bool. case x of {
empty ⇒ nothing

| node ⇒ λa:α.λf:Bool→DTreeıα. case l of {
nil ⇒ just a

| cons ⇒ λy:Bool.λz:List Bool. case

:DTreeıα≤DTreeı̂α︷︸︸︷
(f y) of {

empty ⇒ just a

| node ⇒ λb:α.λg:Bool→DTreeıα. ans (f y) z︸ ︷︷ ︸
:Maybeα

}
}

}
) : DTreesα→List Bool→Maybeα

3.4 Some Examples 35

The following examples demonstrate the specific, novel features of λ̂ . First of all, stages
provide a limited means of controlling the effect of a recursively defined function in terms of the
relation between the depths of argument and result values.

Example 3.4.3 (Examples of “exact” typings)

• The length of a list. This standard program for calculating the length of a list admits an
unusually “exact” (i.e., tight and therefore informative) type in λ̂ .

length ≡ (letrec length :Listıτ→Natı =
λx:Listı̂τ . case x of {nil ⇒ o

| cons ⇒ λz:τ . λx
′
:Listıτ . s (length x′)︸ ︷︷ ︸

:Natı︸ ︷︷ ︸
:Natı̂

}
) : Listsτ→Nats

• The map of a function on a list. This program is very similar to that for the length function
and also admits an “exact” typing, but becomes crucial in an example below.

map ≡ (λf:τ→σ. (letrec map:Listıτ→Listıσ = λx:Listı̂τ .

case x of {nil ⇒ nil

| cons ⇒ λz:τ . λx
′
:Listıτ . cons (f z)︸ ︷︷ ︸

:σ

(map x′)︸ ︷︷ ︸
:Listıσ︸ ︷︷ ︸

:Listı̂σ

}
):Listsτ→Listsσ

) : (τ→σ)→Listsτ→Listsσ

The precision of the types inferred for these functions is achieved by the fact that, in both examples,
the codomain of the function depends on the stage variable of the domain. This enables the type
system to track stage dependencies between input and output of the function, and to produce more
informative types. The type inferred for length informs that when this function is applied to a list
of a certain height produces a natural that does not exceed the height of the input list. The type
inferred for map provide the additional information that, for f : τ→σ and l : Listsτ , the output
list (map f l) is in the same approximation stage as the input list l. Therefore, the list produced
cannot be bigger than the input list.

Further, recursive calls are allowed on structurally smaller arguments that cannot be verified
to be structurally smaller using a viable syntactic criterion.

Example 3.4.4 (Examples not handled by the guard condition)

• Euclidean division d x
y+1e. This program for Euclidean division depends on a program for

subtraction. It is not typable in systems with a syntactic guard predicate, as, syntactically,
(minus x′ y) is not properly structurally smaller than x in the program below. In λ̂ , it is
typable because of the “exact” type assignable to minus, that guarantees the term (minus x′ y)

36 Chapter 3: The System λ̂

is in the same approximation stage as x′, and so must be smaller than x.

minus ≡ (letrec minus :Natı→Nat→Natı = λx:Natı̂ . λy:Nat.

case x of {o ⇒ x

| s ⇒ λx′:Natı . case y of {o ⇒ x

| s ⇒ λy′:Nat. minus x′ y′︸ ︷︷ ︸
:Natı≤Natı̂

}

}
) : Nats→Nat→Nats

div ≡ (letrec div :Natı→Nat→Natı =
λx:Natı̂ . λy:Nat. case x of {o ⇒ o

| s ⇒ λx′:Natı . s (div (minus x′ y)︸ ︷︷ ︸
:Natı

y)

︸ ︷︷ ︸
:Natı︸ ︷︷ ︸

:Natı̂

}
) : Nats→Nat→Nats

• Flattening of finitely branching trees. This program depends on map and conc. Similarly to
div, it is not typable in systems with a syntactic guard predicate.

flatten ≡ (letrec flatten :Treeıτ→List τ =
λx:Treeı̂τ . case x of {

branch ⇒ λz:τ . λx
′
:List (Treeıτ). cons z (conc (map flatten x′)︸ ︷︷ ︸

:List (List τ)

)

︸ ︷︷ ︸
:List τ

}
) : Treesτ→List τ

Differently from the examples presented before, the recursive calls of functions div and flatten
are not derived from the input directly, i.e., using only case analysis: in div, the argument of
the recursive call is connected to a direct subterm of the input via function minus; in flatten the
recursive call is performed via function map. Both functions are problematic for syntactic methods,
and they are not handled by Giménez guard condition.

Finally, we give an example demonstrating the usefulness of having the capability of naming
stages explicitly: if one recursion is nested in another, we need two distinct free stage variables.

Example 3.4.5 (Examples involving several stage variables)

• The Ackermann function. The natural definition of the Ackermann function is not typable
in our system. A definition with two recursions, one nesting the other, however, is easy to

3.4 Some Examples 37

type.

ack ≡ (letrec ack :Natı→Nat→Nat = λx:Natı̂ .

case x of {o ⇒ λz. (s z)︸ ︷︷ ︸
:Nat→Nat

| s ⇒ λx′:Natı . (letrec ack x :Nat→Nat = λy:Nat̂ .

case y of {o ⇒ ack x′ (s o)︸ ︷︷ ︸
:Nat

| s ⇒ λy′:Nat . ack x′ (ack x y′)︸ ︷︷ ︸
:Nat︸ ︷︷ ︸

:Nat

}

):Nat→Nat

}
) : Nats→Nat→Nat

• Sum of all the nodes of a finitely branching tree of naturals. Recall that datatypes Tree and
List are interleaving. Naturally recursion over these nested datatypes is expressed by mutually
interleaving recursive functions. Observe that List(TreeıNat)→Nat is the minimal type that
the inner letrec-expression admits because of the recursive call (sumt y′).

sumt ≡ (letrec sumt :TreeıNat→Nat = λx:Treeı̂Nat.case x of {
branch ⇒ λx′:Nat.λx

′′
:List(TreeıNat).(

plus x′ (letrec suml :List(TreeıNat)→Nat = λy:List̂(TreeıNat). case y of {
nil ⇒ o

| cons ⇒ λy′:TreeıNat.λy
′′
:List(TreeıNat). plus (sumt y′)︸ ︷︷ ︸

:Nat

(suml y′′)︸ ︷︷ ︸
:Nat

}

):List(TreeıNat)→Nat x
′′)

:Nat

}
) : TreesNat→Nat

Example 3.4.6 (Another example of “exact” typings) Converting a list of naturals into
a binary (search) tree. The precise typing ltobt : ListsNat→BTreesNat informs that the height of
the result tree never exceeds the height of the input list. Notice that to achieve this precision it is
crucial to have ins : BTreesNat→Nat→BTreeŝNat.

leq ≡ (letrec leq :Natı→Nat→Boolı = λx:Natı̂ . λy:Nat. case x of {

o ⇒ case

:Nat≤Nat∞̂︷︸︸︷
y of {o ⇒

:Boolı̂︷︸︸︷
true

| s ⇒ λy′:Nat. false }
| s ⇒ λx′:Natı . case y of {o ⇒ false

| s ⇒ λy′:Nat. leq x′ y′︸ ︷︷ ︸
:Boolı≤Boolı̂

}

}
) : Nats→Nat→Bools

38 Chapter 3: The System λ̂

ins ≡ (letrec ins :BTreeıNat→Nat→BTreeı̂Nat = λx:BTreeı̂Nat. λy:Nat. case x of {

void ⇒
:BTree

̂̂ı︷ ︸︸ ︷
bnode y void void

| bnode ⇒ λz:Nat. λx
′
:BTreeıNat. λx

′′
:BTreeıNat. case

Bool≤Bool∞̂︷ ︸︸ ︷
(leq y z) of {

true ⇒ bnode (ins x′ y) x′′

| false ⇒ bnode x′︸︷︷︸
:BTreeıNat≤BTreeı̂Nat

(ins x′′ y)︸ ︷︷ ︸
:BTreeı̂Nat︸ ︷︷ ︸

:BTree
̂̂ıNat

}

}
) : BTreesNat→Nat→BTreeŝNat

ltobt ≡ (letrec ltobt :ListıNat→BTreeıNat = λx:Listı̂Nat. case x of {
nil ⇒ void

| cons ⇒ λz:Nat. λx
′
:ListıNat. ins (ltobt x′)︸ ︷︷ ︸

:BTreeıNat

z

︸ ︷︷ ︸
:BTreeı̂Nat

}
) : ListsNat→BTreesNat

Chapter 4

Meta-Theoretical Results for λ̂

This chapter establishes some fundamental meta-theoretic properties of λ̂ , including confluence
of the reduction calculus, subject reduction and strong normalizability of typable terms.

4.1 Confluence

In λ̂ , all reduction strategies to compute an expression yield the same result. This is a consequence
of the confluence property of the computation relation, which states that if an expression e can be
partially computed into two different expressions e1 and e2, then there exists a third expression e′

such that both e1 and e2 can be computed into e′. The confluence property, therefore, guarantees
the uniqueness of the value (normal form) of any term. The proof of this property is done by the
standard technique of Tait and Martin-Löf.

Definition 4.1.1 A binary relation→ satisfies the diamond property if

a→a′ ∧ a→a′′ ⇒ ∃ b ∈ E . a′→b ∧ a′′→b

Lemma 4.1.2 If a binary relation satisfies the diamond property, then its transitive closure sat-
isfies also the diamond property.

Proof. By a simple diagram chase suggested by a tiled diagram. 2

To demonstrate that�βιµ is confluent, we must show that�βιµ satisfies the diamond property.
However→βιµ does not satisfies it. In order to apply the above result to show that�βιµ satisfies
the diamond property, we define a new relation �1 which satisfies the diamond property and
which has�βιµ as its transitive closure. Let us introduce the relation �1 which is reflexive and
allows multiple βιµ-reductions in one step, and establish some of its properties. We only show the
parts involving case-expressions, more details can be found, for instance, in [15].

Definition 4.1.3 The parallel one-step relation, �1, is defined on E inductively as follows:

1. a�1 a

2. a�1 a
′ ⇒ λx.a�1 λx.a

′

3. a�1 a
′ ∧ b�1 b

′ ⇒ a b�1 a
′ b′

4. a�1 a
′ ∧ b�1 b

′ ⇒ (λx.a) b�1 a
′[x := b′]

39

40 Chapter 4: Meta-Theoretical Results for λ̂

5. a�1 a
′ ∧ bi �1 b

′
i with i = 1..n ⇒ case a of {~c⇒ ~b}�1 case a′ of {~c⇒ ~b′}

6. aj �1 a
′
j ∧ bk �1 b

′
k for some k, with j = 1..ar(ck) ⇒ case (ck ~a) of {~c⇒ ~b}�1 b

′
k
~a′

7. e�1 e
′ ⇒ letrec x = e�1 letrec x = e′

8. e�1 e
′ ∧ ai �1 a

′
i with i = 1..ar(c) ⇒ (letrec x = e) (c~a)�1 e

′[x := letrec x = e′] (c ~a′)

Lemma 4.1.4

a�1 a
′ ∧ b�1 b

′ ⇒ a[x := b]�1 a
′[x := b′]

Proof. By induction on the definition of a�1 a
′. We only treat the cases for clauses 5 and 6 here.

5. Assume a �1 a
′ is case e of {~c ⇒ ~b} �1 case e′ of {~c ⇒ ~b′} and is a direct consequence

of e �1 e
′, bi �1 b

′
i with i = 1..n. By induction hypothesis e[x := b] �1 e

′[x := b′] and
bi[x := b]�1 b

′
i[x := b′]. Hence a[x := b] = case e[x := b] of {~c⇒ −−−−−→b[x := b]}�1 case e′[x :=

b′] of {~c⇒
−−−−−−→
b′[x := b′]} = a′[x := b′].

6. Assume a �1 a
′ is case (ck ~a) of {~c ⇒ ~b} �1 bk ~a′ and is a direct consequence of ai �1 a

′
i

with i = 1..ar(ck), bk �1 b′k. By induction hypothesis bk[x := b] �1 b′k[x := b′] and
ai[x := b] �1 a

′
i[x := b′]. Then a[x := b] = case (ck

−−−−−→
a[x := b] of {~c ⇒ −−−−−→b[x := b]} �1 b

′
k[x :=

b′]
−−−−−−→
a′[x := b′] = a′[x := b′].

2

Lemma 4.1.5 (Generation lemma for �1)

1. λx.a�1 e implies e ≡ λx.a′ with a�1 a
′.

2. a1 a2 �1 e implies either:

(a) e ≡ a′1 a′2 with a1 �1 a
′
1 and a2 �1 a

′
2;

(b) a1 ≡ λx.b, e ≡ b′[x := a′2] with b�1 b
′ and a2 �1 a

′
2;

(c) or a1 ≡ letrec x = b, a2 ≡ (c~e), e ≡ b′[x := letrec x = b′] (c ~e′) with b �1 b′ and
ei �1 e

′
i, i = 1..ar(c) .

3. case a of {~c⇒ ~b}�1 e implies either:

(a) e ≡ case a′ of {~c⇒ ~b′} with a�1 a
′ and bi �1 b

′
i;

(b) or a ≡ ck ~a, e ≡ b′k ~a′ with bk �1 b
′
k and aj �1 a

′
j, j = 1..ar(ck).

4. letrec x = b�1 e implies e ≡ letrec x = b′ with b�1 b
′.

Proof. By induction on the definition of �1. 2

Lemma 4.1.6 �1 satisfies the diamond property, i.e.,

a�1 a1 ∧ a�1 a2 ⇒ ∃ a3 ∈ E . a1 �1 a3 ∧ a2 �1 a3

Proof. By induction on the definition of a�1 a1. We focus on the cases of clauses 5 and 6.

4.2 Subject Reduction 41

5. Assume a �1 a1 is case e of {~c ⇒ ~b} �1 case e′ of {~c ⇒ ~b′} and is a direct consequence of
e�1 e

′, bi �1 b
′
i with i = 1..n. By Lemma 4.1.5, there are two possibilities:

1. a2 ≡ case e′′ of {~c ⇒ ~b′′} and e �1 e
′′, bi �1 b

′′
i . By induction hypothesis, there are

e′′′, b′′′i such that e′ �1 e
′′′, e′′ �1 e

′′′ and b′i �1 b
′′′
i , b′′i �1 b

′′′
i . Hence we can take

a3 ≡ case e′′′ of {~c⇒ ~b′′′}.

2. e ≡ ck ~a′′ with aj �1 a′′j , j = 1..ar(ck), bk �1 b′′k and a2 ≡ b′′k
~a′′. By induction

hypothesis, there is b′′′k such that b′k �1 b′′′k , b′′k �1 b′′′k . By Lemma 4.1.5 one has
e′ ≡ ck ~a′′′. Hence we can take a3 ≡ b′′′k ~a′′′.

6. Assume a �1 a1 is case (ck ~a) of {~c ⇒ ~b} �1 b
′
k
~a′ and is a direct consequence of aj �1 a

′
j ,

j = 1..ar(ck), bk �1 b
′
k. By Lemma 4.1.5 one can distinguish two cases:

1. a2 ≡ case (ck ~a′′) of {~c ⇒ ~b′′}, aj �1 a
′′
j , bi �1 b

′′
i . By induction hypothesis, there

are a′′′j , b′′′i such that a′j �1 a
′′′
j , a′′j �1 a

′′′
j , b′i �1 b

′′′
i , b′′i �1 b

′′′
i . Hence we can take

a3 ≡ b′′′k ~a′′′.

2. a2 ≡ b′′k
~a′′, bk �1 b′′k , aj �1 a′′j , j = 1..ar(ck). By induction hypothesis, there are

a′′′j , b′′′k such that a′j �1 a′′′j , a′′j �1 a′′′j , b′k �1 b′′′k , b′′k �1 b′′′k . Hence we can take
a3 ≡ b′′′k ~a′′′.

2

Lemma 4.1.7 �βιµ is the transitive closure of �1.

Proof. �1 contains the reflexive closure of →βιµ. Moreover, �1⊆�βιµ. Since �βιµ is the
reflexive-transitive closure of →βιµ it is also the transitive closure of �1. 2

Theorem 4.1.8 (Confluence) →βιµ is confluent:

a1 =βιµ a2 ⇒ ∃ e ∈ E . a1 �βιµ e ∧ a2 �βιµ e

Proof. Assume a1 =βιµ a2, then ∃ a ∈ E . a �βιµ a1 ∧ a �βιµ a2. As �βιµ is the transitive
closure of �1, �βιµ satisfies also the diamond property, by Lemma 4.1.2. So, we conclude. 2

Corollary 4.1.9 (Uniqueness of normal forms) Any expression e ∈ E has at most one nor-
mal form.

Proof. From Theorem 4.1.8, by absurdity with the assumption that a term could have two different
normal forms. 2

4.2 Subject Reduction

The proof of subject reduction for λ̂ is quite standard. Before going into this proof, some lem-
mata involving monotonicity and substitution properties for stages, as well as generation and
substitution properties for typing and subtyping, are considered.

Lemma 4.2.1 (Generation lemma for subtyping)

42 Chapter 4: Meta-Theoretical Results for λ̂

1. σ v τ1 → τ2 ⇒ σ ≡ τ ′1 → τ ′2 ∧ τ1 v τ ′1 ∧ τ ′2 v τ2

2. τ1 → τ2 v σ ⇒ σ ≡ τ ′1 → τ ′2 ∧ τ ′1 v τ1 ∧ τ2 v τ ′2

3. θ v ds~τ ⇒ θ ≡ dr~σ ∧ r 4 s ∧ ~σ ≤ ~τ

4. ds~τ v θ ⇒ θ ≡ dr~σ ∧ s 4 r ∧ ~τ ≤ ~σ

5. α v σ ⇒ σ ≡ α

6. σ v α ⇒ σ ≡ α

Proof. Immediate by analysis of the subtyping rules. 2

Lemma 4.2.2 (Generation lemma for typing)

1. Γ ` x : σ ⇒ (x : τ) ∈ Γ ∧ τ v σ

2. Γ ` a b : σ ⇒ Γ ` a : τ → σ′ ∧ Γ ` b : τ ∧ σ′ v σ

3. Γ ` λx.e : σ ⇒ σ ≡ τ1 → τ2 ∧ Γ, x : τ ′1 ` e : τ ′2 ∧ τ1 v τ ′1 ∧ τ ′2 v τ2

4. Γ ` c : σ ⇒ σ ≡ ~γ → θ ∧ ~γ v Insts~τ (c) ∧ dŝ~τ v θ ∧ c ∈ C(d)

5. Γ ` case a of {~c⇒ ~b} : σ ⇒ Γ ` a : dŝ~τ ∧ Γ ` bi : Insts~τ (ci)→ θ ∧ θ v σ

6. Γ ` letrec f = e : σ ⇒ Γ, f : dı~τ → θ ` e : (dı~τ → θ)[ı := ı̂] ∧ (dı~τ → θ)[ı := s] v
σ with ı ∈ VS , ı pos θ and ı fresh in Γ, ~τ

Proof. By inspection on the derivation of the antecedent judgments. 2

Lemma 4.2.3

1. If ı pos θ and r 4 s, then θ[ı := r] ≤ θ[ı := s].

2. If ı neg θ and r 4 s, then θ[ı := s] ≤ θ[ı := r].

Proof. By simultaneous induction on the structure of θ. 2

Lemma 4.2.4

1. If σ ≤ σ′, τi ≤ τ ′i and αi pos σ for i = 1..n, then σ[~α := ~τ] ≤ σ′[~α := ~τ ′].

2. If σ ≤ σ′, τi ≤ τ ′i and αi neg σ for i = 1..n, then σ[~α := ~τ ′] ≤ σ′[~α := ~τ].

Proof. By simultaneous induction on the structure of σ. 2

Lemma 4.2.5 If r 4 s and ~τ ≤ ~σ, then Domr
~τ (c) ≤ Doms

~σ(c).

Proof. Follows from the conditions imposed on declarations of constructors (see Definition 3.3.5)
and from lemmas 4.2.3 and 4.2.4. 2

4.2 Subject Reduction 43

Lemma 4.2.6 (Substitution lemma)
If Γ, x : τ ` a : σ and Γ ` b : τ , then Γ ` a[x := b] : σ.

Proof. By induction on the derivation of Γ, x : τ ` a : σ. 2

The following lemma shows the polymorphic nature of stage variables. In fact, in a derivable
judgment a stage variable can be replaced throughout by a stage without affecting derivability.

Lemma 4.2.7 If Γ ` a : σ then Γ[ı := s] ` a : σ[ı := s].

Proof. Without loss of generality, one can assume ı nocc s, otherwise one could firstly apply this
weaker version of the lemma with ı being replaced by a new stage variable κ (for the set of stage
variables is infinite) and use again the weaker version of the lemma with κ replaced by s.

By induction on the derivation of Γ ` a : σ. The only interesting case is when the last rule
applied is (rec). (The other cases can be easily proved using the induction hypothesis.) Assume
the last step is

Γ, f : d~τ → θ ` e : d̂~τ → θ[:= ̂] pos θ

Γ ` (letrec f = e) : dr~τ → θ[:= r]
 fresh in Γ, ~τ

A stage variable κ can be chosen such that κ is fresh in Γ, ~τ , θ, κ 6= ı and κ nocc s. Then, from
the induction hypothesis, Γ, f : dκ~τ → θ[:= κ] ` e : dκ̂~τ → θ[:= ̂][:= κ]. Therefore
Γ, f : dκ~τ → θ[:= κ] ` e : dκ̂~τ → θ[:= κ][κ := κ̂] and therefore, using again the induction
hypothesis,

Γ[ı := s], f : dκ~τ [ı := s]→ θ[:= κ][ı := s] `
e : dκ̂~τ [ı := s]→ θ[:= κ][κ := κ̂][ı := s]

Since κ nocc s and κ 6= ı, the substitutions [κ := κ̂] and [ı := s] can be exchanged, obtaining

Γ[ı := s], f : dκ~τ [ı := s]→ θ[:= κ][ı := s] `
e : dκ̂~τ [ı := s]→ θ[:= κ][ı := s][κ := κ̂] (4.1)

and, as κ is fresh in Γ[ı := s] and in ~τ [ı := s], one can apply the rule (rec).
Let u ≡ r[ı := s]. From (4.1) by (rec),

Γ[ı := s] ` (letrec f = e) : du~τ [ı := s]→ θ[:= κ][ı := s][κ := u]

So, as κ nocc s, ı nocc s and κ is θ-fresh, Γ[ı := s] ` (letrec f = e) : (dr~τ)[ı := s]→ θ[:= u][ı :=
s]. Hence, Γ[ı := s] ` (letrec f = e) : (dr~τ → θ[:= r])[ı := s]. 2

We are now ready to prove that λ̂ enjoys the property of subject reduction.

Theorem 4.2.8 (Subject reduction)

Γ ` e1 : σ ∧ e1 →βιµ e2 ⇒ Γ ` e2 : σ

Proof. By induction on the derivation of Γ ` e1 : σ. The interesting cases are when the last rule
applied is (app) or (case):

(app) Assume e1 ≡ a b and the last step is

Γ ` a : τ1 → τ2 Γ ` b : τ1
Γ ` a b : τ2

Then one may have the following cases:

44 Chapter 4: Meta-Theoretical Results for λ̂

e2 ≡ e[x := b], with a ≡ λx.e. From the typing derivation for a, using Lemma 4.2.2, follows
that Γ, x : τ ′1 ` e : τ ′2, τ1 v τ ′1 and τ ′2 v τ2, and from the typing derivation for b, by
(sub) one derives Γ ` b : τ ′1. Thus, by Lemma 4.2.6, Γ ` e[x := b] : τ ′2 and finally by
the rule (sub), Γ ` e[x := b] : τ2.

e2 ≡ (e[f := (letrec f = e)]) (c~a), with a ≡ (letrec f = e) and b ≡ (c~a). Applying Lemma
4.2.2 to the typing derivation for a one has:

Γ, f : dı~τ → θ ` e : (dı~τ → θ)[ı := ı̂] (4.2)

(dı~τ → θ)[ı := s] v τ1 → τ2 (4.3)

ı ∈ VS ∧ ı pos θ ∧ ı fresh in Γ, ~τ (4.4)

From (4.3) by Lemma 4.2.1, τ1 ≤ ds~τ ∧ θ[ı := s] ≤ τ2 and thus, using again Lemma
4.2.1,

τ1 ≡ dp~τ ′ ∧ p 4 s ∧ ~τ ′ ≤ ~τ

From (4.2) and (4.4), by (rec), Γ ` (letrec f = e) : (dı~τ → θ)[ı := q] holds for an
arbitrary stage q. Therefore, choosing q ≡ ı and taking into account (4.2), by Lemma
4.2.6 one can derive

Γ ` e[f := (letrec f = e)] : (dı~τ→θ)[ı := ı̂] (4.5)

Thus we have Γ ` (c~a) : dp~τ ′ and so, by lemmas 4.2.1 and 4.2.2, one of two possibilities
for p must arise: p ≡ n with n ≥ 1 or p ≡ ∞m with m ≥ 0, where for a stage s and
for k ∈ N, sk means s hatted k times.

• Case p ≡ n with n ≥ 1 then, using Lemma 4.2.7 on (4.5) with substitution
[ı := (n−1)], and since ı is fresh w.r.t. Γ and ~τ ,

Γ ` e[f := (letrec f = e)] : d
n

~τ→θ[ı := n]

Thus, since Γ ` (c~a) : τ1 and τ1 ≡ dp~τ ′, by (sub) and (app), follows Γ ` e[f :=
(letrec f = e)] (c~a) : θ[ı := n]. One has n 4 s and ı pos θ so, by Lemma 4.2.3,
θ[ı := n] ≤ θ[ı := s] and the proof of this case is concluded using the rule (sub).

• Case p ≡ ∞m with m ≥ 0 then, observe that by (sub) Γ ` (c~a) : d∞
(m+1) ~τ ′, and

the proof could now be completed arguing as in the previous case.

The remaining cases, where e2 ≡ a′ b with a →βιµ a
′, or e2 ≡ a b′ with b →βιµ b

′, follow by
routine induction.

(case) Assume e1 ≡ case a of {c1 ⇒ b1 | . . . | cn ⇒ bn} and the last step is

Γ ` a : dŝ~τ Γ ` bi : Doms
~τ (ci)→ θ (1 ≤ i ≤ n)

Γ ` case a of {c1 ⇒ b1 | . . . | cn ⇒ bn} : θ

Then one may have:

e2 ≡ bi a1 . . . aar(ci), with a ≡ ci a1 . . . aar(ci). From Γ ` ci a1 . . . aar(ci) : dŝ~τ , by Lemma
4.2.2, it follows that

Γ ` ci : ~γ→σ ∧ σ ≤ dŝ~τ

and also for 1 ≤ j ≤ ar(ci)

Γ ` aj : γj ∧ γj ≤ Domr
~ψ
(ci)[j] ∧ dr̂ ~ψ ≤ σ

4.3 Strong Normalization 45

So, dr̂ ~ψ ≤ dŝ~τ and therefore, by lemmas 4.2.1 and 3.3.11, r 4 s and ~ψ ≤ ~τ . Using
Lemma 4.2.5 and the (sub) rule, one has Γ ` aj : Doms

~τ (ci)[j] for 1 ≤ j ≤ ar(ci),
which can be combined with the typing derivation of bi, by means of the rule (app), to
conclude the proof of this case.

The remaining cases, e2 ≡ case a′ of {~c⇒ ~b} with a→βιµ a
′, and e2 ≡ case a′ of {c1 ⇒ b1 |

. . . | ci ⇒ b′i | . . . | cn ⇒ bn} with bi →βιµ b
′
i, follow by routine induction.

2

4.3 Strong Normalization

In λCS every computation sequence starting from a well-typed term terminates. That is, any
strategy for computing a well-typed term leads to a term that cannot be further computed. This
property is known as strong normalization, as we say that a term e is strongly normalizing with
respect to→βιµ, if all βιµ-reduction sequences starting with e terminate. Recall that SN denotes
the set of terms that are strongly normalizing with respect to→βιµ.

This subsection is devoted to prove that strong normalization holds for λCS. To prove that
every typable term is in SN we use the standard technique [90] of constructing a model based on
saturated sets. The method consists in developing a semantics for the typing calculus in which
terms are interpreted as terms and types as sets of terms known by construction only to contain
strongly normalizing terms and always be non-empty (saturated sets). Under this interpretation
a typing assertion e : σ is viewed as the set membership e ∈ [[σ]], where [[σ]] is the saturated set
associated with the type σ. Since saturated sets only contain strong normalizing terms, the strong
normalizability of all typable terms follows from the soundness of the interpretation.

4.3.1 Saturated sets and interpretation domains

The formal definition of saturated set makes use of two auxiliary notions: base term and key
reduction. This way one makes explicit the ideas behind the concept of saturated set, and also
gets a generic definition (to consider new terms and types, one only needs to extend the definition
of base term and key reduction). We start by defining the notions of base terms and key reduction,
and state some of their properties.

Definition 4.3.1 (Base terms) The set Base of base terms is defined inductively as follows:

1. VE ⊆ Base.

2. If b ∈ Base and e ∈ SN then b e ∈ Base.

3. If b ∈ Base and e1, . . . , en ∈ SN, then case b of {c1 ⇒ e1 | . . . | cn ⇒ en} ∈ Base.

4. If b ∈ Base and e ∈ SN then (letrec f = e) b ∈ Base.

Informally, a base term is a term whose reduction is stopped by the occurrence of a variable and
whose subterms are strongly normalizing. Every base term is strongly normalizing.

Lemma 4.3.2 Base ⊆ SN

Proof. By induction on the structure of base terms. 2

46 Chapter 4: Meta-Theoretical Results for λ̂

Definition 4.3.3 (Key reduction) The relation of key reduction between terms is defined in-
ductively as follows:

1. If e is a βιµ-redex and e′ is the contractum, then e→k e
′.

2. If a→k a
′, then a e→k a

′ e,

3. If a→k a
′, then case a of {c1 ⇒ e1 | . . . | cn ⇒ en}→k case a′ of {c1 ⇒ e1 | . . . | cn ⇒ en}.

4. If a→k a
′, then (letrec f = e) a→k (letrec f = e) a′.

The redex reduced by a key reduction is called key-redex.

Any term has at most one key-redex. The interest behind the notion of key reduction is that
for computing a normal form of a term that has a key redex one has necessarily to perform a key
reduction. Key reduction commutes with reduction in the following sense.

Lemma 4.3.4 If a→k b and a→βιµ a
′ 6= b by a non-key reduction, then a′→k b

′ and b�βιµ b
′

for some b′.

Proof. By induction on the structure of a. Assume a→k b and a→βιµ a
′ by a non-key reduction.

There are five different possibilities for a and b:

1. a ≡ (λx.e) e′ and b ≡ e[x := e′]. In this case one has two possible forms for a′:

• a′ ≡ (λx.e′′) e′ and e →βιµ e′′. We have a′ →k e′′[x := e′] and, by Lemma 3.2.11,
b ≡ e[x := e′]→βιµ e

′′[x := e′]. Hence b′ ≡ e′′[x := e′].

• a′ ≡ (λx.e) e′′ and e′ →βιµ e′′. We have a′ →k e[x := e′′] and, by Lemma 3.2.11,
b ≡ e[x := e′]→βιµ e[x := e′′]. So, b′ ≡ e′[x := e′′].

2. a ≡ a1 a2, a1→k a
′
1 and b ≡ a′1 a2. In this case one has two possible forms for a′:

• a′ ≡ a1 a
′
2 and a2 →βιµ a′2. We have a′ →k a′1 a

′
2 and b ≡ a′1 a2 →βιµ a′1 a

′
2. So,

b′ ≡ a′1 a′2.

• a′ ≡ a′′1 a2 and a1→βιµ a
′′
1 by a non-key reduction. We have a1→k a

′
1 and a1→βιµ a

′′
1

by a non-key reduction, then, by induction hypothesis, there is a term e such that
a′′1→k e and a′1�βιµ e. Therefore, a′ ≡ a′′1 a2→k e a2 and b ≡ a′1 a2�βιµ e a2. Hence
b′ ≡ e a2.

3. a ≡ case (ci ~e) of {~c⇒ ~b} and b ≡ bi ~e. In this case one has two possible forms for a′:

• a′ ≡ case (ci e1 . . . e
′
j . . . em) of {~c⇒ ~b} and ej→βιµ e

′
j . We have a′→k bi e1 . . . e

′
j . . . em

and b ≡ bi e1 . . . ej . . . em→βιµ bi e1 . . . e
′
j . . . em. So, b′ ≡ bi e1 . . . e

′
j . . . em.

• a′ ≡ case (ci ~e) of {c1 ⇒ b1 | . . . | cj ⇒ b′j | . . . cn ⇒ bn} and bj→βιµ b
′
j . We have:

– if i 6= j then a′→k bi ~e. So, trivially, b′ ≡ bi ~e.
– if i = j then a′→k b

′
j ~e and b ≡ bj ~e→βιµ b

′
j . So, b′ ≡ b′j ~e.

4. a ≡ case e of {~c ⇒ ~b}, e→k e
′ and b ≡ case e′ of {~c ⇒ ~b}. In this case one has two possible

forms for a′:

• a′ ≡ case e of {c1 ⇒ b1 | . . . | cj ⇒ b′j | . . . cn ⇒ bn} and bj →βιµ b′j . We have
a′→k case e′ of {c1 ⇒ b1 | . . . | cj ⇒ b′j | . . . cn ⇒ bn} and b→βιµ case e′ of {c1 ⇒ b1 |
. . . | cj ⇒ b′j | . . . cn ⇒ bn}. So, b′ ≡ case e′ of {c1 ⇒ b1 | . . . | cj ⇒ b′j | . . . cn ⇒ bn}.

4.3 Strong Normalization 47

• a′ ≡ case e′′ of {~c⇒ ~b} and e→βιµ e
′′ by a non-key reduction. By induction hypothesis,

there is a term e′′′ such that e′′→k e
′′′ and e′�βιµ e

′′′. Therefore, a′→k case e′′′ of {~c⇒
~b} and b�βιµ case e′′′ of {~c⇒ ~b}. So, b′ ≡ case e′′′ of {~c⇒ ~b}.

5. a ≡ (letrec f = e) (c~a) and b ≡ e[f := (letrec f = e)] (c~a). In this case one has two possible
forms for a′:

• a′ ≡ (letrec f = e′) (c~a) and e→βιµ e
′. We have a′→k e

′[f := (letrec f = e′)] (c~a)
and, by Lemma 3.2.11, b ≡ e[f := (letrec f = e)] (c~a)→βιµ e

′[f := (letrec f = e′)] (c~a).
Hence b′ ≡ e′[f := (letrec f = e′)] (c~a).

• a′ ≡ (letrec f = e) (c a1...ai...aar(c)) and ai→βιµ a
′
i. We have a′→k e[f := (letrec f =

e)] (c a1...a
′
i...aar(c)) and, by Lemma 3.2.11, b ≡ e[f := (letrec f = e)] (c~a)→βιµ e[f :=

(letrec f = e)] (c a1...a
′
i...aar(c)). So, b′ ≡ e[f := (letrec f = e)] (c a1...a

′
i...aar(c)).

2

The following two lemmas provide sufficient conditions for an expression to be strongly nor-
malizing.

Lemma 4.3.5

1. If a ∈ SN, a→k a
′ and a′ b ∈ SN, then a b ∈ SN.

2. If a ∈ SN, a→k a
′ and case a′ of {~c⇒ ~b} ∈ SN, then case a of {~c⇒ ~b} ∈ SN.

3. If a ∈ SN, a→k a
′ and (letrec f = e) a′ ∈ SN, then (letrec f = e) a ∈ SN.

Proof.

1. By induction on the sum of the lengths of the βιµ-reduction chains of a and b. We have
a ∈ SN, a→k a

′ and a′ b ∈ SN. So, b ∈ SN and a′ ∈ SN. We prove that a b ∈ SN showing
that every term e such that a b→βιµ e is strong normalizing. Since a has a key-redex, a
cannot be a λ-abstraction. Therefore there are the following cases to consider:

• e ≡ a′ b ∈ SN by hypothesis.

• e ≡ a′′ b and a→βιµ a
′′ by a non-key reduction. By Lemma 4.3.4, there is a term a′′′

such that a′�βιµ a
′′′ and a′′→k a

′′′. We have a′′ ∈ SN (since a ∈ SN and a→βιµ a
′′),

a′′→k a
′′′ and a′′′ b ∈ SN (since a′ b ∈ SN and a′�βιµ a

′′′). So, by induction hypothesis,
e ≡ a′′ b ∈ SN.

• e ≡ a b′ and b→βιµ b
′. We have a ∈ SN, a→k a

′ and a′ b′ ∈ SN (since a′ b ∈ SN and
b→βιµ b

′). So, by induction hypothesis, e ≡ a b′ ∈ SN.

2. By induction on the sum of the lengths of the βιµ-reduction chains of a and bi with 1 ≤ i ≤
#~b. We have a ∈ SN, a→k a

′ and case a′ of {~c ⇒ ~b} ∈ SN. So, a′ ∈ SN and bi ∈ SN for
1 ≤ i ≤ #~b. We prove that case a of {~c ⇒ ~b} ∈ SN showing that every term e such that
case a of {~c⇒ ~b}→βιµ e is strong normalizing. Since a has a key-redex, a cannot be of the
form (ci ~e). In consequence, there are the following cases to consider:

• e ≡ case a′ of {~c⇒ ~b} ∈ SN by hypothesis.

48 Chapter 4: Meta-Theoretical Results for λ̂

• e ≡ case a′′ of {~c ⇒ ~b} and a→βιµ a
′′ by a non-key reduction. By Lemma 4.3.4, there

is a term a′′′ such that a′�βιµ a
′′′ and a′′→k a

′′′. We have a′′ ∈ SN (since a→βιµ a
′′

and a ∈ SN), a′′→k a
′′′ and case a′′′ of {~c ⇒ ~b} ∈ SN (since case a′ of {~c ⇒ ~b} ∈ SN

and a′�βιµ a
′′′). Hence, by induction hypothesis, e ≡ case a′′ of {~c⇒ ~b} ∈ SN.

• e ≡ case a of {c1 ⇒ b1 | . . . | ci ⇒ b′i | . . . | cn ⇒ bn} and bi →βιµ b′i. We have
a ∈ SN, a →k a′ and case a′ of {c1 ⇒ b1 | . . . | ci ⇒ b′i | . . . | cn ⇒ bn} ∈ SN

(since case a′ of {~c ⇒ ~b} ∈ SN and bi →βιµ b′i). So, by induction hypothesis, e ≡
case a of {c1 ⇒ b1 | . . . | ci ⇒ b′i | . . . | cn ⇒ bn} ∈ SN.

3. By induction on the sum of the lengths of the βιµ-reduction chains of a and e.

2

Lemma 4.3.6

1. If a, e, a[x := e] ∈ SN, then (λx. a) e ∈ SN.

2. If ~a, e1, . . . , en, ei ~a ∈ SN, then case (ci ~a) of {c1 ⇒ e1 | . . . | cn ⇒ en} ∈ SN.

3. If ~a, e, e[f := (letrec f = e)] (c ~a) ∈ SN, then (letrec f = e) (c ~a) ∈ SN.

Proof.

1. By induction on the sum of the lengths of the βιµ-reduction chains of a and e. Assume
a, e, a[x := e] ∈ SN. We have to prove that b ∈ SN for any one b such that (λx. a) e→βιµ b.
There are three cases to consider:

• b ≡ a[x := e] ∈ SN by hypothesis.

• b ≡ (λx. a′) e with a�βιµ a
′. As a ∈ SN we have a′ ∈ SN. Moreover a′[x := e] ∈ SN,

because a[x := e]�βιµ a
′[x := e] by Lemma 3.2.11 and a[x := e] ∈ SN. Hence one has

(λx. a′) e ∈ SN by induction hypothesis.

• b ≡ (λx. a) e′ with e�βιµ e
′. Similar.

Properties 2 and 3 are proved similarly. 2

Next we define saturated sets and state some of their closure properties. Saturated sets are sets
of strongly normalizing terms containing the base terms and closed with respect to key expansion.

Definition 4.3.7 (Saturated sets)

1. A set X ⊆ E is said to be a saturated set, if

(a) X ⊆ SN,

(b) Base ⊆ X,

(c) if a ∈ SN and a→k a
′ for some a′ ∈ X, then a ∈ X.

The set of all saturated sets is denoted by SAT.

2. For any X ⊆ E, let pXq = {a ∈ SN | ∃ b ∈ Base ∪X. a�k b}.

Lemma 4.3.8 a′ ∈ SN ∧ a′�k a ∧ a ∈ X ∧ X ∈ SAT ⇒ a′ ∈ X

4.3 Strong Normalization 49

Proof. By induction on the length of the key-reduction sequence a′�k a. 2

The following lemma establishes some basic properties of the closure operator p·q.

Lemma 4.3.9

1. If X ⊆ Y , then pXq ⊆ pY q.

2. If X ⊆ SN, then pXq is a saturated set, in fact, the smallest saturated set containing X.

3. pX1 ∪ . . . ∪Xnq = pX1q ∪ . . . ∪ pXnq.

4. If Xi is a saturated set for any i ∈ I, then
⋃
i∈I Xi is a saturated set. (We say that⋃

i∈∅Xi = p∅q.)

Proof.

1. a ∈ pXq ⇒ ∃ b ∈ Base ∪X. a�k b ⇒ ∃ b ∈ Base ∪ Y. a�k b ⇒ a ∈ pY q

2. First, let us prove that pXq is a saturated set. Clearly, Base ⊆ pXq ⊆ SN. Moreover, if
a ∈ SN and a→k a

′, for some a′ ∈ pXq, then ∃ b ∈ Base ∪ X. a′�k b and a′ ∈ SN. So,
a�k b and a ∈ SN. Hence, a ∈ pXq.

Now, let us show that pXq the smallest saturated set containing X. Assume X ⊆ Y ∈ SAT,
to prove that pXq ⊆ Y . If a′ ∈ pXq, then ∃ b ∈ Base ∪X. a′�k b and a′ ∈ SN. Moreover,
b ∈ Y ∈ SAT. Hence, by Lemma 4.3.8, we have a′ ∈ Y .

3. pX1 ∪ . . . ∪Xnq = {a ∈ SN | ∃ b ∈ Base ∪X1 ∪ . . . ∪Xn. a�k b} =
⋃
i=1..n{a ∈ SN | ∃ b ∈

Base ∪Xi. a�k b} = pX1q ∪ . . . ∪ pXnq

4. Assume Xi ∈ SAT for every i ∈ I. Let us prove the
⋃
i∈I Xi is a saturated set.

• By hypothesis Xi ⊆ SN for every i ∈ I. So,
⋃
i∈I Xi ⊆ SN.

• Base ⊆ Xi for every i ∈ I. Hence, Base ⊆
⋃
i∈I Xi.

• Let a ∈ SN and a→k a
′, for some a′ ∈

⋃
i∈I Xi. Thus, a′ ∈ Xi for some i ∈ I. As Xi is

saturated, a ∈ Xi. Hence, a ∈
⋃
i∈I Xi.

2

On saturated sets, we can define a function-space forming operation. This is needed for the
interpretation of function-space types.

Definition 4.3.10 For any X,Y ⊆ E, let X→Y = {a ∈ E | ∀e ∈ X. a e ∈ Y }. Moreover, ~X→Y

stands for X1→(X2→(. . . (Xn→Y) . . .)).

Lemma 4.3.11 If X ′ ⊆ X ⊆ E and Y ⊆ Y ′ ⊆ E, then X→Y ⊆ X ′→Y ′.

Proof. a ∈ X→Y ⇒ ∀e ∈ X. a e ∈ Y ⇒ ∀e ∈ X ′. a e ∈ Y ⊆ Y ′ ⇒ a ∈ X ′→Y ′ 2

Lemma 4.3.12 If X,Y ∈ SAT, then X→Y ∈ SAT.

Proof. Suppose X and Y are saturated. Let us check that X → Y satisfies the conditions of
saturatedness:

50 Chapter 4: Meta-Theoretical Results for λ̂

• Clearly any a ∈ X→Y is strongly normalizing: as X is non-empty, we can pick some e ∈ X
and then a ∈ SN because a e ∈ Y ⊆ SN.

• Suppose b ∈ Base and consider any e ∈ X. As e ∈ SN, we have that b e ∈ Base ⊆ Y . Hence
b ∈ X→Y .

• Suppose a ∈ SN, a→k a
′ and a′ ∈ X→Y . We have to show that a ∈ X→Y , i.e., that, for

any e ∈ X, a e ∈ Y . Consider any e ∈ X. We have a e→k a
′ e and a′ e ∈ Y ⊆ SN, hence

Lemma 4.3.5 applies and a e ∈ SN. Since Y is saturated, we get a e ∈ Y .

2

Type and term interpretation

In what now follows, we define a semantics of the language of stages, types, and terms and show
that the rules of stage comparison, subtyping and typing are sound with respect to that semantics.
Types will be interpreted as saturated sets of terms, terms will be interpreted as terms.

We start with the definitions of valuations and interpretation for stages and types. Stages will
be interpreted as ordinals below Ω, the first uncountable ordinal, types as saturated sets of terms.
Inductive types are interpreted as limits of a monotone approximation process from below. As the
universe, SN, is countable, the approximation process is guaranteed to converge before Ω.

Definition 4.3.13 (Stage valuation)

1. A stage valuation is a map π : VS→Ω + 1.

2. For every stage valuation π, ı ∈ VS , and x ∈ Ω + 1, the stage valuation π(ı := x) is defined
as follows:

π(ı := x)(ı′) =

{
x if ı′ ≡ ı
π(ı′) if ı′ 6≡ ı

Definition 4.3.14 (Interpretation of stages) Let π be a stage valuation. The corresponding
stage interpretation function [[.]]π : S→Ω + 1 is defined as follows:

[[ı]]π = π(ı) if ı ∈ VS
[[∞]]π = Ω

[[ŝ]]π =

{
[[s]]π + 1 if [[s]]π < Ω
[[s]]π if [[s]]π = Ω

Definition 4.3.15 (Type valuation)

1. A type valuation is a map ξ : VT →SAT.

2. For every type valuation ξ, α ∈ VT , and X ∈ SAT, the type valuation ξ(α := X) is defined
as follows:

ξ(α := X)(α′) =

{
X if α′ ≡ α
ξ(α′) if α′ 6≡ α

4.3 Strong Normalization 51

Definition 4.3.16 (Interpretation of types) Let π be a stage valuation and ξ a type valua-
tion. The corresponding type interpretation function [[.]]π,ξ : T → SAT is defined by induction on
heights (because of the stratification on datatype identifiers, every type has finite height):

[[α]]π,ξ = ξ(α) if α ∈ VT
[[τ→σ]]π,ξ = [[τ]]π,ξ→ [[σ]]π,ξ

[[ds~τ]]π,ξ = Dd
π,ξ([[~τ]]π,ξ, [[s]]π)

where Dd
π,ξ(~X, x) is defined by induction on x by

Dd
π,ξ(~X, 0) = p∅q

Dd
π,ξ(~X, y + 1) =

⋃
c∈C(d)

pc [[~θ]]π,ξ(δ:=Ddπ,ξ(~X,y),~α:= ~X)q

where, assuming D(c) = ∀ ~α.∀ ı. ~σ→dı̂~α and δ fresh,
~θ is obtained from ~σ replacing the occurrences of dı~α by δ.

Dd
π,ξ(~X, x) =

⋃
y<x

Dd
π,ξ(~X, y) if x is a limit ordinal

Note that we write c [[~σ]]π,ξ as an abbreviation for {c a1 . . . an | ai ∈ [[σi]]π,ξ for i = 1..#~σ}.

Remark 4.3.17 In the definition of [[ds~τ]]π,ξ, a form of variable convention for type variables is
relied upon: for each c ∈ C(d) such that D(c) = ∀ ~α.∀ ı. ~σ→dı̂~α, ~α are assumed not to appear in
~τ . Alternatively, without the convention, some variable renaming of ~α may be necessary.

Lemma 4.3.18

1. Dd
π,ξ(~X, x) = Dd

π(ı:=s),ξ(~X, x)

2. Dd
π,ξ(~X, x) = Dd

π,ξ(α:=τ)(~X, x)

Proof. Both proofs proceed by induction on x.

1. For x = 0 it is trivial. For x = y + 1, we have:

Dd
π(ı:=s),ξ(~X, y + 1) =

⋃
c∈C(d)

pc [[~θ]]π(ı:=s),ξ(δ:=Dd
π(ı:=s),ξ(

~X,y),~α:= ~X)q (4.6)

=
⋃

c∈C(d)

pc [[~θ]]π(ı:=s),ξ(δ:=Ddπ,ξ(
~X,y),~α:= ~X)q (4.7)

=
⋃

c∈C(d)

pc [[~θ]]π,ξ(δ:=Ddπ,ξ(~X,y),~α:= ~X)q (4.8)

= Dd
π,ξ(~X, y + 1) (4.9)

The equation (4.7) is justified using induction hypothesis and (4.8) is because ~θ has no
occurrences of stage variables.

If x is a limit ordinal, the proof follows from induction hypothesis.

2. For x = 0 it is trivial. For x = y + 1, we have:

Dd
π,ξ(α:=τ)(~X, y + 1) =

⋃
c∈C(d)

pc [[~θ]]π,ξ(α:=τ,δ:=Dd
π,ξ(α:=τ)(

~X,y),~α:= ~X)q (4.10)

52 Chapter 4: Meta-Theoretical Results for λ̂

=
⋃

c∈C(d)

pc [[~θ]]π,ξ(α:=τ,δ:=Ddπ,ξ(
~X,y),~α:= ~X)q (4.11)

=
⋃

c∈C(d)

pc [[~θ]]π,ξ(δ:=Ddπ,ξ(~X,y),~α:= ~X)q (4.12)

= Dd
π,ξ(~X, y + 1) (4.13)

The equation (4.11) is justified using induction hypothesis and (4.12) is due to the fact that
the only type variables that can appear in ~θ are ~α and δ.

If x is a limit ordinal, then the proof follows from induction hypothesis.

2

Lemma 4.3.19 (Substitution lemma for the interpretation of types)

1. [[σ[ı := s]]]π,ξ = [[σ]]π(ı:=[[s]]π),ξ

2. [[σ[α := τ]]]π,ξ = [[σ]]π,ξ(α:=[[τ]]π,ξ)

Proof. Both proofs proceed by induction on the structure of σ, using Lemma 4.3.18. 2

The following lemma states that the sequence of approximations of any datatype is non-
decreasing with respect to set inclusion and converges before Ω.

Lemma 4.3.20

1. If X ⊆ X ′ and α pos σ, then [[σ]]π,ξ(α:=X) ⊆ [[σ]]π,ξ(α:=X′).
If X ⊆ X ′ and α neg σ, then [[σ]]π,ξ(α:=X′) ⊆ [[σ]]π,ξ(α:=X).

2. If Xi ⊆ X ′i and x ≤ x′, then Dd
π,ξ(~X, x) ⊆ Dd

π,ξ(~X ′, x
′).

3. Dd
π,ξ(~X,Ω + 1) = Dd

π,ξ(~X,Ω).

Proof.

1. By mutual induction on the structure of σ, using Lemma 4.3.18.

2. By induction on x. Assume Xi ⊆ X ′i for i = 1..# ~X. For x = 0 it is trivial. For x = y + 1,
then x′ = y′ + 1 with y ≤ y′. So, we have:

Dd
π,ξ(~X, y + 1) =

⋃
c∈C(d)

pc [[~θ]]
π,ξ(δ:=Dd

π,ξ(~X, y)︸ ︷︷ ︸
⊆Dd

π,ξ
(~X′,y′)

,~α:= ~X︸︷︷︸
⊆ ~X′

)

︸ ︷︷ ︸
⊆[[~θ]]

π,ξ(δ:=Dd
π,ξ

(~X′,y′),~α:= ~X′)

q (4.14)

⊆
⋃

c∈C(d)

pc [[~θ]]π,ξ(δ:=Ddπ,ξ(~X′,y′),~α:= ~X′)q (4.15)

= Dd
π,ξ(~X ′, y

′ + 1) (4.16)

The equation (4.15) is justified using induction hypothesis, item 1 of this lemma and Lemma
4.3.9 (item 1). If x is a limit ordinal, then the proof follows from induction hypothesis.

4.3 Strong Normalization 53

3. From 2, using the fact that E is countable. The iteration process has to converge before Ω:
the opposite would imply that E is uncountable, as Ω is uncountable.

2

Lemma 4.3.21

[[dŝ~τ]]π,ξ =
⋃

c∈C(d)

pc [[Doms
~τ (c)]]π,ξq

Proof.

[[dŝ~τ]]π,ξ = Dd
π,ξ([[~τ]]π,ξ, [[ŝ]]π) (4.17)

= Dd
π,ξ([[~τ]]π,ξ, [[s]]π + 1) (4.18)

=
⋃

c∈C(d)

pc [[~θ]]π,ξ(δ:=Ddπ,ξ([[~τ]]π,ξ,[[s]]π),~α:=[[~τ]]π,ξ)q (4.19)

=
⋃

c∈C(d)

pc [[Doms
~τ (c)]]π,ξq (4.20)

The justification for equation (4.18) is: if [[s]]π < Ω, then [[ŝ]]π = [[s]]π + 1; if [[s]]π = Ω, then
[[ŝ]]π = Ω, so the equation follows using Lemma 4.3.20 (item 3). The equation (4.20) is justified by

[[Doms
~τ (c)]]π,ξ = [[~σ[ı := s][~α := ~τ]]]π,ξ (4.21)

= [[~θ[δ := ds~τ]]]π,ξ(~α:=[[~τ]]π,ξ) (4.22)

= [[~θ]]π,ξ(δ:=[[ds~τ]]π,ξ(~α:=[[~τ]]π,ξ),~α:=[[~τ]]π,ξ) (4.23)

= [[~θ]]π,ξ(δ:=Dd
π,ξ(~α:=[[~τ]]π,ξ)([[~τ]]

π,ξ(~α:=[[~θ]]π,ξ),[[s]]π),~α:=[[~τ]]π,ξ) (4.24)

= [[~θ]]π,ξ(δ:=Ddπ,ξ([[~τ]]
π,ξ(~α:=[[~θ]]π,ξ),[[s]]π),~α:=[[~τ]]π,ξ) (4.25)

= [[~θ]]π,ξ(δ:=Ddπ,ξ([[~τ]]π,ξ,[[s]]π),~α:=[[~τ]]π,ξ) (4.26)

Notice that in (4.22) we are assuming D(c) = ∀ ~α.∀ ı. ~σ → dı̂~α and δ fresh, and neither δ nor
~α appear in ~τ . Furthermore, ~θ is obtained from ~σ replacing the occurrences of dı~α by δ. This
equation is justified by Lemma 4.3.19. Equation (4.23) follows from Lemma 4.3.19, equation (4.25)
follows from Lemma 4.3.18, and equation (4.26) is justified by the fact of none ~α occurs in ~τ .

2

Next we define valuations and interpretation for terms.

Definition 4.3.22 (Term valuation)

1. A term valuation is a map ρ : VE→E.

2. For every term valuation ρ, e ∈ E and x ∈ VE , the term valuation ρ(x := e) is defined as
follows:

ρ(x := e)(z) =

{
e if z ≡ x
ρ(z) if z 6≡ x

54 Chapter 4: Meta-Theoretical Results for λ̂

Definition 4.3.23 (Interpretation of terms) For any term valuation ρ, the map ([.])ρ : E→E
is defined inductively as follows:

([x])ρ = ρ(x)
([λx. e])ρ = λx.([e])ρ(x:=x)

([e e′])ρ = ([e])ρ ([e′])ρ
([c])ρ = c

([case e of {c1 ⇒ e1 | . . . | cn ⇒ en}])ρ = case ([e])ρ of {c1 ⇒ ([e1])ρ | . . . | cn ⇒ ([en])ρ}
([letrec f = e])ρ = letrec f = ([e])ρ(f :=f)

Remark 4.3.24 In the clauses for lambda-abstraction and letrec, a form of variable convention
is relied upon: namely, x resp. f is assumed not to appear as a free variable in any of the terms
ρ(y) where y is free in e. Alternatively, without the convention, some variable renaming may be
necessary: in the case of lambda-abstraction, one would set

([λx. e])ρ = λx′.([e])ρ(x:=x′)

where x′ is some variable free in no ρ(y) where y is free in e.

Lemma 4.3.25 (Substitution lemma for the interpretation of terms)

1. ([e[x := e′]])ρ = ([e])ρ(x:=([e′])ρ).

2. ([e])ρ = e[~y := ρ(~y)] where ~y are the free variables of e.

Proof. By induction on the structure of e. 2

The notion of satisfaction and validity are defined as usual: satisfaction of subtyping is set
inclusion, and satisfaction of typing is set membership.

Definition 4.3.26 (Satisfaction, validity)

1. A stage valuation π satisfies a stage comparison judgment s 4 s′, if [[s]]π ≤ [[s′]]π. A stage
comparison judgment s 4 s′ is valid, if every stage valuation satisfies it.

2. A stage valuation π and a type valuation ξ satisfy a subtyping judgment σ ≤ σ′, if [[σ]]π,ξ ⊆
[[σ′]]π,ξ. A subtyping judgment σ ≤ σ′ is valid, if every pair of stage and type valuations
satisfies it.

3. A valuation is a triple (π, ξ, ρ), where π is a stage valuation, ξ is a type valuation and ρ is
a term valuation.

4. Let (π, ξ, ρ) be a valuation.

(a) (π, ξ, ρ) satisfies a context Γ, written (π, ξ, ρ) |= Γ, if ρ(x) ∈ [[τ]]π,ξ for each (x : τ) ∈ Γ.

(b) (π, ξ, ρ) satisfies a typing judgment Γ ` e : σ, if

(π, ξ, ρ) |= Γ ⇒ ([e])ρ ∈ [[σ]]π,ξ

5. A typing judgment Γ ` e : σ is valid, written Γ |= e : σ, if every valuation satisfies it.

4.3 Strong Normalization 55

4.3.2 Soundness w.r.t. the Semantics

Next we prove that the rules of λ̂ for stage comparison, subtyping, and typing are sound with
respect to the semantics just defined. The strong normalization theorem follows as a corollary
from the typing soundness.

Proposition 4.3.27 (Stage comparison soundness)

s 4 s′ derivable ⇒ s 4 s′ valid

Proof. By induction on the derivation of s 4 s′. 2

Proposition 4.3.28 (Subtyping soundness)

σ ≤ σ′ derivable ⇒ σ ≤ σ′ valid

Proof. By induction on the derivation of σ ≤ σ′, using lemmas 4.3.11 and 4.3.20. 2

Lemma 4.3.29 Let ξ be a type valuation. Then

1. If ı pos σ and x ≤ x′, then [[σ]]π(ı:=x),ξ ⊆ [[σ]]π(ı:=x′),ξ.

2. If ı neg σ and x ≤ x′, then [[σ]]π(ı:=x),ξ ⊇ [[σ]]π(ı:=x′),ξ.

Proof. By simultaneous induction on the structure of σ. 2

Theorem 4.3.30 (Typing soundness)

Γ ` e : σ derivable ⇒ Γ |= e : σ

Proof. By induction on the derivation of Γ ` e : σ.

(var) Assume the last (and the only) step is

Γ ` x : τ
and (x : τ) ∈ Γ

Suppose (π, ξ, ρ) |= Γ. We have to show that ([x])ρ ∈ [[τ]]π,ξ. This is true, as (x : τ) ∈ Γ.

(abs) Assume the last step is
Γ, x : τ ` e : σ

Γ ` λx. e : τ→σ
Suppose (π, ξ, ρ) |= Γ. We have to show that ([λx. e])ρ ∈ [[τ → σ]]π,ξ. Since [[τ → σ]]π,ξ =
[[τ]]π,ξ → [[σ]]π,ξ and ([λx. e])ρ = λx.([e])ρ0 , where ρ0 = ρ(x := x), this amounts to showing
that (λx. ([e])ρ0) a ∈ [[σ]]π,ξ for any a ∈ [[τ]]π,ξ.

Observe first that, since (π, ξ, ρ0) |= Γ and ρ0(x) = x ∈ VE ⊆ [[τ]]π,ξ, the induction hypothesis
tells us that ([e])ρ0 ∈ [[σ]]π,ξ ⊆ SN.

Suppose now a ∈ [[τ]]π,ξ ⊆ SN and let ρ′ = ρ(x := a). Since (π, ξ, ρ′) |= Γ and ρ′(x) = a ∈
[[τ]]π,ξ, by the induction hypothesis, we get that ([e])ρ′ ∈ [[σ]]π,ξ ⊆ SN. Write ~y for the free vari-
ables of e, then (λx. ([e])ρ0) a→k ([e])ρ0 [x := a] = e[~y := ρ0(~y)][x := a] = e[~y := ρ′(~y)] = ([e])ρ′
(by the variable convention, Remark 4.3.24, x does not occur free in ρ0(~y)). By Lemma
4.3.6, (λx. ([e])ρ0) a ∈ SN. As [[σ]]π,ξ is a saturated set, we get that (λx. ([e])ρ0) a ∈ [[σ]]π,ξ.

56 Chapter 4: Meta-Theoretical Results for λ̂

(app) Assume the last step is
Γ ` e : τ→σ Γ ` e′ : τ

Γ ` e e′ : σ

Suppose (π, ξ, ρ) |= Γ. We have to show that ([e e′])ρ ∈ [[σ]]π,ξ. As ([e e′])ρ = ([e])ρ ([e′])ρ, this
amounts to showing that ([e])ρ ([e′])ρ ∈ [[σ]]π,ξ.

As (π, ξ, ρ) |= Γ, the induction hypothesis gives that ([e])ρ ∈ [[τ→σ]]π,ξ = [[τ]]π,ξ→ [[σ]]π,ξ and
([e′])ρ ∈ [[τ]]π,ξ. Thus ([e])ρ ([e′])ρ ∈ [[σ]]π,ξ.

(cons) Assume the last (and the only) step is

Γ ` c : Insts~τ (c)
with c ∈ C(d)

Observe first that Insts~τ (c) = Doms
~τ (c) → dŝ~τ . Suppose (π, ξ, ρ) |= Γ. We have to show

that ([c])ρ ∈ [[Doms
~τ (c)→ dŝ~τ]]π,ξ = [[Doms

~τ (c)]]π,ξ → [[dŝ~τ]]π,ξ. As ([c])ρ = c, this amounts
to showing that c~a ∈ [[dŝ~τ]]π,ξ for any ~a ∈ [[Doms

~τ (c)]]π,ξ. But that holds trivially, since
[[dŝ~τ]]π,ξ =

⋃
c∈C(d)pc [[Doms

~τ (c)]]π,ξq as stated in Lemma 4.3.21.

(case) Assume the last step is

Γ ` e : dŝ~τ Γ ` e1 : Doms
~τ (c1)→θ . . . Γ ` en : Doms

~τ (cn)→θ

Γ ` case e of {c1 ⇒ e1 | . . . | cn ⇒ en} : θ
with C(d) = {c1, ..., cn}

Suppose (π, ξ, ρ) |= Γ. We have to show that ([case e of {c1 ⇒ e1 | . . . | cn ⇒ en}])ρ ∈ [[θ]]π,ξ.
As ([case e of {c1 ⇒ e1 | . . . | cn ⇒ en}])ρ = case ([e])ρ of {c1 ⇒ ([e1])ρ | . . . | cn ⇒ ([en])ρ}, this
amounts to showing that case ([e])ρ of {c1 ⇒ ([e1])ρ | . . . | cn ⇒ ([en])ρ} ∈ [[θ]]π,ξ.

As (π, ξ, ρ) |= Γ, from the induction hypothesis we get that ([e])ρ ∈ [[dŝ~τ]]π,ξ ⊆ SN and
([ei])ρ ∈ [[Doms

~τ (ci)→θ]]π,ξ = [[Doms
~τ (ci)]]π,ξ→ [[θ]]π,ξ ⊆ SN for each i ∈ 1..n.

Since [[dŝ~τ]]π,ξ = pc1 [[Doms
~τ (c1)]]π,ξ∪. . .∪cn [[Doms

~τ (cn)]]π,ξq, it must be the case that ([e])ρ�k

b for some b ∈ Base ∪ c1 [[Doms
~τ (c1)]]π,ξ ∪ . . . ∪ cn [[Doms

~τ (cn)]]π,ξ.

From b ∈ Base ∪ c1 [[Doms
~τ (c1)]]π,ξ ∪ . . . ∪ cn [[Doms

~τ (cn)]]π,ξ, it follows that case b of {c1 ⇒
([e1])ρ | . . . | cn ⇒ ([en])ρ} ∈ [[θ]]π,ξ ⊆ SN. Indeed, if b ∈ Base, then case b of {c1 ⇒ ([e1])ρ |
. . . | cn ⇒ ([en])ρ} ∈ Base ⊆ [[θ]]π,ξ, as ([ei])ρ ∈ SN for each i ∈ 1..n; if b ∈ ci [[Doms

~τ (ci)]]π,ξ
for some i ∈ 1..n, then b = ci ~a for some ~a ∈ [[Doms

~τ (ci)]]π,ξ and therefore case b of {c1 ⇒
([e1])ρ | . . . | cn ⇒ ([en])ρ}→k ([ei])ρ~a ∈ [[θ]]π,ξ and, by Lemma 4.3.6, case b of {c1 ⇒ ([e1])ρ |
. . . | cn ⇒ ([en])ρ} ∈ SN, hence case b of {c1 ⇒ ([e1])ρ | . . . | cn ⇒ ([en])ρ} ∈ [[θ]]π,ξ as [[θ]]π,ξ is
saturated.

From ([e])ρ�k b it follows that case ([e])ρ of {c1 ⇒ ([e1])ρ | . . . | cn ⇒ ([en])ρ}�k case b of {c1 ⇒
([e1])ρ | . . . | cn ⇒ ([en])ρ}; further, by Lemma 4.3.5, case ([e])ρ of {c1 ⇒ ([e1])ρ | . . . | cn ⇒
([en])ρ} ∈ SN. Since [[θ]]π,ξ is saturated, we get that case ([e])ρ of {c1 ⇒ ([e1])ρ | . . . | cn ⇒
([en])ρ} ∈ [[θ]]π,ξ.

(rec) Assume the last step is

Γ, f : dı~τ→θ ` e : dı̂~τ→θ[ı := ı̂] ı pos θ

Γ ` (letrec f = e) : ds~τ→θ[ı := s]
and ı fresh in Γ, ~τ

4.3 Strong Normalization 57

Suppose (π, ξ, ρ) |= Γ. We have to show that ([(letrec f = e)])ρ ∈ [[ds~τ → θ[ı := s]]]π,ξ.
As [[ds~τ → θ[ı := s]]]π,ξ = [[dı~τ → θ]]π0,ξ = [[dı~τ]]π0,ξ → [[θ]]π0,ξ and ([(letrec f = e)])ρ =
(letrec f = ([e])ρ0) where π0 = π(ı := [[s]]π) and ρ0 = ρ(f := f), this amounts to showing
that (letrec f = ([e])ρ0) a ∈ [[θ]]π0,ξ for any a ∈ [[dı~τ]]π0,ξ.

As (π0, ξ, ρ0) |= Γ and ρ0(f) = f ∈ VE ⊆ [[dı~τ→ θ]]π0,ξ, by the induction hypothesis we get
that ([e])ρ0 ∈ [[dı̂~τ→θ[ı := ı̂]]]π0,ξ ⊆ SN.

We prove our goal by induction on π0(ı).

(π0(ı) = 0) Suppose a ∈ [[dı~τ]]π0,ξ = p∅q ⊆ SN. Then a�k b for some b ∈ Base.

Since ([e])ρ0 ∈ SN, from b ∈ Base it follows that (letrec f = ([e])ρ0) b ∈ Base ⊆ [[θ]]π0,ξ ⊆
SN.

From a�k b it follows that (letrec f = ([e])ρ0) a�k (letrec f = ([e])ρ0) b and, by Lemma
4.3.5, (letrec f = ([e])ρ0) a ∈ SN.

Since [[θ]]π0,ξ is a saturated set, we can conclude that (letrec f = ([e])ρ0) a ∈ [[θ]]π0,ξ.

(π0(ı) = y + 1) Let π′ = π(ı := y) and ρ′ = ρ(f := (letrec f = ([e])ρ0)). As (π′, ξ, ρ′) |= Γ
and as by the inner induction hypothesis ρ′(f) = (letrec f = ([e])ρ0) ∈ [[dı~τ]]π′,ξ →
[[θ]]π′,ξ = [[dı~τ → θ]]π′,ξ, by the outer induction hypothesis we get that ([e])ρ′ ∈ [[dı̂~τ →
θ[ı := ı̂]]]π′,ξ = [[dı~τ→θ]]π0,ξ.

Suppose a ∈ [[dı~τ]]π0,ξ = [[dı̂~τ]]π′,ξ = pc1 [[Domı
~τ (c1)]]π′,ξ ∪ . . . ∪ cn [[Domı

~τ (cn)]]π′,ξq ⊆ SN

using Lemma 4.3.21.

Then a�k b for some b ∈ Base ∪ c1 [[Domı
~τ (c1)]]π′,ξ ∪ . . . ∪ cn [[Domı

~τ (cn)]]π′,ξ.

From b ∈ Base ∪ c1 [[Domı
~τ (c1)]]π′,ξ ∪ . . . ∪ cn [[Domı

~τ (cn)]]π′,ξ we get that (letrec f =
([e])ρ0) b ∈ [[θ]]π0,ξ ⊆ SN. Indeed, if b ∈ Base, then (letrec f = ([e])ρ0) b ∈ Base ⊆ [[θ]]π0,ξ,
since ([e])ρ0 ∈ SN; if b ∈ ci[[Domı

~τ (ci)]]π′,ξ ⊆ [[dı~τ]]π0,ξ for some i ∈ 1..n, then (letrec f =
([e])ρ0) b→k ([e])ρ0 [f := (letrec f = ([e])ρ0)] b = ([e])ρ′ b ∈ [[θ]]π0,ξ and, by Lemma 4.3.6,
(letrec f = ([e])ρ0) b ∈ SN, hence (letrec f = ([e])ρ0) b ∈ [[θ]]π0,ξ as [[θ]]π0,ξ is saturated.

From a�k b it follows that (letrec f = ([e])ρ0) a�k (letrec f = ([e])ρ0) b and, by Lemma
4.3.5, (letrec f = ([e])ρ0) a ∈ SN.

Since [[θ]]π0,ξ is a saturated set, we can conclude that (letrec f = ([e])ρ0) a ∈ [[θ]]π0,ξ.

(π0(ı) = x where x is a limit ordinal) Suppose a ∈ [[dı~τ]]π0,ξ =
⋃
y<x[[dı~τ]]π(ı:=y),ξ. Then

a ∈ [[dı~τ]]π(ı:=y),ξ for some y < x. By the inner induction hypothesis and by the posi-
tivity of ı in θ, we therefore get that (letrec f = ([e])ρ0) a ∈ [[θ]]π(ı:=y),ξ ⊆ [[θ]]π0,ξ using
Lemma 4.3.29.

(sub) Assume the last step is
Γ ` e : σ σ ≤ σ′

Γ ` e : σ′

Suppose (π, ξ, ρ) |= Γ. We have to show that ([e])ρ ∈ [[σ′]]π,ξ. As (π, ξ, ρ) |= Γ, the induction
hypothesis gives ([e])ρ ∈ [[σ]]π,ξ and the subtyping soundness gives [[σ]]π,ξ ⊆ [[σ′]]π,ξ. Together,
these give ([e])ρ ∈ [[σ′]]π,ξ.

2

The main result of this subsection follows as an immediate corollary of the soundness of the
typing system.

58 Chapter 4: Meta-Theoretical Results for λ̂

Theorem 4.3.31 (Strong normalization) →βιµ is strongly normalizing on typable expressions:

Γ ` e : σ derivable ⇒ e ∈ SN

Proof. Assume Γ ` e : σ. Then, by Theorem 4.3.30, Γ |= e : σ. Consider a valuation (π, ξ, ρ)
where, for every x ∈ VE , ρ(x) = x. For every (x : τ) ∈ Γ, ([x])ρ = x ∈ [[τ]]π,ξ, since [[τ]]π,ξ is
saturated, hence (π, ξ, ρ) |= Γ. Therefore ([e])ρ ∈ [[σ]]π,ξ. As ([e])ρ = e, we have

e ∈ [[σ]]π,ξ ⊆ SN

2

Chapter 5

The System λG

In this chapter we present the system λG , a simply typed λ-calculus with inductive types. The
terms allowed in λG are the same as those allowed in λ̂ . In particular, we continue to have the letrec

constructor for defining functions recursively, but in λG (following what is done in [67]) termination
of typable recursively defined functions is ensured by a syntactical condition G constraining uses
of recursive calls in the body of definitions. The condition G is checked directly on the body of
the function and not on its normal form because of the problem this would raise (as discussed in
the introduction).

5.1 Definition of λG

The systems λG and λ̂ allow the same set of terms; they differ at the level of types in the following
aspects:

1. stages are not present in λG and so datatypes are not annotated by stages;

2. in λG there is no subtyping relation;

3. the set of typing rules is different, and λG ’s typing rule

Γ, f : d~τ → σ ` e : d~τ → σ Gxf (∅, a)

Γ ` (letrec f = e) : d~τ → σ
if e ≡ λx.a

for letrec-expressions is complemented by the syntactical condition G;

4. following Giménez [67], the datatypes allowed in λG are slightly more restricted than those of
λ̂ for, in the argument types of the constructors of a datatype, this datatype can only have
strictly positive occurrences. The justification for this restriction is that syntactic methods
fail for non-strictly positive datatypes.

Definition 5.1.1 (Constructor scheme) The set CSG of constructor schemes is given by the
abstract syntax:

ς ::= ∀ ~α. σ

where ~α are the free type variables of σ.

59

60 Chapter 5: The System λG

Definition 5.1.2 (Constructor declaration) There is a map D : C→CSG such that, for every
d ∈ D and c ∈ C(d),

D(c) = ∀ ~α. ~σ→d ~α

where:

1. #~α = ar(d) and #~σ = ar(c);

2. each σi is strictly positive w.r.t. d, see Figure 5.1;

3. every occurrence of d in σi is of the form d ~α;

4. any d′ 6= d ∈ D appearing in ~σ satisfies str(d′) < str(d).

(spos1) d nocc τ

τ spos d

(spos2)
d nocc θi (1 ≤ i ≤ n)

θ1 → . . .→ θn → d ~α spos d

Figure 5.1: Strictly positive rules

Let us focus on the letrec operator and on the syntactical condition G it satisfies. This condition
complements the reduction rule→µ, ensuring that each expansion of the letrec operator consumes
(at least) the constructor in the head of its argument. Informally, for a term (letrec f = e) we
should have the following:

1. f may occur in e only as the head of an application;

2. any application of f must be protected by a case analysis of the formal argument of e, say
x (for this reason f is said to be guarded-by-destructors); therefore f must occur inside ei’s
in the following context:

case x of { c1 ⇒ λx1,1. . . . λx1,ar(c1). e1

...
| cn ⇒ λxn,1. . . . λxn,ar(cn). en
}

3. considering that the components of x are the xij (direct components) together with the
components of each xij (inner components), f must be applied to a term of the form z ~a

where z is a recursive component of x (i.e., z is a component of x whose type has occurrences
of the type of x).

To illustrate the observations above, let us consider the examples already given in Section 3.4,
plus and even, now transposed to λG .

Example 5.1.3

5.1 Definition of λG 61

• The addition of two natural numbers.

(letrec plus = λx. λy. case x of {o ⇒ y

| s ⇒ λn.s (plus n y)
}

) : Nat→ Nat→ Nat

Here the only application of plus is protected by a case analysis on x, the formal argument
of plus. The argument of this application is the pattern variable n, a direct component of x.

• A function that indicates whether or not a natural number is even.

(letrec even = λx. case x of {o ⇒ true

| s ⇒ λy. case y of {o ⇒ false

| s ⇒ λz. even z }
}

) : Nat→ Bool

In this example the application of even is guarded by a case analysis on the argument x.
The argument of this application is the pattern variable z, an inner component of x which
becomes available in the case analysis on the pattern variable y, a direct component of x.

The formal description of the guarded-by-destructors condition is provided by the predicate
Gxf (V, a) defined below. The V argument is a set of variables used to collect the pattern variables
in a representing the recursive components of x. In order to identify the recursive components of
a variable, we start by characterizing the recursive positions of a constructor scheme as follows:

Definition 5.1.4 Let c be a λG constructor such that D(c) = ∀~α.~σ→d ~α. We say that the number
j corresponds to a recursive position of D(c), written RP(j,D(c)), if σj is of the form ~γ→d ~α.

The predicate G is now defined as follows:

Definition 5.1.5 (G predicate) Let U ⊆ V, let x and f be distinct variables not in U and let
a ∈ E. The predicate Gxf (U, a) is derivable using the rules in Figure 5.2.

Lemma 5.1.6 If f nocc a then Gxf (U, a).

Proof. By induction on the structure of a. 2

One can check that the guard predicate holds on addition.

Example 5.1.7 The function plus of Example 5.1.3 can be shown guarded as follows

plus 6= y

Gxplus(∅, y)
(1)

Gxplus({n}, s)
(4)

plus 6= n

Gxplus({n}, n)
(1)

Gxplus({n}, plus n)
(6)

plus 6= y

Gxplus({n}, y)
(1)

Gxplus({n}, plus n y)
(5)

Gxplus({n}, s (plus n y))
(5)

Gxplus(∅, case x of {o ⇒ y | s ⇒ λn.s (plus n y)})
(8)

Gxplus(∅, λy.case x of {o ⇒ y | s ⇒ λn.s (plus n y)})
(2)

62 Chapter 5: The System λG

1.
f 6= y

Gxf (U, y)
if y is a variable

2.
Gxf (U, a)

Gxf (U, λz.a)

3.
Gxf (U, e)

Gxf (U, letrec g = e)

4.
Gxf (U, c)

5.
Gxf (U, a) Gxf (U, b)

Gxf (U, a b)

6.
Gxf (U, z ~a)

Gxf (U, f (z ~a))
if z ∈ U

7.
Gxf (U, e) Gxf (U, bi) (1 ≤ i ≤ n)

Gxf (U, case e of {c1 ⇒ b1 | . . . | cn ⇒ bn})
if

e 6≡ z ~a
∨

(e ≡ z ~a ∧ z 6∈ U ∪ {x})

8.
Gxf (U, aj) (1 ≤ j ≤ m) Gxf (Vi, ei) (1 ≤ i ≤ n)

Gxf (U, case (z a1 . . . am) of {c1 ⇒ b1 | . . . | cn ⇒ bn})

if

z ∈ U ∪ {x}
bi ≡ λy1. . . . λyar(ci). ei
Vi ≡ U ∪ {yj | RP(j,D(ci)) for 1 ≤ j ≤ ar(ci)}

Figure 5.2: Guarded-by-destructors rules for λG

5.1 Definition of λG 63

As suggested in the introduction, the predicate G is very sensitive to syntax. This is illustrated
by the example below.

Example 5.1.8 Consider the following expression.

letrec plus = λx. λy. case x of {o ⇒ y

| s ⇒ λn.s ((λg. g n y) plus)
}

This expression also defines the addition of two natural numbers: it is obtained from the plus

function defined in Example 5.1.3 by a β-expansion. However, this definition of plus does not
satisfy condition G because the occurrence of plus in the letrec body is not the head of an application.
So, when trying to prove the condition G we would have to derive Gxplus({n}, plus) which, by looking
at the rules defining G, we can immediately say to be underivable.

Another example of an expression not satisfying the guard condition is the Euclidean division
already considered.

Example 5.1.9 The Euclidean division defined in Example 3.4.4 does not satisfy G for in the
recursive call of the div function (div (minus x′ y) y) its argument (minus x′ y) is not a recursive
component of its formal argument (x), but instead the result of applying the previously defined
minus to a recursive component (x′) of x.

To better demonstrate the usage of rule 8 of Figure 5.2 we give another example of a derivation
of a guard predicate.

Example 5.1.10 Recall the function ans of Example 3.4.2:

letrec ans = λx.λl. case x of {
empty ⇒ nothing

| node ⇒ λa.λf. case l of {
nil ⇒ just a

| cons ⇒ λy.λz. case (f y) of {
empty ⇒ just a

| node ⇒ λb.λg. ans (f y) z

 ≡ A

}
}

}

This function can be shown guarded as follows

Gxans(∅, nothing)
(4)

ans 6= l

Gxans({f}, l)
(1)

(5.1) (5.2)
Gxans({f}, case l of {A})

(7)

Gxans(∅, case x of {empty ⇒ nothing | node ⇒ λa.λf. case l of {A}})
(8)

Gxans(∅, λl.case x of {empty ⇒ nothing | node ⇒ λa.λf. case l of {A}})
(2)

Gxans({f}, just)
(4)

ans 6= a

Gxans({f}, a)
(1)

Gxans({f}, just a)
(5)

(5.1)

64 Chapter 5: The System λG

ans 6= y

Gxans({f}, y)
(1)

(5.3)

ans 6= f

Gxans({f, g}, f)
(1)

ans 6= y

Gxans({f, g}, y)
(1)

Gxans({f, g}, f y)
(5)

Gxans({f, g}, ans (f y))
(6)

ans 6= z

Gxans({f, g}, z)
(1)

Gxans({f, g}, ans (f y) z)
(5)

Gxans({f}, case (f y) of {empty ⇒ just a | node ⇒ λb.λg. ans (f y) z})
(8)

Gxans({f}, λy.λz.case (f y) of {empty ⇒ just a | node ⇒ λb.λg. ans (f y) z})
2× (2)

(5.2)

Gxans({f, g}, just)
(4)

ans 6= a

Gxans({f, g}, a)
(1)

Gxans({f, g}, just a)
(5)

(5.3)

We now turn to the typing system. First, one needs to define instances of constructors. The
definition is almost identical to the one for λ̂ , the only difference being the absence of stages.

Definition 5.1.11 (Instance and domain) Let d ∈ D, c ∈ C(d), and ~τ ∈ T such that #~τ =
ar(d). Assume D(c) = ∀ ~α. ~σ→d ~α. An instance of c w.r.t. ~τ is defined as follows

Inst~τ (c) = ~σ[~α := ~τ]→d~τ

A domain of c w.r.t. ~τ is defined as follows

Dom~τ (c) = ~σ[~α := ~τ]

Typing of terms is defined in the usual way.

Definition 5.1.12 (Typing) The typing judgment Γ ` e : σ is derivable if it can be inferred by
the rules of Figure 5.3, where Gxf (∅, a) is the guarded-by-destructors condition defined in Figure
5.2.

Below are presented some properties of λG used in the interpretation of λG into λ̂ exhibited
in the following section.

Lemma 5.1.13 (Generation lemma for G) If Gxf (U, a) has a derivation D, then only one rule
can be applied as the last step of D.

Proof. By case analysis on a. Note that only the conclusions of the rules 5 and 6 can be matched.
Furthermore, in order to match the conclusions of such rules a must be of the form f (z~b), in
which case rule 5 cannot be applied as last rule because its left premise would be underivable. 2

Lemma 5.1.14 If Gxf (U, a) and U ⊆ V , then Gxf (V, a).

Proof. By induction on the derivation of Gxf (U, a). The interesting case is when the last rule
applied is rule 7.

Assume a ≡ case e of {c1 ⇒ b1 | . . . | cn ⇒ bn} and the last step is

Gxf (U, e) Gxf (U, bi) (1 ≤ i ≤ n)

Gxf (U, case e of {c1 ⇒ b1 | . . . | cn ⇒ bn})

5.1 Definition of λG 65

(var)
Γ ` x : σ

if (x : σ) ∈ Γ

(abs)
Γ, x : τ ` e : σ

Γ ` λx.e : τ → σ

(app) Γ ` e : τ → σ Γ ` e′ : τ
Γ ` e e′ : σ

(cons)
Γ ` c : Dom~τ (c)→ d~τ

if c ∈ C(d)

(case)
Γ ` e : d~τ Γ ` ei : Dom~τ (ci)→ θ (1 ≤ i ≤ n)

Γ ` case e of {c1 ⇒ e1 | . . . | cn ⇒ en} : θ
if C(d) = {c1, . . . , cn}

(rec)
Γ, f : d~τ → σ ` e : d~τ → σ Gxf (∅, a)

Γ ` (letrec f = e) : d~τ → σ
if e ≡ λx.a

Figure 5.3: Typing rules for λG

• If e 6≡ z ~a or if e ≡ z a1 . . . am, z 6∈ U ∪{x} and z 6∈ V , then by induction hypothesis Gxf (V, e)
and Gxf (V, bi) for 1 ≤ i ≤ n, thus Gxf (V, a) can be derived using rule 7.

• Consider now e ≡ z a1 . . . am, z 6∈ U ∪ {x} and z ∈ V . Each bi must be of the form
λy1. . . . λyar(ci). ei. Let Qi ≡ V ∪ {yj | RP(j,D(ci)) for 1 ≤ j ≤ ar(ci)}. For 1 ≤ i ≤ n, since
V ⊆ Qi, using the induction hypothesis Gxf (Qi, bi) and then, by Lemma 5.1.13, Gxf (Qi, ei).
Also, from the induction hypothesis we have Gxf (V, aj) for 1 ≤ j ≤ m and therefore, applying
rule 8, Gxf (V, a).

The remaining cases can easily be proved using the induction hypothesis. 2

Lemma 5.1.15 (Generation lemma for λG)

1. Γ ` x : σ ⇒ (x : σ) ∈ Γ

2. Γ ` e e′ : σ ⇒ ∃ τ ∈ T . Γ ` e : τ → σ ∧ Γ ` e′ : τ

3. Γ ` λx.e : θ ⇒ θ ≡ τ → σ ∧ Γ, x : τ ` e : σ

4. Γ ` c : θ ⇒ θ ≡ Dom~τ (c)→ d~τ with c ∈ C(d)

5. Γ ` case e of {c1 ⇒ e1| . . . |cn ⇒ en} : θ ⇒ ∃ d ∈ D ∃~τ ∈ T . Γ ` e : d~τ ∧ Γ ` ei :
Dom~τ (ci)→ θ for 1 ≤ i ≤ n with ci ∈ C(d)

6. Γ ` letrec f = e : θ ⇒ θ ≡ d~τ → σ ∧ Γ, f : d~τ → σ ` e : d~τ → σ ∧ e ≡ λx.a ∧ Gxf (∅, a)

Proof. By inspection on the derivation of the antecedent judgments. 2

66 Chapter 5: The System λG

5.2 From λG to λ̂

In this section we show that λ̂ is a more general system than λG . The Examples 5.1.8 and 5.1.9
already illustrated are terms typable in λ̂ that cannot be typed in λG . In this section we show
that: if Γ `λG a : σ then Γ `λ̂ a : σ (the subscript at the turnstyle sign indicating the type
system considered, and implicitly using the notation d~τ to abbreviate d∞~τ). Naturally, the main
difficulty in moving from λG to λ̂ is posed by letrec-expressions because the two systems have
different kinds of typing rules for these expressions.

Given Γ `λG (letrec f = λx.a) : d~τ → σ, by the generation lemma for λG , we have

Γ, f : d~τ → σ, x : d~τ `λG a : σ ∧ Gxf (∅, a) (5.4)

However, we would want to have

Γ, f : dı~τ → σ, x : dı̂~τ `λ̂ a : σ (ı fresh in Γ, ~τ) (5.5)

in order to use the λ̂ rec-rule and so derive Γ `λ̂ (letrec f = λx.a) : d~τ → σ. Intuitively (5.4)
is sufficient to guarantee (5.5) because, as we have Gxf (∅, a), all the possible occurrences of f in a

are of the form f (z ~a), with z being a recursive component of x. In (5.5) we have x : dı̂~τ so, if z
is a recursive component of x we should have z : ~γ → dı~τ . Hence f (z ~a) is also typable in λ̂ .

The remainder of this subsection is devoted to the embedding of λG into λ̂ . In this embedding
the Main Lemma below plays a central role. There we present the full construction underlying
the lemma because it explains the details of the relation between the systems λG and λ̂ .

In the following we assume that each variable xi is uniquely associated to a stage variable i.
Recall also that, in λ̂ , the notation d~τ abbreviates the datatype d∞~τ .

Lemma 5.2.1 (Main Lemma) Let

Γ0 = Γ
Γi = Γi−1, fi : di ~τi → σi, xi : di ~τi for 1 ≤ i ≤ n

Γ̂0 = Γ0

Γ̂i = Γ̂i−1, fi : dii ~τi → σi, xi : d̂ii ~τi for 1 ≤ i ≤ n
where i is a fresh stage variable
associated to xi

and, for 1 ≤ i ≤ n, let Ui be a set of variables such that for each z ∈ Ui, z : ~γ → di ~τi ∈ Γ and so
that all the Ui’s are disjoint. Then,

Γn `λG a : σ ∧ (∀i ∈ {1, . . . , n}. Gxifi (Ui, a)) ⇒ [Γ̂n]U `λ̂ a : σ

where U =
⋃

1≤i≤n Ui and [Γ̂n]U is obtained from Γ̂n by replacing each declaration z : ~γ → di ~τi
(with z ∈ Ui) by z : ~γ → dii ~τi. Note that in order to make Γn a context, in particular, all the fi’s
and xi’s must be distinct and cannot be declared in Γ.

Proof. By induction on the structure of a.

1. Case a ≡ x, the hypothesis is

Γn `λG x : σ ∧ ∀i ∈ {1, . . . , n}. Gxifi (Ui, x)

5.2 From λG to λ̂ 67

• If x ≡ xi for some i ∈ {1, . . . , n}, σ ≡ di ~τi and so, [Γ̂n]U `λ̂ x : d̂ii ~τi. As d̂ii ~τi v d∞i ~τi,
using the rule (sub),

[Γ̂n]U `λ̂ x : di~τi

• If x 6≡ xi for every i ∈ {1, . . . , n} then, since ∀i ∈ {1, . . . , n}. Gxifi (Ui, x), x 6≡ fi for
every i ∈ {1, . . . , n}. Therefore, using Lemma 5.1.15, (x : σ) ∈ Γ. Hence

(a) If x 6∈ U , then [Γ̂n]U `λ̂ x : σ.
(b) If x ∈ U then, σ ≡ ~γ → di~τi for some i ∈ {1, . . . , n}. So, [Γ̂n]U `λ̂ x : ~γ → dii ~τi

and, since ~γ → dii ~τi v ~γ → d∞i ~τi, by (sub)

[Γ̂n]U `λ̂ x : σ

2. Case a ≡ e e′ the hypothesis is

Γn `λG e e′ : σ ∧ ∀i ∈ {1, . . . , n}. Gxifi (Ui, e e′)

• If e ≡ fi for some i ∈ {1, . . . , n} then, by Lemma 5.1.13, e′ ≡ z~b, Gxifi (Ui, e′) and z ∈ Ui.
Moreover:

(a) Γn `λG fi : di~τi → σi and σ ≡ σi. So, [Γ̂n]U `λ̂ fi : dii ~τi → σ.
(b) Γn `λG z : ~γ → di~τi. So, [Γ̂n]U `λ̂ z : ~γ → dii ~τi because z ∈ Ui.
(c) Γn `λG ~b : ~γ (using this notation to abbreviate the list of judgments Γn `λG

bk : γk for each bk ∈ ~b) and for every bk ∈ ~b, Gxifi (Ui, bk) because z 6= fi. For
j ∈ {1, . . . , n} − {i}, e 6= fj and, by Lemma 5.1.13, Gxjfj (Uj , bk) for every bk ∈ ~b.
Therefore, by induction hypothesis,

[Γ̂n]U `λ̂ ~b : ~γ

From (a), (b) and (c), using (app), one can then obtain

[Γ̂n]U `λ̂ fi (z~b) : σ

• If e 6≡ fi for every i ∈ {1, . . . , n} then, using Lemmas 5.1.13 and 5.1.15,

Γn `λG e : γ → σ ∧ Γn `λG e′ : γ

and
∀i ∈ {1, . . . , n}. Gxifi (Ui, e) ∧ Gxifi (Ui, e′)

Hence, by induction hypothesis,

[Γ̂n]U `λ̂ e : γ → σ ∧ [Γ̂n]U `λ̂ e′ : γ

Using the rule (app) one obtains [Γ̂n]U `λ̂ e e′ : σ.

3. Case a ≡ λy.e, the hypothesis is

Γn `λG λy.e : σ ∧ ∀i ∈ {1, . . . , n}. Gxifi (Ui, λy.e)

Using Lemma 5.1.15, σ ≡ γ → σ′ for some γ, σ′ ∈ T and also

Γ, y : γ, f1 : d1 ~τ1 → σ2, x1 : d1 ~τ1, . . . , fn : dn ~τn → σ, xn : dn ~τn `λG e : σ′

By Lemma 5.1.13, ∀i ∈ {1, . . . , n}. Gxifi (Ui, e). Hence, by induction hypothesis,

[Γ, y : γ, f1 : d11 ~τ1 → σ1, x1 : d̂11 ~τ1, . . . , fn : dnn ~τn → σn, xn : d̂nn ~τn]U `λ̂ e : σ′

We know that y 6∈ Γ and so, y 6∈ U . Therefore, [Γ̂n]U , y : γ `λ̂ e : σ′ and the proof of this
case is concluded applying rule (abs).

68 Chapter 5: The System λG

4. Case a ≡ c and c ∈ C(d), one assumes Γn `λG c : Dom~τ (c) → d~τ . Thus in λ̂ one can
apply (cons) to obtain [Γ̂n]U `λ̂ c : Dom∞~τ (c)→ d∞̂~τ , and since, Dom~τ (c) is being used as
an abbreviation for Dom∞~τ (c) and d∞̂~τ v d∞~τ , one also has

[Γ̂n]U `λ̂ c : Dom~τ (c)→ d~τ

5. Case a ≡ case e of {c1 ⇒ b1| . . . |cm ⇒ bm}, the hypotheses are

Γn `λG case e of {~c⇒ ~b} : σ (5.6)

∀i ∈ {1, . . . , n}. Gxifi (Ui, case e of {~c⇒ ~b}) (5.7)

and from (5.6), applying Lemma 5.1.15, there exists d, ~τ such that

Γn `λG e : d~τ (5.8)

Γn `λG bk : Dom~τ (ck)→ σ (5.9)

for each 1 ≤ k ≤ m. Two cases can now occur.

• If e 6≡ z ~a or e ≡ z ~a and z 6∈ Ui ∪ {xi} for every i ∈ {1, . . . , n}, then from (5.7) by
Lemma 5.1.13

∀i ∈ {1, . . . , n}.∀k ∈ {1, . . . ,m}. Gxifi (Ui, e) ∧ Gxifi (Ui, bk)

Thus applying the induction hypothesis to (5.8), followed by rule (sub), one has [Γ̂n]U `λ̂
e : d∞̂~τ and applying the induction hypothesis to (5.9) one obtains [Γ̂n]U `λ̂ bk :
Dom∞~τ (ck)→ σ. Derivations of these judgments can now be put together by means of
the rule (case), proving

[Γ̂n]U `λ̂ case e of {~c⇒ ~b} : σ

• Consider now that e ≡ z ~a and z ∈ Ui ∪ {xi} for some i ∈ {1, . . . , n} (recall that such i
must be unique since: the Uj ’s are disjoint and contain none of the xj ’s; and the xj ’s
are distinct). Let, for each 1 ≤ k ≤ m,

bk ≡ λ ~yk.ek
Vk,i ≡ Ui ∪ {yk,r | RP(r,D(ck)) for 1 ≤ r ≤ ar(ck)}
Vk,j ≡ Uj for j ∈ {1, . . . , n} − {i}
Vk ≡

⋃
1≤j≤n Vk,j

where yk,r denotes the r-th component of vector ~yk. Applying Lemma 5.1.13 to (5.7),
one can now assume that for each 1 ≤ j ≤ n

∀ as ∈ ~a . G
xj
fj

(Uj , as) ∧ ∀ k ∈ {1, . . . ,m} . G
xj
fj

(Vk,j , ek) (5.10)

From (5.9) by Lemma 5.1.15, one has

Γ, ~yk : Dom~τ (ck),Γn \ Γ `λG ek : σ

where Γn \ Γ is the context Γn without the declarations in Γ. Moreover, yk,r : ~γyk,r →
di~τi ∈ (~yk : Dom~τ (ck)) for each 1 ≤ r ≤ ar(ck) such that RP(r,D(ck)) and thus, for

5.2 From λG to λ̂ 69

each 1 ≤ k ≤ m and 1 ≤ j ≤ n, and for each z ∈ Vk,j we have z : ~γz → di ~τi ∈ (Γ, ~yk :
Dom~τ (ck)). Hence, by the induction hypothesis

[̂Γ, ~yk : Dom~τ (ck),Γn \ Γ]Vk `λ̂ ek : σ

from which one can show [Γ̂n]U , ~yk : Domi
~τ (ck) `λ̂ ek : σ (observe that Vk =

U ∪{yk,r | RP(r,D(ck)) for 1 ≤ r ≤ ar(ck)}) and therefore, by the rule (abs), [Γ̂n]U `λ̂
bk : Domi

~τ (ck)→ σ holds.

To conclude the proof of this case, it suffices now to show that

[Γ̂n]U `λ̂ e : d̂ii ~τi (5.11)

and to use then the rule (case). In order to prove (5.11) one proceeds as follows.

(a) Case e ≡ xi, [Γ̂n]U `λ̂ xi : d̂ii ~τi is derivable.

(b) Case e ≡ z ~a with z ∈ Ui, from (5.8) by Lemma 5.1.15, Γn `λG z : ~γ → d~τ (thus,
d~τ ≡ di ~τi) and

Γn `λG ~a : ~γ (5.12)

Now, since (5.10) holds, one can apply the induction hypothesis to (5.12) obtaining
[Γ̂n]U `λ̂ ~a : ~γ. It is also true that z : ~γ → dii ~τi ∈ [Γ̂n]U , for z ∈ Ui, and since
~γ → dii ~τi v ~γ → d̂ii ~τi, by (sub) and (app), [Γ̂n]U `λ̂ z ~a : d̂ii ~τi holds.

6. Case a ≡ (letrec f = λx.a′), we must have σ ≡ d~τ → σ′ for some d~τ , σ′ ∈ T , and the
hypothesis is

Γn `λG (letrec f = λx.a′) : d~τ → σ′ ∧ ∀i ∈ {1, . . . , n}. Gxifi (Ui, letrec f = λx.a′)

By Lemma 5.1.15 we get

Γn, f : d~τ → σ′, x : d~τ `λG a′ : σ′

and Gxf (∅, a′). Again by the hypothesis, by Lemma 5.1.13, ∀i ∈ {1, . . . , n}. Gxifi (Ui, a′) hence,
assuming Un+1 = ∅, xn+1 = x and fn+1 = f , we have

∀i ∈ {1, . . . , n+ 1}. Gxifi (Ui, a′)

So, by induction hypothesis [Γ̂n+1]U `λ̂ a′ : σ′. Applying (abs) and (rec) we get [Γ̂n]U `λ̂
(letrec f = λx.a′) : (dı~τ → σ′)[ı :=∞]. Hence, for ı has no occurrences in ~τ nor in σ′,

[Γ̂n]U `λ̂ (letrec f = λx.a′) : d~τ → σ′

2

We are now ready to prove the main result of this section.

Theorem 5.2.2

Γ `λG a : σ ⇒ Γ `λ̂ a : σ

Proof. By induction on the derivation of Γ `λG a : σ.

70 Chapter 5: The System λG

(rec) Assume the last step is

Γ, f : d~τ → σ `λG e : d~τ → σ Gxf (∅, a)

Γ `λG (letrec f = e) : d~τ → σ
with e ≡ λx.a

By Lemma 5.1.15, Γ, f : d~τ → σ, x : d~τ `λG a : σ and since Gxf (∅, a) we are in conditions of
applying the Main Lemma and conclude Γ, f : dı~τ → σ, x : dı̂~τ `λ̂ a : σ. Hence, applying
the rules (abs) and (rec) one derives Γ `λ̂ (letrec f = e) : (dı~τ → σ)[ı := ∞] which is the
same as

Γ `λ̂ (letrec f = e) : d~τ → σ

for ı does not occur in σ or ~τ .

All the remaining cases can be easily proved using the induction hypothesis. 2

Chapter 6

Related Work and Conclusion

6.1 Related Work

For the sake of clarity, we split existing systems into five categories: (1) based on traditional-style
terminating recursors, (2) based on a fixpoint operator controlled by a syntactic guard predicate,
(3) exploiting pattern matching, (4) based on a fixpoint operator controlled by an unusual typing
ensuring that the recursion actually terminates, (5) relying on other type-based techniques for
ensuring termination.

Comparison with works on traditional-style terminating recursors

Most formalizations of inductive types in type theory support recursive definitions only indirectly
via eliminators behaving as iterators or primitive recursors [88, 120, 118, 116, 46, 54, 62, 102,
6, 131]. Such systems are well-understood meta-theoretically and enjoy good properties, but are
hard to use in practical programming: this requires the programmer to translate all recursive
definitions into explicit definitions involving primitive recursion.

It is possible to devise similar eliminators capturing more sophisticated schemes of terminating
recursion such as course-of-value iteration or course-of-value primitive recursion [133, 104], but
the resulting systems are even clumsier to use practically.

Comparison with works relying on a fixpoint operator controlled by an external guard
predicate

Coquand [45] introduces a simple guard predicate to ensure termination of fixpoint expressions in
a calculus of infinite objects. Building on Coquand’s work, Giménez [67] defines a more liberal
guarded-by-constructors predicate for productive corecursion and also a guarded-by-destructors
predicate for terminating recursion. Giménez shows that primitive recursor expressions can be
rendered as fixpoint expressions guarded by one destructor. In the opposite direction, a fixpoint
expression guarded-by-destructors can be coded as an expression involving primitive recursors,
but the translation is not uniform. The predicates defined by Giménez form the basis of the
mechanism for (co)inductive types in Coq. More recently, Blanqui [29], building on Jouannaud
and Okada [82], propose another definition of the guard predicate for inductive types, that allows
for yet more expressions to be typed. In a similar line of research, Abel and Altenkirch [3] propose
a basic framework for studying and comparing the different termination conditions that have been

71

72 Chapter 6: Related Work and Conclusion

proposed so far, focusing their attention on what conditions should be fulfilled for a checking to
be sound. An application of such framework to a particular condition can be found in [2].

One possible objection against this line of work is that the system becomes more unpredictable
to the user as the complexity of the guard predicate builds up. Besides, the guard predicate
remains purely syntactic, which is not appropriate for a number of applications, including separate
compilation or interactive proof construction.

Comparison with works on pattern-matching

Coquand [44] investigates the use of pattern-matching in dependent type theory. While pattern-
matching yields leaner definitions, its proof-theoretical status in the context of dependent types
remains unclear. Differently from guarded-by-destructors recursion, general pattern-matching is
not a conservative improvement over primitive recursors: Hofmann and Streicher [76] prove the
derivability of uniqueness of equality proofs in a type theory with pattern-matching, while equality
proofs cannot be shown to be unique in the usual Calculus of Inductive Constructions. To our
knowledge, there is no complete account of the meta-theoretical properties of pattern-matching
in dependent type theory. McBride [104] has shown that, under the uniqueness of equality proofs
as an extra axiom, pattern matching is admissible. Ongoing work on checking the termination of
recursive function definitions in functional languages, see e.g. [132, 3, 64, 94], bears relevance for
this direction of type-theoretic developments. Of particular interest for the future type-theoretic
formalizations might be the recent work of Lee, Jones and Ben-Amram [87] on the size-change
principle for program termination.

As to implementations, restricted forms of pattern-matching have been implemented in Coq
by Cornes [47] and Lego by Elbers [55]. Both implementations take advantage of translations
to recursors. Pattern-matching has also been consistently supported in Alf and its subsequent
versions, although no mechanism for termination checking was ever implemented. In order to
simplify the proof engine, Agda, which is the latest incarnation of Alf, only supports a limited
form of pattern-matching in which variables are only allowed to occur once in the type of a
constructor. This restriction rules out, for example, inductive definitions such as equality.

Comparison with works on guarded types

This line of work is really about non-traditional-style terminating recursors that look like fixpoint
operators, but where the computation is guaranteed to terminate by an unusual (stronger) typing
system. Such a system involves introducing some kind of annotations on recursive types, a notion
of subtyping enabling the transformation of such annotations, and a typing rule for the term
letrec f = e where the type of f and the type of e are marked differently. In this sense, some of the
systems mentioned in this section are not far from the so called abstract interpretation techniques
[48], even though they are formulated from a type-theoretical point of view. The exact relation
of such typing systems with respect to abstract interpretation techniques has not been studied in
detail yet, and could be a subject for further research.

Mendler [105] was, to our knowledge, the first author to propose a formalization of inductive
and coinductive types in a simply typed lambda calculus where primitive recursion and primitive
corecursion were formulated in a fixpoint-like style. In Mendler’s system, type annotations on the
fixpoint rule correspond to type variables. [106] considered a system supporting only iteration and
coiteration. Works that comment on these two papers include [89, 62, 134, 133, 100, 103, 131].
Among these, [89, 62] were the first papers to contrast and compare traditional-style and Mendler-
style terminating recursors. Uustalu [134, 135, 133] showed that Mendler’s approach is readily

6.1 Related Work 73

generalizable for course-of-value (co)recursion (in other words, full structural (co)recursion).
Giménez [65] introduced an extension of the Calculus of Constructions with inductive and

coinductive types, called CC∞. The fixpoint rules in CC∞ make use of three kinds of marks,
corresponding to the stages ∞, ı and ı̂ using the notation of λ̂ . This means that in CC∞ the hat
operator cannot be applied to another stage, but only to stage variables. In [65], marks also have
a second component, specifying whether the recursive type is inductive or coinductive. There is
no stage polymorphism, and hence the function div of Example 3.4.4 cannot be typed.

One of the main disadvantages of [65] is that it tried to tackle too many problems at once,
rendering the typing calculus less clear. Among the extra features introduced in CC∞ which are
not considered in this work are the following:

– Inductive lists are considered a subtype of coinductive ones, so that a function defined on
the type of coinductive lists can also be used on inductive lists.

– Annotations are placed on typing judgments, writing x :s List instead of x : Lists. One
of the original motivations for this notation was to enable the description of an abstract
recursion schema, where the type of the decreasing argument of the function is abstracted
away using a term of the form λA : Set · letrec f = λx :s A · e. Also, the choice of having
two different universal quantifiers renders unnecessary the introduction of two types of lists
(one for inductive and the other for coinductive ones) with the same constructors. On the
other hand, it is less clear how an ordinal based semantics like the one proposed in this work
could be used to make sense of a term of the form λA : Set · λx :s A · e. This is why, even
though annotated quantifications were kept, the calculus in [65] forces A in a term of the
form λx :s A · e to have a recursive type at its rightmost position.

– CC∞ is built on the top of the Calculus of Constructions, so it uses Church’s style for
variable binding, where the type of the abstracted variable is explicitly mentioned. Thus,
types—and hence marks—may appear in the terms. As a consequence, the reduction rule for
fixpoints has to replace all mark variables by the ∞ mark, in order to avoid having residual
unbound mark identifiers in the definiens. Note that this problem does not appear in λ̂ ,
where variable binding is à la Curry.

Giménez [66] introduced CCR, a different extension of the Calculus of Constructions with in-
ductive and coinductive types, based on (not fully general) sub- and supertyping and bounded uni-
versal quantification over types. In CCR, marks are represented as type variables, like in Mendler’s
works, the hat operator is a type constructor, and stages are just types. Since stage variables are
type variables, stage replacement corresponds just to the ordinary substitution operation of the
calculus. The calculus in [66] was the first calculus to introduce stage polymorphism, enabling to
type definitions like the function div of Example 3.4.4. However, the stage polymorphism allowed
by types involving bounded quantification is constrained to the ascending chain of approximations
of the inductive type. The calculus of λ̂ is very much inspired by [66], but replaces subtypes with
approximating types, and bounded type quantification with stage quantification—the change al-
lows the structure of stages to be uniform over all datatypes and simplifies the introduction of
recursive definitions on mutually dependent inductive types. The meta-theory of CCR has not
been studied yet, nor its connection with implemented extensions of a calculus of (co)inductive
constructions like the system Coq. The detailed study of the main meta-theoretical properties
of λ̂ presented in this work can be seen as a basic stage for developing the meta-theory of an
extension of the Calculus of Construction where the termination of functions is ensured by typing
constraints.

74 Chapter 6: Related Work and Conclusion

Amadio and Coupet [8] define a simply typed λ-calculus à la Curry featuring guarded coin-
ductive types. Starting from Coquand’s guardedness condition, they propose a semantics for such
extension of lambda calculus based on partial equivalent relations and ordinal iteration to inter-
pret coinductive types. From that semantics, they derive a typing rule for corecursive definitions
using a mark system with three kinds of marks, that correspond in our notation to ∞, ı and ı̂.
The semantic interpretation used to study the meta-theory of λ̂ in this work is actually an exten-
sion of the one introduced in [8] for coinductive types. Also, the need for the constraint ı pos σ

in the typing rule for recursive definitions have been already noticed by Amadio and Coupet.
Their calculus introduces an extra rule enabling to treat nested fixpoint definitions of the form
(letrec f = (letrec g = e)) by reusing the mark introduced in the definition of f as the mark for
the variable g. However, the calculus described in [8] lacks of full stage polymorphism, and does
not consider inductive types. On the positive side, their calculus is shown to have decidable type
inference in [11].

Barras [17] formalizes in Coq a variant of Giménez’ calculus CC∞, with the purpose of proving
the decidability of its typing judgment and extracting a type-checker from the proof. In Barras’
calculus, inductive types are annotated with lists of marks, each one corresponding to the stages∞,
ı and ı̂ of our system. The use of lists of marks enables to type nested recursive function definitions
like the ones considered in [8], but for inductive types. He does not consider coinductive types
nor stage polymorphism. As the underlying lambda calculus is à la Church, Barras introduces
a distinguished primitive type M for marks, and marks are just variables of that type. Mark
variables are bound in fixpoint terms, so mark erasure in fixpoint reductions corresponds just to
ordinary variable substitution. The complete meta-theory of Barras’ system has not been studied
yet, but his system is the only mark based one for which a type-checking algorithm has been
developed.

Other type-based approaches to termination analysis

Xi [143] proposes a system of restricted dependent types, built upon DML [142], to ensure program
termination. In essence, his system is closely related to ours since it uses stage information to
ensure termination. However, Xi’s system differs from ours in its expressiveness and complexity:
while we focus on the weakest calculus that uses type-based termination and extends other calculi
based on a simple syntactic guard predicate, Xi presents a very rich system with stage arithmetic,
and a notion of metric that is very useful to handle functions in several arguments. Of course,
expressiveness is achieved at the cost of simplicity and Xi’s system is much more complex than
ours. Xi’s system is qualified for practical termination checking of realistic functional programs.
However, his approach cannot handle higher-order datatypes which limits its applicability in proof
assistants. Grobauer [71] uses DML to find cost recurrences for first-order recursive definitions:
a cost recurrence is an upper bound to the running time of the program w.r.t. the size of its
input, and hence a witness that the recursive definition is terminating. In his work, Grobauer
exploits complex features of DML, including stage arithmetic, so his techniques do not seem
directly applicable to λ̂ . Closely related is the recent work on sized types for termination and
productivity checking of functional programs [77, 115, 35].

6.2 Conclusion

We have introduced λ̂ , a novel type system for terminating recursive functions. The salient
features of λ̂ are its type-based approach to ensure termination through the notion of stage, and

6.2 Conclusion 75

its support for stage polymorphism. The system is conceptually simple, it overcomes the problems
of guard-based solutions and keeps the technical overhead to a minimum.

The calculus of λ̂ is closely related to the works of Giménez [66] and of Amadio and Coupet
[8]. While Giménez [66] guaranteed termination by types involving bounded quantification in
the framework of the Calculus of Constructions, Amadio and Coupet [8] (only coinductive types
are treated) used a simply-typed framework with a kind of stages. λ̂ combines the best of
both worlds: iterated successor stages are possible, the inductive type is simply seen as stage
infinity, and the stages may as well enter the result type of the recursively defined functions. This
allows for more precise typings, which is a very valuable feature for defining functions (like the
Euclidean division of Example 3.4.4) where the argument to the recursive call is derived from
the input argument via another function. In [66], the same was achieved by the technically more
demanding bounded quantification while in [8], this was only partly available, and required a
second typing rule for letrec. Here, both are unified by allowing to instantiate the inferred type
of letrec by an arbitrary stage expression. Moreover, the stage polymorphism of λ̂ allows to
give unusually exact (and therefore informative) types to functions like length : Listsτ→Nats (of
Example 3.4.3) or ltobt : ListsNat→BTreesNat (of Example 3.4.6). This kind of exact typings are
impossible to achieve with bounded quantification, since the approximation of the inductive type
is represented by a type variable bounded by the inductive type. Instead subtypes and bounded
type quantification, λ̂ supports approximating types and stage quantification. This change allows
the structure of stages to be uniform over all datatypes and simplifies the introduction of recursive
definitions on mutually dependent inductive types.

We have proved λ̂ is well-behaved enjoying confluence, subject reduction and strong normal-
ization. We have also proved that this system encompasses in a strict way (typability and even
types are preserved) the system λG where termination ensured by a syntactical condition (follow-
ing what is done by Giménez in [67]). λ̂ is powerful enough to encode many recursive definitions
rejected by λG , extends easily to mutually inductive types and supports separate compilation. In
comparison to λG , it has a much clearer syntax and admits a clean semantics; the strong nor-
malization can be proved by means of a standard method. For practice, this means that λ̂ is
less difficult to implement (implementing the guard condition of λG is error-prone) and the code
written in it is more easily maintainable. This makes λ̂ a good candidate base system for type
theory based proof-assistants such as Coq.

In order to validate this claim, the following steps need to be taken:

– develop type checking and type inference algorithms for λ̂ . For the purpose of proof assis-
tants, it may be of interest to study a calculus where type annotations are given and stage
annotations are inferred. Actually, we have developed a type inference algorithm for λ̂ (and
we have implemented it in Haskell) that correctly infers the types of all the functions pre-
sented in Section 3.4. We have not included this work in this document because more work
has to be done to prove the soundness and completeness of our algorithm. However we hope
to finish this task as soon as possible.

– extend λ̂ to dependent types and polymorphism à la system F, as in [17, 66], and to
wider classes of recursive definitions such as mutually recursive definitions and recursive
definitions in several parameters. In the case of dependent types, the interest is to support
dependent eliminations (induction schemes) and inductive families. For more advanced forms
of recursive definitions some form of stage arithmetic might be needed.

It should also be checked that the extension of λ̂ with coinductive types, sketched in [22], is
well-behaved.

76 Chapter 6: Related Work and Conclusion

Part II

Constructor Subtyping

77

Chapter 7

An Informal Account of

Constructor Subtyping

This chapter is an informal introduction (with examples) to the concepts of constructor subtyping
and of extensible overloaded functions. A formal presentation of these features is done in the next
chapters.

7.1 Motivations and Difficulties

Type theory with inductive types form the basis of most functional programming languages and
proof-assistants. Type systems are pervasive in modern functional programming languages, such
as Haskell [81] and ML [107]. These systems support inductive datatypes and the definition of
functions by pattern matching. However, there are cases where the standard type systems are not
flexible enough and some interesting programs are rejected (despite their semantical soundness) or
are assigned some uninformative types. Proof-development systems, such as Coq [125] and Lego
[92], rely on powerful type systems featuring inductive types (which capture the notion of algebraic
datatype in a type-theoretical framework) and support the definition of functions by recursion and
also a mechanism to prove properties by induction. Inductive definitions play an essential role in
the expressibility of these systems and are extensively used in the formalization of programming
languages, communication and cryptographic protocols, ... However, despite the success of such
works, user efforts are often hindered by the rigidity of the existing tools. In order to improve the
usability of these languages, it is important to devise flexible (and safe) type systems, in which
programs and proofs may be written easily. In particular, it is important to have type systems
that allow for more informative typings and the reuse of code in the development of proofs and
programs.

Subtyping and overloading are mechanisms that enhance the flexibility of type systems. Their
relevance in programming languages has long been recognized. Subtyping is a relation on types
that expresses that one type is at least as general as another one and is embedded in the type
system enforcing a subsumption rule stating that a term of a type σ is also of type τ whenever σ
is a subtype of τ . This basic mechanism of subtyping is powerful enough to capture a variety of
concepts in computer science, see e.g. [32], and its use is spreading both in functional programming
languages, see e.g. [95, 119, 123], and in proof assistants, see e.g. [27, 91, 130]. Overloading of
constants is the ability of constants to have several types. The combination of subtyping and

79

80 Chapter 7: An Informal Account of Constructor Subtyping

overloading yields a concise and readable framework for describing datatypes in terms of their
constructors. A typical example is the one of odd/even/natural numbers:

Types: Odd,Even,Nat

Subtype relation: Even ≤ Nat, Odd ≤ Nat

Declarations: o : Even

s : Even→Odd

s : Odd→Even

s : Nat→Nat

Observe that constructor s is assigned more than one domain and codomain, so it is overloaded.
Constructor o is only declared once as being of type Even, however, through subsumption we also
have o as being of type Nat since Even is a subtype of Nat. Besides the declared types for s, the
subsumption rule and subtyping relation extend structurally to types, so that we can infer two
more types for s: Even→Nat and Odd→Nat.

Constructor subtyping is a basic form of subtyping, in which an inductive type A is viewed as
a subtype of another type B if B has more inhabitants than A. As we can see from the example
of even, odd and natural numbers, the relative generality of constructor subtyping relies on the
possibility for constructors to be overloaded and, to a lesser extent, on the possibility for datatypes
to be defined in terms of previously introduced datatypes.

Constructor subtyping combines subtyping between datatypes and the overloading of construc-
tors. However the integration of these two features in a too liberal way threatens the maintenance
of essential properties, as the confluence of the reduction calculus and subject reduction. Let us
illustrate these problems with two small examples.

7.1.1 Problematic Examples

Consider the example of three hypothetic datatypes X, Y, and Z, with the following declarations:

Types: X,Y,Z

Subtype relation: X ≤ Y, X ≤ Z

Declarations: c1 : X

c2 : Y

c3 : Y→Z

c3 : Z→Z

We have here a problem of non-determinism caused by the overloading of constructors. This
problem induces a conflict when trying to evaluate case-expressions. Consider the following case-
expression over Z:

case a of {c1 ⇒ b1 | c3 ⇒ b2 | c3 ⇒ b3}

The intended meaning of such an expression is that it should evaluate to b1 if a = c1, to b2 e if
a = c3 e and e : Y, or to b3 e if a = c3 e and e : Z. So, it is impossible to define a type-independent
evaluation rule for case-expressions for arbitrary datatypes. Besides, these computation rules are
ambiguous if a = c3 c1 since c1 : Y and c1 : Z, by subsumption. We have

case (c3 c1) of {c1 ⇒ b1 | c3 ⇒ b2 | c3 ⇒ b3} → b2 c1

case (c3 c1) of {c1 ⇒ b1 | c3 ⇒ b2 | c3 ⇒ b3} → b3 c1

and, as b2 and b3 are arbitrary, the calculus is obviously non-confluent.

7.1 Motivations and Difficulties 81

To illustrate the problems with subject reduction, consider the example of two hypothetic
datatypes A and B, with the following declarations:

Types: A,B

Subtype relation: A ≤ B

Declarations: c : B

c′ : A→B

c′ : B→A

Further, some type σ is assumed, and two terms t1 : σ and t2 : A→σ. We have

case (c′ c) of {c⇒ t1 | c′ ⇒ t2} : σ

but, this term reduces to (t2 c) which is not typable. So, subject reduction fails.

7.1.2 Strict Overloading

The above examples show that overloading must be constrained in some way. The solution ad-
vocated in [21, 24] is to require constructors to be declared “essentially” at most once in a given
datatype. Here “essentially” means that we allow a constructor c to be multiply defined in a
datatype A, but requiring that for every c : σ→A, we have σ ≤ τ where c : τ→A is the principal
declaration of c in A. In other words, the only purpose of repeated declarations is to enforce
the desired subtyping constraints but (once subtyping is defined) only the principal declaration
needs to be used for typing expressions. This notion, which we call strict overloading, guarantees
coherence between domain and codomain of overloaded constructors.

So, we define a partial order v over datatypes and require that, if datatypes A and B are
related by A v B, then every constructor for A is also a constructor for B. Moreover, for each
datatype A each constructor c of A is declared only once, and constructors are required to be
strictly overloaded. That is, constructor declarations must be monotonic, i.e., if c : σ→ A and
c : τ→B are constructor declarations with A v B, then one must have σ ≤ τ .

This notion of strict overloading is mild enough to be satisfied by most datatypes of interest. For
instance, the previous example of odd/even/natural numbers satisfies these conditions. Note that
Odd and Even are mutually recursive datatypes. Bellow we consider some examples of datatypes
presented in functional language-like syntax.

Example 7.1.1 (Odd, even and natural numbers)

data Even = O : Even

| S : Odd -> Even

data Odd = S : Even -> Odd

data Nat extends Even, Odd = S : Nat -> Nat

The notation extends is used to declare the subtyping axioms Even v Nat and Even v Nat.
Instead of enriching datatype declarations with subtype annotations, we could adopt a slightly
more general notation, introducing a separate declaration form for subtype relations between
datatypes:

sub Even <= Nat

sub Odd <= Nat

82 Chapter 7: An Informal Account of Constructor Subtyping

One may also formalize the parametric datatypes of lists and non-empty lists under the constructor
subtyping setting:

Example 7.1.2 (Lists and non-empty lists)

data List a = Nil : List a

| Cons : a -> List a -> List a

data NeList a = Cons : a -> List a -> NeList a

sub NeList <= List

Or alternatively,

data NeList a = Cons : a -> List a -> NeList a

data List a extends NeList a = Nil : List a

More examples are presented in the next section.

7.2 Further Examples

We fill this section with further examples of datatypes and examples illustrating the adequacy of
constructor subtyping to the inductive approach to formalization. We begin with the definition
of a datatype of ordinals (or better of ordinal notations). Note that this datatype is higher-order,
because of constructor Lim takes a function as input.

Example 7.2.1 (Ordinals)

data Ord extends Nat = S : Ord -> Ord

| Lim : (Nat -> Ord) -> Ord

Now we present two different ways of formalizing integers with the inductive-based approach.

Example 7.2.2 (NatP/Int)

data NatP = S : Nat -> NatP

sub NatP <= Nat

data Int extends Nat = Neg : NatP -> Int

Example 7.2.3 (Positive/Negative/Integer)

data Positive = Zero : Positive

| Succ : Positive -> Positive

data Negative = Zero : Negative

| Pred : Negative -> Negative

data Integer extends Positive, Negative

7.2 Further Examples 83

Example 7.2.4 (Lists) Here we return to the list datatype, enriching the hierarchy of list/non-
empty list datatypes with types for empty lists, lists of one sole element and lists of two elements.

List a

qqqqqqqqqq

NNNNNNNNNNN

EList a NeList a

ppppppppppp

NNNNNNNNNNN

List1 a List2 a

data EList a = Nil : EList a

sub EList <= List

data List1 a = Cons : a -> EList a -> List1 a

sub List1 <= NeList

data List2 a = Cons : a -> List1 a -> List2 a

sub List2 <= NeList

Example 7.2.5 (Arithmetic expressions) In the following we declare datatypes for arithmetic
expressions. We want to distinguish the expressions that are sums of products, i.e., that do not
contain additions as subterms of multiplications. Moreover, we want to distinguish ground expres-
sions, i.e., expressions which contain no variables. This example is adapted from [51],

data Ground = Num : Nat -> Ground

| Plus : Ground -> Ground -> Ground

| Times : Ground -> Ground -> Ground

data Prod = Num : Nat -> Prod

| Var : String -> Prod

| Times : Prod -> Prod -> Prod

data SumPr extends Prod = Plus : SumPr -> SumPr -> SumPr

data Exp extends Ground, Prod = Plus : Exp -> Exp -> Exp

| Times : Exp -> Exp -> Exp

We can have a more refined hierarchy of types if we take one type for numbers and another for
variables. In this case we must declare:

data Num = Num : Nat -> Num

data Var = Var : String -> Var

sub Num <= Ground

sub Num <= Prod

sub Var <= Prod

Now we have the following hierarchy:

84 Chapter 7: An Informal Account of Constructor Subtyping

Exp

vvvvvvvvv

IIIIIIIII

SumPr Ground

����������������

Prod

vvvvvvvvv

HHHHHHHHH

Var Num

Lastly, we give examples showing how constructor subtyping is fully compatible with the
inductive-based approach to formalization. Let us see the benefits of having constructor subtyping
with the formalization of the expressions of the call-by-value λ-calculus.

Example 7.2.6 (CBV λ-calculus) The language of the call-by-value λ-calculus is described by
the abstract syntax:

Expressions e ::= x | v | e1 e2

Values v ::= n | λv.e

where v denote a variable and n represent a natural number. We have two sorts of entities:
expressions and values. Besides, a value can be seen as an expression. In a strong typing discipline
this could be formalized by the following datatypes:

data Expression = Var : Variable -> Expression

| Val : Value -> Expression

| App : Expression -> Expression -> Expression

data Value = Num : Nat -> Value

| Abs : Value -> Expression -> Value

Note that the constructor Val is a coercion between values and expressions. So, a simple expres-
sion like (λx.x)n is encoded as App (Val (Abs x (Var x))) (Val (Num n)). Using constructor
subtyping, expressions can be declared as an extension of values:

data Expression extends Value = Var : Variable -> Expression

| App : Expression -> Expression -> Expression

and (λx.x)n is encoded as App (Abs x (Var x)) (Num n), which is simpler.

Another interesting example is the description of Harrop formulas. This example is adapted
from [117].

Example 7.2.7 (Harrop formulas) Propositional Harrop formulas, legal programs and goal
formulas are described by the following abstract syntax:

Formulas F ::= A | F1 ∧ F2 | F1 ∨ F2 | F1 ⊃ F2

Programs P ::= A | P1 ∧ P2 | G ⊃ P
Goals G ::= A | G1 ∧G2 | G1 ∨G2 | P ⊃ G

where A ranges over atomic formulas. With constructor subtyping, the codification of programs,
goals and formulas is straightforward.

7.2 Further Examples 85

data Prog a = Emb : a -> Prog a

| Conj : Prog a -> Prog a -> Prog a

| Imp : Goal a -> Prog a -> Prog a

data Goal a = Emb : a -> Goal a

| Conj : Goal a -> Goal a -> Goal a

| Disj : Goal a -> Goal a -> Goal a

| Imp : Prog a -> Goal a -> Goal a

data Form a extends Goal a = Conj : Form a -> Form a -> Form a

| Disj : Form a -> Form a -> Form a

| Imp : Form a -> Form a -> Form a

Constructor subtyping allows an incremental type-theoretical formalization of programming
languages, where the syntax of a programming language is defined in terms of inductive types. It
may be used to specify most of the examples arising in natural semantics [84], and a variety of
other languages, such as the BOPL [114] and the CTL∗ formulae [56], among others.

Example 7.2.8 (Mini-ML [84]) Here we consider four datatypes identifiers: EXP of expres-
sions, IDENT for identifiers, PAT of patterns and NULLPAT for the nullpattern, all with arity 0.

data IDENT = Ident : IDENT

data NULLPAT = Nullpat : NULLPAT

data PAP extends IDENT, NULLPAT = Pairpat : PAT -> PAT -> PAT

data EXP extends IDENT, NULLPAT = Num : EXP

| False : EXP

| True : EXP

| Lamb : PAT -> EXP -> EXP

| If : EXP -> EXP -> EXP -> EXP

| Mlpair : EXP -> EXP -> EXP

| Apply : EXP -> EXP -> EXP

| Let : PAT -> EXP -> EXP -> EXP

| Letrec : PAT -> EXP -> EXP -> EXP

Example 7.2.9 (CAM - Categorical Abstract Machine [84])

data VALUE = Int, Bool : VALUE

data COM extends COMS = Branch : COMS -> COMS -> COM

| Cur, Rec : COMS -> COM

| Push, Swap, App, Op, Cons, Cdr, Car : COM

| Quote : VALUE -> COM

data COMS = Coms : List COM -> COMS

data PROGRAM = Program : COMS -> PROGRAM

Example 7.2.10 (BOPL - Basic Object Programming Language [114]) This example de-
scribes the syntax of the Basic Object Programming Language. We use as datatype identifiers the
non-terminal symbols of the grammar.

86 Chapter 7: An Informal Account of Constructor Subtyping

data LETTER = a, b, ..., z : LETTER

| A, B, ..., Z : LETTER

data DIGIT = 0, 1, ..., 9 : DIGIT

data ID exstends LETTER = Idl : ID -> LETTER -> ID

| Idd : ID -> DIGIT -> ID

data INT extends DIGIT = Int : DIGIT -> INT -> INT

data BINOP = Plus, Minus, Times, Equal, And, Or, Less : BINOP

data EXP extends INT, ID = Op : EXP -> BINOP -> EXP -> EXP

| False, True, NIL, Self : EXP

| Not, ClassNew, Par : EXP -> EXP

| Assign : ID -> EXP -> EXP

| Seq, While : EXP -> EXP -> EXP

| If : EXP -> EXP -> EXP -> EXP

| New : ID -> EXP

| InstOf : EXP -> NeList ID -> EXP

| SendMes : EXP -> ID -> List EXP -> EXP

data DEC extends ID = C : DEC -> ID -> DEC

data FORMALS = P : List DEC -> FORMALS

data VAR = Var : DEC -> VAR

data METHOD = Method : ID -> FORMALS -> EXP -> METHOD

data CLASS = Class : ID -> List VAR -> List METHOD -> CLASS

| ClassIs : ID -> ID -> ID

data PROGRAM = Prog : List CLASS -> EXP -> PROGRAM

Example 7.2.11 (CTL∗ formulas [56]) In this example, we consider two datatypes identifiers
SF of state formulas and PF of path formulas, both with arity 1.

data SF a = I : a -> SF a -> SF a

| Conj : SF a -> SF a -> SF a

| Not : SF a -> SF a

| Forsomefuture : PF a -> SF a

| Forallfuture : PF a -> SF a

data PF a extends SF a = Conj : PF a -> PF a -> PF a

| Not : PF a -> PF a

| Nexttime : PF a -> PF a

| Until : PF a -> PF a

7.3 Adding Extensible Overloaded Functions 87

CTL∗ and related temporal logics provide suitable frameworks in which to verify the correctness of
programs and protocols, and hence are interesting calculi to formalize in proof assistants.

7.3 Adding Extensible Overloaded Functions

By coherently combining the subtyping between datatypes and the overloading of constructors,
constructor subtyping improves the flexibility and the accuracy of typing systems and seems to be
tailored for extensible datatypes. We now consider the problem of defining recursive functions on
(extensible) datatypes. The challenge is to define a mechanism that allows recursive definitions to
be:

• overloaded, i.e. to have several types. A typical example of an overloaded recursive function
is addition, which takes two even numbers and returns an even number, two odd numbers
and returns an even number, two natural numbers and returns a natural number, etc;

• extensible, i.e. to extend from a datatype to another datatype with more constructors.
Typically, it should be possible to extend a function simply by adding the appropriate
computation rules for the new constructors. A typical example of an extensible function is
an evaluation function for a given language that needs to be lifted to a richer language.

In addition, we would prefer that, unlike in many object-oriented programming languages, the
computational behavior of recursive functions does not depend on typing. One reason is that
we are eventually interested in extending the mechanism to dependent types and that letting
reduction depend on typing would create a circularity—in dependent type systems, typing depends
on reduction through the conversion rule.

Below we briefly outline the issues involved by giving two examples involving overloading and
extensibility respectively. We only consider total, unambiguous functions, so recursive functions
defined by pattern-matching must be exhaustive and non-overlapping. In other words, exactly one
rule of the function should apply for a given pattern. An alternative approach would have been to
opt for priority rewriting [12] and drop the requirement that function should be non-overlapping.

7.3.1 An Example of Overloading

In Example 7.1.1 of even/odd/natural numbers, the constructor S is overloaded with three in-
comparable types. Now assume we want to define addition on these datatypes. We would like to
define, among others, the addition of two even numbers:

add : Even -> Even -> Even

add O y = y

add (S x) y = S (add x y)

However, the second equation does not type-check since x is of type Odd. For the definition to be
valid, one would need to allow add to be overloaded:

add : Even -> Even -> Even

add : Odd -> Even -> Odd

add O y = y

add (S x) y = S (add x y)

88 Chapter 7: An Informal Account of Constructor Subtyping

Note that, by overloading addition, we also introduce some additional constraints on the set of
rewrite rules. Namely, the rewrite rules should also be well-typed and exhaustive, i.e. yield total
functions, for the new type. It is routine to check that the above definition complies with the
additional constraints.

Now one would like to overload the function add even further, and give it the types

add : Even -> Odd -> Odd

add : Odd -> Odd -> Even

add : Nat -> Nat -> Nat

Again, this shall be possible, since the recursive equations type-check and are exhaustive for these
additional types. Note that for typing reasons, the first and second typings need to be declared
together whereas the third typing could be declared on its own.

7.3.2 An Example of Extensibility

We start from the datatype Nat, and we assume defined addition add, multiplication mult and
division div0 (computing x÷ (y + 1)), all of type Nat -> Nat -> Nat.

Consider a simple calculator, featuring only addition:

data Expr = Num : Nat -> Expr

| Plus : Expr -> Expr -> Expr

extended with a new functionality, namely multiplication:

data Expr2 extends Expr = Mult : Expr2 -> Expr2 -> Expr2

| Plus : Expr2 -> Expr2 -> Expr2

Note how the example involves both subtyping and constructor overloading. Now assume we have
defined an interpretation function interp as follows:

interp : Expr -> Nat

interp (Num n) = n

interp (Plus x y) = add (interp x) (interp y)

One would like to extend the definition of interp to Expr2 by declaring

interp : Expr2 -> Nat

interp (Mult x y) = mult (interp x) (interp y)

In order to determine the validity of the extended definition, we combine all equations of interp,
and see whether they form a total and unambiguous (exactly only one equation applies to a given
pattern) recursive function for the new type.

One can take the example further by adding division as a new functionality. In the case of
division by zero, we want to return a value Undef. So we first extend the datatype Nat. We also
extend the function add so that it works on the extended datatype.

data MaybeNat extends Nat = Undef : MaybeNat

add : MaybeNat -> MaybeNat -> MaybeNat

add Undef x = Undef

add (x:Nat) Undef = Undef

7.4 Overview of This Part 89

Note how, in the above example, we use a type constraint in the second equation. This type
constraint acts as a shorthand for the set of rules:

add O Undef = Undef

add (S n) Undef = Undef

Let us now turn to the new datatype of expressions:

data Expr3 extends Expr = Div : Expr3 -> Expr3 -> Expr3

| Plus : Expr3 -> Expr3 -> Expr3

Again, the example involves both subtyping and constructor overloading. Now, assume division
is defined by the function div below:

div : MaybeNat -> MaybeNat -> MaybeNat

div (x:Nat) (S y) = div0 x y

div (x:Nat) O = Undef

div (x:Nat) Undef = Undef

div Undef y = Undef

One can extend the interpretation function to Expr3 by declaring:

interp : Expr3 -> MaybeNat

interp (Div x y) = div (interp x) (interp y)

Note that it is essential that the definition of add is extended for this definition of interp to be
well-typed.

Finally, assume that we want to form a calculator featuring multiplication and division:

data Expr4 extends Expr2, Expr3 = Div : Expr4 -> Expr4 -> Expr4

| Mult: Expr4 -> Expr4 -> Expr4

| Plus: Expr4 -> Expr4 -> Expr4

Now we can define interp on Expr4 simply by declaring:

interp : Expr4 -> MaybeNat

As before, it is essential that the definition of mult is extended (to a binary operation on MaybeNat)
for this definition of interp to be well-typed. However, we do not need to introduce new equations
as all cases have been previously treated.

7.4 Overview of This Part

This part is devoted to the presentation and study of the concepts of constructor subtyping and
extensible overloaded functions. After the informal account in this chapter the formal presentation
of type systems featuring constructor subtyping and extensible overloaded functions, and the study
of their meta-theoretic properties are the subjects of Chapter 8 and Chapter 9.

In Chapter 8 we introduce and study the properties of a type system with constructor sub-
typing. We define the system λCS, a simply typed λ-calculus with mutually recursive parametric
datatypes, constructor subtyping, case-expressions and letrec-expressions. We show that λCS en-
joys important meta-theoretic properties, including confluence and subject reduction. As the
system features general recursion, the reduction calculus is obviously non-terminating. However,

90 Chapter 7: An Informal Account of Constructor Subtyping

we sketch two ways of achieving strong normalization. One way is constraining the system to
guard-by-destructors recursion, following what is done for λG . The other way is enriching the
type system with stages (following the ideas presented for λ̂) and enforcing termination through
typing. The subtyping relation together with the overloading of constructors becomes an issue at
type inference for λCS, but we show that type-checking is decidable.

In Chapter 9 we enrich constructor subtyping with a mechanism for defining extensible over-
loaded functions. We define the system λCS+fun a simply typed λ-calculus with mutually recur-
sive parametric datatypes, constructor subtyping and extensible overloaded recursive functions
defined by pattern-matching. We formalize the concept of well-formed environment of function
declarations. We establish the properties of confluence, subject reduction and decidability of type-
checking for this calculus. Moreover, we prove that the requirements imposed for the well-formed
environments are decidable properties. With respect to termination, we just provide a simple
criterion inspired from [44]. Furthermore, we conjecture how the standard compilation of pattern-
matching into case-expressions extends to our setting. We define λCS+def as a mild variation of
λCS+fun: recursive functions defined by pattern-matching are replaced by case-expressions and
recursive function definitions. We establish the properties of confluence, subject reduction and
decidability of type-checking for λCS+def and we describe the translation from λCS+fun to λCS+def .

In Chapter 10 we review related work and conclude.

Chapter 8

The Core Calculus λCS

In this chapter we introduce λCS, a simply typed λ-calculus à la Curry with mutually recursive
parametric datatypes featuring constructor subtyping, and we establish the fundamental meta-
theoretic properties of the calculus.

8.1 The System λCS

We begin this section by defining the terms of λCS and providing them with a reduction calculus.
Next we introduce types and subtyping. Finally, we present the typing rules for λCS.

8.1.1 Terms and Reductions

Terms

We assume given a denumerable set VE of (object) variables, and let x, x′, xi, y, . . . range over VE .
We assume further that there is a finite set C of constants, which are usually called constructors.
VE and C are pairwise disjoint and we let c, c′, ci, . . . range over C. Constructors may only accept a
fixed number of arguments, so we stipulate that every constructor c has a fixed arity ar(c) ∈ N that
indicates the number of arguments taken by c. Terms are built up from standard constructions
of λ-calculus: variables, abstractions, applications, constructors, case-expressions and mutually
recursive definitions.

Definition 8.1.1 (Terms) The set Ecs of terms is given by the abstract syntax:

Ecs 3 a, b ::= x | λx.a | a b | c | case a of {c1 ⇒ b1 | . . . | cn ⇒ bn} | letreci(x1 = a1, . . . , xn = an)

where in the clause for letrec-expressions, it is assumed that 1 ≤ i ≤ n, and in the clause for case-
expressions it is assumed that C(d) = {c1, . . . , cn} for some d ∈ D and that all ci’s are pairwise
distinct.

Notation 8.1.2 Sometimes we write case a of {~c ⇒ ~b} as an abbreviation of case a of {c1 ⇒
b1| . . . |cn ⇒ bn}, c~a as an abbreviation of c a1 . . . aar(c), and letreci(~x = ~a) as an abbreviation of
letreci(x1 = a1, . . . , xn = an).

91

92 Chapter 8: The Core Calculus λCS

Definition 8.1.3 The set of free variables of an expression e, denoted by FV(e), is defined by
induction on the structure of e as follows:

FV(x) = {x}
FV(c) = ∅

FV(λx.a) = FV(a)\{x}
FV(a b) = FV(a) ∪ FV(b)

FV(case a of {c1 ⇒ b1 | . . . | cn ⇒ bn}) = FV(a) ∪ FV(b1) ∪ . . . ∪ FV(bn)
FV(letreci(x1 = a1, . . . , xn = an)) = (FV(a1) ∪ . . . ∪ FV(an))\{x1, . . . , xn}

A variable x is said to occur free or to be free in e if x ∈ FV(e). A variable in e that is not free
in e is said to be bound or to occur bound in e. An expression with no free variables is said to
be closed.

The usual conventions of omitting parentheses are adopted: application is left associative and
the scope of λ extends to the right as far as possible. We identify terms that are equal up to a
renaming of bound variables (or α-conversion). Moreover we assume standard variable convention
[14], so, all bound variables are chosen to be different from free variables.

Definition 8.1.4 (Term substitution) A term substitution is a function from VE to Ecs. We
write [x1 := e1, . . . , xn := en] (or briefly [~x := ~e]) for the substitution mapping xi to ei for
1 ≤ i ≤ n, and mapping every other variable to itself.

Given a term a ∈ Ecs and a term substitution S = [~x := ~e], we write S(a) or a[~x := ~e] to denote
the term obtained by the simultaneous substitution of terms ei for the free occurrences of variables
xi in a.

Remark 8.1.5 In the application of a substitution to a term, we rely on a variable convention.
The action of a substitution over a term is defined, as usual, with possible changes of bound
variables.

We now present a result which allows us to reorder substitutions.

Lemma 8.1.6 If xi 6= yj and xi 6∈ FV(bj) for i = 1..n, j = 1..m, then

e[x1 := a1, . . . , xn := an][y1 := b1, . . . , ym := bm] = e[~y := ~b][x1 := a1[~y := ~b], . . . , xn := an[~y := ~b]]

Proof. By induction on the structure of e. 2

Reduction calculus

The computational behavior of λCS is drawn from the notion of β-reduction, ι-reduction and
µ-reduction.

Definition 8.1.7 (Reductions)

1. β-reduction →β is defined as the compatible closure of the rule

(λx.a) b →β a[x := b]

2. ι-reduction →ι is defined as the compatible closure of the rule

case (ci ~a) of {c1 ⇒ b1 | . . . | cn ⇒ bn} →ι bi ~a

where ~a represents a vector of terms whose length is exactly ar(ci) and 1 ≤ i ≤ n.

8.1 The System λCS 93

3. The µ-reduction, →µ, is defined as the compatible closure of the rule

letreci(~x = ~e) (c~a) →µ ei[x1 := letrec1(~x = ~e), . . . , xn := letrecn(~x = ~e)] (c~a)

where ~a represents a vector of terms whose length is exactly ar(c).

4. The terms of the forms (λx.a) b, case (ci ~a) of {~c ⇒ ~b} and letreci(~x = ~e) (c~a) are called
β-redexes, ι-redexes and µ-redexes, with a[x := b], bi ~a and ei[x1 := letrec1(~x = ~e), . . . , xn :=
letrecn(~x = ~e)] (c~a) being their contracta, respectively. As expected we call βιµ-redex to a
term that is either a β-redex, an ι-redex or a µ-redex .

5. →βιµ is defined as →β ∪ →ι ∪ →µ. �βιµ and =βιµ are respectively defined as the reflexive-
transitive and the reflexive-symmetric-transitive closures of →βιµ. We say that e reduces to
e′ (or e computes into e′) whenever e�βιµ e

′. One defines similarly the relations �β, �ι,
�βι, =β, =ι and =βι.

Remark 8.1.8 In the formulation of the β- and µ-reduction rules, we rely on a variable conven-
tion: in the β-rule, the bound variables of a are assumed to be different from the free variables of
b; in the µ-rule, the bound variables of ei are assumed to be different from the free variables of ~e.

Term substitution has some useful properties with respect to reducibility.

Lemma 8.1.9 (Substitution lemma for reductions)

1. e→βιµ e
′ ⇒ e[x := a]→βιµ e

′[x := a]

2. a→βιµ a
′ ⇒ e[x := a]�βιµ e[x := a′]

3. e→βιµ e
′ ∧ a→βιµ a

′ ⇒ e[x := a]�βιµ e
′[x := a′]

Proof.

1. By induction on the structure of e.

2. By induction on the structure of e.

3. Directly from properties 1 and 2.

2

Definition 8.1.10 (Strongly normalizing terms) Let a ∈ Ecs.

1. The term a is in normal form if it does not contain any βιµ-redex, i.e., if there is no term
b such that a→βιµ b.

2. The term a strongly normalizes if there is no infinite βιµ-reduction sequence starting with
a.

3. The set SN of strongly normalizing terms is inductively defined by the following clause:

If b ∈ SN for all term b such that a→βιµ b, then a ∈ SN.

It follows from the above definition that the set SN is not empty, since VE ⊆ SN; and that if e
is strongly normalizing and e�βιµ e

′, then e′ is also strongly normalizing. Moreover, observe that
any subterm of a strongly normalizing term is also strongly normalizing, since the βιµ-reduction
relation is compatible with respect to the formation of terms.

94 Chapter 8: The Core Calculus λCS

8.1.2 Types and Subtyping

In the sequel, we assume given a denumerable set VT of type variables. Datatypes are named: we
assume given a finite setD of datatypes. We adopt the following naming conventions: α, α′, αi, β, . . .
range over VT and d, d′, di, . . . range over D. On datatypes we assume a stratification that ensure
that the dependency relation between datatypes is well-founded. Hence each datatype d is assigned
a stratum str(d) ∈ N. Every datatype d ∈ D comes equipped with a fixed arity, ar(d) ∈ N which
indicates the number of parameters it is supposed to have. In addition, we require that every
datatype d ∈ D comes equipped with a set of constructors denoted by C(d), and the following
condition holds:

C(d) ∩ C(d′) 6= ∅ ⇒ ar(d) = ar(d′) (8.1)

We also assume given a binary subtyping relation vD over D that is a partial order that satisfies
the following requirement for every d, d′ ∈ D:

d vD d′ ⇒ C(d) ⊆ C(d′) (8.2)

Finally, we assume given D a valid family of constructors declarations (see Definition 8.1.25).

Definition 8.1.11 (Types) The set Tcs of types is given by the abstract syntax:

Tcs 3 σ, τ ::= α | σ → τ | d~τ

where in the last clause, ~τ represents a vector of types whose length is exactly ar(d).

The usual conventions of parenthesis omitting are adopted: the type constructor→ is right asso-
ciative.

Definition 8.1.12 (Type substitution) A type substitution is a function from VT to Tcs. We
write [α1 := σ1, . . . , αn := σn] (or briefly [~α := ~σ]) for the substitution mapping αi to σi for
1 ≤ i ≤ n, and mapping every other type variable to itself.

Given a type τ ∈ Tcs and a type substitution S = [~α := ~σ], we write S(τ) or τ [~α := ~σ] to denote
the type obtained by simultaneously replacing each variable α in τ with S(α).

Notation 8.1.13 We write X occ τ , where X may be a type or a datatype identifier and τ is a
type, to state that X occurs in τ ; and we write X nocc τ to state that X does not occur in τ . Very
often we write ~τ→σ as an abbreviation for τ1→ . . .→τn→σ.

In order to fix the intended typings of the constructors, we introduce the notions of constructor
scheme, constructor declaration and constructor scheme instantiation.

Definition 8.1.14 (Constructor scheme) The set CScs of constructor schemes is given by the
abstract syntax:

ς ::= ∀ ~α. σ

where ~α are the free type variables of σ.

Definition 8.1.15 (Positive-Negative)

1. α occurs positively in τ (or τ is positive w.r.t. α), written α pos τ , is defined by the rules
of Figure 8.1.

2. α occurs negatively in τ (or τ is negative w.r.t. α), written α neg τ , is defined by the rules
of Figure 8.1.

8.1 The System λCS 95

(pos1)
α pos α′

(pos2)
α pos σ α neg τ

α pos (τ → σ)

(pos3)
α pos σi (1 ≤ i ≤ n)

α pos d~σ

(neg1)
α 6= α′

α neg α′

(neg2)
α neg σ α pos τ

α neg (τ → σ)

(neg3)
α neg σi (1 ≤ i ≤ n)

α neg d~σ

Figure 8.1: Positive-Negative rules

(spos1) d nocc τ

τ spos d

(spos2)
d nocc θi (1 ≤ i ≤ n)

θ1 → . . .→ θn → d ~α spos d

Figure 8.2: Strictly positive rules

Definition 8.1.16 (Strictly positive) θ is strictly positive w.r.t. d (or d occurs strict positively
in θ), written θ spos d, is defined by the rules of Figure 8.2.

Constructors can be overloaded. That is, a constructor c can be constructor of more that one
datatype. If c ∈ C(d) ∩ C(d′) and d 6= d′, then the type of c when viewed as a constructor of d
is obviously different from the type of c when viewed as a constructor of d′. So, each constructor
can be assigned more than one type and the type of a constructor depends on the datatype. A
constructor declaration specifies the possible typings of the constructors of a datatype.

Definition 8.1.17 (Constructor declarations) For every d ∈ D, there is a map Dd : C(d)→
CScs such that, for every c ∈ C(d),

Dd(c) = ∀ ~α. ~σ→d ~α

where:

1. #~α = ar(d) and #~σ = ar(c);

2. d′ occ Dd(c) implies str(d′) ≤ str(d);

3. each σi is strictly positive w.r.t. d′, whenever str(d′) = str(d);

4. each σi is positive w.r.t. αj;

5. every occurrence of d′ in σi is of the form d′ ~α, whenever str(d′) = str(d).

Moreover, the following condition holds:

str(d) = str(d′) iff ∃ c ∈ C(d).∃ c′ ∈ C(d′). d′ occ Dd(c) ∧ d occ Dd′(c′) (8.3)

96 Chapter 8: The Core Calculus λCS

Conditions 2, 3 and 5 are settle to handle mutual recursive datatypes. Moreover, with condition
(8.3), we can identify the mutual recursive datatypes by its stratum.

Example 8.1.18 Consider the datatypes of even, odd and natural numbers. We have:

Even,Odd,Nat ∈ D o, s ∈ C
ar(Even) = ar(Odd) = ar(Nat) = 0 ar(o) = 0

ar(s) = 1
Odd vD Nat C(Odd) = {s}
Even vD Nat C(Even) = C(Nat) = {o, s}

Note that the condition (8.1) and (8.2) are satisfied. The constructor declarations for these
datatypes are:

DOdd(s) = Even→Odd

DEven(o) = Even

DEven(s) = Odd→Even

DNat(o) = Nat

DNat(s) = Nat→Nat

Example 8.1.19 Consider the parametric datatypes of lists and of non-empty lists. We have:

List,NeList ∈ D nil, cons ∈ C
ar(List) = ar(NeList) = 1 ar(nil) = 0

ar(cons) = 2
NeList vD List C(List) = {nil, cons}

C(NeList) = {cons}

The constructor declarations for these datatypes are:

DList(nil) = ∀α. Listα DNeList(cons) = ∀α. α→Listα→NeListα

DList(cons) = ∀α. α→Listα→Listα

Each particular legal typing for the arguments of a constructor is obtained by instantiating
the associated constructor declaration.

Definition 8.1.20 (Instance and domain) Let d ∈ D, c ∈ C(d) and ~τ ∈ Tcs such that #~τ =
ar(d). Assume Dd(c) = ∀ ~α. ~σ→d ~α.

1. An instance of c w.r.t. d and ~τ is defined as follows

Inst~τd(c) = ~σ[~α := ~τ]→d~τ

2. A domain of c w.r.t. d and ~τ is defined as follows

Dom~τ
d(c) = ~σ[~α := ~τ]

Example 8.1.21 Instances and domains of some constructors:

InstEven(s) = Odd→Even DomNat(o) = []
InstNat

List(cons) = Nat→List Nat→List Nat DomOdd
NeList(cons) = [Odd, List Odd]

InstEven
List (nil) = List Even DomOdd

List (nil) = []

8.1 The System λCS 97

(refl)
σ ≤ σ

(trans) σ ≤ σ′ σ′ ≤ σ′′

σ ≤ σ′′

(func) σ′ ≤ σ τ ≤ τ ′

σ → τ ≤ σ′ → τ ′
(data)

d vD d′ τi ≤ τ ′i (1 ≤ i ≤ ar(d))

d~τ ≤ d′ ~τ ′

Figure 8.3: Subtyping rules for λCS

We now turn to subtyping. The subtyping relation over Tcs is generated structurally from the
order on D. Observe that rule (data) require datatypes to be monotonic in their parameters.

Definition 8.1.22 (Subtyping) The subtyping relation ≤ over the set Tcs of types is defined
inductively by the rules of Figure 8.3. We write ~σ ≤ ~τ as an abbreviation of σ1 ≤ τ1, . . . , σn ≤ τn.

Example 8.1.23 We can easily derive the following subtyping statements:

List Odd ≤ List Nat

NeList (Nat→ Even) ≤ List (Odd→ Nat)
List Nat→ List Odd ≤ NeList Nat→ List Odd

Constructors may be overloaded. This feature is crucial to the applicability of constructor
subtyping, as most examples require constructors to be overloaded. As shown in Chapter 7 con-
structor overloading leads to difficulties with subject reduction, so it must be constrained in some
way. The salient feature of constructor subtyping is to impose suitable coherence conditions on
constructor overloading: roughly speaking, constructor declarations are supposed to be monotonic,
i.e., whenever c is a constructor for d and d′ with d vD d′, the domain of c w.r.t. d must be a
subtype of the domain of c w.r.t. d′.

Definition 8.1.24 (Strict overloading) A constructor c ∈ C is strictly overloaded if for every
d, d′ ∈ D such that c ∈ C(d) ∩ C(d′), one has

d vD d′ ⇒ Dom~α
d (c) ≤ Dom~α

d′(c) with #~α = ar(d)

We can now give the formal definition of valid family of constructor declarations.

Definition 8.1.25 (Valid family of constructor declarations) The family D =
⋃
d∈D Dd of

constructor declarations is said to be valid if every c ∈ C is strictly overloaded.

8.1.3 The Typing System

In order to define the typing relation between terms and types, we need the concepts of context
and judgment.

Definition 8.1.26 (Contexts and judgments)

98 Chapter 8: The Core Calculus λCS

(var)
Γ ` x : τ

if (x : τ) ∈ Γ

(abs)
Γ, x : τ ` e : σ

Γ ` λx.e : τ → σ

(app) Γ ` e : τ → σ Γ ` e′ : τ
Γ ` e e′ : σ

(cons)
Γ ` c : Inst~τd(c)

if c ∈ C(d)

(case)
Γ ` a : d~τ Γ ` bi : Dom~τ

d(ci)→σ (1 ≤ i ≤ n)
Γ ` case a of {c1 ⇒ b1 | . . . | cn ⇒ bn} : σ

if C(d) = {c1, . . . , cn}

(rec)
Γ, f1 : τ1, . . . , fn : τn ` ei : τi (1 ≤ i ≤ n)

Γ ` letrecj(f1 = e1, . . . , fn = en) : τj
if 1 ≤ j ≤ n

(sub) Γ ` e : τ τ ≤ σ
Γ ` e : σ

Figure 8.4: Typing rules for λCS

1. A context Γ is a finite set of assumptions {x1 : τ1, . . . , xn : τn} such that the xis are
pairwise distinct elements of VE and τi ∈ Tcs. Γ can be seen as a partial function so, we
write dom(Γ) = {x1, . . . , xn} and Γ(xi) = τi. Usually we drop the curly brackets and write
simply x1 : τ1, . . . , xn : τn. Moreover, whenever it is written Γ, x : τ or Γ,Γ′ it is assumed
that (x : τ) 6∈ Γ and Γ ∩ Γ′ = ∅.

2. A typing judgment is a triple of the form Γ ` a : τ , where Γ is a context, a ∈ Ecs and
τ ∈ Tcs.

Definition 8.1.27 (Typing)

1. A typing judgment is derivable if it can be inferred from the rules of Figure 8.4.

2. A term e ∈ Ecs is typable if Γ ` e : σ is derivable for some context Γ and type σ.

The rules (var), (abs) and (app) are standard for the simply typed λ-calculus. The connection
between typing and subtyping is done by rule (sub). Note that subtyping behaves very much like
the inclusion, when type membership is seen as set membership.

The (cons) rule says the legal typings for a constructor c are obtained by instantiating the
declarations of c for each datatype c is associated with. It corresponds to the introduction rules
of the datatypes declared.

The (case) and (rec) rules corresponds to the elimination rules for the existing datatypes. The
rule (case) is the basic rule of case analysis. The rule (rec) introduces a general recursion scheme,
that allows to define mutually recursive functions.

8.2 Confluence 99

8.2 Confluence

The computation relation of λCS is confluent. That is, if an expression a can be partially computed
into two different expressions a1 and a2, then there exists a third expression a′ such that both a1

and a2 can be computed into a′. Therefore, the reduction strategy used to compute an expression
is not relevant, and every normalizing term has an unique normal form. The proof of the confluence
property is done by the Tait and Martin-Löf technique. We show only the parts involving letrec-
expressions, more details can be found, in Section 4.1 and in [15]. Let us introduce the parallel
one-step relation �1.

Definition 8.2.1 Define a binary relation �1 on Ecs inductively as follows:

1. a�1 a

2. a�1 a
′ ⇒ λx.a�1 λx.a

′

3. a�1 a
′ ∧ b�1 b

′ ⇒ a b�1 a
′ b′

4. a�1 a
′ ∧ b�1 b

′ ⇒ (λx.a) b�1 a
′[x := b′]

5. a�1 a
′ ∧ bi �1 b

′
i with i = 1..n ⇒ case a of {~c⇒ ~b}�1 case a′ of {~c⇒ ~b′}

6. aj �1 a
′
j ∧ bk �1 b

′
k for some k, with j = 1..ar(ck) ⇒ case (ck ~a) of {~c⇒ ~b}�1 b

′
k
~a′

7. ei �1 e
′
i with i = 1..n ⇒ letreck(~x = ~e)�1 letreck(~x = ~e′)

8. ei �1 e
′
i ∧ aj �1 a

′
j with i = 1..n, j = 1..ar(c) ⇒ letreck(~x = ~e) (c~a) �1 e

′
k[x1 :=

letrec1(~x = ~e′), . . . , xn := letrecn(~x = ~e′)] (c ~a′)

Lemma 8.2.2

a�1 a
′ ∧ b�1 b

′ ⇒ a[x := b]�1 a
′[x := b′]

Proof. By induction on the definition of a�1 a
′. We only treat here the cases for clauses 7 and 8.

7. Assume a�1 a
′ is letreck(~x = ~e)�1 letreck(~x = ~e′) and is a direct consequence of ei �1 e

′
i

with i = 1..n. By induction hypothesis ei[x := b]�1 e
′
i[x := b′]. But then letreck(~x = ~e[x :=

b])�1 letreck(~x =
−−−−−−→
e′[x := b′]). Hence a[x := b] = a′[x := b′].

8. Assume a �1 a
′ is letreck(~x = ~e) (c~a) �1 e

′
k[x1 := letrec1(~x = ~e′), . . . , xn := letrecn(~x =

~e′)] (c ~a′) and is a direct consequence of ei �1 e
′
i and aj �1 a

′
j , with i = 1..n and j = 1..ar(c).

By induction hypothesis ei[x := b]�1 e
′
i[x := b′] and aj [x := b]�1 a

′
j [x := b′], with i = 1..n

and j = 1..ar(c). But then a[x := b] = letreck(~x = ~e[x := b]) (c
−−−−−→
a[x := b])�1 e

′
k[x := b′][x1 :=

letrec1(~x =
−−−−−−→
e′[x := b′]), . . . , xn := letrecn(~x =

−−−−−−→
e′[x := b′])] (c

−−−−−−→
a′[x := b′]) = a′[x := b′].

2

Lemma 8.2.3 (Generation lemma for �1)

1. λx.a�1 e implies e ≡ λx.a′ with a�1 a
′.

2. a1 a2 �1 e implies either:

(a) e ≡ a′1 a′2 with a1 �1 a
′
1 and a2 �1 a

′
2;

100 Chapter 8: The Core Calculus λCS

(b) a1 ≡ λx.b, e ≡ b′[x := a′2] with b�1 b
′ and a2 �1 a

′
2;

(c) or a1 ≡ letreck(~x = ~b), a2 ≡ (c~e), e ≡ b′k[x1 := letrec1(~x = ~b′), . . . , xn := letrecn(~x =
~b′)] (c ~e′) with bi �1 b

′
i and ej �1 e

′
j, i = 1..n, j = 1..ar(c) .

3. case a of {~c⇒ ~b}�1 e implies either:

(a) e ≡ case a′ of {~c⇒ ~b′} with a�1 a
′ and bi �1 b

′
i;

(b) or a ≡ ck ~a, e ≡ b′k ~a′ with bk �1 b
′
k and aj �1 a

′
j, j = 1..ar(ck).

4. letreck(~x = ~b)�1 e implies e ≡ letreck(~x = ~b′) with bi �1 b
′
i.

Proof. By induction on the definition of �1. 2

Lemma 8.2.4 �1 satisfies the diamond property, i.e.,

a�1 a1 ∧ a�1 a2 ⇒ ∃ a3 ∈ Ecs. a1 �1 a3 ∧ a2 �1 a3

Proof. By induction on the definition of a �1 a1. We only treat here the cases for clauses 7 and
8.

7. Assume a�1 a1 is letreck(~x = ~e)�1 letreck(~x = ~e′) and is a direct consequence of ei �1 e
′
i

for i = 1..n. By Lemma 8.2.3, a2 ≡ letreck(~x = ~e′′) with ei �1 e
′′
i for i = 1..n. By induction

hypothesis there are e′′′i such that e′i �1 e
′′′
i and e′′i �1 e

′′′
i , for i = 1..n. Hence, we can take

a3 ≡ letreck(~x = ~e′′′).

8. Assume a �1 a1 is letreck(~x = ~e) (c~b) �1 e
′
k[x1 := letrec1(~x = ~e′), . . . , xn := letrecn(~x =

~e′)] (c ~b′) and is a direct consequence of ei �1 e
′
i, bj �1 b

′
j with i = 1..n and j = 1..ar(c). By

Lemma 8.2.3, one can distinguish two cases:

1. a2 ≡ letreck(~x = ~e′′) (c ~b′′) with ei �1 e′′i , bj �1 b′′j for i = 1..n, j = 1..ar(c). By
induction hypothesis, there are e′′′i , b′′′j such that e′i �1 e′′′i , e′′i �1 e′′′i , b′j �1 b′′′j ,
b′′j �1 b

′′′
j . Hence we can take a3 ≡ e′′′k [x1 := letrec1(~x = ~e′′′), . . . , xn := letrecn(~x =

~e′′′)] (c ~b′′′).

2. a2 ≡ e′′k [x1 := letrec1(~x = ~e′′), . . . , xn := letrecn(~x = ~e′′)] (c ~b′′) with ei �1 e
′′
i , bj �1 b

′′
j

for i = 1..n, j = 1..ar(c). By induction hypothesis, there are e′′′i , b′′′j such that e′i �1 e
′′′
i ,

e′′i �1 e′′′i , b′j �1 b′′′j , b′′j �1 b′′′j . Hence we can take a3 ≡ e′′′k [x1 := letrec1(~x =
~e′′′), . . . , xn := letrecn(~x = ~e′′′)] (c ~b′′′).

2

Lemma 8.2.5 �βιµ is the transitive closure of �1.

Proof. �1 contains the reflexive closure of →βιµ. Moreover, �1⊆�βιµ. Since �βιµ is the
reflexive-transitive closure of →βιµ it is also the transitive closure of �1. 2

Theorem 8.2.6 (Confluence) →βιµ is confluent:

a1 =βιµ a2 ⇒ ∃ e ∈ Ecs. a1 �βιµ e ∧ a2 �βιµ e

8.3 Subject Reduction 101

Proof. Assume a1 =βιµ a2, then ∃ a ∈ Ecs. a �βιµ a1 ∧ a �βιµ a2. As �βιµ is the transitive
closure of �1, �βιµ satisfies also the diamond property. So, we conclude. 2

Corollary 8.2.7 (Uniqueness of normal forms) Any expression e ∈ Ecs has at most one nor-
mal form.

Proof. From Theorem 8.2.6, by absurdity with the assumption that a term could have two different
normal forms. 2

8.3 Subject Reduction

In this section we show the generation of subtyping and typing and prove that the type of an
expression is preserved under computation.

Although we have constructed our subtyping system in an intuitive way (i.e., with subtyping
rules reflecting closely the wanted subtyping relation) and so, we have included the transitivity
rule, we can eliminate the (trans) rule and obtain an equivalent system. In other words, transitivity
is admissible or the system has the transitivity elimination property. This feature, besides being
a key step in the decidability of subtyping, facilitates the study of subject reduction.

Lemma 8.3.1 Any subtyping derivation containing a sole application of (trans) rule at the last
step can be transformed into one ended by the same subtyping assertion free from that rule.

Proof. By induction on the subtyping derivation. Assume the last step of a derivation is (trans)
and the derivation of the premises are transitivity-free. We proceed by case analysis of the last
pair of rules used to derive the premises of the last step.

Case (refl,): A derivation of the form

σ ≤ σ (refl)
σ ≤ τ

σ ≤ τ (trans)

can be transformed into σ ≤ τ .

Case (, refl): A derivation of the form

σ ≤ τ τ ≤ τ (refl)

σ ≤ τ (trans)

can be transformed into σ ≤ τ .

Case (func, func): A derivation of the form

σ′ ≤ σ τ ≤ τ ′
σ→τ ≤ σ′→τ ′

(func)
σ′′ ≤ σ′ τ ′ ≤ τ ′′
σ′→τ ′ ≤ σ′′→τ ′′

(func)

σ→τ ≤ σ′′→τ ′′
(trans)

102 Chapter 8: The Core Calculus λCS

can be transformed into

σ′′ ≤ σ′ σ′ ≤ σ
σ′′ ≤ σ

(trans)
τ ≤ τ ′ τ ′ ≤ τ

τ ≤ τ ′′
(trans)

σ→τ ≤ σ′′→τ ′′
(func)

The result follows by induction hypothesis.

Case (data, data): A derivation of the form

d vD d′ σi ≤ ρi (1 ≤ i ≤ ar(d))
d~σ ≤ d′ ~ρ

(data)
d′ vD d′′ ρi ≤ τi (1 ≤ i ≤ ar(d′))

d′ ~ρ ≤ d′′ ~τ
(data)

d~σ ≤ d′′ ~τ
(trans)

can be transformed in

d vD d′′
σi ≤ ρi ρi ≤ τi

σi ≤ τi
(trans) (1 ≤ i ≤ ar(d))

d~σ ≤ d′′ ~τ
(data)

because ar(d) = ar(d′) = ar(d′′) and d vD d′′ since vD is a partial order. Now the result
follows by induction hypothesis.

2

Proposition 8.3.2 (Transitivity elimination) The subtyping system of λCS has the transitiv-
ity elimination property. In other words, any subtyping derivation containing applications of the
(trans) rule can be transformed into a transitivity-free derivation ended by the same subtyping
judgment.

Proof. By Lemma 8.3.1 we know that a subtyping derivation containing exactly one application of
transitivity at last step can be transformed into a transitivity-free derivation. We may then elim-
inate transitivities from arbitrary derivations one by one, beginning with uppermost applications
of transitivity. 2

Lemma 8.3.3 (Generation lemma for subtyping)

1. σ ≤ τ1 → τ2 ⇒ σ ≡ τ ′1 → τ ′2 ∧ τ1 ≤ τ ′1 ∧ τ ′2 ≤ τ2

2. τ1 → τ2 ≤ σ ⇒ σ ≡ τ ′1 → τ ′2 ∧ τ ′1 ≤ τ1 ∧ τ2 ≤ τ ′2

3. θ ≤ d~τ ⇒ θ ≡ d′ ~σ ∧ ~σ ≤ ~τ ∧ d′ vD d

4. d~τ ≤ θ ⇒ θ ≡ d′ ~σ ∧ ~τ ≤ ~σ ∧ d vD d′

5. α ≤ σ ⇒ σ ≡ α

6. σ ≤ α ⇒ σ ≡ α

Proof. By inspection on the derivation of the antecedent, using Proposition 8.3.2. 2

Lemma 8.3.4

8.3 Subject Reduction 103

1. If σ ≤ σ′, τi ≤ τ ′i and αi pos σ for i = 1..n, then σ[~α := ~τ] ≤ σ′[~α := ~τ ′].

2. If σ ≤ σ′, τi ≤ τ ′i and αi neg σ for i = 1..n, then σ[~α := ~τ ′] ≤ σ′[~α := ~τ].

Proof. By simultaneous induction on the structure of σ. 2

Lemma 8.3.5

1. If Γ ⊆ Γ′ and Γ ` e : σ then Γ′ ` e : σ.

2. If Γ ` e : σ then FV(e) ⊆ dom(Γ).

Proof.

1. By induction on the derivation of Γ ` e : σ.

(var) If e is a variable and e : σ ∈ Γ then also e : σ ∈ Γ′. Hence, Γ′ ` e : σ.

(app) Γ ` a b : σ follows directly from Γ ` a : τ → σ and Γ ` b : τ . By induction
hypothesis Γ′ ` a : τ→σ and Γ′ ` b : τ . Then, by the (app) rule, Γ′ ` a b : σ.

(abs) Γ ` λx. a : τ→ρ follows directly from Γ, x :τ ` a : ρ. By the variable convention x
does not occur in Γ′. Then, Γ′, x :τ is also a context which extends Γ, x :τ . Therefore,
by the induction hypothesis we have Γ′, x : τ ` a : ρ and so, by the (abs) rule,
Γ′ ` λx. e : τ → ρ.

All the remaining cases can be easily proved using the induction hypothesis.

2. By induction on the derivation of Γ ` e : σ.

(var) If e is a variable and e : σ ∈ Γ then FV(e) = {e} ⊆ dom(Γ).

(app) Γ ` a b : σ follows directly from Γ ` a : τ → σ and Γ ` b : τ . By induction
hypothesis FV(a) ⊆ dom(Γ) and FV(b) ⊆ dom(Γ). Hence, FV(a b) = FV(a) ∪ FV(b) ⊆
dom(Γ).

(abs) Γ ` λx. a : τ→ ρ follows directly from Γ, x : τ ` a : ρ. By induction hypothesis,
FV(a) ⊆ dom(Γ, x : τ). Let y ∈ FV(λx. a), then y ∈ FV(a) and y 6≡ x. Therefore,
y ∈ dom(Γ). Hence FV(λx. a) ⊆ dom(Γ).

All the remaining cases can be easily proved using the induction hypothesis.

2

The generation for typing describes the information one can infer about a type from a derivable
typing judgment.

Lemma 8.3.6 (Generation lemma for typing)

1. Γ ` x : σ ⇒ (x : τ) ∈ Γ ∧ τ ≤ σ

2. Γ ` a b : σ ⇒ Γ ` a : τ → σ′ ∧ Γ ` b : τ ∧ σ′ ≤ σ

3. Γ ` λx.e : σ ⇒ σ ≡ τ1→τ2 ∧ Γ, x : τ ′1 ` e : τ ′2 ∧ τ1 ≤ τ ′1 ∧ τ ′2 ≤ τ2

4. Γ ` c : σ ⇒ σ ≡ ~γ→θ ∧ ~γ ≤ Dom~τ
d(c) ∧ d~τ ≤ θ ∧ c ∈ C(d)

104 Chapter 8: The Core Calculus λCS

5. Γ ` case a of {~c⇒ ~b} : σ ⇒ Γ ` a : d~τ ∧ Γ ` bi : Dom~τ
d(ci)→θ ∧ θ ≤ σ

6. Γ ` letrecj(f1 = e1, . . . , fn = en) : σ ⇒ Γ, f1 : τ1, . . . , fn : τn ` ei : τi for all i =
1..n ∧ τj ≤ σ .

Proof. By inspection on the derivation of the antecedent judgments. 2

The following lemma states that a type-preserving substitution preserves the derivability of a
judgment.

Lemma 8.3.7 (Substitution lemma for typing)
If Γ, x1 :τ1, . . . , xn :τn ` a : σ and Γ ` bi : τi for 1 ≤ i ≤ n, then Γ ` a[x1 := b1, . . . , xn :=

bn] : σ.

Proof. By induction on the derivation of Γ, x1 : τ1, . . . , xn : τn ` a : σ, assuming that Γ ` bi : τi
is derivable for 1 ≤ i ≤ n.

(var) In this case a is a variable: if a 6≡ xj for every j = 1..n, then a[~x := ~b] = a and (a : σ) ∈ Γ,
so we conclude by (var); if a ≡ xj for some j ∈ {1, . . . , n} then a[~x := ~b] = bj and τj ≡ σ so
the result follows directly from the hypothesis.

(abs) In this case a ≡ (λy.e), σ ≡ σ1 → σ2 and Γ, x1 : τ1, . . . , xn : τn, y : σ1 ` e : σ2. By
induction hypothesis Γ, y :σ1 ` e[x1 := b1, . . . , xn := bn] : σ2. Applying rule (abs) we have
Γ ` λy.e[~x := ~b] : σ1 → σ2. By Lemma 8.3.5 FV(bi) ⊆ Γ for every i = 1..n, moreover
y 6∈ dom(Γ) so y 6∈ FV(bi), for i = 1..n. Therefore (λy.e)[~x := ~b] = λy.e[~x := ~b] which
concludes the proof of this case.

(rec) In this case a ≡ letreck(f1 = e1, . . . , fm = em) and Γ, x1 : τ1, . . . , xn : τn, f1 : σ1, . . . , fm :
σm ` ej : σj , for 1 ≤ j ≤ m. By induction hypothesis Γ, f1 :σ1, . . . , fm :σm ` ej [~x := ~b] :
σj . Applying rule (rec) we have Γ ` letreck(f1 = e1[~x := ~b], . . . , fm = em[~x := ~b]) : σj . By
Lemma 8.3.5 FV(bi) ⊆ Γ for i = 1..n, moreover f1, . . . , fm 6∈ dom(Γ) so f1, . . . , fm 6∈ FV(bi)
for i = 1..n. Hence letreck(f1 = e1[~x := ~b], . . . , fm = em[~x := ~b]) = letreck(f1 = e1, . . . , fm =
em)[~x := ~b] which concludes the proof of this case.

The remaining cases are easily proved by routine induction. 2

We arrive now to the main result of this section. The following theorem shows that computation
preserves the typing relation.

Theorem 8.3.8 (Subject reduction) Typing is closed under →βιµ:

Γ ` a : σ ∧ a→βιµ a
′ ⇒ Γ ` a′ : σ

Proof. By induction on the derivation of Γ ` a : σ, considering the last rule:

(var) In this case a is a variable so, it cannot be reduced.

(app) In this case a ≡ e e′, Γ ` e : τ→σ and Γ ` e′ : τ . The expression e e′ can be reduced if:

e→βιµ e
′′. In this case e e′ →βιµ e

′′ e′. By the induction hypothesis Γ ` e′′ : τ→σ. The
result Γ ` e′′ e′ : σ follows using (app).

8.3 Subject Reduction 105

e′ →βιµ e
′′. In this case e e′ →βιµ e e

′′. By the induction hypothesis Γ ` e′′ : τ . The
result Γ ` e e′′ : σ follows using (app).

e ≡ (λx.b). In this case we have Γ ` (λx.b) : τ → σ and (λx.b) e′ →βιµ b[x := e′]. By
Lemma 8.3.6 we have Γ, x : τ ′ ` b : σ′, τ ≤ τ ′ and σ′ ≤ σ. From Γ ` e′ : τ , by (sub),
one derives Γ ` e′ : τ ′. Thus, by Lemma 8.3.7, Γ ` b[x := e′] : σ′ and finally, by the
rule (sub), Γ ` b[x := e′] : σ.

e ≡ letrecj(f1 = b1, . . . , fn = bn) and e′ ≡ (c~a). In this case we have Γ ` letrecj(f1 =
b1, . . . , fn = bn) : τ→σ and letrecj(f1 = b1, . . . , fn = bn) (c~a)→βιµ bj [f1 := letrec1(~f =
~b), . . . , fn := letrec1(~f = ~b)] (c~b). By Lemma 8.3.6 we have Γ, f1 : τ1, . . . , fn : τn ` bi :
σi, σi ≤ τi for all i = 1..n, and σj ≤ τ→ σ. One derives, by (sub) Γ, f1 : τ1, . . . , fn :
τn ` bj : τ→σ and, by (rec) followed by (sub), Γ ` letreci(f1 = b1, . . . , fn = bn) : σi
for every i = 1..n. Thus, using Lemma 8.3.7, Γ ` bj [f1 := letrec1(~f = ~b), . . . , fn :=
letrecn(~f = ~b)] : τ → σ. Hence, applying (app) we have Γ ` bj [f1 := letrec1(~f =
~b), . . . , fn := letrecn(~f = ~b)] (c~a) : σ

(abs) In this case the result follows by induction hypothesis and the rule (abs).

(cons) In this case a is a constructor so, it cannot be reduced.

(case) In this case a ≡ case e of {c1 ⇒ b1 | . . . | cn ⇒ bn}, Γ ` e : d~τ and Γ ` bi : Dom~τ
d(ci)→

σ with 1 ≤ i ≤ n and C(d) = {c1, . . . , cn}. The expression case e of {c1 ⇒ b1 | . . . | cn ⇒ bn}
can be reduced if:

e→βιµ e
′. In this case the result follows by induction hypothesis and the rule (case).

bi →βιµ b
′
i. In this case the result follows by induction hypothesis and the rule (case).

e ≡ ci a1 . . . aar(ci). In this case case (ci ~a) of {c1 ⇒ b1 | . . . | cn ⇒ bn} →βιµ bi ~a. From
Γ ` ci a1 . . . aar(ci) : d~τ , by Lemma 8.3.6, it follows that

Γ ` ci : ~γ→θ ∧ θ ≤ d~τ

and also, for 1 ≤ j ≤ ar(ci), and for some d′ and ~τ ′,

Γ ` aj : γj ∧ γj ≤ (Dom
~τ ′

d′ (ci))[j] ∧ d′ ~τ ′ ≤ θ

So, d′ ~τ ′ ≤ d~τ and therefore, by Lemma 8.3.3, d′ vD d and ~τ ′ ≤ ~τ . Since ci is strictly
overloaded, using Lemma 4.2.5 and transitivity we have γj ≤ (Dom~τ

d(ci))[j]. Now, using
the (sub) rule, one can derive Γ ` aj : (Dom~τ

d(ci))[j] for 1 ≤ j ≤ ar(ci), which can be
combined with the typing derivation of bi, by means of the rule (app), to conclude that
Γ ` bi ~a : σ.

(rec) In this case the result follows by induction hypothesis and the rule (rec).

(sub) In this case the result follows by induction hypothesis and the rule (sub).

2

106 Chapter 8: The Core Calculus λCS

8.4 Strong Normalization

The system as it is presented in the beginning of this chapter is obviously not strongly normalizing,
since there are infinite reduction sequences starting with well-typed terms. For example:

letrec1(f = λx.f x) (s o) →βιµ (λx.f x)[f := letrec1(f = λx.f x)] (s o)
→βιµ letrec1(f = λx.f x) (s o)
→βιµ . . .

The failure of strong normalization is a consequence of the (rec) rule being too permissive. To re-
cover strong normalization for typed terms, we must restrict the typing rules for letrec-expressions.
Following Part I, strong normalization can be recovered in two different ways:

– restrict the system to guard-by-destructors letrec-expressions, imposing a syntactical condi-
tion on the (rec) typing rule, as was done in Chapter 5 for λG ;

– enrich the type system with stages and enforce termination through typing, reproducing
what was done in Chapter 3 for λ̂ .

In the next subsections we explore these two possibilities.

8.4.1 Guarded-by-Destructors Recursion

To guarantee the strong normalization of all typable terms the idea of the guarded-by-destructors
mechanism is to complement the (rec) rule with a syntactical condition G constraining the occur-
rences of recursive calls in the body of the letrec-expressions. The predicate G enforces termination
by constraining all recursive calls to be applied to terms smaller than the formal argument of the
function.

The intuitions and terminology about the G predicate was already introduced in Chapter 5.
However we have to adjust the definitions to the setting of λCS as this system features mutually
recursive datatypes and mutually recursive definitions. Let us illustrate the problems introduced
by mutually recursive datatypes with a small example.

Example 8.4.1 Assume we have A,B ∈ D with C(A) = {k, a}, C(B) = {b} and

DA(k) = A DB(b) = A→B

DA(a) = B→A

Further assume

funi ≡ letreci (f1 = λx. case x of {k⇒ k | a⇒ λx′.f2 (b (ax′))}
f2 = λy. case y of {b⇒ λy′.f1 (a (b y′))}

)

The term funi is well-typed by the typing rules of Figure 8.4.

According to the definition of the guard predicate given in Chapter 5, as both f1 and f2 do not
occur in the body of its definition, apparently funi seams to be well-defined. However, it is easy
to see that a term like fun2 (b z) has infinite rewritings

fun2 (b z) �βιµ (λy.case y of {b⇒ λy′.f1 (a (b y′))})[f1 := fun1, f2 := fun2] (b z)
�βιµ fun1 (a (b z))
�βιµ (λx.case x of {k⇒ k | a⇒ λx′.f2 (b(ax′))})[f1 := fun1, f2 := fun2] (a (b z))
�βιµ fun2 (b (a (b z)))
�βιµ . . .

8.4 Strong Normalization 107

Obviously, this happens because of the mutually recursive datatypes and the definitions of Chapter
5 do not apply in these cases.

Let us focus on the mutually recursive definitions and on the syntactical condition G they
must satisfy. The motivation of this syntactic condition is to ensure that each expansion of letrec-
expressions consumes (at least) the constructor in the head of its argument. Informally, for a
term letreck(f1 = e1, . . . , fn = en) one should have that each fi may occur only as the head of an
application and, in this case, fi must be applied to a recursive component of the formal argument.
Note that these constraints to the occurrence of each fi concern every ej , for j = 1..n, and not only
ei. As we have mutual recursive datatypes the notion of recursive component has to be reviewed.

Definition 8.4.2 Let c be a constructor such that Dd(c) = ∀ ~α.~σ→d ~α. We say that the number
j corresponds to a recursive position of Dd(c), written RP(j,Dd(c)), if σj is of the form ~γ→ d′~α

where str(d′) = str(d).

Therefore, z is a recursive component of x if z is a component of x whose type has an occurrence
of some of the types mutually dependent to the type of x.

The predicate G is now defined as follows.

Definition 8.4.3 (G predicate) Let U,F ⊆ VE with U ∩ F = ∅, let x be variable not in U ∪ F
and let a ∈ Ecs. The predicate GxF (U, a) is derivable using the rules in Figure 8.5.

The typing rule for letreck(f1 = e1, . . . , fn = en) is now restricted with a set of syntactical
conditions GxiF (∅, ai) for i = 1..n, with F ≡ {f1, . . . , fn} and ei ≡ λxi.ai. The system with this
guarded-by-destructors recursion is denoted by λGCS. The new typing rule for letrec-expressions is
defined in Figure 8.6.

It is easy to check that the term funi of Example 8.4.1 is not typable with this new (rec) rule.

Example 8.4.4 For funi to be typable in λGCS one has to be able to derive

Gx{f1,f2}(∅, case x of {k⇒ k | a⇒ λx′.f2 (b (ax′))}) and
Gy{f1,f2}(∅, case y of {b⇒ λy′.f1 (a (b y′))})

and that is impossible. For instance, to derive Gy{f1,f2}(∅, case y of {b⇒ λy′.f1 (a (b y′))}), as one
can only use rule 8, one has to derive Gy{f1,f2}({y

′}, λy′.f1 (a (b y′))), and this can only follow, by
rule 2, from Gy{f1,f2}({y

′}, f1 (a (b y′))) which is impossible to derive because: we cannot use rule
6 since a 6∈ {y′} and if we use rule 5 we have to prove Gy{f1,f2}({y

′}, f1) which is impossible.

Let us illustrate the guarded-by-destructors mechanism with mutual recursive datatypes with
the example of addition for odd/even numbers.

Example 8.4.5 Assume the following definition of addition for even and odd numbers.

addi ≡ letreci (f1 = λx.λy. case x of {s⇒ λn. s (f2 n y)}
f2 = λx.λy. case x of {o⇒ y | s⇒ λn. s (f1 n y)}

)

The recursive calls are guarded-by-destructors in this definition. Let us show the derivation of

108 Chapter 8: The Core Calculus λCS

1.
y 6∈ F
GxF (U, y)

if y is a variable

2.
GxF (U, a)

GxF (U, λz.a)

3.
GxF (U, ei) (1 ≤ i ≤ n)

GxF (U, letrecj(g1 = e1, . . . , gn = en))

4.
GxF (U, c)

5.
GxF (U, a) GxF (U, b)

GxF (U, a b)

6.
GxF (U, z ~a)

GxF (U, f (z ~a))
if f ∈ F ∧ z ∈ U

7.
GxF (U, e) GxF (U, bi) (1 ≤ i ≤ n)

GxF (U, case e of {c1 ⇒ b1 | . . . | cn ⇒ bn})
if

e 6≡ z ~a
∨

(e ≡ z ~a ∧ z 6∈ U ∪ {x})

8.
GxF (U, aj) (1 ≤ j ≤ m) GxF (Vi, ei) (1 ≤ i ≤ n)

GxF (U, case (z a1 . . . am) of {c1 ⇒ b1 | . . . | cn ⇒ bn})

if

z ∈ U ∪ {x}
bi ≡ λy1. . . . λyar(ci). ei
Vi ≡ U ∪ { yj | RP(j,Dd(ci)) for 1 ≤ j ≤ ar(ci)}

Figure 8.5: Guarded-by-destructors rules for λCS

(rec)
Γ, f1 : τ1, . . . , fn : τn ` ei : τi GxiF (∅, ai) (1 ≤ i ≤ n)

Γ ` letrecj(f1 = e1, . . . , fn = en) : σj
if

{
F ≡ {f1, . . . , fn}
ei ≡ λxi.ai

Figure 8.6: Typing rule for letrec-expressions in λGCS

8.4 Strong Normalization 109

Gx{f1,f2}(∅, λy. case x of {s⇒ λn. s (f2 n y)}).

x 6∈ {f1, f2}
Gx{f1,f2}(∅, x)

1

s 6∈ {f1, f2}
Gx{f1,f2}({n}, s)

1

n 6∈ {f1, f2}
Gx{f1,f2}({n}, n)

1

Gx{f1,f2}({n}, f2 n)
6

y 6∈ {f1, f2}
Gx{f1,f2}({n}, y)

1

Gx{f1,f2}({n}, f2 n y)
5

Gx{f1,f2}({n}, s (f2 n y))
5

Gx{f1,f2}(∅, case x of {s⇒ λn. s (f2 n y)}) 8

Gx{f1,f2}(∅, λy. case x of {s⇒ λn. s (f2 n y)}) 2

The derivation of Gx{f1,f2}(∅, λy. case x of {o⇒ y | s⇒ λn. s (f1 n y))} is very similar to this one.

8.4.2 Type-Based Termination

In a system featuring constructor subtyping and mutual recursive datatypes, strong normalization
can be ensured by typing, following what was done in Chapter 3 for λ̂ . Of course the type system
of λCS introduced in sections 8.1 is not expressive enough. One needs to enrich λCS with stages
and to adapt some definitions and the typing rules to this new feature.

In this subsection we sketch the system λ
ĈS

, a simply typed λ-calculus featuring constructor
subtyping, parameterized mutual inductively defined types finitely iterated and type-based termi-
nation of recursive definitions. The terms allowed in λ

ĈS
are the same as those allowed in λCS. At

level of types λ
ĈS

and λCS differ in the following aspects:

1. Stages are now present in λ
ĈS

and its set of types is exactly the same of λ̂ (see Definition
3.3.1).

2. λ
ĈS

the subtyping relation on types is generated structurally from the partial order vD on
datatypes and the comparison relation on stages 4 (see Figure 3.2). The subtyping rule for
datatypes is now

(data)
d1 vD d2 s 4 r σi ≤ τi (1 ≤ i ≤ ar(d1))

ds1 ~σ ≤ dr2 ~τ

3. The notion of constructor scheme is the same as the one given for λ̂ (see Definition 3.3.4),
but constructor declarations for λ

ĈS
have to contemplate mutual recursive datatypes (see

Definition 8.4.6).

4. The notion of instance and domain of constructor in λ
ĈS

have to be adapted to the presence
of stages (see Definition 8.4.7).

5. The set of typing rules of λ
ĈS

is different (see Definition 8.4.9).

Let us focus on the definitions of constructor declaration and of instance and domain of a
constructor in λ

ĈS
.

Definition 8.4.6 (Constructor declaration) For every d ∈ D , there is a map Dd : C(d)→CS
such that, for every c ∈ C(d),

Dd(c) = ∀ ~α.∀ ı. ~σ→dı̂~α

where:

110 Chapter 8: The Core Calculus λCS

1. #~α = ar(d) and #~σ = ar(c);

2. d1 occ Dd(c) implies str(d1) ≤ str(d);

3. each σi is strictly positive w.r.t. d1, whenever str(d1) = str(d);

4. each σi is positive w.r.t. αj;

5. every occurrence of d1 in σi is of the form dı1~α, whenever str(d1) = str(d);

6. every occurrence of ı in σi is of the form dı1~α, whenever str(d1) = str(d).

Moreover, the following condition holds:

str(d1) = str(d2) iff ∃ c1 ∈ C(d1).∃ c2 ∈ C(d2). d2 occ Dd1(c1) ∧ d1 occ Dd2(c2)

Definition 8.4.7 (Instance and domain) Let d ∈ D, c ∈ C(d), s ∈ S and ~τ ∈ T such that
#~τ = ar(d). Assume Dd(c) = ∀ ~α.∀ ı. ~σ→ dı̂~α. An instance of c w.r.t. d, s and ~τ is defined as
follows

Insts,~τd (c) = ~σ[ı := s][~α := ~τ]→dŝ~τ

A domain of c w.r.t. d, s and ~τ is defined as follows

Doms,~τ
d (c) = ~σ[ı := s][~α := ~τ]

Observe that these definitions are almost identical to the ones for λCS, the only difference is the
presence of stages. The notion of strict overloading in λ

ĈS
is defined as follows.

Definition 8.4.8 (Strict overloading) A constructor c ∈ C is strictly overloaded if for every
d, d′ ∈ D such that c ∈ C(d) ∩ C(d′), one has

d vD d′ ⇒ Domı,~α
d (c) ≤ Domı,~α

d′ (c) with #~α = ar(d)

As expected we assume we have a valid family of constructor declarations, i.e., where every
constructor is strictly overloaded. We now present the typing system.

Definition 8.4.9 (Typing) A typing judgment Γ ` e : σ is derivable if it can be inferred from
the rules of Figure 8.7 where the positivity condition ı pos σ in the (rec) rule is defined in Figure
3.5.

8.5 Type Checking

Decidability of type checking is the property to decide whether or not a typing judgment is
derivable according to a type system. It is a fundamental property of a type system considering that
program correctness in a typed programming language and proof-checking in a proof-development
system are often reduced to type checking itself. Type inference is the problem of inferring a most
general type (if existing) to a term in a given context. In the presence of subtyping, most general
means minimal with respect to the subtyping relation.

8.5 Type Checking 111

(var)
Γ ` x : σ

if (x : σ) ∈ Γ

(abs)
Γ, x : τ ` e : σ

Γ ` λx. e : τ→σ

(app) Γ ` e : τ→σ Γ ` e′ : τ
Γ ` e e′ : σ

(cons)
Γ ` c : Insts,~τd (c)

if c ∈ C(d)

(case)
Γ ` e′ : dŝ~τ Γ ` ei : Doms,~τ

d (ci)→θ (1 ≤ i ≤ n)

Γ ` case e′ of {c1 ⇒ e1 | . . . | cn ⇒ en} : θ
if C(d) = {c1, . . . , cn}

(rec)
Γ, f1 : dı1 ~τ1→θ1, . . . , fn : dın ~τn→θn ` ei : dı̂j ~τj→θj [ı := ı̂] ı pos θj (1 ≤ j ≤ n)

Γi ` (letreck(f1 = e1, . . . , fn = en)) : dsk ~τk→θk[ı := s]
if ı not in Γ, ~τ1, . . . , ~τn, and 1 ≤ k ≤ n

(sub) Γ ` e : σ σ ≤ σ′

Γ ` e : σ′

Figure 8.7: Typing rules for λ
ĈS

112 Chapter 8: The Core Calculus λCS

8.5.1 Motivation and Difficulties

Type inference and type checking are related problems. In the presence of minimal types, the
type checking algorithm can be decomposed into: a type-inference algorithm to compute, if it
exists, the minimal type of a term in a given context; and a subtype-checking algorithm to decide
whether the minimal type is a subtype of the type given. Both type inference and type checking
are complicated problems for λCS because this system does not satisfy the minimal type property.

The non-existence of minimal types in λCS is essentially due to two reasons: the overloading
of constructors and the subtyping relation. We illustrate the problems caused by the overloading
of constructors with the following examples.

Example 8.5.1 Remember the definition of even, odd and natural numbers given in Example
8.1.18. In λCS a constructor is a term by itself. How do we give a minimal type to s ?

`λCS
s : ?

Even→Odd

Odd→Even

Nat→Nat

There are three minimal types for s1, but there is no common lower type for these three types.
Forcing constructors to be fully applied does not solve this problem

`λCS
λx. sx : ?

Apparently one should not have this problem if the variables had type annotations, but even
in a λCS à la Church, one has to impose some restrictions in order to have minimal types.

Example 8.5.2 Assume one has another datatype A ∈ D, C(A) = {s} and DA(s) = Nat→A. But
A and Nat are not related by vD.

`λCS
λx :Nat. sx : ?

{
Nat→A

Nat→Nat

There is no common lower type for {Nat→A,Nat→Nat}.

A solution to this problem is to require constructors to be regular. This notion already appears
in [68, 21]. A constructor c is regular if for every d such that c ∈ C(d)

{ d′ ∈ D | Dom~α
d (c) ≤ Dom~α

d′(c) } has a minimum.

For instance, when the constructor s is just associated to Even/Odd/Nat datatypes, s is a regular
datatype since the sets {Nat}, {Even,Nat} and {Odd,Nat} all have minimums. However, with the
declaration of datatype A in Example 8.5.2 the constructor s is not regular anymore because the
set {Nat,A} has no minimum.

To achieve the goal of having minimal types, we still have a problem and this problem is related
to the subtyping relation of λCS.

Example 8.5.3 Assume one has B1,B2,Z,W ∈ D which implement the following enumerated
sets: B1 = {b1},B2 = {b2},Z = {z, b1, b2} and W = {w, b1, b2}. The subtyping relation between

1Note that the other possible types for s are Odd→Nat and Even→Nat, which are bigger.

8.5 Type Checking 113

these datatypes is illustrated in the following diagram:

Z

BBBBBBBB W

||||||||

B1 B2

What is the minimal type for the following case-expression ?

a : Nat `λCS
caseNat a of {o⇒ b1 | s⇒ λx :Nat.b2} : ?

{
Z

W
(8.4)

Types B1 and B2 have two upper bounds, but no least upper bound.

A possible way to solve this problem is to force vD to be a lattice, but this is too limited.
For instance, it would exclude the Odd/Even datatypes. Another way to fix this problem is to tag
case-expressions with their types

a : Nat `λCS
caseZ

Nat a of {o⇒ b1 | s⇒ λx :Nat.b2} : Z

Remark 8.5.4 In λCS à la Church, with constructors fully applied, tagged case-expressions and
regular constructors one has minimal types. A formal proof of this statement is in [23]. It is
possible to define a function MinΓ(e) which computes, when it exists the minimal type of a term e

in context Γ, i.e.,
Γ ` e : τ ⇒ MinΓ(e) ≤ τ

However, in λCS terms do not have any sort of type annotation and constructors are not
required to be regular. Nevertheless, we still want to answer the question:

How can one decide whether a typing judgment Γ ` e : τ is derivable in λCS ?

To overcome the problem of the non-existence of minimal types we describe all possible types
of a term by a set of type schemes together with a set of subtyping constraints.

Given a term e, our strategy to identify all possible typings for e relies on the following steps.
First of all, in order to disambiguate the overloading, constructors and case-expressions of e are
tagged with their datatypes in all possible ways, producing the set an(e) of annotated terms built
from e. The type system based on λCS, in which constructors and case-expressions are decorated
with their datatypes is denoted by λa

CS.
Secondly, for each term e′ ∈ an(e) one computes the most general typing for e′. Even with

the issue of overloading solved by the datatype tags, one cannot represent the set of all possible
types of a λa

CS-term by a single type alone, because one cannot guarantee the existence of least
upper bounds in the subtyping order. To address this problem we use constrained types. A
constrained type is a type scheme together with a set of subtyping constraints. The existence of
least upper bounds and greatest lower bounds is no longer required. For example, case-expression
(8.4), where the types of b1 and b2 have two upper bounds, Z and W, but no least upper bound,
can now be assigned the type α together with the set of constraints {B1 ≤ α,B2 ≤ α}, stating
that the expression (8.4) has any type which has both B1 and B2 as subtypes. The most general
typing for e′ will be of the form C ′ |Γ′ `λac

CS
e′ : τ ′ where C ′ is a set of subtyping constraints. We

call λac
CS to the type system based on λa

CS where the typing judgments are enriched with subtyping
constraints. The algorithm we define to infer such a typing judgment (the most general typing)
for e is strongly inspired by the algorithm of Mitchell for type inference with subtyping [109, 78].

114 Chapter 8: The Core Calculus λCS

Constraints sets can be seen as a flexible form of bounded universal quantification. Constraints
restrict the set of types over which the type variables in a type scheme range. Constraints can
even restrict type variables to range over the empty set of types. This happens when there is no
solution to the set of constraints and it should be treated as a type error.

Finally, to check if a judgment Γ `λa
CS
e : τ is derivable, one has to match the most general

typing for e in λac
CS (excluding the set of constraints) against the given judgment and then test if

the resulting set of constraints is satisfiable.
Summarizing, our claim is that Γ `λCS

e : τ is derivable if and only if there is an annotated
term e′ ∈ an(e) for which Γ `λa

CS
e′ : τ is derivable. As the set of annotated terms an(e) is finite, if

type-checking is decidable for λa
CS, we have a decision procedure. Our type checking algorithm for

λCS (and all the subsidiary algorithms involved) is described at great length in the next subsections
and has been implemented in Haskell2. Before addressing the problem of type-checking for λCS

we give a formal description of the systems λa
CS and λac

CS and we present some of its properties.

8.5.2 The System λa
CS

Here we present system λa
CS, a system very similar to λCS. The main difference is that, in order to

disambiguate the overloading, constructors and case-expressions come annotated with a datatype
identifier. The set of T a

cs of types of λa
CS is equal to Tcs.

Definition 8.5.5 (Expressions) The set Ea
cs of expressions of λa

CS is given by the abstract syn-
tax:

a, b ::= x | λx.a | a b | cd | cased a of {c1 ⇒ b1 | . . . | cn ⇒ bn} | letrecj(f1 = e1, . . . , fn = en)

where: in the fourth clause it is assumed that c ∈ C(d), in the fifth clause it is assumed that
C(d) = {c1, . . . , cn}, and in the last clause 1 ≤ j ≤ n.

The typing system of λa
CS just differs from the one for λCS in the typing rules for constructors

and case-expressions. Here, we have

(cons)
Γ `λa

CS
cd : Inst~τd(c)

(case)
Γ `λa

CS
a : d~τ Γ `λa

CS
bi : Dom~τ

d(ci)→σ (1 ≤ i ≤ n)

Γ `λa
CS

cased a of {c1 ⇒ b1 | . . . | cn ⇒ bn} : σ

Definition 8.5.6 (Annotated terms) The set of annotated variants of a term is given by the
mapping an : Ecs→P(Ea

cs) defined as follows:

an(x) = {x}
an(c) = {cd | c ∈ C(d)}

an(a b) = {a′ b′ | a′ ∈ an(a) ∧ b′ ∈ an(b)}
an(λx.a′) = {λx.a′ | a′ ∈ an(a)}

an(case a of {~c⇒ ~b}) = {cased a
′ of {~c⇒ ~b′} | a′ ∈ an(a) ∧ b′i ∈ an(bi) ∧ C(d) = ~c}

an(letrecj(~f = ~e)) = {letrecj(~f = ~e′) | e′i ∈ an(ei)}

2http://www.di.uminho.pt/∼mjf/CS/

8.5 Type Checking 115

Example 8.5.7 Recall the definition of Odd/Even/Nat and List/NeList of examples 8.1.18 and
8.1.19. We have:

an(sx) = {sOdd x, sEven x, sNat x}
an(s o) = {sOdd oEven, sEven oEven, sNat oEven, sOdd oNat, sEven oNat, sNat oNat}
an(λf.λx.f (f x)) = {λf.λx.f (f x)}
an(λx.case x of {cons⇒ λh.λt. sh}) = {λx.caseNeList x of {cons⇒ λh.λt. sNat h},
λx.caseNeList x of {cons⇒ λh.λt. sOdd h}, λx.caseNeList x of {cons⇒ λh.λt. sEven h}}

Lemma 8.5.8 For any e ∈ Ecs, the set an(e) is finite.

Proof. It is an immediate consequence of the fact that every term of Ecs is finite and the set of
datatypes D is also finite. 2

Definition 8.5.9 (Erasure) The erasure function er : Ea
cs→Ecs is defined inductively as follows:

er(x) = x

er(cd) = c

er(a b) = er(a) er(b)
er(λx.a) = λx.er(a)

er(cased a of {~c⇒ ~b}) = case er(a) of {~c⇒ er(~b)}
er(letrecj(~f = ~e)) = letrecj(~f = er(~e))

Lemma 8.5.10 If a ∈ Ecs and a′ ∈ an(a), then er(a′) = a.

Proof. By induction on the structure of a. 2

Lemma 8.5.11 If Γ `λa
CS
a : τ then, Γ `λCS

er(a) : τ .

Proof. By induction on the derivation of Γ `λa
CS
a : τ . 2

Lemma 8.5.12 Γ `λCS
e : τ iff ∃ e′ ∈ an(e). Γ `λa

CS
e′ : τ .

Proof.

⇒) By induction on the derivation of Γ `λCS
e : τ .

⇐) Follows from lemmas 8.5.11 and 8.5.10.

2

Although the problem of overloading has been solved in λa
CS, this system does not enjoy the

minimal type property and, consequently, not every typable λa
CS-term has a most general typing.

Example 8.5.13 Under the assumptions of Example 8.5.3 one has two different typings for the
same case-expression but no most general typing:

y : Even `λa
CS

caseEven y of {o⇒ b1B1 | s⇒ λx.b2B2} : Z

y : Even `λa
CS

caseEven y of {o⇒ b1B1 | s⇒ λx.b2B2} : W

We remedy this situation in λac
CS, adding subtyping constraints to the type judgments. Alter-

native typings will then be constructed from most general typings using substitution and a proof
system for subtypes.

116 Chapter 8: The Core Calculus λCS

8.5.3 The System λac
CS

Here we present a type system and a typing algorithm which adapts the subtyping ideas of [109, 78]
to the subtyping relation of λCS. One has a fixed set of type constructors, D ∪ {→}, and a
partial order on D. The subtyping relation is generated structurally from the partial order vD on
datatypes and this partial order is also structural because d vD d′ implies ar(d) = ar(d′). So, we
work with what is it usually named atomic subtyping.

λac
CS is an extension of λa

CS in which the typing judgments are enriched with a set C of subtyping
constraints. We restrict C to consist only of atomic subtyping assertions. Regarding the nature of
the subtyping relation involved, we divide C in two sets (∆,Θ): ∆ is a finite set of atomic subtype
assertions, and Θ is a finite set of datatype inequalities. Let us introduce the system λac

CS formally.

Types and Subtyping

We assume now given a denumerable set VD of datatype variables. Let us partition VD into disjoint
infinite sets V0

D,V1
D, . . . , each VnD, with n ∈ N, representing the set of datatype variables of arity

n. We adopt the naming conventions that δ, δ′, δi, . . . range over VD, and d, d′, di, . . . ∈ VD ∪ D.
A type expression is either a type variable, a function type expression or a datatype expression.

We have T a
cs ⊆ T ac

cs .

Definition 8.5.14 (Types) The set T ac
cs of types is given by the abstract syntax:

σ, τ ::= α | σ → τ | d~τ

where in the last clause, it is assumed that the length of ~τ is exactly ar(d).

Definition 8.5.15 The sets of free type variables and of free datatype variables of a type τ ,
denoted by FTV(τ) and FDV(τ), respectively, are defined by induction on the structure of τ as
follows:

FTV(α) = {α} FDV(α) = ∅
FTV(σ1→σ2) = FTV(σ1) ∪ FTV(σ2) FDV(σ1→σ2) = FDV(σ1) ∪ FDV(σ2)
FTV(d~τ) =

⋃
i=1..#~τ FTV(τi) FDV(d~τ) =

⋃
i=1..#~τ FDV(τi)

FDV(δ ~τ) = {δ} ∪
(⋃

i=1..#~τ FDV(τi)
)

We now turn to subtyping. The subtyping relation over T ac
cs is generated structurally from the

order on D.

Definition 8.5.16 (Subtyping)

1. A subtype assertion has the form σ ≤ τ , where σ and τ are types. We say that a subtype
assertion σ ≤ τ is atomic if both of σ and τ are type variables.

2. A datatype inequality has the form d v d′ where d, d′ ∈ VD ∪ D and ar(d) = ar(d′). Let Θ
be a finite set of datatype inequalities; d v d′ is provable from Θ, written Θ ` d v d′, if it
can be inferred from the rules of Figure 8.8.

3. A subtype context is a pair (∆,Θ), where ∆ is a finite set of atomic subtype assertions and
Θ is a finite set of datatype inequalities.

4. A subtype assertion σ ≤ τ is provable from a subtype context (∆,Θ), written (∆,Θ) ` σ ≤ τ ,
if it can be inferred from the rules of Figure 8.9. We write (∆,Θ) ` (∆′,Θ′) if (∆,Θ) ` σ ≤ τ
for every σ ≤ τ ∈ ∆′ and Θ ` d v d′ for every d v d′ ∈ Θ′. Furthermore, we write ` σ ≤ τ
as an abbreviation of (∅, ∅) ` σ ≤ τ .

8.5 Type Checking 117

(ax1)
d1 vD d2

Θ ` d1 v d2

(ax2) d v d′ ∈ Θ
Θ ` d v d′

(refl)
Θ ` d v d

(trans)
Θ ` d1 v d2 Θ ` d2 v d3

Θ ` d1 v d3

Figure 8.8: Rules for v

(data)
Θ ` d v d′ (∆,Θ) ` τi ≤ τ ′i (1 ≤ i ≤ ar(d))

(∆,Θ) ` d~τ ≤ d′ ~τ ′

(ax) σ ≤ τ ∈ ∆
(∆,Θ) ` σ ≤ τ

(trans)
(∆,Θ) ` σ ≤ σ′ (∆,Θ) ` σ′ ≤ σ′′

(∆,Θ) ` σ ≤ σ′′

(refl)
(∆,Θ) ` σ ≤ σ

(func)
(∆,Θ) ` σ′ ≤ σ (∆,Θ) ` τ ≤ τ ′

(∆,Θ) ` σ → τ ≤ σ′ → τ ′

Figure 8.9: Subtyping rules for λac
CS

Lemma 8.5.17 If (∆,Θ) ` (∆′,Θ′) and (∆′,Θ′) ` (∆′′,Θ′′), then (∆,Θ) ` (∆′′,Θ′′).

Proof. For each d v d′ in Θ′′, there exists by the second hypothesis a derivation of Θ′ ` d v d′.

Now, it suffices to replace each use of rule (ax2)
d1 v d2 ∈ Θ′

Θ′ ` d1 v d2

in this derivation by a derivation

of Θ ` d1 v d2, which must exist by the first hypothesis. For the assertions of ∆′′ a similar sort
of construction may be used. 2

Expressions and Typing

We conclude the definition of λac
CS by defining its expressions and providing them with a typing

system. The set Eac
cs of expressions of λac

CS is equal to Ea
cs.

Definition 8.5.18 (Typing)

1. A variable context Γ is a finite set of assumptions x1 : τ1, . . . , xn : τn such that the xis are
pairwise distinct elements of VT and τi ∈ T ac

cs . Define dom(Γ) = {x1, . . . , xn}.

2. A typing judgment is a quadruple of the form (∆,Θ) |Γ `λac
CS
a : τ , where (∆,Θ) is a subtype

context, Γ is a variable context, a ∈ Eac
cs and τ ∈ T ac

cs .

3. A typing judgment is derivable if it can be inferred from the rules of Figure 8.10.

4. A a ∈ Eac
cs is typable if (∆,Θ) |Γ `λac

CS
a : σ for some ∆,Θ,Γ and σ.

118 Chapter 8: The Core Calculus λCS

(var)
(∆,Θ) |Γ `λac

CS
x : τ

if (x : τ) ∈ Γ

(abs)
(∆,Θ) |Γ, x : τ `λac

CS
e : σ

(∆,Θ) |Γ `λac
CS
λx.e : τ→σ

(app)
(∆,Θ) |Γ `λac

CS
e : τ→σ (∆,Θ) |Γ `λac

CS
e′ : τ

(∆,Θ) |Γ `λac
CS
e e′ : σ

(cons)
(∆,Θ) |Γ `λac

CS
cd : Inst~τd(c)

(case)
(∆,Θ) |Γ `λac

CS
a : d~τ (∆,Θ) |Γ `λac

CS
bi : Dom~τ

d(c)→σ (1 ≤ i ≤ n)

(∆,Θ) |Γ `λac
CS

cased a of {c1 ⇒ b1 | . . . | cn ⇒ bn} : σ

(rec)
(∆,Θ) |Γ, f1 : τ1, . . . , fn : τn `λac

CS
ei : τi (1 ≤ i ≤ n)

(∆,Θ) |Γ `λac
CS

letrecj(f1 = e1, . . . , fn = en) : τj

(sub)
(∆,Θ) |Γ `λac

CS
e : τ (∆,Θ) ` τ ≤ σ

(∆,Θ) |Γ `λac
CS
e : σ

Figure 8.10: Typing rules for λac
CS

8.5 Type Checking 119

Substitutions

The type expressions of λac
CS involve two sorts of variables: type variables and datatype variables.

It is therefore natural that substitutions for types are a combination of two functions.

Definition 8.5.19 (Substitutions)

1. A type substitution is a function from VT to T ac
cs . We write [α1 := σ1, . . . , αn := σn] for

the substitution mapping αi to σi for 1 ≤ i ≤ n, and mapping every other type variable to
itself. If σ is a type expression and ST is a substitution, then ST (σ) is the type expression
obtained by replacing each variable α in σ with ST (α).

2. A datatype substitution is a function from VD to D ∪ VD, that respects the arity of the
datatype variables3. We write [δ1 := d1, . . . , δn := dn] for the datatype substitution mapping
δi to di for 1 ≤ i ≤ n, and mapping every other datatype variable to itself. If σ is a type
expression and SD is a datatype substitution, then SD(σ) is the type expression obtained by
replacing each datatype variable δ in σ with SD(δ).

3. A substitution is a pair (ST , SD), where ST is a type substitution and SD is a datatype
substitution. If σ is a type expression and S a substitution, then S(σ) is the type expression
ST (SD(σ)).

4. The composition S ◦R of substitutions S and R is defined by (S ◦R)(σ) = S(R(σ)).

5. Let S = (ST , SD) be a substitution, δ ∈ VD, Γ a set of variable assumptions, ∆ a set of
subtype assertions and Θ a set of datatype inequalities. We define:

S(δ) = SD(δ)
S(Γ) = {x : S(σ) | x : σ ∈ Γ}
S(∆) = {S(τ) ≤ S(σ) | τ ≤ σ ∈ ∆}
S(Θ) = {S(d) v S(d′) | d v d′ ∈ Θ}

6. The support of a substitution S, written Supp(S), is the set of variables not mapped to
themselves by S, i.e.,

Supp(S) = ({α ∈ VT | S(α) 6= α}, {δ ∈ VD | S(δ) 6= δ})

7. Let V be a set of type variables. A substitution S preserves V when, for every α ∈ V one
has S(α) = α.

8. Let VT be a set of type variables and let VD be a set of datatype variables. A substitution S

chooses variables freely on (VT , VD) if

(a) for each α ∈ VT no type variable and no datatype variable appears twice in S(α);

(b) for distinct α, α′ ∈ VT , no type variable and no datatype variable in S(α) appears in
S(α′):

(c) for distinct δ, δ′ ∈ VD, no datatype variable in S(δ) appears in S(δ′);

(d) for any α ∈ VT and δ ∈ VD, no datatype variable in S(α) occurs in S(δ).

9. A substitution S is simple if ∀α ∈ Supp(S). S(α) ∈ VT .

3If ds : VD→D ∪ VD is a datatype substitution then ar(ds(δ)) = ar(δ) for every δ ∈ VD.

120 Chapter 8: The Core Calculus λCS

10. Let V be a set of datatype variables. G is a ground datatype substitution for V if for every
δ ∈ V , G(δ) ∈ D.

11. Let S and R be substitutions, VT a set of type variables, and VD a set of datatype variables.
We write S =(VT ,VD) R if the substitutions S and R agree on all variables from (VT , VD).

Lemma 8.5.20 Assume substitution S chooses variables freely in (VT , VD) and R chooses vari-
ables freely on (A ∪ VT , B ∪ VD), where

A =
⋃
α∈VT FTV(S(α))

B =
⋃
α∈VT FDV(S(α)) ∪

⋃
δ∈VD FDV(S(δ))

Then R ◦ S chooses variables freely on (VT , VD).

Proof. The proof is straightforward from the definition. 2

We now show how to factorize any substitution into the composition of one that chooses vari-
ables freely and one that replaces the freely-chosen variables to produce the original substitution.

Lemma 8.5.21 Let A be a set of type variables, S a substitution (preserving A), VT a set of type
variables and VD be a set of datatype variables, such that there are infinitely many type variables
not in VT ∪ A and there are infinitely many datatype variables of any arity not in VD. There
are substitutions S1 and S2 such that S1 and S2 are computable, S1 chooses variables freely on
(VT , VD) (and preserves A), substitution S2 is simple, and S =(VT ,VD) S2 ◦ S1. Furthermore, if
S =(VT ,VD) T2 ◦ T1 for some simple substitution T2, then there exists a simple substitution R with
T1 =(VT ,VD) R ◦ S1.

Proof. The proof is similar to that of [109] and is omitted here. 2

Matching, Instances and Most General Typings

An instance of a typing statement (∆,Θ) |Γ `λac
CS
e : σ may be obtained by applying a substitution

S to all of its type expressions, and possibly choosing a “stronger” subtyping hypothesis or type
assignment. However, (S(∆), S(Θ)) may contain subtype assertions that are not atomic, and
consequently it is not a well-formed subtype context. Thus, in our definition of instance we use
a “minimal” atomic sets S • (∆,Θ) that implies (S(∆), S(Θ)), such that any atomic sets (∆′,Θ′)
that implies (S(∆), S(Θ)) also implies S • (∆,Θ). In order to define this operation •, we begin by
showing that a subtype context can only imply matching subtype assertions σ ≤ τ , where σ and
τ have the same “shape”.

Definition 8.5.22 (Matching) We define the matching relation on types by

1. α matches α′, if α, α′ ∈ VT ;

2. d~τ matches d′~σ, if ar(d) = ar(d′), and τi matches σi for 1 ≤ i ≤ ar(d);

3. σ → τ matches σ′ → τ ′, if σ matches σ′ and τ matches τ ′.

Lemma 8.5.23 Let (∆,Θ) be a subtype context. Then

1. If (∆,Θ) ` σ ≤ τ , then σ matches τ .

8.5 Type Checking 121

2. (∆,Θ) ` σ1 → σ2 ≤ τ1 → τ2 iff (∆,Θ) ` τ1 ≤ σ1 and (∆,Θ) ` σ2 ≤ τ2.

3. (∆,Θ) ` d1~σ ≤ d2~τ iff Θ ` d1 v d2 and (∆,Θ) ` σi ≤ τi for 1 ≤ i ≤ ar(d1).

Proof.

1. By induction on the derivation of (∆,Θ) ` σ ≤ τ

2. ⇒) By induction on the derivation of (∆,Θ) ` σ1 → σ2 ≤ τ1 → τ2. ⇐) Trivial.

3. ⇒) By induction on the derivation of (∆,Θ) ` d1~σ ≤ d2~τ . ⇐) Trivial.

2

Definition 8.5.24 For any matching types σ and τ , we now define the operations atomic(σ ≤ τ)
and dataIneq(σ ≤ τ) inductively as follows:

atomic(σ ≤ τ) = {σ ≤ τ} if σ ≤ τ is an atomic subtype assertion
atomic(σ1 → σ2 ≤ τ1 → τ2) = atomic(τ1 ≤ σ1) ∪ atomic(σ2 ≤ τ2)

atomic(d~τ ≤ d′~σ) =
⋃

1≤i≤ar(d) atomic(τi ≤ σi)

dataIneq(σ ≤ τ) = ∅ if σ ≤ τ is an atomic subtype assertion
dataIneq(σ1 → σ2 ≤ τ1 → τ2) = dataIneq(τ1 ≤ σ1) ∪ dataIneq(σ2 ≤ τ2)

dataIneq(d~τ ≤ d′~σ) = {d v d′} ∪
⋃

1≤i≤ar(d) dataIneq(τi ≤ σi)

Lemma 8.5.25 Let σ and τ be matching types. Then atomic(σ ≤ τ) is a set of atomic subtype
assertions, (atomic(σ ≤ τ), dataIneq(σ ≤ τ)) ` σ ≤ τ and for all subtype context (∆,Θ), if
(∆,Θ) ` σ ≤ τ then (∆,Θ) ` (atomic(σ ≤ τ), dataIneq(σ ≤ τ)).

Proof. By induction on the structure of σ ≤ τ . 2

Definition 8.5.26 (Matching substitution) We say that S is a matching substitution for a
set ∆ of possibly non-matching subtyping assertions, if for every σ ≤ τ ∈ ∆, S(σ) and S(τ) match.

For any S that is a matching substitution for a set ∆ of atomic subtyping assertions, we define
the action of S on (∆,Θ) by

S • (∆,Θ) =
(⋃
σ≤τ∈∆

atomic(S(σ) ≤ S(τ)) , S(Θ) ∪
⋃

σ≤τ∈∆

dataIneq(S(σ) ≤ S(τ)
)

The following lemma shows that this definition of • gives us precisely the desired behavior.

Lemma 8.5.27 If S is a matching substitution for a set ∆ of atomic subtyping assertions, then
all subtyping assertions in S • (∆,Θ) are atomic, S • (∆,Θ) ` (S(∆), S(Θ)), and for all subtype
context (∆′,Θ′), (∆′,Θ′) ` (S(∆), S(Θ)) implies (∆′,Θ′) ` S • (∆,Θ).

Proof. Follows from Lemma 8.5.25. 2

We now define the instance relation the same way as it was done in [58, 109].

Definition 8.5.28 (Instance) A typing statement (∆′,Θ′) |Γ′ `λac
CS

e : σ′ is an instance of
(∆,Θ) |Γ `λac

CS
e : σ by S if S is a matching substitution for ∆ and

(∆′,Θ′) ` S • (∆,Θ), S(Γ) ⊆ Γ′, and σ′ = S(σ)

122 Chapter 8: The Core Calculus λCS

Definition 8.5.29 (Most general typing) A judgment (∆,Θ) |Γ `λac
CS
e : σ is a most general

typing for e iff its instances are exactly the derivable typings for e.

We will prove that typing is closed under the instance relation. To this end, we need the
following lemma showing that adding subtype assertions or adding typing assumptions preserves
the provability of typing judgment.

Lemma 8.5.30 Suppose that (∆,Θ) |Γ `λac
CS
e : σ.

1. If (∆′,Θ′) ` (∆,Θ) and (∆′,Θ′) is atomic, then (∆′,Θ′) |Γ `λac
CS
e : σ.

2. If x ∈ FV(e), then x : τ ∈ Γ for some τ .

3. If x : τ ∈ Γ′ for every x : τ ∈ Γ with x ∈ FV(e), then (∆,Θ) |Γ′ `λac
CS
e : σ.

Proof. By induction on the length of the derivation of (∆,Θ) |Γ `λac
CS
e : σ. 2

We also need to show that the rules for deriving subtype assertions are closed under substitu-
tion.

Lemma 8.5.31 If (∆,Θ) is a subtype context such that (∆,Θ) ` σ ≤ τ , and S is a matching
substitution for ∆, then (S(∆), S(Θ)) ` S(σ) ≤ S(τ).

Proof. By induction on the derivation of (∆,Θ) ` σ ≤ τ . 2

We finally prove that every instance of a derivable typing is also derivable. We will make use
of this result to show that our type inference algorithm produce most general typings.

Theorem 8.5.32 Assume that (∆′,Θ′) |Γ′ `λac
CS
e : σ′ is an instance of (∆,Θ) |Γ `λac

CS
e : σ by

some substitution S. Then

(∆,Θ) |Γ `λac
CS
e : σ ⇒ (∆′,Θ′) |Γ′ `λac

CS
e : σ′

Proof. By Lemma 8.5.30, it is sufficient to show that S • (∆,Θ) |S(Γ) `λac
CS
e : S(σ), which is

proved by induction on the derivation of (∆,Θ) |Γ `λac
CS
e : σ.

• Assume the last step is:

(var)
(∆,Θ) |Γ `λac

CS
x : τ

with (x : τ) ∈ Γ

One has (x : S(τ)) ∈ S(Γ), hence S • (∆,Θ) |S(Γ) `λac
CS
x : S(τ) by (var).

• Assume the last step is:

(cons)
(∆,Θ) |Γ `λac

CS
cd : Inst~τd(c)

By definition, Inst~τd(c) has no datatype variables and the only type variables that may occur
in it are the ones occurring in ~τ . Therefore S(Inst~τd(c)) = Inst

S(~τ)
d (c). Hence we conclude by

(cons).

8.5 Type Checking 123

• Assume the last step is:

(abs)
(∆,Θ) |Γ, x : τ `λac

CS
e : σ

(∆,Θ) |Γ `λac
CS
λx.e : τ → σ

By induction hypothesis S • (∆,Θ) |S(Γ), x : S(τ) `λac
CS
a : S(σ). Moreover S(τ)→S(σ) =

S(τ→σ), so we may conclude by (abs).

• Assume the last step is:

(app)
(∆,Θ) |Γ `λac

CS
a : τ→σ (∆,Θ) |Γ `λac

CS
b : τ

(∆,Θ) |Γ `λac
CS
a b : σ

By induction hypothesis S•(∆,Θ) |S(Γ) `λac
CS
a : S(τ→σ) and S•(∆,Θ) |S(Γ) `λac

CS
b : S(τ).

Moreover S(τ→σ) = S(τ)→S(σ), so we may conclude by (app).

• Assume the last step is:

(case)
(∆,Θ) |Γ `λac

CS
a : d~τ (∆,Θ) |Γ `λac

CS
bi : Dom~τ

d(ci)→ σ (1 ≤ i ≤ n)

(∆,Θ) |Γ `λac
CS

cased a of {c1 ⇒ b1 | . . . | cn ⇒ bn} : σ

By induction hypothesis S • (∆,Θ) |S(Γ) `λac
CS
a : dS(~τ) and S • (∆,Θ) |S(Γ) `λac

CS
bi :

S(Dom~τ
d(ci))→S(σ) for 1 ≤ i ≤ n. Since Dom~τ

d(ci) has no datatype variables and the only
type variables that may occur in it are the ones occurring in ~τ , we have S(Dom~τ

d(ci)) =
Dom

S(~τ)
d (ci). Therefore, we can apply rule (case) to conclude.

• Assume the last step is:

(rec)
(∆,Θ) |Γ, f1 : τ1, . . . , fn : τn `λac

CS
ei : τi (1 ≤ i ≤ n)

(∆,Θ) |Γ `λac
CS

letrecj(f1 = e1, . . . , fn = en) : τj

By induction hypothesis S • (∆,Θ) |S(Γ), f1 : S(τ1), . . . , fn : S(τn) `λac
CS
ei : S(τi) for

1 ≤ i ≤ n. So, we conclude by (rec).

• Assume the last step is:

(sub)
(∆,Θ) |Γ `λac

CS
e : τ (∆,Θ) ` τ ≤ σ

(∆,Θ) |Γ `λac
CS
e : σ

By induction hypothesis S • (∆,Θ) |S(Γ) `λac
CS
e : S(τ). Using lemmas 8.5.27, 8.5.31 and

8.5.17, we have S•(∆,Θ) ` S(τ) ≤ S(σ). Hence, by rule (sub), one has S•(∆,Θ) |S(Γ) `λac
CS

e : S(σ).

2

Unification and Most General Matching Substitution

Unification is the act of making two types equal.

Definition 8.5.33 (Unifier)

124 Chapter 8: The Core Calculus λCS

1. A unifier is a substitution that makes two types syntactically equal. More generally, if E is a
set of pairs of types, then a substitution S unifies E if S(σ) = S(τ) for every pair 〈σ, τ〉 ∈ E.
Since such pairs may be regarded as a set of equations to be solved, we often write the pairs
〈σ, τ〉 ∈ E in the form σ = τ .

2. Let V be a set of type variables, and E be a set of equations. We say that S is a most general
unifier for E (preserving V), if S unifies E (and S preserves V), and for all substitutions
R that unify E (and preserves V), there exists a substitution U (preserving V) such that
R = U ◦ S.

In this section several algorithms are presented. In order to make the pseudo-code of these
algorithms more readable let us state some notational conventions. Algorithms are written in a
pattern-matching style. Whenever it is written A ∪ B in the formal argument of an algorithm
declaration, it is assumed that A ∩ B 6= ∅. It is also assumed that only non-empty sets match
A ∪ B. Although the matching of a set to a pattern is nondeterministic, this does not affect the
correctness of the algorithm. Algorithms are usually defined with the help of subsidiary algorithms
and these are assumed to fail if the desired result is not well defined. Moreover, if a subsidiary
algorithm fails the main algorithm terminates with an error.

The algorithm for unification presented is almost identical to the standard unification algorithm
by Robinson [129]. Our algorithm makes explicit the set V of type variables that are not allowed
to be modified. Although this feature is never used in the type inference algorithm for λac

CS, this
notion of unification preserving a set of type variables will be useful in the type-checking algorithm
for λCS (see Subsection 8.5.4) as we do no want the type variables that appear in the context to
be changed.

Essentially, the idea is to recursively decompose equations between compound types of the
same shape, substituting types for type variables when necessary and possible, since the type
variables cannot occur in the type and cannot belong to the set of variables one wants to preserve
(if it is not possible the algorithm fails). The algorithm also fails if it is asked to unify compound
types with different shapes.

Definition 8.5.34 The algorithm unify is defined in Figure 8.11; and unifyData is defined in
Figure 8.12. Moreover, we define unify(E) = unify(E, ∅).

Lemma 8.5.35 The algorithm unify takes a finite set E of equations between types and a finite
set V of type variables, and produces a most general unifier for E preserving V . If no unifier
preserving V exists for E, then unify(E, V) fails.

Proof. The proof is quite similar to that of [129]. 2

Using unification, we can find common substitution instances for our variable contexts. How-
ever these substitutions may not be matching for our subtype contexts. Therefore, we need to
be able to compute a “most general matching substitution” for this resulting set of possibly non-
matching subtype assertions.

Definition 8.5.36 (Most general matching substitution) Let V be a set of type variables
and ∆ a set of subtype assertions. S is a most general matching substitution for ∆ (preserving
V) if S a matching substitution for ∆ (preserving V); and every other matching substitution for
∆ (preserving V), R, may be obtained as a composition of S with some substitution U , R = U ◦S.

8.5 Type Checking 125

unify(∅, V) = (id, id)

unify(E ∪{σ = τ}, V) =
if σ = τ then unify(E, V)
else if τ ∈ VT − V then if τ nocc σ then let S = ([τ := σ], id)

in unify(S(E), V) ◦ S
else fail

else if σ ∈ VT − V then if σ nocc τ then let S = ([σ := τ], id)
in unify(S(E), V) ◦ S

else fail

else fail

unify(E ∪ {σ1 → σ2 = τ1 → τ2}, V) = unify(E ∪ {σ1 = τ1, σ2 = τ2}, V)

unify(E ∪ {d~σ = d′~τ}, V) = let S = (id, unifyData(d, d′))
in unify(S(E ∪ {σi = τi | 1 ≤ i ≤ ar(d)}), V) ◦ S

Figure 8.11: The algorithm unify

unifyData(d, d′) = if d = d′ then id

else if d ∈ Var(d′)
D then [d := d′]

else if d′ ∈ Var(d)
D then [d′ := d]

else fail

Figure 8.12: The algorithm unifyData

126 Chapter 8: The Core Calculus λCS

match (∆, V) =
let replace be a function that replaces each datatype constructor d ∈ D

by special datatype variables ∗ar(d) ∈ V
ar(d)
D

E = {replace(σ) = replace(τ) | σ ≤ τ ∈ ∆}
S = unify(E, V)

in if ∃ ∗n . S(∗n) 6∈ VnD then fail

else let A and B be the sets of type and datatype variables of ∆ respectively
compute substitutions S1 and S2 such that

S1 chooses variables freely on (A,B ∪
⋃
n{∗n}) and preserves V ,

S2 is simple, and S =(A,B∪
⋃
n{∗n}) S2 ◦ S1

in S1

Figure 8.13: The algorithm match

Matching substitutions are related to unification by the following lemma.

Lemma 8.5.37 Let V be a of set of type variables, ∆ be a set of possibly non-matching subtype
assertions and E be the set of equations E = {σ = τ | σ ≤ τ ∈ ∆}. Then S is a matching
substitution for ∆ (preserving V) iff there is a simple substitution R such that R ◦ S unifies E
(and S preserves V).

Proof. The proof is similar to that of [109]. 2

The problem of finding a most general matching substitution for a set ∆ of possibly non-
matching subtyping assertions is reduced to finding a most general unifier for a set of equations
E closely related with ∆. This set E is generated from ∆ by converting each inequality in
an equation and simultaneously replacing the occurrences of datatype constructors with special
datatype variables (one for each distinct arity). This is because distinct datatype constructors (of
the same arity) match but do not unify. The strategy is then, to compute the most general unifier
for E, check that the resulting substitution merely renames this special datatype variables, and
then replace all occurrences of type and datatype variables in the resulting types by distinct fresh
type and datatype variables (since one just wants to ensure that the resulting types related by
subtyping have the same shape, but are not necessarily equal). For this last task, we factorize the
most general unifier into a substitution that chooses variables freely among the set of variables of
E, composed with a simple substitution, as described in Lemma 8.5.21.

Definition 8.5.38 The algorithm match is defined in Figure 8.13. Moreover, we define match(∆) =
match(∆, ∅).

Lemma 8.5.39 The algorithm match, given a finite set ∆ of subtype assertions and a set V of
type variables, produces a most general matching substitution for ∆ preserving V if any matching
substitution for ∆ preserving V exists, and fails otherwise.

Proof. This proof uses lemmas 8.5.37, 8.5.20 and 8.5.21, and is quite similar to that of [109]. 2

8.5 Type Checking 127

Example 8.5.40 Consider the sets of subtype assertions:

∆1 = {α1→Nat ≤ α2, α3 ≤ Listα4} ∆2 = {Listα1 ≤ Nat}
∆3 = {NeListα1 ≤ List (α2→Odd)} ∆4 = {α1→α2 ≤ NeListα3}
∆5 = {α1→Nat ≤ α2→δ1, δ2 α3 ≤ Listα4, Even ≤ δ3}

For each of these sets the algorithm match produces the following results

match(∆1) = ([α1 := β1, α2 := β2→δ3, α3 := δ4 β3, α4 := β4], [δ1 := δ5, δ2 := δ6])
match(∆2) = fail

match(∆3) = ([α1 := β1→δ3, α2 := β2], [δ1 := δ4, δ2 := δ5])
match(∆4) = fail

match(∆5) = ([α1 := β1, α2 := β2, α3 := β3, α4 := β4], [δ1 := δ8, δ2 := δ9, δ3 := δ10, δ4 := δ6, δ5 := δ7])

Note that the support of the substitution produced by match(∆5), contains two datatype variables
(δ4 and δ5) that do note occur in ∆5. That is because the algorithm match introduces two datatype
variables (∗0 and ∗1, since we have Nat,Even and List) and we have datatype variables in ∆5.
However, match(∆5) • (∆5, ∅) = ({β2 ≤ β1, β3 ≤ β4}, {Nat v δ8, δ9 v List,Even v δ10}).

Moreover, match(∆1) • (∆1, ∅) = ({β2 ≤ β1, β3 ≤ β4}, {Nat v δ3, δ4 v List}) and, if R =
match(∆3) and Θ2 is a set of datatype inequalities, R • (∆2,Θ2) = ({β2 ≤ β1}, R(Θ2)∪ {NeList v
List, δ3 v Odd}).

The Algorithm for Most General Typings

We present an algorithm that compute, if it is possible, a most general typing of a term. This
algorithm adapts Mitchell’s typing algorithm [109] to the features of λac

CS type system (namely, the
specificities of its subtyping relation that is generated structurally from a partial order on type
constructors, and the existence of case-expressions and letrec-expressions).

Definition 8.5.41 The algorithm typeJudg is defined in Figure 8.14.

Given any term e, the algorithm typeJudg(e) produces a quadruple (Γ, σ,∆,Θ) such that
(∆,Θ) |Γ `λac

CS
e : σ is a derivable typing judgment. This algorithm is defined inductively on

the structure of terms. The algorithms unify and match play a crucial role in typeJudg, while
a subsidiary role is played by the algorithms for constructing types, applying and composing
substitutions, computing the union or the subtraction of contexts, and by the • operation. The
algorithm typeJudg fails when the call to unify or match fails or any of the subsidiary algorithms
fail. typeJudg is described informally below.

The behavior of typeJudg on variables and constructors is quite straightforward. For any
variable x, typeJudg infers that x is of some supertype β of the assumed type α of x. For any
constructor cd, typeJudg infers that cd is of some supertype of Inst~αd (c).

For compound terms (abstractions, applications, case-expressions and letrec-expressions), the
algorithm typeJudg computes a typing judgment for each of the top-level subterms by calling itself
recursively. To make the algorithm more readable, we assume that type variables that occur in the
typing judgments of different subterms are all distinct4. Using a series of steps, typeJudg combines
these typings into a well-formed typing judgment for the compound term.

First, typeJudg uses unification to combine variable contexts. In particular, if a variable occurs
free in different subterms, then the type assumptions about these distinct occurrences are unified.
Furthermore,

4This assumption can be made, since we can always rename type variables.

128 Chapter 8: The Core Calculus λCS

typeJudg(x) =
(
{x : α}, β, {α ≤ β}, ∅

)
typeJudg(cd) = let S = match

(
{Inst~αd (c) ≤ β}

)
(∆∗,Θ∗) = S •

(
{Inst~αd (c) ≤ β}, ∅

)
in

(
∅, S(β), ∆∗, Θ∗

)
assuming that ~α, β are fresh type variables.

typeJudg(a b) = let (Γ1, ρ1,∆1,Θ1) = typeJudg(a)
(Γ2, ρ2,∆2,Θ2) = typeJudg(b)
R = unify

(
{τ1 = τ2 | x : τ1 ∈ Γ1 ∧ x : τ2 ∈ Γ2} ∪ {ρ1 = ρ2→α}

)
S = match

(
R(∆1 ∪∆2)

)
◦R

(∆′,Θ′) = S • (∆1 ∪∆2, Θ1 ∪Θ2)
Γ′ = S(Γ1) ∪ S(Γ2)

in
(
Γ′, S(α), ∆′, Θ′

)
assuming the type variables introduced in (Γ1, ρ1,∆1,Θ1), (Γ2, ρ2,∆2,Θ2), and α are fresh.

typeJudg(λx.a) = let (Γ1, ρ1,∆1,Θ1) = typeJudg(a)
in if ∃ τ. (x : τ) ∈ Γ1

then
(
Γ1−{x : τ}, τ→ρ1, ∆1, Θ1

)
else

(
Γ1, α→ρ1, ∆1, Θ1

)
assuming that α is a fresh type variable.

typeJudg(cased a of {c1 ⇒ b1 | . . . | cn ⇒ bn}) =
let (Γ0, ρ0,∆0,Θ0) = typeJudg(a)

(Γi, ρi,∆i,Θi) = typeJudg(bi) for 1 ≤ i ≤ n
A =

{
τi = τj | x : τi ∈ Γi ∧ x : τj ∈ Γj ∧ i, j ∈ {0, ..., n} ∧ i 6= j

}
B =

{
ρi = Dom~α

d (ci)→β | 1 ≤ i ≤ n
}

R = unify
(
{dα1 . . . αar(d) = ρ0} ∪ A ∪ B

)
S = match

(
R(∆0 ∪

⋃
1≤i≤n ∆i)

)
◦R

(∆′,Θ′) = S •
(⋃

0≤i≤n ∆i ,
⋃

0≤i≤n Θi

)
Γ′ =

⋃
0≤i≤n S(Γi)

in
(
Γ′, S(β), ∆′, Θ′

)
assuming the type variables introduced in: α1, . . . , αar(d), (Γi, ρi,∆i,Θi), for 0 ≤ i ≤ n,
and βare fresh.

typeJudg(letreck(f1 = e1, . . . , fn = en)) =
let (Γi, ρi,∆i,Θi) = typeJudg(ei) for 1 ≤ i ≤ n

A =
{
τi = τj | x : τi ∈ Γi ∧ x : τj ∈ Γj ∧ i, j ∈ {1, ..., n} ∧ i 6= j

}
B =

{
ρi = σj | fi : σj ∈ Γj ∧ i, j ∈ {1, ..., n}

}
R = unify(A ∪ B)
S = match

(⋃
1≤i≤nR(∆i)

)
◦R

(∆′,Θ′) = S •
(⋃

1≤i≤n ∆i ,
⋃

1≤i≤n Θi

)
Γ′ =

⋃
1≤i≤n S(Γi)− {fi : S(ρi) | 1 ≤ i ≤ n}

in
(
Γ′, S(ρk), ∆′, Θ′

)
assuming the type variables introduced in (Γi, ρi,∆i,Θi), for 1 ≤ i ≤ n, are fresh.

Figure 8.14: The algorithm typeJudg

8.5 Type Checking 129

• if the term is an application a b, then the type of a is unified with a function type that maps
the type of b to some unspecified type α;

• if the term is a case-expression cased a of {~c ⇒ ~b}, then the type of a is unified with d ~α

(with ~α fresh), and the type of each bi is unified with Dom~α
d (ci)→β, with β fresh;

• if the term is a letrec-expression letreck(f1 = e1, . . . , fn = en), then the type of each ei is
unified with the type assumptions made for fi in the variable contexts.

Second, typeJudg applies the resulting unifiers to the subtype contexts in the original typing
judgments and uses match to compute a substitution that causes the types of the new subtype
assertions to match. Then a substitution S is generated by composing this matching substitution
with the unifier. Finally, applying the substitution S to the original typing judgments (using • on
the subtype contexts) and taking the union of the corresponding pieces yields the type judgment
for the compound term, except for the case of letrec-expressions where one has still to eliminate
from the variable context the declarations of the variables fi.

We conclude proving the soundness and completeness of the typeJudg algorithm with respect to
the λac

CS type system. To show that typeJudg is sound is to prove that for any term e, if typeJudg(e)
returns (Γ, σ,∆,Θ), then every instance of (∆,Θ) |Γ `λac

CS
e : σ is derivable. Using Theorem 8.5.32

we just have to prove the next lemma.

Lemma 8.5.42 If typeJudg(e) = (Γ, σ,∆,Θ), then (∆,Θ) |Γ `λac
CS
e : σ is derivable.

Proof. By induction on the structure of e.

• Assume e ≡ x. We have typeJudg(x) = ({x : α}, β, {α ≤ β}, ∅) and ({α ≤ β}, ∅) |x : α `λac
CS

x : β is derivable using rule (var) and (sub).

• Assume e ≡ cd and typeJudg(cd) is as presented in Figure 8.14. Since S is a matching sub-
stitution for {Inst~αd (c) ≤ β}, we know that S • ({Inst~αd (c) ≤ β}, ∅) is a well-formed subtype
context and that S•({Inst~αd (c) ≤ β, ∅) ` Inst

S(~α)
d (c) ≤ S(β), using Lemma 8.5.27 and the fact

that S(Inst~αd (c)) = Inst
S(~α)
d (c). By rule (cons) (∆∗,Θ∗) | ∅ `λac

CS
c : Inst

S(~α)
d (c) is derivable.

So, by rule (sub), we can derive (∆∗,Θ∗) | ∅ `λac
CS
c : S(β).

• Assume e ≡ a b and typeJudg(a b) is as presented in Figure 8.14. By induction hypothe-
sis both (∆1,Θ1) |Γ1 `λac

CS
a : ρ1 and (∆2,Θ2) |Γ2 `λac

CS
b : ρ2 are derivable judgments.

Since the substitution S is defined from the unifier R by composition, S must unify {τ1 =
τ2 | x : τ1 ∈ Γ1 ∧ x : τ2 ∈ Γ2} ∪ {ρ1 = ρ2 → α}. This implies that S(Γ1) ∪ S(Γ2) is a
well-formed variable context. Since S is a matching substitution for ∆1 ∪ ∆2, we know
that S • (∆1 ∪ ∆2,Θ1 ∪ Θ2) is a well-formed subtype context. By Theorem 8.5.32 it fol-
lows that the two judgments S • (∆1 ∪ ∆2,Θ1 ∪ Θ2) |S(Γ1) ∪ S(Γ2) `λac

CS
a : S(ρ1) and

S • (∆1∪∆2,Θ1∪Θ2) |S(Γ1)∪S(Γ2) `λac
CS
b : S(ρ2) are derivable. As S(ρ1) = S(ρ2)→S(α),

we obtain S • (∆1 ∪∆2,Θ1 ∪Θ2) |S(Γ1) ∪ S(Γ2) `λac
CS
a b : S(α) by rule (app).

• Assume e ≡ λx.a and typeJudg(λx.a) is as presented in Figure 8.14. By induction hypothesis
(∆1,Θ1) |Γ1 `λac

CS
a : ρ1 is derivable.

– If x ∈ FV(a) then x ∈ dom(Γ1), by Lemma 8.5.45. Let Γ1(x) = τ . By rule (abs), we
may derive (∆1,Θ1) |Γ1 − {x : τ} `λac

CS
λx.a : τ→ρ1.

130 Chapter 8: The Core Calculus λCS

– If x 6∈ FV(a) then x 6∈ dom(Γ1), by Lemma 8.5.45. By Lemma 8.5.30 one has (∆1,Θ1) |Γ1, x :
α `λac

CS
a : ρ1, being α a fresh type variable. Hence, (∆1,Θ1) |Γ1 `λac

CS
λx.a : α→ ρ1

follows by rule (abs).

• Assume e ≡ cased a of {c1 ⇒ b1 | . . . | cn ⇒ bn} and typeJudg(cased a of {~c ⇒ ~b})
is as presented in Figure 8.14. By induction hypothesis (∆0,Θ0) |Γ0 `λac

CS
a : ρ0 and

(∆i,Θi) |Γi `λac
CS
bi : ρi, for 1 ≤ i ≤ n. Since S is defined from the unifier R by com-

position, S must unify {d ~α = ρ0} ∪ A ∪ B. This implies that Γ′ =
⋃

0≤i≤n S(Γi) is a
well-formed variable context. Since S is a matching substitution for

⋃
0≤i≤n ∆i, we know

that (∆′,Θ′) = S • (
⋃

0≤i≤n ∆i,
⋃

0≤i≤n Θi) is a well-defined subtype context. Moreover

S(ρi) = Dom
S(~α)
d (ci)→S(β), for 1 ≤ i ≤ n.

Now, it is easy to check that, (∆′,Θ′) |Γ′ `λac
CS
bi : Dom

S(~α)
d (ci)→ S(β) is an instance of

(∆i,Θi) |Γi `λac
CS
bi : ρi by S, for 1 ≤ i ≤ n. Furthermore, (∆′,Θ′) |Γ′ `λac

CS
a : dS(~α) is an

instance of (∆0,Θ0) |Γ0 `λac
CS
a : ρ0 by S. By Theorem 8.5.32 the following judgments are

derivable: (∆′,Θ′) |Γ′ `λac
CS
a : dS(~α) and

(∆′,Θ′) |Γ′ `λac
CS
bi : Dom

S(~α)
d (ci)→S(β) , for 1 ≤ i ≤ n

So we can apply rule (case) and derive

(∆′,Θ′) |Γ′ `λac
CS

cased a of {c1 ⇒ b1 | . . . | cn ⇒ bn} : S(β)

• Assume e ≡ letreck(f1 = e1, . . . , fn = en) and typeJudg(letreck(~f ⇒ ~e)) is as presented
in Figure 8.14. By induction hypothesis (∆i,Θi) |Γi `λac

CS
ei : ρi, for 1 ≤ i ≤ n. Since

substitution S is defined from the unifier R by composition, S must unify {τi = τj | x : τi ∈
Γi ∧ x : τj ∈ Γj ∧ i, j ∈ {1, ..., n} ∧ i 6= j}. This implies that

⋃
1≤i≤n S(Γi) is a well-formed

variable context. Since S is a matching substitution for
⋃

1≤i≤n ∆i, we know that (∆′,Θ′) =
S • (

⋃
1≤i≤n ∆i,

⋃
1≤i≤n Θi) is a well-formed subtype context. So, for each i ∈ {1, . . . , n},

(∆′,Θ′) |
⋃

1≤i≤n S(Γi) `λac
CS
ei : S(ρi) is an instance of (∆i,Θi) |Γi `λac

CS
ei : ρi by S; and

therefore, by Theorem 8.5.32 it follows that, for 1 ≤ i ≤ n,

(∆′,Θ′) |
⋃

1≤i≤n

S(Γi) `λac
CS
ei : S(ρi)

Let Γ =
⋃

1≤i≤n S(Γi)∪{fj : S(ρj)|1 ≤ j ≤ n}. By Lemma 8.5.30, (∆′,Θ′) |Γ `λac
CS
ei : S(ρi)

is derivable for every 1 ≤ i ≤ n. Now, by rule (rec), we can derive

(∆′,Θ′) |Γ′ `λac
CS

letreck(f1 = e1, . . . , fn = en) : S(ρk)

2

Theorem 8.5.43 (Soundness of typeJudg) If typeJudg(e) = (Γ, σ,∆,Θ), then every instance
of (∆,Θ) |Γ `λac

CS
e : σ is provable.

Proof. By Theorem 8.5.32 and Lemma 8.5.42. 2

We want now to prove that the algorithm typeJudg is complete, that is, any derivable typing
judgment for a term e is an instance of the typing produced by typeJudg(e). To simplify this proof

8.5 Type Checking 131

we first present a lemma stating that any typing derivation may be put in a “normal form”, in
which the subsumption rule is used only after the axioms in the typing system. This means that
subtyping only enter into the base cases of the typing algorithm.

Lemma 8.5.44 Suppose (∆,Θ) |Γ `λac
CS
e : σ is derivable. Then there is a derivation in which

rule (sub) is only used immediately after the typing axioms (var) and (cons).

Proof. Similar to the proof presented in [109]. 2

The type context produced by typeJudg(e) always contains exactly the free variables of e.

Lemma 8.5.45 Assume typeJudg(e) = (Γ, σ,∆,Θ). Then, x ∈ dom(Γ) iff x ∈ FV(e).

Proof. By induction on the structure of e. 2

We also need the following property of substitutions.

Lemma 8.5.46 Suppose that ∆ is a set of subtype assertions between possibly non-matching types.
Furthermore, suppose that S, R and W are substitutions with W =(VT ,VD) S ◦ R, where VT and
VD contain all type and datatype variables, respectively, that occur in ∆. If W and R are matching
substitutions for (∆,Θ), then S is a matching substitution for (R • (∆,Θ)), and S • (R • (∆,Θ)) =
W • (∆,Θ).

Proof. By induction on the structure of types. 2

Theorem 8.5.47 (Completeness of typeJudg) If (∆,Θ) |Γ `λac
CS
e : σ, then typeJudg(e) =

(Γ′, σ′,∆′,Θ′) and (∆,Θ) |Γ `λac
CS
e : σ is an instance of (∆′,Θ′) |Γ′ `λac

CS
e : σ′.

Proof. By induction on the structure of terms. Assuming, for each case, typeJudg(e) as presented
in Figure 8.14.

• Assume (∆,Θ) |Γ `λac
CS
x : σ. By Lemma 8.5.44, we may assume the proof uses rule (var)

followed by rule (sub). Since x must appear in Γ, we let Γ(x) = τ and note that (∆,Θ) `
τ ≤ σ must hold. By Lemma 8.5.23, τ matches σ.

We have typeJudg(x) = ({x : α}, β, {α ≤ β}, ∅), being α and β fresh type variables. Let S
be the substitution ([α := τ, β := σ], id). It is easy to check that (∆,Θ) ` S • {α ≤ β},
S(x : τ) ⊆ Γ and S(β) = σ. Hence, it follows that (∆,Θ) |Γ `λac

CS
x : σ is an instance of

({α ≤ β}, ∅) |x : α `λac
CS
x : β by S.

• Assume (∆,Θ) |Γ `λac
CS
cd : σ. By Lemma 8.5.44, we may assume the proof uses rule

(cons) followed by rule (sub). We let (∆,Θ) |Γ `λac
CS
cd : Inst~τd(c) for some ~τ and note that

(∆,Θ) ` Inst~τd(c) ≤ σ must hold. We have typeJudg(cd) = (∅, S(β),∆∗,Θ∗) and S is a most
general matching substitution for {Inst~αd (c) ≤ β}, being ~α, β fresh type variables.

Let Z be a substitution such that Z(~α) = ~τ and Z(β) = σ. So, Z(Inst~αd (c)) = Inst~τd(c).
Since (∆,Θ) is atomic, Inst~τd(c) matches σ, by Lemma 8.5.39. Therefore, Z is a matching
substitution for {Inst~αd (c) ≤ β}. Using Lemma 8.5.46, Z = W ◦ S for some substitution W .
Moreover, by Lemma 8.5.23, W is a matching substitution for (∆∗,Θ∗) and W • (∆∗,Θ∗) =
Z • ({Inst~αd (c) ≤ β}, ∅).

132 Chapter 8: The Core Calculus λCS

We have (∆,Θ) ` (Z({Inst~αd (c) ≤ β}), Z(∅)) then, by Lemma 8.5.27, (∆,Θ) ` Z •
({Inst~αd (c) ≤ β}, ∅). By Lemma 8.5.46, we have (∆,Θ) ` W • (∆∗,Θ∗). Furthermore,
W (∅) ⊆ Γ and σ = W (S(β)). Hence, we can conclude that (∆,Θ) |Γ `λac

CS
cd : σ is an

instance of (∆∗,Θ∗) | ∅ `λac
CS
cd : S(β) by W .

• Assume (∆,Θ) |Γ `λac
CS
λx.a : σ. By Lemma 8.5.44, (∆,Θ) |Γ, x : σ1 `λac

CS
a : σ2 is derivable

with σ = σ1→ σ2. By induction hypothesis typeJudg(a) = (Γ1, ρ1,∆1,Θ1) and there is a
matching substitution W such that

(∆,Θ) ` W • (∆1,Θ1) , W (Γ1) ⊆ Γ, x : σ1 , and σ2 = W (ρ1)

– If x ∈ FV(a) then x ∈ dom(Γ1), by Lemma 8.5.45. Let Γ1(x) = τ , thus W (τ) = σ1.
We have typeJudg(λx.a) = (Γ1 − {x : τ}, τ → ρ1,∆1,Θ1) and it is easy to check that
W (Γ1 − {x : τ}) ⊆ Γ and W (τ→ρ1) = σ1→σ2 = σ. Hence, (∆,Θ) |Γ `λac

CS
λx.a : σ is

an instance of (∆1,Θ1) |Γ1 − {x : τ} `λac
CS
λx.a : τ→ρ1 by W .

– If x 6∈ FV(a) then x 6∈ dom(Γ1), by Lemma 8.5.45. We have typeJudg(λx.a) = (Γ1, α→
ρ1,∆1,Θ1) with α fresh. Let S = ([α := σ1], id) ◦W . Since α is a fresh type variable
w.r.t. (Γ1, ρ1,∆1,Θ1) and x 6∈ dom(Γ1), it is easy to check that (∆,Θ) ` S • (∆1,Θ1),
S(Γ1) ⊆ Γ and S(α→ ρ1) = σ. Therefore, (∆,Θ) |Γ `λac

CS
λx.a : σ is an instance of

(∆1,Θ1) |Γ1 `λac
CS
λx.a : α→ρ1 by S.

• Assume (∆,Θ) |Γ `λac
CS
a b : σ. By Lemma 8.5.44, this must follow from (∆,Θ) |Γ `λac

CS

a : τ → σ and (∆,Θ) |Γ `λac
CS
b : τ by rule (app). By induction hypothesis typeJudg(a) =

(Γ1, ρ1,∆1,Θ1) and typeJudg(b) = (Γ2, ρ2,∆2,Θ2) are most general typings for a and b. So,
there exist substitutions W1 and W2 such that

(∆,Θ) ` W1 • (∆1,Θ1) , W1(Γ1) ⊆ Γ , and W1(ρ1) = τ→σ

(∆,Θ) ` W2 • (∆2,Θ2) , W2(Γ2) ⊆ Γ , and W2(ρ2) = τ

Since the algorithm typeJudg assures that the variables occurring in (Γ1, ρ1,∆1,Θ1) and
(Γ2, ρ2,∆2,Θ2) are distinct, we can combine substitutions W1 and W2. Let W be any
substitution such that

W (α) = σ

W (β) = W1(β) if β appears in the typing of a
W (β) = W2(β) if β appears in the typing of b

It is easy to see that

(∆,Θ) ` (W (∆1),W (Θ1)) , W (Γ1) ⊆ Γ , and W (ρ1) = τ→σ

(∆,Θ) ` (W (∆2),W (Θ2)) , W (Γ2) ⊆ Γ , and W (ρ2) = τ

By Lemma 8.5.30, Γ must give types to all free variables of a and b and, as stated in Lemma
8.5.45, a type context produced by typeJudg(e) always contains exactly the variables that
occur free in e. Therefore, W must unify {τ1 = τ2 | x : τ1 ∈ Γ1 ∧ x : τ2 ∈ Γ2}. In addition,
since W (ρ1) = τ→σ = W (ρ2)→W (α), the substitution W unifies ρ1 with ρ2→α. Because
R is a most general unifier for these equations, there is a substitution Z such that W = Z◦R.
Since (∆,Θ) is atomic, it follows by Lemma 8.5.23 that W is a matching substitution for ∆1

and for ∆2; so, W is a matching substitution for ∆1 ∪∆2. Therefore, Z must be a matching
substitution for R(∆1∪∆2). But, as match computes a most general matching substitution,
this implies that Z = T ◦match(R(∆1 ∪∆2)) for some substitution T . We have

W = T ◦match(R(∆1 ∪∆2)) ◦R = T ◦ S

8.5 Type Checking 133

We have (∆,Θ) ` (W (∆1 ∪∆2),W (Θ1 ∪Θ2)) so, by Lemma 8.5.27, (∆,Θ) ` W • (∆1 ∪
∆2,Θ1 ∪Θ2). Using Lemma 8.5.46, it follows that (∆,Θ) ` T • (S • (∆1 ∪∆2,Θ1 ∪Θ2)).
Moreover, it can be easily checked that T (S(Γ1) ∪ S(Γ2)) ⊆ Γ and T (S(α)) = σ. Therefore,
(∆,Θ) |Γ `λac

CS
a b : σ is an instance of S • (∆1 ∪∆2,Θ1 ∪Θ2) |S(Γ1)∪S(Γ2) `λac

CS
a b : S(α)

by T .

• Assume (∆,Θ) |Γ `λac
CS

cased a of {c1 ⇒ b1 | . . . | cn ⇒ bn} : σ. By Lemma 8.5.44, this
must follow, by rule (case), from (∆,Θ) |Γ `λac

CS
a : d~τ and (∆,Θ) |Γ `λac

CS
bi : Dom~τ

d(ci)→σ

for 1 ≤ i ≤ n, where ar(d) = #~τ for some ~τ .

By induction hypothesis typeJudg(a) and typeJudg(bi) are most general typings for a and bi
for 1 ≤ i ≤ n . So, there exist substitutions W0,W1, . . . ,Wn such that

(∆,Θ) ` W0 • (∆0,Θ0) , W0(Γ0) ⊆ Γ , and W0(ρ0) = d~τ

(∆,Θ) ` Wi • (∆i,Θi) , Wi(Γi) ⊆ Γ , and Wi(ρi) = Dom~τ
d(ci)→σ (1 ≤ i ≤ n)

Since the algorithm typeJudg assures that type variables occurring in (Γi, ρi,∆i,Θi), for
0 ≤ i ≤ n, ~α and β are all distinct, we can combine substitutions Wi, with i ∈ {0, . . . , n}.
Let F be any substitution such that

W (β) = σ

W (α) = W0(α) if α appears in the typing of a
W (α) = Wi(α) if α appears in the typing of bi
W (~α) = ~τ

By Lemma 8.5.30, Γ must give types to all free variables of a and bi and, as stated in Lemma
8.5.45, a type context produced by typeJudg(e) always contains exactly the variables that oc-
cur free in e. Therefore, W must unify A. In addition, since W (ρ0) = d~τ = dW (~α), the sub-
stitution W unifies ρ0 with d ~α. Moreover, since W (ρi) = Dom~τ

d(ci)→σ = W (Dom~α
d (ci)→β)

for 1 ≤ i ≤ n, then W must unify B.

Because R is a most general unifier for {d ~α = ρ0} ∪ A ∪ B, there is a substitution Z

such that W = Z ◦ R. Since (∆,Θ) is atomic, it follows by Lemma 8.5.23 that W is a
matching substitution for

⋃
0≤i≤n ∆i. Therefore, Z must be a matching substitution for

R(
⋃

0≤i≤n ∆i). But, as match computes a most general matching substitution, this implies
that Z = T ◦match(R(

⋃
0≤i≤n ∆i)) for some substitution T . We have

W = T ◦match(R(
⋃

0≤i≤n

∆i)) ◦R = T ◦ S

We can now prove that (∆,Θ) |Γ `λac
CS

cased a of {c1 ⇒ b1 | . . . | cn ⇒ bn} : σ is an instance
of (∆′,Θ′) |Γ′ `λac

CS
cased a of {c1 ⇒ b1 | . . . | cn ⇒ bn} : S(β) by T .

– One has (∆,Θ) ` W • (
⋃

0≤i≤n ∆i,
⋃

0≤i≤n Θi), therefore (∆,Θ) ` (T ◦ S) •
(
⋃

0≤i≤n ∆i,
⋃

0≤i≤n Θi). Using Lemma 8.5.46, it follows that (∆,Θ) ` T • (S •
(
⋃

0≤i≤n ∆i,
⋃

0≤i≤n Θi)). Hence (∆,Θ) ` T • (∆′,Θ′).

– One has W (
⋃

0≤i≤n Γi) ⊆ Γ. As W = T ◦ S, we can conclude

T (Γ′) = T
(
S
(⋃

0≤i≤n

Γi
))
⊆ Γ

– Finally, one has T (S(β)) = W (β) = σ.

134 Chapter 8: The Core Calculus λCS

• Assume (∆,Θ) |Γ `λac
CS

letreck(f1 = e1, . . . , fn = en) : φk. By Lemma 8.5.44, this must
follow, by rule (rec), from (∆,Θ) |Γ, f1 : φ1, . . . , fn : φn `λac

CS
ei : φi. By induction hypothesis

typeJudg(ei) = (Γi, ρi,∆i,Θi) are most general typings for ei, for 1 ≤ i ≤ n. So, there exist
substitutions Wi, for 1 ≤ i ≤ n, such that

(∆,Θ) ` Wi • (∆i,Θi) , Wi(Γi) ⊆ Γ, f1 : φ1, . . . , fn : φn , and Wi(ρi) = φi

Since the algorithm typeJudg assures that the variables occurring in (Γi, ρi,∆i,Θi), for 1 ≤
i ≤ n, are distinct, we can combine substitutions Wi. Let W be any substitution such that

W (α) = Wi(α) if β appears in the typing of ei

It is easy to see that, for 1 ≤ i ≤ n,

(∆,Θ) ` (W (∆i),W (Θi)) , W (Γi) ⊆ Γ, f1 : φ1, . . . , fn : φn , and W (ρi) = φi

By lemmas 8.5.30 and 8.5.45 one concludes that W must unify A. Moreover, W must unify B

because W (ρi) = φi, for every 1 ≤ i ≤ n. As R is a most general unifier for these equations,
there is a substitution Z such that W = Z ◦R. Since (∆,Θ) is atomic, it follows by Lemma
8.5.23 that W is a matching substitution for

⋃
1≤i≤n ∆i. But, as match computes a most

general matching substitution, this implies that Z = T ◦ match(
⋃

1≤i≤nR(∆i)) for some
substitution T . So,

W = T ◦match(
⋃

1≤i≤n

R(∆i)) ◦R = T ◦ S

We have (∆,Θ) ` (W (
⋃

1≤i≤n ∆i),W (
⋃

1≤i≤n Θi)), hence by lemmas 8.5.27 and 8.5.46, it
follows that (∆,Θ) ` T • (∆′,Θ′). We also have

T (Γ′) = T (
⋃

1≤i≤n

S(Γi)− {fi : S(ρi) | 1 ≤ i ≤ n}) =
⋃

1≤i≤n

W (Γi)− {fi : φi | 1 ≤ i ≤ n} ⊆ Γ

and T (S(ρk)) = W (ρk) = φk. Consequently, (∆,Θ) |Γ `λac
CS

letreck(f1 = e1, . . . , fn = en) :
φk is an instance of (∆′,Θ′) |Γ′ `λac

CS
letreck(f1 = e1, . . . , fn = en) : S(ρk) by T .

2

Let us show some examples of typings returned by the typeJudg algorithm.

Example 8.5.48 The most general typings produced by the typeJudg algorithm for some terms:

1. (∅, {δ1 v δ3, δ3 v Even,Odd v δ2}) |x : δ1 `λac
CS

sOdd x : δ2

2. (∅, {δ2 v Even,Odd v δ1,Nat v δ2}) | `λac
CS

sOdd oNat : δ1

3. ({α5 ≤ α1, α6 ≤ α1, α2 ≤ α6, α2 ≤ α4, α3 ≤ α5}, ∅) | ∅ `λac
CS
λf.λx.f (f x) : (α1→α2)→α3→

α4

4. (∅, {δ1 v δ2, δ3 v NeList, δ2 v δ4, δ4 v Even,Odd v δ5}) | `λac
CS
λx.caseNeList x of {cons ⇒

λh.λt. sOdd h} : (δ3 δ1)→δ5

5. ({α3 ≤ α6, α5 ≤ α6, α6 ≤ α1, α2 ≤ α3, α4 ≤ α5}, {δ3 v δ1, δ1 v List,NeList v δ2}) |x : α2, l :
δ3 α4 `λac

CS
consNeList x l : δ2 α1

As can be observed in the example above, many of the constraints that appear in the typings
returned by the typeJudg algorithm are redundant. The sets of constraints of such typing judg-
ments can be simplified. However we do not address this problem, since it is not needed for the
decidability of type checking in λCS.

8.5 Type Checking 135

8.5.4 Decidability of Type Checking

Given a context Γ, a term e, and a type τ , type checking consists of analyzing whether the
judgment Γ `λCS

e : τ is derivable from the set of typing rules of λCS. Some features of λCS,
namely: the overloading of constructors and the subtyping relation, make this a complex task.
Since each term may be assigned more than one type and the minimal type property does not
hold for λCS, our strategy to decide type checking in λCS is established in two steps:

1. an algorithm for producing the set of all annotated terms generated from a λCS-term;

2. an algorithm for deciding the derivability of a λa
CS typing judgment.

Essentially, the first step handles overloading and the second step handles the subtyping ordering
problem. Our claim is that Γ `λCS

e : τ is derivable if and only if there is an annotated term
e′ ∈ an(e) for which Γ `λa

CS
e′ : τ is derivable. As the set of annotated terms an(e) is finite and

type-checking is decidable in λa
CS, we have here a decision procedure.

The system λa
CS does not enjoy the minimal type property, so the type-checking algorithm for

λa
CS relies on:

1. an algorithm for computing a most general typing in λac
CS;

2. an algorithm for deciding the satisfiability of a subtyping context.

Definition 8.5.49 A subtype context (∆,Θ) is satisfiable if there exists a substitution S such that
` (S(∆), S(Θ))

We begin showing the decidability of type checking for λa
CS. Before going into this proof, some

lemmata involving the transition between λa
CS and λac

CS, are considered.

Lemma 8.5.50 If ∅ ` d v d′, then (d ≡ d ∧ d′ ≡ d′ ∧ d vD d′) or (d ≡ δ ∧ d′ ≡ δ).

Proof. By induction on the derivation of ∅ ` d v d′. 2

Lemma 8.5.51 ` τ ≤ σ in λac
CS and both τ and σ have no datatype variables iff τ ≤ σ in λa

CS.

Proof.

⇒) By induction on the derivation of ` τ ≤ σ.

⇐) By induction on the derivation of τ ≤ σ.

2

Lemma 8.5.52 (∅, ∅) |Γ `λac
CS
e : τ , where there are no occurrences of datatype variables neither

in Γ nor in τ , is derivable iff Γ `λa
CS
e : τ is derivable.

Proof.

⇒) By induction on the derivation of (∅, ∅) |Γ `λac
CS
e : τ .

⇐) By induction on the derivation of Γ `λa
CS
e : τ .

136 Chapter 8: The Core Calculus λCS

2

Based on Lemma 8.5.52, we reduce the problem of checking if a typing judgment Γ `λa
CS
e : τ

is derivable to checking if (∅, ∅) |Γ `λac
CS
e : τ is an instance of the most general typing judgment

for e in λac
CS. The procedure of checking if Γ `λa

CS
e : τ is derivable can be described briefly by the

following steps: compute the most general typing for e in λac
CS (let it be (∆′,Θ′) |Γ′ `λac

CS
e : τ ′);

check if Γ′ is not bigger than Γ; unify (preserving the type variables of Γ and τ) τ with τ ′ and
the types assumed for the variables declared simultaneously in Γ and Γ′; check if the resulting
subtype context (after applying the unifier) is satisfiable. We can have possibly non-matching
subtype assertions after applying the unifier substitution to the subtype context but we check
satisfiability over subtype contexts (with atomic assertions). So, before calling the algorithm that
test the satisfiability of the subtype context, we compute the most general matching substitution
(preserving the type variables of Γ and τ) and make it act over the sets of assertions, decomposing
it in atomic subtype assertions.

Notation 8.5.53 We use the following notation:

FTV(Γ) =
⋃

(x:σ)∈Γ FTV(σ)
FDV(Θ) =

⋃
dvd′∈Θ FDV(d) ∪ FDV(d′)

Definition 8.5.54 The algorithms derivable and satisfiable are defined in figures 8.15 and 8.16,
respectively.

derivable(Γ `λa
CS
e : τ) =

let (Γ′, τ ′,∆′,Θ′) = typeJudg(e)
C = FTV(Γ) ∪ FTV(τ)

in if dom(Γ′) ⊆ dom(Γ)
then let U = unify

(
{σ = σ′ | x : σ ∈ Γ ∧ x : σ′ ∈ Γ′} ∪ {τ = τ ′}, C

)
M = match

(
U(∆′), C

)
(∆,Θ) = M •

(
U(∆′), U(Θ′)

)
in satisfiable(∆,Θ, C)

else false

assuming the type variables introduced in (Γ′, τ ′,∆′,Θ′) are fresh.

Figure 8.15: The algorithm derivable

The satisfiable algorithm performs the satisfiability check for subtype contexts. Let us prove
that satisfiable is a sound and complete algorithm.

Lemma 8.5.55 Given a set Θ of subtype inequalities, dSatisfiable(Θ) returns true iff there exists
a ground datatype substitution GD for FDV(Θ) such that for every d v d′ ∈ Θ, GD(d) vD GD(d′).

Proof. Trivial. Just note that DFDV(Θ) is the finite set of all possible ground datatype substitutions
for the datatype variables in Θ. 2

8.5 Type Checking 137

satisfiable(∆,Θ, V) = tSatisfiable(∆, V) ∧ dSatisfiable(Θ)

tSatisfiable(∆, V) = unify
(
{σ = σ′ | σ ≤ σ′ ∈ ∆}, V

)
6= fail

dSatisfiable(Θ) = testSatisf
(
Θ,DFDV(Θ)

)
testSatisf({}, S) = true
testSatisf(Θ, S ∪ {ρ}) = if solve(ρ,Θ) then true

else testSatisf(Θ, S)
testSatisf(Θ, {}) = false

solve(ρ, {}) = true
solve(ρ,Θ ∪ {d v d′}) = if ρ(d) vD ρ(d′) then solve(ρ,Θ)

else false

Figure 8.16: The algorithm satisfiable

Lemma 8.5.56 Given a subtype context (∆,Θ) and a set V of type variables, satisfiable(∆,Θ, V)
returns true iff there exists a substitution R such that R preserves V and ` (R(∆), R(Θ)).

Proof. Let (∆,Θ) be a subtype context and V a set of type variables.

⇒) If satisfiable(∆,Θ, V) returns true, then both tSatisfiable(∆, V) and dSatisfiable(Θ) return
true. Then unify

(
{σ = σ′ | σ ≤ σ′ ∈ ∆}, V

)
does not fail, let S = (ST , SD) be the resulting

substitution. As ∆ is atomic we can conclude that SD = id. Furthermore, ∅ ` S(α) ≤ S(α′)
for every α ≤ α′ ∈ ∆. On the other hand, by Lemma 8.5.55, there exists a ground datatype
substitution for FDV(Θ), GD, such that ∅ ` GD(d) v GD(d′) for every d v d′ ∈ Θ. Hence,
R = (ST , GD) preserves V and ` (R(∆), R(Θ)).

⇐) Assume R is a substitution such that R preserves V and ` (R(∆), R(Θ)). Using Lemma
8.5.50, we have that for every d v d′ ∈ Θ, R(d) = R(d′) or R(d) vD R(d′). So, by
Lemma 8.5.55, it easy to see that dSatisfiable(Θ) returns true. Now we want to show that
tSatisfiable(∆, V) returns true. This amounts to showing that unify

(
{σ = σ′ |σ ≤ σ′ ∈ ∆}, V

)
does not fail. As ∆ is atomic, this unification can only fail if there is a α ≤ α′ ∈ ∆ such that
α 6= α′ and α, α′ ∈ V . However, this can never happen because R preserves V and for every
α, α′ ∈ ∆, (∅, ∅) ` R(α) ≤ R(α′). So, tSatisfiable(∆, V) succeeds. Hence satisfiable(∆,Θ, V)
returns true.

2

Theorem 8.5.57 (Soundness of derivable) If derivable(Γ `λa
CS
e : τ) returns true, then Γ `λa

CS

e : τ is derivable.

138 Chapter 8: The Core Calculus λCS

Proof. Let derivable(Γ `λa
CS
e : τ) as presented in Figure 8.15. If derivable(Γ `λa

CS
e : τ) = true

then satisfiable(∆,Θ, C) = true, so by Lemma 8.5.56 there exists a substitution R such that R
does not change the variables in C and ` (R(∆), R(Θ)).

Let S = R ◦M ◦ U . (∅, ∅) |Γ `λac
CS
e : τ is an instance of (∆′,Θ′) |Γ′ `λac

CS
e : τ ′ by S since:

– ` S • (∆′,Θ′) because ` (R(∆), R(Θ)) and, by Lemma 8.5.27, ` R • (∆,Θ). Moreover, by
Lemma 8.5.46, S • (∆′,Θ′) = R • (∆,Θ).

– S(Γ′) ⊆ Γ because U(Γ′) ⊆ Γ and U(Γ′) = R(M(U(Γ′))) since neither M nor R changes the
none of the free type variables of Γ.

– τ = U(τ ′) = S(τ ′) because neither M nor R changes the none of the free type variables of
τ .

So, by Theorem 8.5.43, (∅, ∅) |Γ `λac
CS
e : τ . Hence, by Lemma 8.5.52, Γ `λa

CS
e : τ . 2

Theorem 8.5.58 (Completness of derivable) If Γ `λa
CS
e : τ is derivable, then derivable(Γ `λa

CS

e : τ) returns true.

Proof. Assume Γ `λa
CS
e : τ is derivable and let derivable(Γ `λa

CS
e : τ) as presented in Figure

8.15. By Lemma 8.5.52, if Γ `λa
CS
e : τ then (∅, ∅) |Γ `λac

CS
e : τ . Therefore, by Theorem 8.5.47,

(∅, ∅) |Γ `λac
CS
e : τ is an instance of (∆′,Θ′) |Γ′ `λac

CS
e : τ ′ with typeJudg(e) = (Γ′, τ ′,∆′,Θ′), i.e.,

there exists a matching substitution S such that ` S • (∆′,Θ′), S(Γ′) ⊆ Γ and S(τ ′) = τ .
Since S(Γ′) ⊆ Γ and S(τ ′) = τ , S must unify {σ = σ′ | x : σ ∈ Γ ∧ x : σ′ ∈ Γ′} ∪ {τ = τ ′}

without changing C = FTV(Γ) ∪ FTV(τ), then S = Z ◦ U for some substitution Z. Moreover, as
S is a matching substitution for ∆′, Z must be a matching substitution for U(∆′) and therefore
Z = W ◦M for some W because M is the most general matching substitution for U(∆′).

So, one has S = W ◦M ◦ U and, by Lemma 8.5.46, S • (∆′,Θ′) = W • ((M ◦ U) • (∆′,Θ′)) =
W • (∆,Θ). Hence ` W • (∆,Θ) and, by Lemma 8.5.56, satisfiable(∆,Θ, C) = true. Therefore,
derivable(Γ `λa

CS
e : τ) = true. 2

Corollary 8.5.59 (Decidability of type checking in λa
CS) For any context Γ, and for any

term e and type τ , it is decidable whether Γ `λa
CS
e : τ is derivable.

Proof. Immediate from theorems 8.5.57 and 8.5.58. 2

Decidability of type-checking in λCS follows.

Corollary 8.5.60 (Decidability of type checking in λCS) For any context Γ, and for any
term e and type τ , it is decidable whether Γ `λCS

e : τ is derivable.

Proof. It is an immediate consequence of Corollary 8.5.59, Lemma 8.5.12 and of the fact that the
set an(e) is finite. 2

Chapter 9

Extensible Overloaded Functions

Constructor subtyping improves the accuracy and the flexibility of type systems by coherently com-
bining the subtyping between datatypes and the overloading of constructors, and it is adequate
for extensible datatypes. This flexibility in the definition of datatypes should make functions on
(extensible) datatypes more flexible. In this chapter we define a mechanism that allows functions
to be overloaded (i.e. to have several types) and extensible (i.e. to be extensible from a datatype
to another datatype with more constructors). The resulting framework provides a formal founda-
tion for extensible datatypes with overloading of constructors and overloaded extensible recursive
functions.

9.1 The System λCS+fun

This section introduces the system λCS+fun which can be thought of as a simply typed λ-calculus
with constructor subtyping and extensible recursive definitions defined by pattern-matching. The
language of types and the subtyping relation used in λCS+fun are as defined for λCS. For the sake of
simplicity, we do not have case-expressions and letrec-expressions in λCS+fun. So, the term language
of λCS+fun is simpler than the one of λCS. However, the calculus features overloaded constants
and overloaded variables. The former are interpreted as constructors (without a computational
meaning) and the latter are interpreted as functions (with a computational meaning).

9.1.1 Types and Terms

We assume the setting given for λCS. Hence we have D, C,VE ,VT and vD as in λCS and all
constructors are strictly overloaded. Moreover, we assume a denumerable set F of function symbols
and we let f, g, . . . range over F . We assume that the sets C,VE and F are pairwise disjoint. The
set Tfun of types of λCS+fun is equal to Tcs.

Definition 9.1.1 (Types) The set Tfun of types is given by the abstract syntax:

Tfun 3 τ, σ ::= α | τ→σ | d~τ

where in the last clause, it is assumed that #~τ = ar(d).

Terms are built up from variables, function symbols, constructors, abstractions and applica-
tions.

139

140 Chapter 9: Extensible Overloaded Functions

(refl)
σ ≤ σ

(trans) σ ≤ σ′ σ′ ≤ σ′′

σ ≤ σ′′

(func) σ′ ≤ σ τ ≤ τ ′

σ → τ ≤ σ′ → τ ′
(data)

d vD d′ τi ≤ τ ′i (1 ≤ i ≤ ar(d))

d~τ ≤ d′ ~τ ′

Figure 9.1: Subtyping rules for λCS+fun

Definition 9.1.2 (Terms) The set Efun of terms is given by the abstract syntax:

Efun 3 a, b ::= x | f | c | λx. a | a b

At this stage, the difference between constructors and function symbols is rather shallow. In the
sequel, it should became clear that while constructors have no computational meaning, function
symbols have a computational meaning given by environments of function definitions.

Note that as F and VE are disjoint sets, there is no interference of function symbols in the
notions of free variables and substitution already defined for λCS that can thus remain unchanged
(of course, FV(f) = ∅).

9.1.2 Subtyping and Typing

As already mentioned, the subtyping relation of λCS+fun is the same defined for λCS. Let us recall
it.

Definition 9.1.3 (Subtyping) The subtyping relation ≤ over Tfun is defined inductively by the
rules of Figure 9.1.

We now turn to the typing system. Typing judgments of λCS+fun are of the form ∇ |Γ `λCS+fun

e : τ where Γ, e and τ are as usual (respectively, a context of variable declarations, a term and
a type) and ∇ is a context for declaring types to function symbols. More precisely we have the
following definitions.

Definition 9.1.4 (Context, judgment)

1. A variable context is a finite set x1 : τ1, . . . , xn : τn where x1, . . . , xn are pairwise disjoint
object variables and τ1, . . . , τn are types. We let ℵV denote the set of variable contexts and
let Γ,Γ′ range over variable contexts.

2. A function context is a finite set f1 : τ1, . . . , fn : τn where f1, . . . , fn are function symbols
and τ1, . . . , τn are types. We let ℵF denote the set of function contexts and let ∇,∇′ range
over function contexts.

3. A context is a pair ∇ |Γ where ∇ is a function context and Γ is a variable context. We let
ℵ denote the set of contexts.

4. A typing judgment is a quadruple of the form ∇ |Γ `λCS+fun
e : τ where ∇ is a function

context, Γ is a variable context, e is a term and τ is a type.

9.1 The System λCS+fun 141

(var)
∇ |Γ `λCS+fun

x : τ
if (x : τ) ∈ Γ

(abs)
∇ |Γ, x : τ `λCS+fun

e : σ

∇ |Γ `λCS+fun
λx. e : τ→σ

(app)
∇ |Γ `λCS+fun

e : τ→σ ∇ |Γ `λCS+fun
e′ : τ

∇ |Γ `λCS+fun
e e′ : σ

(cons)
∇ |Γ `λCS+fun

c : Inst~τd(c)
if c ∈ C(d)

(fun)
∇ |Γ `λCS+fun

f : S(τ)
if (f : τ) ∈ ∇ and S is a substitution

(sub)
∇ |Γ `λCS+fun

e : τ τ ≤ σ
∇ |Γ `λCS+fun

e : σ

Figure 9.2: Typing rules for λCS+fun

Notice that whereas in variable contexts variables occur at most once, in function contexts
the same function symbol can be declared to have different types, so that overloaded extensible
functions can be modeled.

Definition 9.1.5 (Typing)

1. A typing judgment is derivable if it can be inferred from the rules of Figure 9.2.

2. A term e ∈ Efun is typable if ∇ |Γ `λCS+fun
e : σ is derivable for some context ∇ |Γ and type

σ.

Note that a function may be assigned polymorphic types, i.e., types that may contain free
variables and that may be instantiated through some type substitution. Rule (fun) states that
each legal typing for a function is obtained by instantiating some type assigned to the function in
the function context. Rules (var), (abs), (app), (cons) and (sub) are directly adapted from λCS.

9.1.3 Definition of Functions

Functions are declared in a pattern matching style. A function is defined by a set of its possible
types and a set of rewriting rules (modeled by pattern abstractions). For the sake of clarity, we
restrict our attention to unary functions. This is not a real restriction, since functions of arbitrary
arity may be encoded with unit and product types, and these types are easily defined in our
system.

Example 9.1.6 (Product and Unit) We define a parametric datatype for products as follows:

Prod ∈ D pair ∈ C
ar(Prod) = 2 ar(pair) = 2
C(Prod) = {pair} DProd(pair) = ∀α1.∀α2. α1→α2→Prodα1α2

142 Chapter 9: Extensible Overloaded Functions

We will use the usual infix notation A×B to represent Prod A B, and the out-fix notation 〈a, b〉 to
represent (pair a b).

The unit type is simply define by:

Unit ∈ D unit ∈ C
ar(Unit) = 0 ar(unit) = 0
C(Unit) = {unit} DUnit(unit) = Unit

First, we define patterns and pattern abstractions, which act as rewrite rules. Second, we define
environments as sets of function declarations. Patterns are expressions built up from constructors
and variables; they are required to be linear, i.e. a variable can appear at most once in a pattern.

Definition 9.1.7 (Patterns)

1. The set P of patterns is the set of terms given by the abstract syntax

P 3 p ::= x | c p1 . . . par(c)

where in the last clause it is assumed that, for 1 ≤ i ≤ ar(c), the sets FV(pi) are pairwise
disjoint.

2. A pattern abstraction is an expression of the form λp. e where p ∈ P and e ∈ Efun. We let
R denote the set of pattern abstractions and r, r′, ri range over R.

Environments are sets of function definitions, which may be mutually recursive.

Definition 9.1.8 (Environments)

1. A function definition is a triple f : ~σ = ~r where f ∈ F is a function symbol, ~σ is a set of
function types and ~r is a set of pattern-abstractions.

2. An environment is a finite set of function definitions. We let H denote the set of environ-
ments and Σ,Σ′ range over H.

3. Given an environment Σ and a function symbol f , we define the sets FSΣ, TyΣ(f) and
RuΣ(f), of function symbols in Σ, Σ-typings for f , and Σ-rewritings for f , respectively, as
follows:

FSΣ = {f | (f : ~σ = ~r) ∈ Σ}
TyΣ(f) = {σi | (f : ~σ = ~r) ∈ Σ ∧ σi ∈ ~σ}
RuΣ(f) = {ri | (f : ~σ = ~r) ∈ Σ ∧ ri ∈ ~r}

In the definition of a function f , whereas its typings are used in the typing of expressions,
the rewritings for f influence the reduction of expressions. Thus, each environment induces a
function context and a notion of reduction. The function context associated with an environment
is obtained as follows.

Definition 9.1.9 (Erasure) The erasure function er : H → ℵF is defined inductively as follows:

er(∅) = ∅
er(Σ, f : {σ1, . . . , σn} = ~r) = er(Σ), f : σ1, . . . , f : σn

Let us illustrate the mechanism for defining functions, with the double function for natural
numbers.

9.1 The System λCS+fun 143

Example 9.1.10 (double) Recall the definition of datatypes Odd,Even and Nat given in Example
8.1.18. The double function for natural numbers can be defined as in the following environment:

double : {Nat→Nat}
= {λo. o, λsx. s (s (doublex))}

We can expand this environment with another declaration, defining double also for Odd and Even,
as follows:

double : {Even→Even, Odd→Even}
= {}

Note that it is not necessary to define any extra equation (pattern abstraction), as we can reuse
the equations already defined for Nat.

An example of a polymorphic overloaded function is the zipwith.

Example 9.1.11 (zipwith) The zipwith function takes a binary function g and two lists, l1 and
l2, whose element types match the domain of the function, and builds up the list with the results
of successively applying g to the elements coming from l1 and l2. We can define an overloaded
version of zipwith as follows:

zipwith : {α1→α2→α3 × (Listα1 × Listα2)→Listα3,

α1→α2→α3 × (NeListα1 × NeListα2)→NeListα3}
= {λ〈g, 〈nil, x〉〉.nil, λ〈g, 〈x, nil〉〉. nil,

λ〈g, 〈consxx′, cons y y′〉〉. cons (g x y) (zipwith 〈g, 〈x′, y′〉〉}

9.1.4 Reduction Calculus

Pattern abstractions are to be used as rewrite rules and must be taken into account by the reduction
calculus: pattern-reduction →βpat is defined as the compatible closure of the rule

(λp. e) a →βpat S(e)

where if existing, S is the unique substitution such that S(p) = a and Supp(S) ⊆ FV(p).

Example 9.1.12 Consider the datatypes of natural numbers and products defined before. We
have:

(λsx. f x) (s (s o)) →βpat f (s o)
(λsx. λy. s (f x y)) (s (s o)) →βpat λy. s (f (s o) y)

(λ〈sx, y〉. s (f〈x, y〉)) 〈s (s o), sn〉 →βpat s (f〈s o, sn〉)

In some cases, patterns do not match and reduction is not possible, as for example in

(λ〈sx, y〉. s(f〈x, y〉)) 〈o, sn〉

Thus, each environment determines a notion of reduction as follows.

Definition 9.1.13 (Reduction Calculus)

1. β-reduction →β is defined as the compatible closure of the rule

(λx. a) b →β a[x := b]

144 Chapter 9: Extensible Overloaded Functions

2. Let f : ~σ = ~r be a function definition. δ(f : ~σ = ~r)-reduction →δ(f :~σ=~r) is defined as the
compatible closure of the rule

f a →δ(f :~σ=~r) S(e)

where is assumed that λp. e ∈ ~r and S is the unique (if it exists) substitution such that
S(p) = a and Supp(S) ⊆ FV(p).

3. Let Σ ≡ f1 : ~σ1 = ~r1, . . . , fn : ~σn = ~rn be an environment. δΣ-reduction →δΣ is defined as⋃
1≤i≤n

→δ(fi: ~σi=~ri)

4. Let Σ be an environment. βδΣ-reduction →βδΣ is defined as →β ∪ →δΣ . �βδΣ and =βδΣ are
respectively defined as the reflexive-transitive and the reflexive-symmetric-transitive closures
of →βδΣ .

The mechanics of this reduction calculus is illustrated by the following example.

Example 9.1.14 Consider the function double defined in Example 9.1.10. The next reduction
sequence computes the double of the double of one.

double (double (s o)) → δΣ double (s (s (double o)))
→ δΣ double (s (s o))
→ δΣ s (s (double (s o)))
→ δΣ s (s (s (s (double o))))
→ δΣ s (s (s (s o)))

Observe that when we apply double to (double (s o)) we first evaluate (double (s o)) to find out what
sort of term it is, because (double (s o)) does not match with any of the patterns in the Σ-rewritings
of double.

The computational behavior of expressions is specified by the rules for β-reduction and δΣ
reduction. Of course, the δΣ reduction needs not be well-behaved, since we have not imposed any
restrictions on environments. For example, assume we have defined the function double as it is
done in Example 9.1.10 but without declaring the type Even→Even for it. In this situation, we
have

double : Nat→Nat, double : Odd→Even | . `λCS+fun
double (s o) : Even

and the reduction double (s o) →δΣ s (s (double o)). However, the judgment double : Nat →
Nat, double : Odd → Even | . `λCS+fun

s (s (double o)) : Even does not hold since one has to use
double : Nat→Nat to type (double o). Thus, we just have

double : Nat→Nat, double : Odd→Even | . `λCS+fun
s (s (double o)) : Nat

So, if no restrictions on environments are imposed, the type of expressions will not be preserved
under reduction, and we will have problems with subject reduction. The next section is devoted
to the definition of well-formed environments.

9.1.5 Well-Formed Environments

There are several possible understandings of well-formedness for an environment. A minimal
requirement is that δΣ-reduction should enjoy subject reduction. Other desirable requirements on

9.1 The System λCS+fun 145

recursive functions include unambiguousness, totality and possibly termination. Next we formalize
these requirements as properties on environments. The decidability of such properties will be
proved in Section 9.6.

As already mentioned, we are eventually interested in extending this mechanism, of extensible
overloaded functions, to dependent types. So, we do not want the computational behavior of
recursive functions to depend on typing, since it would create a circularity (in dependent type
systems, typing depends on reduction through the conversion rule).

To achieve the subject reduction property for the reduction calculus, each reduction rule in-
duced by the environment must be well-typed. The following definition formalizes this requirement.

Definition 9.1.15 (Well-typed environment) An environment Σ is well-typed if, for every
f ∈ FSΣ and τ1→τ2 ∈ TyΣ(f), the following two conditions hold:

1. ∃λp.e ∈ RuΣ(f). ∃Γ. . |Γ `λCS+fun
p : τ1

2. ∀λp.e ∈ RuΣ(f). ∀Γ. er(Σ) |Γ `λCS+fun
p : τ1 ⇒ er(Σ) |Γ `λCS+fun

e : τ2

These two conditions force every type declared for a function to be in accordance with the pattern
abstractions involved in the definition of that function. That is, if it is possible to type the
argument of the function with a domain type of the function, then it must be possible to type the
body of the function (for that argument) with the corresponding codomain type. Moreover, every
type assigned to a function must type at least one of its pattern abstractions. That is the reason
why we require condition 1 to hold.

Observe that the environment defining double in Example 9.1.10 is well-typed. But if we just
declare the types Nat→ Nat and Odd→ Even for double, the resulting environment is not well-
typed, because the second pattern abstraction does not type-check. Let us give another example.

Example 9.1.16 (add) Recall the definition of datatypes Odd,Even and Nat given in Example
8.1.18. Addition of even numbers can be defined as in the following environment:

add : {Even→Even→Even, Odd→Even→Odd}
= {λo.λy. y, λsx.λy. s (addx y)}

This environment is well-typed. Notice how it is crucial that add is overloaded. If we just declare
type Even→ Even→ Even for add the second equation (pattern abstraction) does not type-check.
Moreover, to expand the definition of odd and natural numbers we just have to overload add with
the new types, as the equations can be completely reused.

add : {Even→Odd→Odd, Odd→Odd→Even, Nat→Nat→Nat}
= {}

Again, note that for typing reasons, the first and second typings need to be declared together whereas
the third typing could be declared on its own.

The next example illustrates the necessity of condition 1 in the definition of well-typed envi-
ronments.

Example 9.1.17 Consider the following environment Σ:

wrong : {Nat→Nat, Odd→Even, α→β}
= {λo. o, λsx. x}

146 Chapter 9: Extensible Overloaded Functions

This environment is not well-typed because condition 1 fails. There is no pattern (in the pattern
abstractions defined for wrong) typable with type α for some context, since both o and sx are
impossible to type with type α. However, condition 2 holds for the two patterns abstractions
defining wrong.

Clearly, the declaration of this function threatens subject reduction. For instance, we have

wrong : α→β | . `λCS+fun
wrong : Nat→List Nat wrong : α→β | . `λCS+fun

o : Nat

wrong : α→β | . `λCS+fun
wrong o : List Nat

and the reduction wrong o→δΣ o; but it is impossible to give o the type List Nat. Therefore, subject
reduction does not hold.

The reduction calculus should be confluent, so we only consider unambiguous functions. Func-
tions defined in the environments must be non-overlapping. In other words, only one rule of the
function should apply for a given term.

Definition 9.1.18 (Non-overlapping environment) An environment Σ is non-overlapping if,
for every f ∈ FSΣ and distinct λp.e, λp′.e′ ∈ RuΣ(f) there are no substitutions S and S′ such that
S(p) = S′(p′).

An alternative approach would have been to opt for priority rewriting [12] and drop the requirement
that functions should be non-overlapping.

It is easy to check that the environments defined till now are non-overlapping. However,
sometimes this requirement complicates the writing of programs. Let us give an example.

Example 9.1.19 (MaybeNat) Suppose we want to extend the datatype Nat with an extra con-
structor as follows:

data MaybeNat extends Nat = Undef : MaybeNat

Hence, we have:

MaybeNat ∈ D Nat vD MaybeNat

o, s, undef ∈ C
ar(MaybeNat) = 0 DMaybeNat(undef) = MaybeNat

ar(undef) = 0 DMaybeNat(o) = MaybeNat

C(MaybeNat) = {o, s, undef} DMaybeNat(s) = Nat→MaybeNat

Suppose also that we want to extend the function add so that it works on the extended datatype
MaybeNat. To define a function add : MaybeNat→MaybeNat→MaybeNat by pattern matching
can be a bit tricky because we restrict the environments to unary functions and case-expressions
are not allowed in this system. Nevertheless we can use the product type constructor to deal with
this problem. So, assume instead we have an uncurried version of addition defined by the following
environment:

add : {Even× Even→Even, Odd× Even→Odd,

Even× Odd→Odd, Odd× Odd→Even,

Nat× Nat→Nat}
= {λ〈o, y〉. y, λ〈sx, y〉. s (add 〈x, y〉)}

The first idea to expand addition for MaybeNat is to extend the environment with the following
declaration:

add : {MaybeNat×MaybeNat→MaybeNat}
= {λ〈undef, y〉.undef, λ〈x, undef〉.undef}

9.1 The System λCS+fun 147

However, the resulting environment is overlapping. In fact, the last clause, λ〈x, undef〉.undef

overlaps with all the others. Hence the non-overlapping conditions fails. A correct version of
addition for MaybeNat is the function plus:

plus : {Even× Even→Even, Odd× Even→Odd}
= {λ〈o, o〉.o, λ〈o, sx〉.sx, λ〈sx, o〉.sx, λ〈sx, s y〉.s (s (plus 〈x, y〉))}

plus : {Even× Odd→Odd, Odd× Odd→Even, Nat× Nat→Nat}
= {}

plus : {MaybeNat×MaybeNat→MaybeNat}
= {λ〈undef, y〉.undef, λ〈o, undef〉.undef, λ〈sx, undef〉.undef}

Note that we are still using the facility of extending a previously defined function, but the definition
of plus over naturals is not very usual.

We only consider total functions, so the functions defined by pattern matching must be ex-
haustive. Because functions can be polymorphic, to formalize this requirement of exhaustiveness
we first introduce the notion of quasi-closed pattern w.r.t. a given type.

Definition 9.1.20 (Quasi-closed pattern) A pattern p is quasi-closed w.r.t. σ if σ ≡ d~τ ,
p ≡ c p1 . . . par(c), c ∈ C(d) and each pi is a quasi-closed w.r.t. Dom~τ

d(c)[i]; or if σ 6≡ d~τ and p is
a variable.

Obviously, if p is a pattern quasi-closed w.r.t. σ, then . |Γ `λCS+fun
p : σ for some Γ.

Definition 9.1.21 (Exhaustive environment) An environment Σ is exhaustive if, for every
f ∈ FSΣ, τ1→ τ2 ∈ TyΣ(f) and for every pattern p quasi-closed w.r.t. τ1, there exists λp′.e′ ∈
RuΣ(f) such that p = S(p′) for some substitution S.

It is easy to check that the environments defined above are all exhaustive.
Summarizing, we can say that a function f is:

– well-typed, if all the rewrite rules defining it are well-typed;

– unambiguous, if for every pattern p, the expression f p can be reduced in at most one way;

– total, if f p is reducible for every quasi-closed pattern p of suitable type.

The well-formed environments will be those for which all functions defined in it satisfy these prop-
erties. The above properties are global in the sense that one needs to scan the whole environment
to check whether they hold. As illustrated in the example bellow, it is crucial that the properties
are global.

Example 9.1.22 Consider the well-typed environment:

add : {Even→Even→Even, Odd→Even→Odd}
= {λo.λy.dummy y, λsx.λy. s (addx (dummy y))}

dummy : {Even→Even}
= {λx.x}

If we extend this environment with the following declaration:
add : {Nat→Nat→Nat}

= {}

148 Chapter 9: Extensible Overloaded Functions

the resulting environment is not well-typed, whereas the original environment without this last
definition is. This is because, for instance, we do not have

∇ | . `λCS+fun
λo.λy.dummy y : Nat→Nat→Nat , where

∇ ≡ add:Even→Even→Even, add:Odd→Even→Odd, dummy:Even→Even, add:Nat→Nat→Nat.

This example shows that when new types are assigned to a function, its equations need to be
type-checked again.

We can now define the notion of well-formed environment.

Definition 9.1.23 (Well-formed environment) An environment Σ is well-formed if Σ is well-
typed, non-overlapping and exhaustive.

Decidability of well-formedness for environments is proved in Section 9.6. The environments
presented in examples 9.1.10, 9.1.11, 9.1.16 and 9.1.19 are all well-formed. We end this section
with a last example of an environment well-formed.

Example 9.1.24 Consider we enrich the environment described in Example 9.1.19 with the fol-
lowing definitions for the multiplication and the factorial functions:

mult : {Even× Nat→Even, Nat× Even→Even, Odd× Odd→Odd, Nat× Nat→Nat}
= {λ〈o, o〉.o, λ〈o, sx〉.o, λ〈sx, o〉. o, λ〈sx, s y〉.plus 〈s y,mult 〈x, s y〉〉}

fact : {Nat→Nat}
= {λo. s o, λsx.mult 〈sx, factx〉}

mult : {MaybeNat×MaybeNat→MaybeNat}
= {λ〈undef, y〉. undef, λ〈o, undef〉. undef, λ〈sx, undef〉. undef}

fact : {MaybeNat→MaybeNat}
= {λundef.undef}

Let us name Σ the environment resulting of this expansion. Σ is a well-formed environment. Below
we have a possible reduction sequence to compute fact (plus 〈s o, s o〉).

fact (plus 〈s o, s o〉) → δΣ fact (s (s (plus 〈o, o〉)))
→ δΣ fact (s (s o))
→ δΣ mult 〈s (s o), fact o〉
→ δΣ mult 〈s (s o), s o〉
→ δΣ plus 〈s o,mult 〈s o, s o〉〉
→ δΣ plus 〈s o,plus 〈s o,mult 〈o, s o〉〉〉
→ δΣ plus 〈s o,plus 〈s o, o〉〉
→ δΣ plus 〈s o, s o〉
→ δΣ s (s o)

9.2 Confluence

In this section we show that the reduction calculus generated by a non-overlapping environment
is confluent. Observe that if Σ is non-overlapping, at most one rule of a function should apply for
a given term. Therefore,

f a→δΣ S(e) iff ∃!λp.e ∈ RuΣ(f).∃!S . S(p) = a ∧ Supp(S) ⊆ FV(p)

The proof of confluence is done by the standard technique of Tait and Martin-Löf, similarly to
what was done for λCS is Section 8.2.

9.2 Confluence 149

Definition 9.2.1 Let Σ be a non-overlapping environment. Define a binary relation �1Σ on Efun

inductively as follows:

1. a�1Σ a

2. a�1Σ a
′ ⇒ λx.a�1Σ λx.a

′

3. a�1Σ a
′ ∧ b�1Σ b

′ ⇒ a b�1Σ a
′ b′

4. a�1Σ a
′ ∧ b�1Σ b

′ ⇒ (λx.a) b�1Σ a
′[x := b′]

5. a�1Σ a
′ ∧ e�1Σ e

′ ⇒ f a�1Σ S(e′), whenever ∃λp.e ∈ RuΣ(f).∃S. S(p) = a′

Lemma 9.2.2 Assume Σ is a non-overlapping environment. We have:

a�1Σ a
′ ∧ b�1Σ b

′ ⇒ a[x := b]�1Σ a
′[x := b′]

Proof. By induction on the definition of a�1Σ a
′. We treat here case 5.

Assume a �1Σ a′ is f a1 �1Σ S(e′), and this is a direct consequence of a1 �1Σ a′1, e �1Σ e′

and S(p) = a′1, for some substitution S and λp.e ∈ RuΣ(f). By induction hypothesis a1[x :=
b]�1Σ a′1[x := b′]. Moreover, as S(p) = a′1, we have ([x := b′] ◦ S)(p) = a′1[x := b′]. So, by rule 5
we have

(f a1)[x := b] = f (a1[x := b])�1Σ ([x := b′] ◦ S)(e′) = S(e′)[x := b′]

2

Lemma 9.2.3 (Generation lemma for �1Σ) Let Σ be a non-overlapping environment. Then,

1. λx.a�1Σ e implies e ≡ λx.a′ with a�1Σ a
′.

2. a1 a2 �1Σ e implies either:

(a) e ≡ a′1 a′2 with a1 �1Σ a
′
1 and a2 �1Σ a

′
2;

(b) a1 ≡ λx.b, e ≡ b′[x := a′2] with b�1Σ b
′ and a2 �1Σ a

′
2;

(c) or a1 ≡ f , e ≡ S(b′) with λp.b ∈ RuΣ(f), b�1Σ b
′, a2 �1Σ a

′
2 and S(p) = a′2.

Proof. By induction on the definition of �1Σ . 2

Lemma 9.2.4 Let Σ be a non-overlapping environment. Then, �1Σ satisfies the diamond prop-
erty, i.e.,

a�1Σ a1 ∧ a�1Σ a2 ⇒ ∃ a3 ∈ Efun. a1 �1Σ a3 ∧ a2 �1Σ a3

Proof. By induction on the definition of a�1Σ a1. 2

Lemma 9.2.5 Let Σ be a non-overlapping environment. Then �βδΣ is the transitive closure of
�1Σ .

Proof. �1Σ contains the reflexive closure of → βδΣ . Moreover, �1Σ⊆�βδΣ . Since �βδΣ is the
reflexive-transitive closure of →βδΣ it is also the transitive closure of �1Σ . 2

150 Chapter 9: Extensible Overloaded Functions

Theorem 9.2.6 (Confluence) Let Σ be a non-overlapping environment. Then →βδΣ is conflu-
ent:

a1 =βδΣ a2 ⇒ ∃ e ∈ Efun. a1 �βδΣ e ∧ a2 �βδΣ e

Proof. Assume a1 =βδΣ a2, then ∃ a ∈ Efun. a �βδΣ a1 ∧ a �βδΣ a2. As �βδΣ is the transitive
closure of �1Σ , �βδΣ satisfies also the diamond property. So, we conclude. 2

9.3 Subject Reduction

In this section we show that the type of an expression is preserved under reduction whenever the
environment is well-typed and non-overlapping. The reduction rules introduced by the pattern
abstractions and the overloading of functions make the proof a bit hard. Of course the difficulties
appear when we want to show that typing is preserved under δ-reduction. For β-reduction the
proof is quite standard.

Before going into the proof of subject reduction, we have to introduce some auxiliary definitions
around the concepts of variable context and substitution, and some lemmata. As the set of types
and the subtyping rules for λCS+fun and λCS are exactly the same, we have for λCS+fun the results
about the subtyping relation already proved for λCS in Chapter 8, namely lemmas 8.3.3 and 8.3.4.

Lemma 9.3.1

1. If Γ ⊆ Γ′ and ∇ |Γ `λCS+fun
e : σ then ∇ |Γ′ `λCS+fun

e : σ.

2. If ∇ |Γ `λCS+fun
e : σ then FV(e) ⊆ dom(Γ).

Proof. By induction on the derivation of ∇ |Γ `λCS+fun
e : σ. 2

Lemma 9.3.2 (Generation lemma for typing)

1. ∇ |Γ `λCS+fun
x : σ ⇒ (x : τ) ∈ Γ ∧ τ ≤ σ

2. ∇ |Γ `λCS+fun
a b : σ ⇒ ∇|Γ `λCS+fun

a : τ → σ′ ∧ ∇ |Γ `λCS+fun
b : τ ∧ σ′ ≤ σ

3. ∇ |Γ `λCS+fun
λx.e : σ ⇒ σ ≡ τ1→τ2 ∧ ∇ |Γ, x : τ ′1 `λCS+fun

e : τ ′2 ∧ τ1 ≤ τ ′1 ∧ τ ′2 ≤ τ2

4. ∇ |Γ `λCS+fun
c : σ ⇒ σ ≡ ~γ→θ ∧ ~γ ≤ Dom~τ

d(c) ∧ d~τ ≤ θ ∧ c ∈ C(d)

5. ∇ |Γ `λCS+fun
f : σ ⇒ σ ≡ τ1→τ2 ∧ S(τ) ≤ σ ∧ (f : τ) ∈ ∇

Proof. By inspection on the derivation of the antecedent judgments. 2

The following lemma is a generation lemma for constructors fully applied.

Lemma 9.3.3

∇ |Γ `λCS+fun
c a1 . . . aar(c) : θ ⇒ θ ≡ d~τ ∧ c ∈ C(d) ∧ ∇ |Γ `λCS+fun

ai : Dom~τ
d(c)[i], i = 1..ar(c)

9.3 Subject Reduction 151

Proof. Assume ∇ |Γ `λCS+fun
c a1 . . . aar(c) : θ. By Lemma 9.3.2 it follows that ∇ |Γ `λCS+fun

c : ~γ→
σ, σ ≤ θ and also that, for 1 ≤ j ≤ ar(c),

∇ |Γ `λCS+fun
ai : γi ∧ γi ≤ Dom

~ψ
d′(c)[i] (9.1)

d′ ~ψ ≤ σ ∧ c ∈ C(d′) (9.2)

By transitivity we have d′ ~ψ ≤ θ. So, by generation lemma for subtyping one gets that θ ≡ d~τ ,
d′ vD d and ~ψ ≤ ~τ . As every constructor is strictly overloaded Dom~α

d′(c) ≤ Dom~α
d (c). Since the

parameters can only occur positively in the domains of constructors, by Lemma 8.3.4,

Dom
~ψ
d′(c) ≤ Dom~τ

d(c)

From (9.2), as d′ vD d, follows that c ∈ C(d). From (9.1), by subsumption, one gets ∇ |Γ `λCS+fun

ai : Dom~τ
d(c)[i] for i = 1..ar(c). 2

Lemma 9.3.4 (Substitution lemma for typing)
If ∇ |Γ, x1 :τ1, . . . , xn :τn `λCS+fun

a : σ and ∇ |Γ `λCS+fun
bi : τi for i = 1..n, then ∇ |Γ `λCS+fun

a[x1 := b1, . . . , xn := bn] : σ.

Proof. By induction on the derivation of ∇ |Γ, x1 : τ1, . . . , xn : τnx : τ `λCS+fun
a : σ. Similar to the

proof of Lemma 8.3.7 2

We define a notion of subcontext, which is a partial order over variable contexts, and we
introduce a notion of minimal variable context for typing a given pattern with a given type, and
show how can they be obtained.

Definition 9.3.5 (Subcontext) Let Γ and Γ′ be variable contexts. We say that Γ is a subcontext
of Γ′, and write Γ � Γ′, if

1. dom(Γ) ⊆ dom(Γ′)

2. ∀x ∈ dom(Γ). Γ′(x) ≤ Γ(x)

Lemma 9.3.6 The binary relation � is a partial order.

Proof. It follows immediately from the fact that ≤ is a partial order. 2

Lemma 9.3.7

∇ |Γ `λCS+fun
e : τ ∧ Γ � Γ′ ⇒ ∇|Γ′ `λCS+fun

e : τ

Proof. By induction on the derivation of ∇ |Γ `λCS+fun
e : τ . 2

Definition 9.3.8 Γ is the minimal variable context for typing the pattern p with the type τ if:

1. ∇ |Γ `λCS+fun
p : τ ; and

2. for every Γ′ such that ∇ |Γ′ `λCS+fun
p : τ , one has Γ � Γ′.

152 Chapter 9: Extensible Overloaded Functions

Definition 9.3.9 We define mvc(p : σ) inductively as follows:

mvc(x : τ) = {x : τ}
mvc(c p1 . . . par(c) : d~τ) =

⋃
i=1..ar(c) mvc(pi : Dom~τ

d(c)[i]) if c ∈ C(d)

Note that mvc(p : σ) is not defined whenever p ≡ c p1 . . . par(c) and σ is not a datatype, or is
a datatype that does not have c as constructor. Otherwise mvc(p : σ) produces a well-defined
variable context since patterns are linear. Bellow, when we write mvc(p : σ) we assume that
mvc(p : σ) is defined.

Proposition 9.3.10 mvc(p : τ) is the minimal variable context for typing p : τ .

Proof. By induction on the structure of the pattern p. We must consider two cases:

• Case p ≡ x. Let Γ = mvc(x : τ) = {x : τ} and assume ∇ |Γ′ `λCS+fun
x : τ . By Lemma 9.3.2,

x : σ ∈ Γ′ and σ ≤ τ , and thus Γ � Γ′.

• Case p ≡ c p1 . . . par(c) and τ ≡ d~τ . Let Γ =
⋃
i=1..ar(c) mvc(pi : Dom~τ

d(c)[i]) and assume
∇ |Γ′ `λCS+fun

c p1 . . . par(c) : d~τ . By Lemma 9.3.3 follows that c ∈ C(d) and ∇ |Γ′ `λCS+fun

pj : Dom~τ
d(c)[j] for j = 1..ar(c). By induction hypothesis, mvc

(
pj : Dom~τ

d(c)[j]
)
�Γ′ for every

j = 1..ar(c). Hence Γ � Γ′, because

1. dom(Γ) =
⋃
i=1..ar(c) dom

(
mvc(pi : Dom~τ

d(c)[i])
)
⊆ dom(Γ′)

2. ∀x ∈ dom(Γ). x ∈ dom
(
mvc(pj : Dom~τ

d(c)[j])
)

for some 1 ≤ j ≤ ar(c), and so, Γ′(x) ≤
mvc(pj : Dom~τ

d(c)[j])(x) = Γ(x).

2

Lemma 9.3.11

mvc(p : σ) ∧ τ ≤ σ ⇒ mvc(p : σ) � mvc(p : τ)

Proof. By induction on the structure of p. 2

Definition 9.3.12 Let M be a type substitution and Γ a variable context. M(Γ) is defined induc-
tively as follows:

M(∅) = ∅
M(Γ, x :τ) = M(Γ), x :M(τ)

Lemma 9.3.13 Let M be a type substitution. Then,

1. τ ≤ σ ⇒ M(τ) ≤M(σ)

2. ∇ |Γ `λCS+fun
e : τ ⇒ ∇|M(Γ) `λCS+fun

e : M(τ)

3. M(mvc(p : τ)) = mvc(p : M(τ))

Proof.

1. By induction on the derivation of τ ≤ σ.

2. By induction on the derivation of ∇ |Γ `λCS+fun
e : τ using 1.

9.3 Subject Reduction 153

3. By induction on the structure of p.

2

Next we introduce the concept of compatible substitutions, and we define the union of com-
patible substitutions.

Definition 9.3.14

1. Let S and R be type substitutions. We say that S and R are compatible substitutions if
∀x ∈ Supp(S) ∩ Supp(R) . S(x) = R(x)

2. Let S and R be compatible type substitutions. The union of substitutions S and R, that we
write as S ⊕R, can then be defined as follows:

(S ⊕R)(x) =

S(x) if x ∈ Supp(S)
R(x) if x ∈ Supp(R)
x otherwise

Definition 9.3.15 Let A ⊆ VE , S a term substitution and Γ a variable context. We define Γ|A
and S|A as follows:

Γ|A = {Γ(x) | x ∈ A ∩ dom(Γ)} and S|A(x) =

{
S(x) if x ∈ A
x otherwise

Lemma 9.3.16 Let Σ be an environment well-typed and non-overlaping, and f ∈ FSΣ. If λc ~p.e ∈
RuΣ(f), then for every θ1→θ2 ∈ TyΣ(f), θ1 is a datatype.

Proof. Assume there is a λc ~p.e ∈ RuΣ(f). If some θ1→ θ2 ∈ TyΣ(f) is such that θ1 is a type
variable or a function type, then it must exist a pattern abstraction λx.e′ ∈ RuΣ(f) because Σ is
well-typed but that is impossible since Σ is non-overlapping. Hence the domain of every possible
type for f must be a datatype. 2

Lemma 9.3.17 Let c p1 . . . par(c) be a pattern. If ∇ |Γ `λCS+fun
c a1 . . . aar(c) : d~τ , S(pi) = ai for

i = 1..ar(c) and d~τ ≤ d′M(~ρ), then ∃Γ′. . |Γ′ `λCS+fun
c p1 . . . par(c) : d′~ρ .

Proof. By induction on the structure of c p1 . . . par(c).
We have ∇ |Γ `λCS+fun

c a1 . . . aar(c) : d~τ so, by Lemma 9.3.3, we have that c ∈ C(d) and
∇ |Γ `λCS+fun

ai : Dom~τ
d(c)[i] for i = 1..ar(c). From d~τ ≤ d′M(~ρ), by the generation lemma, we

have d vD d′ and ~τ ≤ M(~ρ). As constructors are strictly overloaded and parameters can only
occur in positive positions of the domain of constructors, it follows that Dom~τ

d(c) ≤ Dom
M(~ρ)
d′ (c).

Moreover c ∈ C(d′).
We want to prove that ∃Γ′. . |Γ′ `λCS+fun

c p1 . . . par(c) : d′~ρ. Let us see how to obtain such a
Γ′. For each pi with 1 ≤ i ≤ ar(c):

• If pi ≡ xi, then let Γ′i ≡ x : Dom~ρ
d′(c)[i]. We have . |Γ′i `λCS+fun

pi : Dom~ρ
d′(c)[i].

• If pi ≡ ci pi,1 . . . pi,ar(ci), then ai ≡ ci ai,1 . . . ai,ar(ci) and S(pi,j) = ai,j for j = 1..ar(ci).
Moreover

∇ |Γ `λCS+fun
ci pi,1 . . . pi,ar(ci) : di ~τi ≡ Dom~τ

d(c)[i] ≤ Dom
M(~ρ)
d′ (c)[i] ≡ d′′M(~θ)

154 Chapter 9: Extensible Overloaded Functions

for some di ~τi and d′′~θ. So, by induction hypothesis,

∃Γ′i. . |Γ′i `λCS+fun
pi : d′′~θ ≡ Dom

~θ
d′′(c)[i]

Let Γ′ ≡
⋃ar(c)
i=1 Γ′i|FV(pi). Γ′ is a well-formed context because the free variables of each pi

are always different, since c p1 . . . par(c) is a linear pattern. As c ∈ C(d′) we have by (cons)
∇ |Γ′ `λCS+fun

c : Dom~ρ
d′(c)→d′~ρ. Hence, applying (app) we get ∇ |Γ `λCS+fun

c p1 . . . par(c) : d′ ~ρ. 2

Lemma 9.3.18 Let Σ be an environment well-typed and non-overlapping, and ∇ = er(Σ). If
∇ |Γ `λCS+fun

f : τ→σ, ∇ |Γ `λCS+fun
a : τ and S(p) = a for the unique λp.e ∈ RuΣ(f), then

∀ θ1→θ2 ∈ TyΣ(f). M(θ1→θ2) ≤ τ→σ ⇒ ∃Γ′. . |Γ′ `λCS+fun
p : θ1

Proof. By case analysis on p.

• Case p ≡ x, the for every θ1→ θ2 ∈ TyΣ(f) we can always define Γ′ = x : θ1 and we have
. |Γ′ `λCS+fun

x : θ1 by (var).

• Case p ≡ c p1 . . . par(c) then a ≡ c a1 . . . aar(c) and S(pi) = ai, i = 1..ar(c). Moreover, from
the hypothesis, by Lemma 9.3.3 we have τ ≡ d′~τ ′. For every θ1→ θ2 ∈ TyΣ(f) such that
M(θ1 → θ2) ≤ τ → σ. By Lemma 9.3.16, θ1 must be a datatype. Let θ1 ≡ d ~ρ. By the
generation lemma for subtyping, one has d′~τ ′ ≤ dM(~ρ). As ∇ |Γ `λCS+fun

c a1 . . . aar(c) : d′~τ ′

we can conclude that
∃Γ′. . |Γ′ `λCS+fun

c p1 . . . par(c) : d ~ρ

using Lemma 9.3.17.

2

Lemma 9.3.19 Let p1, . . . , pn be a set of patterns such that FV(pi) ∩ FV(pj) = ∅ for every i, j ∈
{1, . . . , n}. If for every i = 1..n, ∇ |

⋃n
i=1 mvc(pi : τi) `λCS+fun

e : σ, ∇ |Γ `λCS+fun
ai : τi and

Si(pi) = ai with Supp(Si) ⊆ FV(pi), then ∇ |Γ `λCS+fun
S(e) : σ , where S =

⊕n
i=1 Si.

Proof. By induction on the multi-set of patterns P = {p1, . . . , pn}.
Let us assume firstly that each pattern pi is a variable xi, then ∇ |x1 : τ1, . . . , xn : τn `λCS+fun

e : σ and Si = [xi := ai]. Using the variable convention, from Lemma 9.3.1 follows

∇ |Γ, x1 : τ1, . . . , xn : τn `λCS+fun
e : σ

Since S = [x1 := a1, . . . , xn := an], by Lemma 9.3.4 we obtain ∇ |Γ `λCS+fun
S(e) : σ.

Otherwise, at least one pattern pk (for some 1 ≤ k ≤ n) is not a variable. Let us as-
sume, without loss of generality, that pk ≡ ck pk,1 . . . pk,ar(ck). Then ak ≡ ck ak,1 . . . ak,ar(ck) and
Sk,j(pk,j) = ak,j for j = 1..ar(ck), with Sk,j = Sk|FV(pk,j). Moreover, by Lemma 9.3.3, we have
τk ≡ dk ~τk for some dk ~τk, ck ∈ C(dk), and ∇ |Γ `λCS+fun

ak,j : Dom ~τk
dk

(ck)[j]. From the hypothesis,

by definition ∇ |
⋃ar(ck)
j=1 mvc(pk,j : Dom ~τk

dk
(ck)[j]) ∪

⋃n
i=1,i 6=k mvc(pi : τi) `λCS+fun

e : σ. Let Q
be the multi-set {p1, . . . , pk−1, pk,1, . . . , pk,ar(ck), pk+1, . . . , pn}. We have Q� P for Q is obtained
from P replacing pk by the subpatterns pk,1, . . . , pk,ar(ck). So, from induction hypothesis follows

∇ |Γ `λCS+fun

(ar(ck)⊕
j=1

Sk,j ⊕
n⊕

i=1,i 6=k

Si
)
(e) : σ

9.4 Strong Normalization 155

Since,
⊕ar(ck)

j=1 Sk,j = Sk we have ∇ |Γ `λCS+fun
S(e) : σ. 2

We can now prove that computation preserves typing.

Theorem 9.3.20 (Subject reduction) Let Σ be an environment well-typed and non-overlapping,
and let ∇ = er(Σ). Then

∇ |Γ `λCS+fun
a : σ ∧ a→βδΣ a

′ ⇒ ∇|Γ `λCS+fun
a′ : σ

Proof. By induction on the derivation of ∇ |Γ `λCS+fun
a : σ. The interesting case is when the

last rule is (app) and a ≡ f b. The remaining cases were already treated in the proof of subject
reduction for λCS.

So, assume we have a ≡ f b, and the last step is

∇ |Γ `λCS+fun
f : τ→σ ∇ |Γ `λCS+fun

b : τ

∇ |Γ `λCS+fun
f b : σ

Moreover assume f b→βδΣ S(e) for the unique λp.e ∈ RuΣ(f) and the unique substitution S such
that b = S(p) and Supp(S) ⊆ FV(p). We want to show that ∇ |Γ `λCS+fun

S(e) : σ.
By Lemma 9.3.2, we know that ∃ θ1 → θ2 ∈ TyΣ(f). M(θ1 → θ2) ≤ τ → σ for some type

substitution M . So, by the generation lemma for subtyping we get that τ ≤M(θ1) and M(θ2) ≤
σ. Now, using Lemma 9.3.18, follows that ∃Γ′. . |Γ′ `λCS+fun

p : θ1; and, as Σ is well-typed,
∇ |Γ′ `λCS+fun

e : θ2. Therefore, mvc(p : θ1) is defined and

∇ |mvc(p : θ1) `λCS+fun
e : θ2

By Lemma 9.3.13, ∇ |mvc(p : M(θ1)) `λCS+fun
e : M(θ2). As τ ≤ M(θ1), using lemmas 9.3.11

and 9.3.7 we obtain ∇ |mvc(p : τ) `λCS+fun
e : M(θ2). From M(θ2) ≤ σ, follows that ∇ |mvc(p :

τ) `λCS+fun
e : σ by applying (sub). Finally, we are in conditions of using Lemma 9.3.19 and show

that ∇ |Γ `λCS+fun
S(e) : σ. 2

9.4 Strong Normalization

Clearly, the calculus is not normalizing as we do not impose any restriction on recursive definitions.
For example, the following function does not terminate:

loop : {Nat→Nat}
= {λx. loopx}

In order to recover termination, we provide a simple criterion: the criterion for termination is
inspired from [44]. In a nutshell, we ensure that a recursive function is terminating if, to compute
f p, each recursive call of f is applied to patterns that are structurally smaller than p.

Definition 9.4.1 (Structurally smaller) Let p, p′ ∈ P. p is structurally smaller than p′, writ-
ten p ≺ p′, if it can be derived from the rules of Figure 9.3.

Definition 9.4.2 Let Σ be an environment and f, g ∈ FSΣ.

1. We say that g occurs in f , written g occurΣ f , if exists a λp.e ∈ RuΣ(f) such that g occ e.

156 Chapter 9: Extensible Overloaded Functions

1.
pi ≺ c p1 . . . par(c)

if 1 ≤ i ≤ ar(c)

2.
pi ≺ p′i

c p1 . . . pi . . . par(c) ≺ c p1 . . . p
′
i . . . par(c)

if 1 ≤ i ≤ ar(c)

3.
p ≺ p′ p′ ≺ p′′

p ≺ p′′

Figure 9.3: Structurally smaller relation

2. We define the set MDΣ(f) of functions mutually dependent to f as follows:

MDΣ(f) = {g | g occurΣ f ∧ f occurΣ g}

Definition 9.4.3 (Argument decreasing) Let Σ be an environment.

1. A pattern abstraction λp.e is argument decreasing w.r.t. f if each occurrence of f in e is a
term f p′ such that p′ ≺ p.

2. A function f is argument decreasing in Σ if all pattern abstractions of RuΣ(f) are argument
decreasing w.r.t. each g ∈ MDΣ(f).

3. Σ is argument decreasing if every function defined in it is argument decreasing.

One can prove that all typable expressions are strongly normalizing for every environment where
all function declarations are argument decreasing.

Theorem 9.4.4 (Strong normalization) Let Σ be an well-formed environment and argument
decreasing. If er(Σ) |Γ `λCS+fun

e : σ, then e is strongly normalizing with respect to βδΣ-reduction.

Proof. The proof proceeds by the standards techniques based on saturated sets (or reducibility
candidates). See [28] for such a proof for a more elaborate termination criteria. 2

9.5 Type Checking

We want to decide whether or not a type judgment ∇ |Γ `λCS+fun
e : σ is derivable. We saw

in Section 8.5 that type-checking is decidable for λCS. In λCS+fun we have an extra context of
overloaded functions, but we can follow the same strategy to decide type-checking.

9.5.1 The System λa
CS+fun

Similarly to what is done in Subsection 8.5.2, here we present system λa
CS+fun. The set T a

fun of
types of λa

CS+fun is equal to T a
cs.

9.5 Type Checking 157

Definition 9.5.1 (Expressions) The set Ea
fun of expressions of λa

CS+fun is given by the abstract
syntax:

a, b ::= x | cd | fτ | λx.a | a b

The typing system of λa
CS+fun is similar to the one of λa

CS. Here we do not have typing rules for
case-expressions and letrec-expressions, and we have the following rule for functions:

(fun)
Γ `λa

CS+fun
fτ : S(τ)

where S is a substitution

Definition 9.5.2 (∇-annotated terms) Let ∇ be a context of overloaded variables. The set of
∇-annotated variants of a term is given by the mapping an∇ : Efun→P(Ea

fun) defined as follows:

an∇(x) = {x}
an∇(c) = {cd | c ∈ C(d)}
an∇(f) = {fτ | (f : τ) ∈ ∇}

an∇(a b) = {a′ b′ | a′ ∈ an∇(a) ∧ b′ ∈ an∇(b)}
an∇(λx.a′) = {λx.a′ | a′ ∈ an∇(a)}

Observe that this definition follows very closely Definition 8.5.6. The results stated for λa
CS are

preserved in λa
CS+fun, as it can be easily checked.

9.5.2 The System λac
CS+fun

Similarly to what is done in Subsection 8.5.2, here we present system λa
CS+func. The set T ac

fun of
types of λac

CS+fun is equal to T ac
cs , and the set Eac

fun of terms of λac
CS+fun is equal to Eac

cs . The typing
system of λac

CS+fun is equal to the one of λac
CS without (case) and (rec) rules and with the following

rule for functions:

(fun)
(∆,Θ) |Γ `λac

CS+fun
fτ : S(τ)

where S is a substitution

The algorithm to compute a most general typing to a term in λac
CS+fun is the one already

defined in Figure 8.14 without the cases for letrec and case-expressions and with the extra case
for functions, defined in Figure 9.4.

typeJudg(fτ) = let S = match
(
{τ ≤ β}

)
(∆∗,Θ∗) = S •

(
{τ ≤ β}, ∅

)
in

(
∅, S(β), ∆∗, Θ∗

)
assuming that β is a fresh type variable

Figure 9.4: The algorithm typeJudg (for functions)

All the results obtained for λac
CS are preserved in λac

CS+fun, as it can be easily checked. We just
rewrite here the two main theorems.

Theorem 9.5.3 (Soundness of typeJudg) If typeJudg(e) = (Γ, σ,∆,Θ), then every instance of
(∆,Θ) |Γ `λac

CS+fun
e : σ is provable.

158 Chapter 9: Extensible Overloaded Functions

Proof. By Theorem 8.5.32 and Lemma 8.5.42 (both adapted for λac
CS+fun). 2

Theorem 9.5.4 (Completeness of typeJudg) If (∆,Θ) |Γ `λac
CS
e : σ, then typeJudg(e) =

(Γ′, σ′,∆′,Θ′) and (∆,Θ) |Γ `λac
CS+fun

e : σ is an instance of (∆′,Θ′) |Γ′ `λac
CS+fun

e : σ′.

Proof. By induction on the structure of terms. We just have to consider the case of functions.
Assume typeJudg(fτ) as presented in Figure 9.4 and (∆,Θ) |Γ `λac

CS+fun
fτ : σ. By Lemma 8.5.44,

we may assume the proof uses rule (fun) followed by rule (sub). We let (∆,Θ) |Γ `λac
CS+fun

fτ : R(τ)
and (∆,Θ) ` R(τ) ≤ σ must hold. We have typeJudg(fτ) = (∅, S(β),∆∗,Θ∗) and S is a most
general matching substitution for {τ ≤ β}, being β fresh.

Let Z be a substitution such that Z(β) = σ and Z(τ) = R(τ). Since (∆,Θ) is atomic, Z(τ)
matches Z(β), by Lemma 8.5.39. Therefore, Z is a matching substitution for {τ ≤ β}. Using
Lemma 8.5.46, Z = W ◦S for some substitution W . Moreover, by Lemma 8.5.23, W is a matching
substitution for (∆∗,Θ∗) and W • (∆∗,Θ∗) = Z • ({τ ≤ β}, ∅).

We have (∆,Θ) ` (Z({τ ≤ β}), Z(∅)) then, by Lemma 8.5.27, (∆,Θ) ` Z • ({τ ≤ β}, ∅).
By Lemma 8.5.46, we have (∆,Θ) ` W • (∆∗,Θ∗). Furthermore, W (∅) ⊆ Γ and σ = W (S(β)).
Hence, we can conclude that (∆,Θ) |Γ `λac

CS+fun
fτ : σ is an instance of (∆∗,Θ∗) | ∅ `λac

CS+fun
fτ : S(β)

by W . 2

9.5.3 Decidability of Type Checking

We want to decide whether or not it is possible to type a term e with a type σ in a given context
∇ |Γ. Following what was done in Subsection 8.5.4, our claim is that ∇ |Γ `λCS+fun

e : σ is derivable
if and only if there is an ∇-annotated term e′ ∈ an∇(e) for which Γ `λa

CS+fun
e′ : σ is derivable. As

the set of ∇-annotated terms an∇(e) is finite, we have a decision procedure.
To test whether or not Γ `λa

CS+fun
e′ : σ is derivable we use the algorithm derivable defined in

Figure 8.15.

Theorem 9.5.5 Γ `λa
CS+fun

e : τ is derivable iff derivable(Γ `λa
CS+fun

e : τ) returns true.

Proof. Immediate from theorems 8.5.57 and 8.5.58. 2

Corollary 9.5.6 (Decidability of type checking in λa
CS+fun) For any context ∇ |Γ, and for

any term e and type σ, it is decidable whether Γ `λa
CS+fun

e : σ is derivable.

Proof. Immediate from Theorem 9.5.5. 2

Decidability of type-checking in λCS+fun follows.

Corollary 9.5.7 (Decidability of type checking in λCS+fun) For any context ∇ |Γ, and for
any term e and type σ, it is decidable whether ∇ |Γ `λCS+fun

e : σ is derivable.

Proof. It is an immediate consequence of Corollary 9.5.6, Lemma 8.5.12 and of the fact that the
set an∇(e) is finite. 2

9.6 Decidability of Well-Formedness for Environments 159

9.6 Decidability of Well-Formedness for Environments

An environment to be well-formed has to be well-typed, non-overlapping and exhaustive. In this
section we prove that these requirements are decidable properties.

9.6.1 Decidability of Well-Typing

An environment Σ is well-typed if, for every f ∈ FSΣ and λp.e ∈ RuΣ(f)

1. ∃ τ1→τ2 ∈ TyΣ(f).∃Γ. . |Γ `λCS+fun
p : τ1

2. ∀ τ1→τ2 ∈ TyΣ(f).∀Γ. . |Γ `λCS+fun
p : τ1 ⇒ er(Σ) |Σ `λCS+fun

e : τ2

The decidability of this property relies on the following facts:

– FSΣ, RuΣ(f) and TyΣ(f) are finite sets;

– we have minimal variable context for typing a pattern with a given type; and

– type-checking is decidable for λCS+fun.

Theorem 9.6.1 (Decidability of well-typing) It is decidable whether an environment Σ is
well-typed or not.

Proof. For each f ∈ FSΣ and λp.e ∈ RuΣ(f):

1. mvc(p : τ1) has to be well-defined for at least one τ1→τ2 ∈ TyΣ(f);

2. for each τ1 → τ2 ∈ TyΣ(f), whenever mvc(p : τ1) is well-defined, check if er(Σ) |mvc(p :
τ1) `λCS+fun

e : τ2 is derivable.

As FSΣ, RuΣ(f) and TyΣ(f) are finite sets, we have here a decision procedure. 2

9.6.2 Decidability of Non-Overlapping

An environment Σ is non-overlapping if, for every f ∈ FSΣ and distinct λp.e, λp′.e′ ∈ RuΣ(f)
there are no substitutions S and S′ such that S(p) = S′(p′). We rely the test of this property on
the test of whether two patterns are overlapping or not.

Definition 9.6.2 Two patterns p, p′ ∈ P are overlapping if there are substitutions S, S′ such that
S(p) = S′(p′).

Definition 9.6.3 Let p, p′ ∈ P. The predicate overlap(p, p′) is derivable using the rules of Figure
9.5.

Theorem 9.6.4 Let p, p′ ∈ P. overlap(p, p′) iff p and p′ are overlapping.

Proof.

160 Chapter 9: Extensible Overloaded Functions

1.
overlap(x, p)

2.
overlap(p, x)

3.
overlap(pi, p′i) (1 ≤ i ≤ ar(c))

overlap(c p1 . . . par(c), c p
′
1 . . . p

′
ar(c))

Figure 9.5: Rules for overlap

⇒) By induction on the derivation of overlap(p, p′). The only interesting case is when the last rule
applied is rule 3. So, assume overlap(c p1 . . . par(c), c p

′
1 . . . p

′
ar(c)) comes from overlap(pi, p′i) for

i = 1..ar(c). By induction hypothesis ∃Si, S′i. Si(pi) = S′i(p
′
i). Define S and S′ as follows:

S(x) =

{
Si(x) if x ∈ FV(pi)
x otherwise

S′(x) =

{
S′i(x) if x ∈ FV(p′i)
x otherwise

Note that as we are working with linear patterns, S and S′ are well-defined. It is now
easy to see that S(c p1 . . . par(c)) = c S1(p1) . . . Sar(c)(par(c)) = c S′1(p′1) . . . S′ar(c)(p

′
ar(c)) =

S′(c p′1 . . . p
′
ar(c))

⇐) Assume p and p′ are overlapping, i.e., there are substitutions S, S′ such that S(p) = S′(p′).
The proof that overlap(p, p′) is derivable follows by routine induction on the structure of p.

2

The decidability of non-overlapping environments follows now as a corollary of this theorem.

Corollary 9.6.5 (Decidability of non-overlapping) It is decidable whether an environment
Σ is non-overlapping or not.

Proof. It is an immediate consequence of Theorem 9.6.4 and of the fact that Σ and the set of
Σ-rewritings for each function is finite. 2

9.6.3 Decidability of Exhaustiveness

An environment Σ is exhaustive if, for every f ∈ FSΣ, τ1→τ2 ∈ TyΣ(f) and for every quasi-closed
pattern w.r.t. τ1, p, there exists λp′.e′ ∈ RuΣ(f) such that p = S(p′) for some substitution S.

We begin by introducing the notion of exhaustive for a set of patterns and for a set of lists of
patterns. Let us establish a notation for lists.

Notation 9.6.6 We use the following notation for lists: [] is the empty list; a list of length n,
[a1, a2, . . . , an], can also be written as a1 :: [a2, . . . , an] or a1 ::a2 :: . . . ::an :: []. The concatenation of
lists is done by the infix operator 1.

Definition 9.6.7

1. A set of patterns p1, . . . , pn is τ -exhaustive if for all q, quasi-closed patterns w.r.t. τ , there
is a pi, for 1 ≤ i ≤ n, such that q = S(pi) for some substitution S.

9.6 Decidability of Well-Formedness for Environments 161

1.
exh[]{[]}

2.
exh~σ{−→q1 , . . . ,−→qn}

exhτ::~σ{x1 ::−→q1 , . . . , xn ::−→qn} ∪ P

3.

for 1 ≤ i ≤ n,
exhDom~τd(ci)1~σ

{−→pi,1 1 −→qi,1, . . . ,−−→pi,ki 1 −−→qi,ki , y1,1 :: ... ::y1,ar(ci) ::−→q1 , . . . , ym,1 :: ... ::ym,ar(ci) ::−→qm
}

exhd~τ::~σ
{

(c1−−→p1,1) ::−→q1,1, . . . , (c1−−→p1,k1) ::−−→q1,k1 , . . . ,

(cr −→pr,1) ::−→qr,1, . . . , (cr −−→pr,kr) ::−−→qr,kr , y1 ::−→q1 , . . . , ym ::−→qm
}
∪ P

if ∅ 6= {c1, . . . , cr} ⊆ C(d) = {c1, . . . , cn}

Figure 9.6: Rules for exh

2. Let P be a set of lists of length n of patterns and ~σ be a list of types of length n. P is
~σ-exhaustive if, for every quasi-closed patterns q1, . . . , qn w.r.t. σ1, . . . , σn respectively

∃ ~p ∈ P ∃S. S(p1) = q1 ∧ . . . ∧ S(pn) = qn

Lemma 9.6.8

1. If P ⊆ P ′ and P is ~σ-exhaustive, then P ′ is ~σ-exhaustive.

2. Let P be a set of lists of length n of patterns, with n > 0, and Q = {~p | p :: ~p ∈ P}. If P is
τ ::~σ-exhaustive, then Q is ~σ-exhaustive

Proof. It is an immediate consequence of Definition 9.6.7. 2

Definition 9.6.9 Let ~σ be a list of types and P a set of lists of length #~σ of patterns. The
predicate exh~σP holds if and only if it is derivable using the rules of Figure 9.6.

Definition 9.6.10 (Size of a pattern) The size of a pattern p, written size(p), is defined as
follows:

size(x) = 0
size(c p1 . . . par(c)) = 1 + size(p1) + . . .+ size(par(c))

The size of a list of patterns is defined by:

size([]) = 0
size(p ::~p) = size(p) + size(~p)

The size of a set of lists of patterns is defined by:

size(∅) = 0
size({~p1, . . . , ~pn}) = size(~p1) + . . .+ size(~pn)

162 Chapter 9: Extensible Overloaded Functions

Theorem 9.6.11 Let ~γ be a list of types and P a set of lists of length #~γ of patterns. Then P is
~γ-exhaustive if and only if exh~γP is derivable.

Proof.

⇐) By induction on the derivation of exh~γP .

1. Assume the last step is: exh[]{[]}. Trivially, {[]} is []-exhaustive.

2. Assume the last step is:

exh~σ{~q1, . . . , ~qn}
exhτ::~σ{x1 :: ~q1, . . . , xn :: ~qn} ∪ P ′

By induction hypothesis {~q1, . . . , ~qn} is ~σ-exhaustive. So, for every p1, . . . , p#~σ quasi-
closed patterns w.r.t. ~σ, S(~qk) = ~p for some k ∈ {1, ..., n} and for some substitution
S. But then, for every p0, p1, . . . , p#~σ quasi-closed patterns w.r.t. τ :: ~σ, there is a
substitution R such that R(xk :: ~qk) = p0 ::~p. R is defined as follows:

R(x) =

S(x) if x ∈ ~qk
p0 if x = xk
x otherwise

Hence {x1 :: ~q1, . . . , xn :: ~qn} is (τ ::~σ)-exhaustive, and we conclude by item 1 of Lemma
9.6.8.

3. Assume the last step is:

exhDom~τd(ci)1~σ
Ai for 1 ≤ i ≤ n

exhd~τ::~σB ∪ P ′

with Ai =
{−→pi,1 1 −→qi,1, . . . ,−−→pi,ki 1 −−→qi,ki , y1,1 :: ... ::y1,ar(ci) ::−→q1 , . . . , ym,1 :: ... ::ym,ar(ci) ::−→qm

}
,

B =
{

(c1−−→p1,1) :: −→q1,1, . . . , (c1−−→p1,k1) :: −−→q1,k1 , . . . , (cr −→pr,1) :: −→qr,1, . . . , (cr −−→pr,kr) :: −−→qr,kr , y1 ::
−→q1 , . . . , ym ::−→qm

}
and ∅ 6= {c1, . . . , cr} ⊆ C(d) = {c1, . . . , cn}.

By induction hypothesis each Ai is (Dom~τ
d(ci) 1 ~σ)-exhaustive. Thus, for every quasi-

closed patterns ~e w.r.t. Dom~τ
d(ci) 1 ~σ, there exists ~p ∈ Ai such that S(~p) = ~e for some

substitution S.

Our goal is to prove that for every quasi-closed patterns a0 ::~a w.r.t. d~τ ::~σ, there exists
~q ∈ B and a substitution R such that R(~q) = a0 ::~a. And we have a0 ≡ ci~b with ~b being
quasi-closed patterns w.r.t. Dom~τ

d(ci). We have two alternatives for a list of patterns
~p ∈ Ai:

(a) ~p ≡ −→pi,s 1 −→qi,s with 1 ≤ s ≤ ki. In this case, there is ~q ≡ (ci−→pi,s) ::−→qi,s ∈ B and by
induction hypothesis there is a substitution S such that S(−→pi,s) = ~b and S(−→qi,s) = ~a.
So, S(~q) = a0 ::~a.

(b) ~p ≡ ys,1 :: ... ::ys,ar(ci) ::−→qs with 1 ≤ s ≤ m. In this case, there is ~q ≡ ys ::−→qi,s ∈ B and
a substitution R such that R(~q) = a0 ::~a. Such a R is defined as follows

R(x) =

{
a0 if x = yk
S(x) otherwise

We have proved that B is (d~τ :: ~σ)-exhaustive. Now we conclude by item 1 of
Lemma 9.6.8.

9.7 The System λCS+def 163

⇒) By induction on the definition of P is ~γ-exhaustive, using as induction measure the lexico-
graphic ordered pair (size(P),#~σ). Assume P is ~γ-exhaustive.

1. Case ~γ ≡ []. Then P ≡ {[]} and we conclude by rule 1.

2. Case ~γ ≡ α :: ~σ or ~γ ≡ τ1 → τ2 :: ~σ. Let Q = { ~p | p :: ~p ∈ P}. By Lemma 9.6.8,
Q is ~σ-exhaustive so, by induction hypothesis, exh~σQ is derivable. Because P is ~γ-
exhaustive, for every q0 :: ~q quasi-closed pattern w.r.t. ~γ, there exists p0 :: ~p ∈ P such
that S(p0 ::~p) = q0 ::~q for some S. As q0 has to be a variable, we know that p0 has also
to be a variable. Hence exh~γP is derivable from exh~σQ by rule 2.

3. Case ~γ ≡ d~τ ::~σ. Because P is ~γ-exhaustive, for every q0 ::~q quasi-closed patterns w.r.t.
d~τ ::~σ, there exists p0 ::~p ∈ P such that S(p0 ::~p) = q0 ::~q for some S. Moreover q0 ≡ c~e

with c ∈ C(d) and ~e quasi-closed patterns w.r.t. Dom~τ
d(c). Therefore, p0 is either a

variable or an applied constructor c~b and S(~b) = ~e.

Let Qi = { p0 ::~p ∈ P | ∃S. S(p0 ::~p) = (ci ~e) ::~q for ci ∈ C(d) and ~e quasi-closed patterns
w.r.t. Dom~τ

d(ci) and ~q quasi-closed patterns w.r.t. ~σ}. Let

Q′i = {x1 :: . . . ::xar(ci) ::~p | x ::~p ∈ Qi, with x1, . . . , xar(ci) fresh}
∪{b1 :: . . . ::bar(ci) ::~p | (ci b1...bar(ci)) ::~p ∈ Qi}

We have that Q′i is (Dom~τ
d(ci) 1 ~σ)-exhaustive and we have also that size(Q′i) < size(P).

Then, by induction hypothesis exhDom~τd(ci)1~σ
Q′i is derivable, for each i = 1..n. Now we

can use rule 3 to derive exhd~τ::~σP .

2

Theorem 9.6.12 Given a set of patterns {p1, . . . , pn} and a type σ it is decidable whether
{p1, . . . , pn} is σ-exhaustive or not.

Proof. By Theorem 9.6.11 it is sufficient to decide whether exh[σ]{[p1], . . . , [pn]} is derivable. And
this is easy, since the definition of exh is well-founded: the induction measure for exh~σP is the
lexicographically ordered pair (size(P),#~σ). 2

The decidability of exhaustive environments follows now as a corollary of this theorem.

Corollary 9.6.13 (Decidability of exhaustiveness) It is decidable whether an environment
Σ is exhaustive or not.

Proof. It is an immediate consequence of Theorem 9.6.12 and of the fact that FSΣ is finite and
the sets of Σ-rewritings and Σ-typings for each function are finite. 2

9.7 The System λCS+def

The simplest way to think of pattern-matching is as trying to match each equation in turn. We
want to compile function definitions with pattern-matching into case-expressions which can be
evaluated more efficiently. In this section we define the target language λCS+def , a simply typed
λ-calculus with constructor subtyping, case-expressions and recursive definitions. The translation
from λCS+fun to λCS+def will be described in Section 9.8.

164 Chapter 9: Extensible Overloaded Functions

9.7.1 Types and Terms

The language λCS+def is a mild variant of λCS+fun. The set Tdef of types of λCS+def is equal to Tfun.

Definition 9.7.1 (Types) The set Tdef of types is given by the abstract syntax:

Tdef 3 τ, σ ::= α | τ→σ | d~τ

where in the last clause, it is assumed that #~τ = ar(d).

The set of terms of λCS+def is obtained from that of λCS+fun by replacing definitions by pattern-
matching by case-expressions and recursive function definitions. Note that we do not have an
explicit construct for recursive definitions. Indeed, recursive definitions will be treated as global,
and stored in the environment.

Definition 9.7.2 (Terms) The set Edef of terms is given by the abstract syntax:

Edef 3 a, b ::= x | f | c | λx. a | a b | case a of {c1 ⇒ b1 | . . . | cn ⇒ bn}

where in the clause for case-expressions it is assumed that C(d) ⊆ {c1, . . . , cn} for some d ∈ D
and that all ci’s are pairwise distinct.

9.7.2 Subtyping and Typing

The subtyping relation of λCS+def is the same defined for λCS+fun (see Figure 9.1). The typing
rules are extended with a new rule for case-expressions.

Definition 9.7.3 (Typing) The typing rules for λCS+def are those of Figure 9.2 extended with
following rule for case-expressions:

(case)

∇ |Γ `λCS+def
a : d~τ

∇ |Γ `λCS+def
bi : Dom~τ

d(ci)→σ (1 ≤ i ≤ n)
∇ |Γ `λCS+def

bj : θj (n+ 1 ≤ j ≤ n+m)

∇ |Γ `λCS+def
case a of {c1 ⇒ b1 | . . . | cn+m ⇒ bn+m} : σ

if C(d) = {c1, . . . , cn}

Note how the (case) rule allows to type case-expressions with more branches than the number
of constructors of the datatype. This slightly unusual (case) rule is necessary to take care of
overloading. For example, consider the following declaration:

add : {Even→Even→Even, Odd→Even→Odd}
= λx.λy. case x of {o⇒ y | s⇒ λz. s (add z y)}

is valid since the rule for case allows to type the case-expression with the type Odd for x : Odd

(recall that C(Odd) = {s}).

9.7.3 Environments

Functions are now defined by a single expression; still a function symbol is allowed to have several
types.

Definition 9.7.4 (Environments)

9.7 The System λCS+def 165

1. A function definition is a triple h : ~σ = e where h ∈ F is a function symbol, ~σ is a set of
types and e ∈ Edef .

2. An environment1 is a finite set of function definitions, where each function symbol is declared
at most once. We let K denote the set of environments and Φ,Φ′ range over K.

Each environment induces a function context. Environments are sets of function declarations
which may be mutually recursive. An essential difference between the environments of λCS+def

and those of λCS+fun is that in λCS+def -environments a function is declared only once.

Definition 9.7.5 (Erasure) The erasure function er : K → ℵF is defined inductively as follows:

er(∅) = ∅
er(Φ, h : {σ1, . . . , σn} = e) = er(Φ), h : σ1, . . . , h : σn

Definition 9.7.6 (Well-formed environment) An environment Φ ≡ h1 : ~σ1 = e1, . . . , hn :
~σn = en is well-formed if, for every hi and σi,j ∈ ~σi, σi,j is of the form σ′i,j → σ′′i,j and
er(Φ) | . `λCS+def

ei : σi,j.

Let us give a small example of a well-formed λCS+def -environment.

Example 9.7.7 Bellow we declare the function double in a well-formed λCS+def-environment.

double : {Even→Even, Odd→Even, Nat→Nat}
= λx. case x of {o⇒ o | s⇒ λy. s (s (double y))}

The decidability of well-formedness for λCS+def -environments is stated in Subsection 9.7.5.

9.7.4 Reduction Calculus

The computational behavior of case-expressions and definitions is given by ι and δ-reduction
respectively.

Definition 9.7.8 (Reduction Calculus)

1. β-reduction →β is defined as the compatible closure of the rule

(λx. a) b →β a[x := b]

2. ι-reduction →ι is defined as the compatible closure of the rule

case (ci ~a) of {c1 ⇒ b1 | . . . | cn ⇒ bn} →ι bi ~a

where ~a represents a vector of terms whose length is exactly ar(ci) and 1 ≤ i ≤ n.

3. Let h : ~σ = e be a function definition. δ(h : ~σ = e)-reduction →δ(h:~σ=e) is defined as the
compatible closure of the rule

h a →δ(h:~σ=e) e a

4. Let Φ ≡ h1 : ~σ1 = e1, . . . , hn : ~σn = en be an environment. δΦ-reduction →δΦ is defined as⋃
1≤i≤n

→δ(hi: ~σi=ei)

1We shall talk about λCS+fun-environments and λCS+def -environments when there are risks of confusion.

166 Chapter 9: Extensible Overloaded Functions

5. Let Φ be an environment. βιδΦ-reduction →βιδΦ is defined as →β ∪ →ι ∪ →δΦ . �βιδΦ

and =βιδΦ are respectively defined as the reflexive-transitive and the reflexive-symmetric-
transitive closures of →βιδΦ .

The mechanics of this reduction calculus is illustrated by the example below.

Example 9.7.9 Assume Φ is the environment define in Example 9.7.7. Next is a reduction
sequence to compute the double of one:

double (s o) → δΦ (λx. case x of {o⇒ o | s⇒ λy. s (s (double y))}) (s o)
→β case (s o) of {o⇒ o | s⇒ λy. s (s (double y))}
→ ι (λy. s (s (double y))) o

→β s (s (double o))
�βιδΦ s (s o)

9.7.5 Meta-Theoretical Properties of λCS+def

Here we summarize the main meta-theoretical of the λCS+def system.

Theorem 9.7.10 (Confluence) Let Φ be a λCS+def-environment. Then →βιδΦ is confluent:

a1 =βιδΦ a2 ⇒ ∃ e ∈ Edef . a1 �βιδΦ e ∧ a2 �βιδΦ e

Proof. By the standard technique of Tait and Martin-Löf. 2

The proof of subject reduction for λCS+def is quite standard and simpler than the proof done
for λCS+fun.

Theorem 9.7.11 (Subject reduction) Let Φ be a well-formed λCS+def-environment and let ∇ =
er(Φ). Then

∇ |Γ `λCS+def
a : σ ∧ a→βδΣ a

′ ⇒ ∇|Γ `λCS+def
a′ : σ

Proof. By induction on the derivation of ∇ |Γ `λCS+def
a : σ, using generation and substitution

lemmas for λCS+def . 2

Theorem 9.7.12 (Decidability of type checking in λCS+def) For any context ∇ |Γ, and for
any term e and type σ, it is decidable whether ∇ |Γ `λCS+def

e : σ is derivable.

Proof. The proof is absolutely the same as the one of sections 9.5 and 8.5. Only slight modifications
are needed to treat the new case-expressions (with more branches): one on the annotation map, and
the other in the definition of the algorithm typeJudg. The new clause for defining the annotations
of case-expressions must be

an∇(case a of {~c⇒ ~b}) = {cased a
′ of {~c⇒ ~b′} | a′ ∈ an∇(a) ∧ b′i ∈ an∇(bi) ∧ C(d) ⊆ ~c}

In the new definition of typeJudg for case-expressions, the local declaration of set B (see Figure
8.14) must now be B =

{
ρi = Dom~σ

d (ci)→β | 1 ≤ i ≤ n ∧ ci ∈ C(d)
}

. 2

Theorem 9.7.13 (Decidability of well-formedness for λCS+def-environments) It is decid-
able whether a λCS+def-environment is well-formed or not.

9.8 Compiling λCS+fun into λCS+def 167

Proof. The result follows from the decidability of type checking in λCS+def . 2

Obviously, if no restrictions are imposed on the definitions of recursive functions, the λCS+def

calculus is not normalizing. To recover strong normalization, we have to extend to λCS+def the
argument decreasing criterion as it was done in Subsection 8.4.1.

The idea is to complement the check that each declared function is well-typed with another
check ensuring that the body of the function satisfies a syntactical condition G that constraints
the occurrences of recursive calls. The guard predicate G is basically the same described in Figure
8.5 (Subsection 8.4.1); the only difference is that we do not have here letrec-expressions.

The predicate G enforces termination by constraining all recursive calls to be applied to terms
smaller than the formal argument of the function. Therefore, under the assumption that all the
functions declared in the λCS+def -environment are well-typed and satisfy the guard predicate G,
one can prove that all typable expressions are strongly normalizing.

9.8 Compiling λCS+fun into λCS+def

The compilation of pattern abstractions into case-expressions proceeds pretty much in the standard
way, as described e.g. in [80]. First, all pattern abstractions defining a function f are collected
from the environment. Then pattern abstractions are transformed into nested simple pattern
abstractions (e.g. λc p. e is transformed into λc y. (λp.e) y). Finally, nested pattern abstractions
are classified according to their head pattern and transformed into case-expressions.

Let us call compile the compilation function that transforms a function definition into an
expression in Edef , and translate the function that translates a λCS+fun-environment into a λCS+def -
environment. In order to define translate we need to introduce first the two auxiliary function:
FilterΣ and Eqs.

Definition 9.8.1 Let Σ be an environment and f a function symbol. We define the set FilterΣ(f)
as follows:

FilterΣ(f) = {(g : ~σ = ~r) ∈ Σ | g 6= f}

Definition 9.8.2 Eqs is a function that takes a set of pattern abstractions and converts each
pattern abstraction, λp.e, in a pair consisting of the list [p] and the expression e. It is defined as
follows:

Eqs
(
∅
)

= ∅
Eqs
(
R ∪ {λp. e}

)
= Eqs

(
R
)
∪
{

([p], e)
}

We present an algorithm that translates a λCS+fun-environment into a λCS+def -environment.
This algorithm was designed to work only with well-formed λCS+fun-environments.

Definition 9.8.3 The algorithm translate transforms an well-formed λCS+fun-environment into a
λCS+def-environment, as defined in Figure 9.7.

translate picks up a function f from the environment, collects all pattern abstractions defining
it, makes a variable x be the formal argument of f and calls the compilation function compile with
the list [x] and the set of equations that defines f .

The fact that all functions defined in the environment are non-overlapping, exhaustive and
well-typed makes possible to built a simple compilation function.

Definition 9.8.4 The algorithm compile is defined in Figure 9.8.

168 Chapter 9: Extensible Overloaded Functions

translate
(
∅
)

= ∅

translate
(
Σ ∪ {f : ~σ = ~r}

)
= translate

(
FilterΣ(f)

)
∪{

f : TyΣ(f) = λx. compile
(

[x] , Eqs
(
RuΣ(f)

))}

Figure 9.7: The algorithm translate

compile
(

(x ::~x) ,
{

(y1 ::−→q1 , e1), . . . , (yn ::−→qn, en)
})

= compile
(
~x ,

{
(−→q1 , e1[y1 := x]), . . . , (−→qn, en[yn := x])

})
compile

(
[] ,

{
([], e)

})
= e

compile
(

(x ::~x) ,
{

(y1 ::−→q1 , e1), . . . , (ym ::−→qm, em)
}
∪{

(c1−−→p1,1 ::−→q1,1, e1,1), . . . , (c1−−→p1,k1 ::−−→q1,k1 , e1,k1)
}

∪ . . .∪{
(cn−−→pn,1 ::−−→qn,1, en,1), . . . , (cn−−−→pn,kn ::−−−→qn,kn , en,kn)

})
= case x of {

c1 ⇒ λx1,1. . . . λx1,ar(c1). compile
(

(x1,1 :: . . . ::x1,ar(c1) ::~x) ,{
(x1,1 :: . . . ::x1,ar(c1) ::−→q1 , e1[y1 := c1 x1,1... x1,ar(c1)]), . . . ,
(x1,1 :: . . . ::x1,ar(c1) ::−→qm, em[ym := c1 x1,1... x1,ar(c1)])

}
∪{

(−−→p1,1 1 −→q1,1, e1,1), . . . , (−−→p1,k1 1 −−→q1,k1 , e1,k1)
})

...

| cn ⇒ λxn,1. . . . λxn,ar(cn). compile
(

(xn,1 :: . . . ::xn,ar(cn) ::~x) ,{
(xn,1 :: . . . ::xn,ar(cn) ::−→q1 , e1[y1 := cn xn,1... xn,ar(cn)]), . . . ,
(xn,1 :: . . . ::xn,ar(cn) ::−→qm, em[ym := cn xn,1... xn,ar(cn)])

}
∪{

(−−→pn,1 1 −−→qn,1, en,1), . . . , (−−−→pn,kn 1 −−−→qn,kn , en,kn)
})

}

Figure 9.8: The algorithm compile

9.8 Compiling λCS+fun into λCS+def 169

The function compile takes two arguments: a list of variables and a set of equations. Each
equation is a pair, consisting of a list of patterns and an expression. Note that the list of variables
and the list of patterns in the equations have all the same length.

The compile function is inspired from the match function defined for the pattern-matching
compiler algorithm described in [80], but substantial simplifications were done:

• compile takes a set of equations instead of a list of equations (as in match). This is due to
the non-overlapping property.

• compile does not need to distinguish the case where only constructors appear in the begin-
ning of every equation, from the case where some equations begin with constructors and
others with variables (as it is done in [80]), because the guarantee of non-overlapping and
exhaustiveness makes possible to treat this case in an uniform way. Moreover, we do not
need to enrich the λ-calculus expressions with the operator [] (the alternative) and with the
special value error.

Let us illustrate the compilation process with two small examples.

Example 9.8.5 Assume we have a datatype B ∈ D such that ar(B) = 0, C(B) = {b}, ar(b) = 0
and DB(b) = B. Consider the following λCS+fun-environment defining the overloaded function f.

f : {Nat× Nat→Nat}
= {λ〈x, s y〉. f 〈sx, y〉, λ〈s z, o〉. z, λ〈o, o〉. o}

f : {Nat× B→B}
= {λ〈x, b〉. b}

Below, we present an exhaustive description of the several steps of the compilation of function f.
We begin with:

λx1. compile
(
[x1], {([〈x, s y〉], f 〈sx, y〉), ([〈s z, o〉], z), ([〈o, o〉], o), ([〈x, b〉], b)}

)
Step 1:

λx1. case x1 of {
pair⇒ λx2.λx3. compile

(
[x2, x3], {([x, s y], f 〈sx, y〉), ([s z, o], z), ([o, o], o), ([x, b], b)}

)
}

Step 2:

λx1. case x1 of {
pair⇒ λx2.λx3. case x2 of {

o⇒ compile
(
[x3], {([s y], f 〈s o, y〉), ([o], o), ([b], b)}

)
s⇒ λx4. compile

(
[x4, x3], {([x4, s y], f 〈s (sx4), y〉), ([z, o], z), ([x4, b], b)}

)
} }

Step 3:

λx1. case x1 of {
pair⇒ λx2.λx3. case x2 of {

o⇒ case x3 of {
o⇒ compile

(
[], {([], o)}

)
s⇒ λx4. compile

(
[x4], {([y], f 〈s o, y〉)}

)
b⇒ compile

(
[], {([], b)}

)
}

s⇒ λx4. compile
(
[x3], {([s y], f 〈s (sx4), y〉), ([o], x4), ([b], b)}

)
} }

170 Chapter 9: Extensible Overloaded Functions

Step 4:

λx1. case x1 of { pair⇒ λx2.λx3. case x2 of {
o⇒ case x3 of {

o⇒ o

s⇒ λx4. compile
(
[], {([], f 〈s o, x4〉)}

)
b⇒ b }

s⇒ λx4.case x3 of {
o⇒ compile

(
[], {([], x4)}

)
s⇒ λx5.compile

(
[x5], {([y], f 〈s (sx4), y〉)}

)
b⇒ compile

(
[], {([], b)}

)
} } }

Step 5:

λx1. case x1 of { pair⇒ λx2.λx3. case x2 of {
o⇒ case x3 of {

o⇒ o

s⇒ λx4. f 〈s o, x4〉
b⇒ b }

s⇒ λx4.case x3 of {
o⇒ x4

s⇒ λx5.compile
(
[], {([], f 〈s (sx4), x5〉)}

)
b⇒ b }

} }

Step 6:

λx1. case x1 of { pair⇒ λx2.λx3. case x2 of {
o⇒ case x3 of {

o⇒ o

s⇒ λx4. f 〈s o, x4〉
b⇒ b }

s⇒ λx4.case x3 of {
o⇒ x4

s⇒ λx5. f 〈s (sx4), x5〉
b⇒ b }

} }

The corresponding λCS+def-environment is

f : {Nat× Nat→Nat, Nat× B→B}
= λx1. case x1 of { pair⇒ λx2.λx3. case x2 of {

o⇒ case x3 of {
o⇒ o

s⇒ λx4. f 〈s o, x4〉
b⇒ b }

s⇒ λx4.case x3 of {
o⇒ x4

s⇒ λx5. f 〈s (sx4), x5〉
b⇒ b }

} }

9.8 Compiling λCS+fun into λCS+def 171

Example 9.8.6 The translation of the λCS+fun-environment of Example 9.1.19 is

plus : {Even× Even→Even, Odd× Even→Odd, Even× Odd→Odd, Odd× Odd→Even,

Nat× Nat→Nat, MaybeNat×MaybeNat→MaybeNat}
= λx1. case x1 of { pair⇒ λx2.λx3. case x2 of {

o⇒ case x3 of {
o⇒ o

s⇒ λx4. sx4

undef ⇒ undef }
s⇒ λx4.case x3 of {

o⇒ sx4

s⇒ λx5. s (s (plus 〈x4, x5〉))
undef ⇒ undef }

undef ⇒ undef

} }

We conjecture that the compilation is correct, in the sense that every well-typed, exhaustive,
non-overlapping λCS+fun-environment is translated into a well-formed λCS+def -environment.

Conjecture 9.8.7 Let Σ be a well-formed λCS+fun-environment, and let Φ ≡ translate(Σ). Then,
for every f ∈ FSΣ and σ ∈ TyΣ(f),

er(Φ) | . `λCS+def
λx. compile

(
[x],Eqs(RuΣ(f))

)
: σ

From this conjecture, it would follow that:

Conjecture 9.8.8 If Σ is a well-formed λCS+fun-environment, then translate(Σ) is a well-formed
λCS+def-environment.

We also conjecture that the translation preserves reduction in the following sense:

Conjecture 9.8.9 Let Σ be a well-formed λCS+fun-environment and Φ ≡ translate(Σ). Then

e →βδΣ e
′ ⇒ e �βιδΦ e′

172 Chapter 9: Extensible Overloaded Functions

Chapter 10

Related Work and Conclusion

10.1 Related Work

While the approach taken in this thesis is original, there is a vast amount of literature on subtyping
and overloading in higher-order typed languages.

Declarative subtyping

Declarative subtyping allows bounded declarations of the form α ≤ A : ∗ in contexts. Such an
approach has been used in conjunction with related ideas, most notably bounded quantification
[32]. Bounded quantification combines subtyping and parametric polymorphism, and it is written
like universal quantification with the addition of an upper bound for the quantified type variable:
∀α ≤ A.B.

Barthe [21] studies IFω≤ a higher-order typed λ-calculus with subtyping, bounded quantifica-
tion, and order-sorted inductive types (i.e. with constructor subtyping). Compagnoni [40] studies
a calculus combining higher-order bounded quantification and intersection types. The interaction
between dependent types and declarative subtyping has been studied e.g. in [9, 117] for Logical
Frameworks. Declarative subtyping is used by Pfenning to encode various formal languages in
an extension of the Logical Frameworks with refinement types [117]. Constructor subtyping also
shares some of the motivations of this work. However, the technicalities are rather different, as
constructor subtyping uses overloading instead of intersection types.

The interaction between dependent types and declarative subtyping has been studied by As-
pinall and Compagnoni [9] for the Logical Frameworks, by Chen [34] for the Calculus of Con-
structions, and by Zwanenburg [144] for Pure Type Systems. One major difference between [9]
and [34, 144] is that the former lets subtyping depend on typing, which leads to substantial com-
plications in the theoretical study of the system. More recently, Castagna and Chen [33] have
extended Chen’s variant of Aspinall and Compagnoni’s λP≤ with late-binding. Their calculus is a
significant improvement over λP≤ and allows to formalize the examples of [117]. However, declar-
ative subtyping, even combined with late-binding, is not appropriate for the inductive approach
to formalization.

Record subtyping and type classes

A record type is a finite unordered set of labeled types (i.e., is a generalization of labeled product
type). Record subtyping [31] introduces a subtyping constraint A ≤ B whenever A and B are

173

174 Chapter 10: Related Work and Conclusion

labeled tuples, and every component in B is also present in A, as is the case with colored points
and points, where CPoint ≤ Point, for Point ≡ {x : N, y : N} and CPoint ≡ {x : N, y : N, c :
Color}. There are different forms of expressing subtyping for records: width subtyping and depth
subtyping. Width subtyping means that a subtype has extra fields, while depth subtyping means
that the types of the fields of a subtype are themselves subtypes. A subtyping rule for records
that incorporates these two forms is

Ai ≤ Bi m ≤ n
{l1 : A1, . . . , ln : An} ≤ {l1 : B1, . . . , lm : Bm}

If m = n we have depth subtyping only, and if Ai ≡ Bi we have width subtyping only.
While records are extensions of products, variant types are extensions of sums. A variant

type is a labeled disjoint sum. One can also consider width subtyping and depth subtyping for
variants. Width subtyping for variants means that a supertype can be obtained by adding new
variants, whereas depth subtyping for variants is as for records. A subtyping rule for variants that
incorporate this two forms is

Ai ≤ Bi n ≤ m
[l1 : A1, . . . , ln : An] ≤ [l1 : B1, . . . , lm : Bm]

Notice that for variants we have n ≤ m, while for records we have m ≤ n.
The concept of record subtyping is of great importance in object calculi. The viewpoint

developed by Cardelli [31] and adopted by other researchers [136, 127] is to consider an object
as a record, using record subtyping to model subclass relations. In [136] Wand introduced the
concept of row variable—a new kind of variable that ranges over entire “rows” of field labels
and associated types—which allow more flexibility in the typing of records, and an extension of
equational unification that supports row variables. This work was further developed by others
[137, 138, 127, 78, 128]. Related methods have been developed for variants [61, 60]. These
techniques have been extended to general notions of type classes [83], constraint types [99], and
qualified types [79], which form the basis of Haskell’s system of type classes. Typed functional
programing languages with object-oriented extensions, such as OCaml [140] or O’Haskell [111]
integrate record subtyping and variant subtyping.

Record subtyping is also relevant in the design of mechanisms for modular programming /
formalization. One of the approaches used for expressing modular structures in type theory is
based on dependent record types as signatures. There are several possible definitions for dependent
records. Dependent records can be defined as labeled pairs, which can be left-associating [27, 122]
(achieving extensibility) or right-associating [43] (achieving specialization of structures). In [10]
dependent records are defined as labeled tuples of arbitrary length. [10, 43, 122] provide support
for manifest fields, whereas [27] lacks manifest fields to express sharing. [27, 43] include record
subtyping as primitive and [122] has no built-in notion of subtyping (but uses coercive subtyping
to capture record subtyping). [43] features singleton types which are used to cast manifest fields.

Structural subtyping and order-sorted algebra

Structural subtyping is based on the structure of type expressions. In this approach, one assumes
a subtyping relation on a set of base types; then one structurally extends the subtyping relation
to the other types. Therefore, comparable types must have the same shape and can only differ by
their atomic types. This contrast with non-structural subtyping, where types of different shapes
may be comparable (e.g., record subtyping, or when a least type ⊥ and a greatest type > are
supplied).

10.1 Related Work 175

The first type inference algorithm with structural subtyping was proposed by Mitchell [108, 109]
and improved by Fuh and Mishra [58, 59]. Type systems associate not only a type to an expression
but also a set of subtyping constraints, stating assumptions about the subtype order under which
the typing is valid. As said in [75], the algorithm is inefficient, and the output, even for relatively
simple input expressions, appears excessively long and cumbersome to read. In order to minimize
these problems, several researchers have investigated [126, 124] simplifying constraints in the
typings generated by type inference algorithms.

Constructor subtyping is not exactly structural subtyping, but is closely related. In construc-
tor subtyping, the subtyping order is defined by lifting a poset of type constructors (and type
constructors related share the same arity) along the existing type structure. In this work, we
have extended the algorithm given in [109] to our setting. However, we had no concerns about
simplification issues, as our goal was just to prove the decidability of type checking.

Amadio and Cardelli [7] have investigated the interactions of subtyping and recursive types,
in a simply typed λ-calculus, in which the subtyping relation is based on an ordering on infinite
trees. A weak notion of extensible datatypes that rules out constructor overloading has been
implemented and used by J. Nordlander [110, 111]. His approach allows to capture those instances
of constructor subtyping which do not involve overloading, such as the datatype of lists/non-empty
lists, but fails to capture those instances of constructor subtyping involving overloading, such as
even/odd/natural numbers. Independently, E. Poll [121] has been studying subtyping between
inductive types but the subtyping relation he considers is also weaker than ours and he does not
provide a formal treatment of extensible recursive functions.

Order-sorted algebra was created by J.A. Goguen [70, 68] to solve the difficulties to deal with
exceptions and partial functions using many-sorted algebra. Order-sorted algebra constitutes the
basis of the OBJ3 [69] specification languages. The basic concept of order-sorted algebra is that
of order sorted signature, which extends the traditional notion of many-sorted signature with
subtyping and overloading, allowing a type to be declared as a subtype of another, and functions
symbols to be assigned more than one domain and codomain.

Order-sorted algebra has been a source of inspiration for constructor subtyping systems. In
[21] Barthe studies a system combining the system Fω≤ with the formalism of order-sorted algebra,
and proves that the interaction between subtyping and recursion can be controlled in a satisfactory
manner provided some mild restrictions are imposed on order-sorted signatures.

Inductive and recursive definitions for order-sorted datatypes have been studied in the context
of the specification language ABEL, by Owe, Dahl, Bastiansen and Kristoffersen [50, 85, 113, 26].
Their work emphasizes the expressibility of the framework and suggests a paradigm, called termi-
nating generator induction, which provides a pattern-matching-like facility for recursive definitions.
However they do not study fundamental meta-theoretical properties, such as strong normalization
or decidability of type checking.

Coercive subtyping

Coercive subtyping originates from early work by P. Aczel on the Galois project [13], and has been
further developed by Z. Luo and his co-workers.

Coercive subtyping [18, 91] captures in a type-theoretical framework a convention that allows
one to view a term a of type A as a term of type B whenever there is a previously agreed upon
function, called coercion, from A to B. The coercion for the subtyping A ≤ B is a function
c : A→B, declared in a coercion context, which allows to view every element a of A as an element
of B and a shorthand for c a (e.g. if f : B→C then f a is expanded to f (c a) of type C). This

176 Chapter 10: Related Work and Conclusion

approach leads to extremely powerful type systems, is implemented in several proof-development
systems, and has proved useful. However, coercive subtyping yield intricate coherence problems:
there should be only one coercion between two types A and B but, of course, coercions can be
composed. A set of coercions is coherent if for every types A and B, every two coercions from A to
B are convertible. Coherence is undecidable in presence of parametric coercions or of dependent
coercions. Thus current implementations [125, 30] of coercive subtyping, do not check coherence.

There is no elegant way to capture constructor subtyping as a special instance of coercive sub-
typing. Luo has suggested the use of unit types in combination with implicit coercions to capture
overloading—an idea of Luo described in detail in [13]. However, we have been unable to apply
these ideas in Coq to overload the successor function in the example of the even/odd/natural num-
bers. In [93] this example is encoded using dependent coercions. However, constructor subtyping
may therefore be viewed as a more primitive and adequate framework for formalizing natural
semantics.

10.2 Conclusion

Constructor subtyping provides a solution to the problem of datatypes in typed λ-calculi with
subtyping, and it is directly relevant both to functional programming languages and proof assis-
tants. In this work we have introduced λCS, a simply typed λ-calculus, à la Curry, with mutually
recursive parametric datatypes, supporting constructor subtyping, and we have shown the calculus
is well-behaved.

The salient feature of constructor subtyping is the overloading of constructors. This form of
subtyping combines coherently the subtyping between datatypes and constructor overloading and
captures, in a type-theoretic context, the use of subtyping as inclusion between inductively defined
sets. Moreover, it is adequate to work with mutually recursive datatypes. λCS provides a flexible
type system fully compatible with the inductive approach to formalization—the syntax of a formal
language is defined in terms of inductive types—, and its usefulness is largely demonstrated by its
ability to express concisely and accurately a variety of formal languages.

Constructor subtyping is also of particular convenience for extensible datatypes and is specially
adequate to re-usability. The mechanism of expanding and contracting datatypes has an associ-
ated form of code reuse for functions on datatypes, allowing also the definition of new functions
by restricting or by expanding already defined ones. We have considered the problem of defin-
ing recursive functions on extensible datatypes. We have devised a general mechanism to define
overloaded extensible recursive functions by pattern matching, and added it to λCS, defining the
system λCS+fun. Overloading has been studied most notably both in the context of records and
type classes and in the context of type systems for object-oriented languages. In this latter con-
text, overloading is often resolved through late binding or dynamic type-checks. However, both
approaches force reduction to depend on typing. The salient feature of λCS+fun is that, unlike
many object-oriented programming languages, the computational behavior of recursive functions
does not depend on typing. We have proved that λCS+fun enjoys fundamental meta-theoretical
properties, giving a formal foundation for extensible datatypes with overloading of constructors
and of recursive functions. The resulting framework provides an elegant (core) language for prac-
tical functional programming with extensible datatypes and is appropriate to the incremental
development of programs and proofs.

This work studies the interaction between constructor subtyping and inductive types, but
many issues remain to be investigated. First of all, we intend to study the correctness of the

10.2 Conclusion 177

compilation techniques for pattern-matching conjectured in Section 9.8, and study the properties
of the calculus λ

ĈS
sketched in Subsection 8.4.2.

In a different direction it might be of interest to investigate extensions of our results to systems
with polymorphism and dependent types. It could also be of interest, to take the approach in [24]
combining constructor subtyping with record subtyping and develop a mechanism for extensible
overloaded functions for record types.

Having in mind the long term goal of adding constructor subtyping mechanisms to proof
assistants, Barthe and van Raamsdonk [25] investigates a system where constructor subtyping is
aggregated to the Calculus of Inductive Constructions, a powerful type system with dependent
and inductive types that forms the basis of proof assistants as Coq and Lego. However, many
issues deserve further study. This calculus is à la Church so, a line of work is to study the theory
of canonical inhabitants. As pointed out in [21], the system is not well-behaved with respect to
canonical inhabitants: e.g. both nil [Even] and nil [Nat] are closed normal inhabitants of List Nat.
In [24], we show that an η-expansion rule for datatypes solves the problem in the simply typed
case. It should be possible to adopt the same solution for the Calculus of Constructions, although
the combination of η-expansion with dependent types is somewhat intricate [19, 20, 53, 63].

Another possible research direction is to consider constructor subtyping on inductive families.
Inductive families [54], are a generalization of inductive types whereby it is possible to define
families of types inductively. Typical examples include the enumeration sets and the type of
lists of a given length. In particular, we aim to design a well-behaved framework that supports
statements such as “the type of lists of length smaller than n is a subtype of the type of lists of
length smaller than n+ 1”.

178 Chapter 10: Related Work and Conclusion

Bibliography

[1] M. Abadi and L. Cardelli. A theory of objects. Springer-Verlag, 1996.

[2] A. Abel. Specification and verification of a formal system for structurally recursive functions.
In Thierry Coquand, Peter Dybjer, Bengt Nordström, and Jan Smith, editors, Types for
Proof and Programs, International Workshop, TYPES ’99, volume 1956 of Lecture Notes in
Computer Science, pages 1–20. Springer-Verlag, 2000.

[3] A. Abel and T. Altenkirch. A predicative analysis of structural recursion. Journal of Func-
tional Programming, 12(1):1–41, January 2002.

[4] A. Abel and R. Matthes. (Co-)iteration for higher-order nested datatypes. In H. Geuvers
and F. Wiedijk, editors, Types for Proofs and Programs, International Workshop, TYPES
2002, volume 2646 of Lecture Notes in Computer Science, pages 1–20, Berg en Dal, The
Netherlands, 2003. Springer-Verlag.

[5] T. Altenkirch, V. Gaspes, B. Nordström, and B. von Sydow. A user’s guide to ALF, June
1994. Available by ftp from ftp.cs.chalmers.se in directory pub/provers along with the
implementation.

[6] T. Altenkirch. Logical relations and inductive/coinductive types. In Georg Gottlob, Etienne
Grandjean, and Katrin Seyr, editors, Proceedings 12th Int. Workshop on Computer Science
Logic, CSL’98, Brno, Czech Republic, 24–28 Aug 1998, volume 1584 of Lecture Notes in
Computer Science, pages 343–354. Springer-Verlag, Berlin, October 1999.

[7] R. Amadio and L. Cardelli. Subtyping recursive types. In Proceedings of POPL’91, pages
104–118. ACM Press, 1991.

[8] R. Amadio and S. Coupet-Grimal. Analysis of a guard condition in type theory (extended
abstract). In Maurice Nivat, editor, Proceedings 1st Int. Conf. on Foundations of Software
Science and Computation Structures, FoSSaCS’98, held as part of 1st Europ. Joint Confs.
on Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, 28 Mar - 4 Apr 1998,
volume 1378 of Lecture Notes in Computer Science, pages 48–62. Springer-Verlag, Berlin,
1998.

[9] D. Aspinall and A. Compagnoni. Subtyping dependent types. In Proceedings of LICS’96,
pages 86–97. IEEE Computer Society Press, 1996.

[10] L. Augustsson. Cayenne: A language with dependent types. In Proceedings of ICFP’98,
pages 239–250. ACM Press, 1998.

[11] A. Bac. Un algorithme d’inférence de types pour les types coinductifs. Memoire de dea, École
Normale Supérieure de Lyon, June 1998.

179

180 BIBLIOGRAPHY

[12] J. Baeten, J. Bergstra, and J.W. Klop. Priority rewrite systems. In P. Lescanne, editor,
Rewriting techniques and applications, volume 256 of Lecture Notes in Computer Science,
pages 83–94. Springer-Verlag, 1987.

[13] A. Bailey. The Machine-Checked Literate Formalisation of Algebra in Type Theory. PhD
thesis, University of Manchester, 1998.

[14] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundations of Mathematics. North-Holland, revised edition, 1984.

[15] H. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, pages 117–309. Oxford Science Publications,
1992. Volume 2.

[16] H. Barendregt. Introduction to generalized type systems. Journal of Functional Program-
ming, 1(2):125–154, 1991.

[17] B. Barras. Auto-validation d’un système de preuves avec familles inductives. PhD thesis,
Université Paris 7, 1999.

[18] G. Barthe. Implicit coercions in type systems. In S. Berardi and M. Coppo, editors, Pro-
ceedings of TYPES’95, volume 1158 of Lecture Notes in Computer Science, pages 16–35.
Springer-Verlag, 1996.

[19] G. Barthe. Existence and uniqueness of normal forms in pure type systems with βη-
conversion. In E. Grandjean G. Gottlob and K. Seyr, editors, Proceedings of CSL’98, volume
1584 of Lecture Notes in Computer Science, pages 241–259. Springer-Verlag, 1999.

[20] G. Barthe. Expanding the cube. In W. Thomas, editor, Proceedings of FOSSACS’99, volume
1578 of Lecture Notes in Computer Science, pages 90–103. Springer-Verlag, 1999.

[21] G. Barthe. Order-sorted inductive types. Information and Computation, 149(1):42–76,
February 1999.

[22] G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of
recursive definitions. Mathematical Structures in Computer Science, 14(1):97–141, 2004.

[23] G. Barthe and M.J. Frade. Constructor subtyping. Technical Report UMDITR9807, De-
partment of Computer Science, University of Minho, 1998.

[24] G. Barthe and M.J. Frade. Constructor subtyping. In D. Swiestra, editor, Proceedings of
ESOP’99, volume 1576 of Lecture Notes in Computer Science, pages 109–127. Springer-
Verlag, 1999.

[25] G. Barthe and F. van Raamsdonk. Constructor subtyping in the calculus of inductive
constructions. In J. Tuyrin, editor, Proceedings of FOSSACS’00, volume 1784 of Lecture
Notes in Computer Science, pages 17–34. Springer-Verlag, 2000.

[26] T. Bastiansen. Parametric subtypes in ABEL. Technical Report 207, Department of Infor-
matics, University of Oslo, 1995.

[27] G. Betarte. Dependent Record Types and Algebraic Structures in Type Theory. PhD thesis,
Department of Computer Science, Chalmers Tekniska Högskola, 1998.

BIBLIOGRAPHY 181

[28] F. Blanqui. Theorie des Types et Recriture. PhD thesis, LRI - Université de Paris-Sud, 2001.

[29] F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive data type systems. Theoretical
Computer Science, 272(1–2):41–68, 2002.

[30] P. Callaghan and Z. Luo. An implementation of LF with coercive subtyping & universes.
Journal of Automated Reasoning, 27(1):3–27, 2001.

[31] L. Cardelli. Semantics of multiple inheritance. Information and Computation, 76, 1985. Also
published in/as: In ’Readings in Object-Oriented Database Systems” edited by S.Zdonik and
D.Maier, Morgan Kaufman, 1990.

[32] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism.
ACM Computing Surveys, 17(4):471–522, December 1985.

[33] G. Castagna and G. Chen. Dependent types with subtyping and late-bound overloading.
Information and Computation, 1999. To appear.

[34] G. Chen. Subtyping calculus of constructions. In I. Pŕıvara and P. Ruzicka, editors, Pro-
ceedings of MFCS’97, volume 1295 of Lecture Notes in Computer Science, pages 189–198.
Springer-Verlag, 1997.

[35] W.-N. Chin and S.-C. Khoo. Calculating sized types. Higher-Order and Symbolic Compu-
tation, 14(2–3):261–300, September 2001.

[36] A. Church. A set of postulates for the foundation of logic part I. Annals of Mathematics,
33:346–366, 1932.

[37] A. Church. A set of postulates for the foundation of logic part II. Annals of Mathematics,
34:839–864, 1933.

[38] A. Church. A formulation of a simple theory of types. Journal of Symbolic Logic, 5:56–68,
1940.

[39] A. Church. The Calculi of Lambda-Conversion. Princeton University Press, 1941.

[40] A. Compagnoni. Higher-order subtyping with intersection types. PhD thesis, Department of
Computer Science, University of Nijmegen, 1995.

[41] R. Constable et al. Implementing Mathematics in the Nuprl Proof Development System.
Prentice Hall, Englewood Cliffs, NJ, 1986.

[42] C. Coquand and T. Coquand. Structured type theory. In Proceedings of LFM’99 (held in
conjunction with PLI’99), 1999.

[43] T. Coquand, R. Pollack, and M. Takeyama. A logical framework with dependently typed
records. In Typed Lambda Calculus and Applications, TLCA’03, volume 2701 of LNCS.
Springer-Verlag, 2003.

[44] T. Coquand. Pattern matching with dependent types. In B. Nordström, K. Petters-
son, and G. Plotkin, editors, Informal Proceedings Workshop on Types for Proofs and
Programs, B̊astad, Sweden, 8–12 June 1992, pages 71–84. Dept. of Computing Science,
Chalmers Univ. of Technology and Göteborg Univ., 1992. ftp://ftp.cs.chalmers.se/pub/cs-
reports/baastad.92/proc.ps.Z.

182 BIBLIOGRAPHY

[45] T. Coquand. Infinite objects in type theory. In H. Barendregt and T. Nipkow, editors,
Selected Papers 1st Int. Workshop on Types for Proofs and Programs, TYPES’93, Nijmegen,
The Netherlands, 24–28 May 1993, volume 806 of Lecture Notes in Computer Science, pages
62–78. Springer-Verlag, Berlin, 1994.

[46] T. Coquand and C. Paulin-Mohring. Inductively defined types (preliminary version). In
P. Martin-Löf and G. Mints, editors, Proceedings Int. Conf. on Computer Logic, COLOG’88,
Tallinn, USSR, 12–16 Dec 1988, volume 417 of Lecture Notes in Computer Science, pages
50–66. Springer-Verlag, Berlin, 1990.

[47] C. Cornes. Conception d’un langage de haut niveau de representation de preuves: Récurrence
par filtrage de motifs; Unification en présence de types inductifs primitifs; Synthèse de
lemmes d’inversion. PhD thesis, Université de Paris 7, 1997.

[48] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Com-
putation, 2(4):511–547, August 1992.

[49] H. Curry. Functionality in combinatory logic. Proc. Nat. Acad. Science USA, 20:584–590,
1934.

[50] O.-J. Dahl, O. Owe, and T.J. Bastiansen. Subtyping and constructive specification. Nordic
Journal of Computing, 5(1), Spring 1998.

[51] R. Davies. A practical refinement-type checker for standard ml. In Sixth International
Conference on Algebraic Methodology and Software Technology, 1997.

[52] N. de Bruijn. A survey of the project automath. In J. P. Seldin and J. R. Hindley,
editors, To H.B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism,
pages 579–606. Academic, 1980.

[53] G. Dowek, G. Huet, and B. Werner. On the existence of long βη-normal forms in the cube.
In H. Geuvers, editor, Informal Proceedings of TYPES’93, pages 115–130, 1993.

[54] P. Dybjer. Inductive families. Formal Aspects of Computing, 6(4):440–465, 1994.

[55] H. Elbers. Connecting formal and informal mathematics. PhD thesis, Technische Universiteit
Eindhoven, 1998.

[56] E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of theoretical
computer science, volume B, pages 995–1072. Elsevier Publishing, 1990.

[57] T. Freeman and F. Pfenning. Refinement types for ML. In Proceedings of PLDI’91, pages
268–277. ACM Press, 1991.

[58] Y.-C. Fuh and P. Mishra. Type inference with subtypes. In 2nd European Symposium on
Programming, Nancy, pages 94–114. Springer-Verlag, New York, NY, 1988. Lecture Notes
in Computer Science 300.

[59] Y.-C. Fuh and P. Mishra. Polymorphic subtype inference: Closing the theory-practice gap.
In Josep Dı́az and Fernando Orejas, editors, TAPSOFT’89: Proceedings of the International
Joint Conference on Theory and Practice of Software Development, Volume 2: Advanced
Seminar on Foundations of Innovative Software Development II and Colloquium on Cur-
rent Issues in Programming Languages (CCIPL), volume 352 of Lecture Notes in Computer
Science, pages 167–183. Springer-Verlag, 1989.

BIBLIOGRAPHY 183

[60] J. Garrigue. Programming with polymorphic variants. In Proc. of 1998 ACM SIGPLAN
Workshop on ML, Baltimore, MD, USA, 26 Sept. 1998, page ??? October 1998.

[61] J. Garrigue and H. Aı̈t-Kaci. The typed polymorphic label-selective λ-calculus. In Conf.
Record 21st Ann. ACM SIGPLAN-SIGACT Symp. on Principles of Programming Lan-
guages, POPL’94, Oregon, PL, USA, 17–21 Jan. 1994, page ??? ACM Press, New York,
1994.

[62] H. Geuvers. Inductive and coinductive types with iteration and recursion. In B. Nordström,
K. Pettersson, and G. Plotkin, editors, Informal Proceedings Workshop on Types for Proofs
and Programs, B̊astad, Sweden, 8–12 June 1992, pages 193–217. Dept. of Computing Science,
Chalmers Univ. of Technology and Göteborg Univ., 1992. ftp://ftp.cs.chalmers.se/pub/cs-
reports/baastad.92/proc.ps.Z.

[63] N. Ghani. Eta-expansions in dependent type theory—the calculus of constructions. In
P. de Groote and J. Hindley, editors, Proceedings of TLCA’97, volume 1210 of Lecture Notes
in Computer Science, pages 164–180. Springer-Verlag, 1997.

[64] J. Giesl. Termination analysis for functional programs using term orderings. Lecture Notes
in Computer Science, 983:154–171, 1995.

[65] E. Giménez. Un calcul de constructions infinies et son application à la vérification de
systèmes communicants. PhD thesis, Ecole Normale Superieure de Lyon, 1996.

[66] E. Giménez. Structural recursive definitions in Type Theory. In K.G. Larsen, S. Skyum, and
G. Winskel, editors, Proceedings of ICALP’98, volume 1443 of Lecture Notes in Computer
Science, pages 397–408. Springer-Verlag, 1998.

[67] E. Giménez. Codifying guarded definitions with recursion schemes. In P. Dybjer and
B. Nordström, editors, Selected Papers 2nd Int. Workshop on Types for Proofs and Pro-
grams, TYPES’94, B̊astad, Sweden, 6–10 June 1994, volume 996 of Lecture Notes in Com-
puter Science, pages 39–59. Springer-Verlag, Berlin, 1995.

[68] J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theoretical Computer Science,
105(2):216–273, 1992.

[69] J. Goguen and T. Winkler. Introducing OBJ3. Technical Report SRI-CSL-88-9, Computer
Science Laboratory, SRI International, August 1988.

[70] J. Goguen. Order sorted algebras: Exceptions and error sorts, coercions and overloaded
operators. Semantics and Theory of Computation Report 14, UCLA, December 1978.

[71] B. Grobauer. Cost recurrences for DML programs. ACM SIGPLAN Notices, 36(10):253–264,
October 2001.

[72] C. Gunter and J. Mitchell. Theoretical Aspects of Object-Oriented Programming: Types,
Semantics and Language Design. The MIT Press, 1994.

[73] T. Hallgren. Subtypes in Polymorphic Functional Languages. Licenciate Thesis, Department
of Computer Science, Chalmers Tekniska Högskola, 1993.

184 BIBLIOGRAPHY

[74] A. Haxthausen and M. Cerioli. The role of subsorts in subsort declarations and datatype
declarations. Language design note for the Common Framework Initiative (COFI), 1997.

[75] M. Hoang and J. Mitchell. Lower bounds on type inference with subtypes. In Conference
Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 176–185, San Francisco, California, January 1995.

[76] M. Hofmann and T. Streicher. The groupoid model refutes uniqueness of identity proofs. In
Proceedings of LICS’94, pages 208–212. IEEE Computer Society Press, 1994.

[77] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems using sized
types. In Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 410–423. ACM SIGACT and SIGPLAN,
ACM Press, 1996.

[78] L. Jategaonkar and J. Mitchell. Type inference with extended pattern matching and sub-
types. Fund. Informaticae, 1993.

[79] M. Jones. ML typing, explicit polymorphism and qualified types. Lecture Notes in Computer
Science, 789:56–??, 1994.

[80] S. Peyton Jones. The Implementation of Functional Programming Languages. Computer
Science. Prentice-Hall, 1987.

[81] S. Peyton Jones, editor. Haskell 98 Language and Libraries, The Revised Report. Cambridge
University Press, 2003.

[82] J.-P. Jouannaud and M. Okada. Abstract data type systems. Theoretical Computer Science,
173(2):349–391, 28 February 1997.

[83] S. Kaes. Parametric overloading in polymorphic programming languages. In H. Ganzinger,
editor, Proceedings of the European Symposium on Programming, volume 300 of Lecture
Notes in Computer Science, pages 131–144. Springer Verlag, 1988.

[84] G. Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical Aspects of
Computer Science, volume 247 of Lecture Notes in Computer Science, pages 22–39. Springer-
Verlag, 1987.

[85] B. Kristoffersen and O.-J. Dahl. On introducing higher order functions in ABEL. Nordic
Journal of Computing, 5(1):50–69, Spring 1998.

[86] T. Laan. The Evolution of Type Theory in Logic and Mathematics. PhD thesis, Techn. Univ.
Eindhoven, 1997.

[87] C. Lee, N. Jones, and A. Ben-Amram. The size-change principle for program termination. In
ACM Symposium on Principles of Programming Languages, volume 28, pages 81–92. ACM
press, January 2001.

[88] D. Leivant. Reasoning about functional programs and complexity classes associated with
type disciplines. In Proceedings 24th Annual IEEE Symp. on Foundations of Computer
Science, FOCS’83, Tucson, AZ, USA, 7–9 Nov 1983, pages 460–469. Los Alamitos, CA,
1983.

BIBLIOGRAPHY 185

[89] D. Leivant. Contracting proofs to programs. In P. Odifreddi, editor, Logic and Computer
Science, volume 31 of APIC Studies in Data Processing, pages 279–327. London, 1990.

[90] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Number 11 in
International Series of Monographs on Computer Science. Oxford University Press, 1994.

[91] Z. Luo. Coercive subtyping. Journal of Logic and Computation, 9:105–130, February 1999.

[92] Z. Luo and R. Pollack. LEGO proof development system: User’s manual. Technical Report
ECS-LFCS-92-211, LFCS, University of Edinburgh, May 1992.

[93] Z. Luo and S. Soloviev. Dependent coercions. In Martin Hofmann, Giuseppe Rosolini, and
Dusko Pavlovic, editors, Proc. of 8th Conf. on Category Theory and Computer Science,
CTCS’99, Edinburgh, UK, 10–12 Sept 1999, volume 29 of Electronic Notes in Theoretical
Computer Science. Elsevier, Amsterdam, 1999.

[94] P. Manoury and M. Simonot. Automatizing termination proofs of recursively defined func-
tions. Theoretical Computer Science, 135(2):319–343, 1994.

[95] S. Marlow and P. Wadler. A practical subtyping system for Erlang. In Proceedings of
ICFP’97, pages 136–149. ACM Press, 1997.

[96] P. Martin-Löf. Hauptsatz for the intuitionistic theory of iterated inductive definitions. In
J. E. Fenstad, editor, Proceedings 2nd Scandinavian Logic Symp., Oslo, Norway, 18–20 June
1970, volume 63, pages 179–216. North-Holland Publishing, Amsterdam, 1971.

[97] P. Martin-Löf. An intuitionistic theory of types: Predicative part. In H. E. Rose and J. C.
Shepherdson, editors, Proc. of Logic Colloquium ’73, Bristol, UK, July 1973, volume 80 of
Studies in Logic and the Foundations of Mathematics, pages 73–118. North-Holland, Ams-
terdam, 1975.

[98] P. Martin-Löf. Intuitionistic Type Theory. Bibioplois, Napoli, 1984. Notes of Giowanni
Sambin on a series of lectues given in Padova.

[99] M. Sulzmann, M. Odersky, and M. Wehr. Type inference with constrained types. TAPOS,
5(1), 1999.

[100] R. Matthes. Extensions of System F by Iteration and Primitive Recursion on Monotone
Inductive Types. PhD thesis, Fachbereich Mathematik, Ludwig-Maximilians-Universität
München, 1998.

[101] R. Matthes. Monotone (co)inductive types and positive fixed-point types. Theor. Inform.
and Appl., 33(4–5):309–328, 1999.

[102] R. Matthes. Monotone fixed-point types and strong normalization. In Georg Gottlob,
Etienne Grandjean, and Katrin Seyr, editors, Proceedings 12th Int. Workshop on Computer
Science Logic, CSL’98, Brno, Czech Republic, 24–28 Aug 1998, volume 1584 of Lecture
Notes in Computer Science, pages 298–312. Springer-Verlag, Berlin, October 1999.

[103] R. Matthes. Tarski’s fixed-point theorem and lambda calculi with monotone inductive types.
In Benedikt Löwe and Florian Rudolph, editors, Refereed Papers of Research Coll. on Foun-
dations of the Formal Sciences, Berlin, Germany, 7–9 May 1999, pages 91–112. Kluwer
Academic Publishers, Dordrecht, 2000.

186 BIBLIOGRAPHY

[104] C. McBride. Dependently Typed Functional Programs and Their Proofs. PhD thesis, Labora-
tory for Foundations of Computer Science, Dept. of Computer Science, Univ. of Edinburgh,
1999.

[105] N. Mendler. Recursive types and type constraints in second-order lambda-calculus. In
Proceedings 2nd Annual IEEE Symp. on Logic in Computer Science, LICS’87, Ithaca, NY,
USA, 22–25 June 1987, pages 30–36. Washington, DC, 1987.

[106] N. Mendler. Inductive types and type constraints in the second-order lambda-calculus.
Annals of Pure and Applied Logic, 51(1–2):159–172, 1991.

[107] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised).
The MIT Press, 1997.

[108] J. Mitchell. Coercion and type inference. In 11th Annual ACM Symposium on Principles of
Programming Languages, pages 175–185, January 1984.

[109] J. Mitchell. Type inference with simple subtypes. Journal of Functional Programming,
1(3):245–286, July 1991.

[110] J. Nordlander. Pragmatic subtyping in polymorphic languages. In Proceedings of ICFP’98.
ACM Press, 1998.

[111] J. Nordlander. Polymorphic subtyping in O’Haskell. Science of Computer Programming,
43(2–3):93–127, June 2002.

[112] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf ’s Type Theory. An
Introduction. Number 7 in International Series of Monographs on Computer Science. Oxford
University Press, 1990.

[113] O. Owe and O.-J. Dahl. Generator induction in order sorted algebras. Research Report
ISBN 82–7368–027–4, University Oslo, 1989.

[114] J. Palsberg and M. Schwartzbach. Object-Oriented Type Systems. John Wiley & Sons, 1994.

[115] L. Pareto. Types for crash prevention. PhD thesis, Chalmers Univ. Techn., Göteborg, 2000.

[116] C. Paulin-Mohring. Inductive definitions in the system Coq: Rules and properties. In
M. Bezem and J. F. Groote, editors, Proceedings 1st Int. Conf. on Typed Lambda Calculi
and Applications, TLCA’93, Utrecht, The Netherlands, 16–18 March 1993, volume 664 of
Lecture Notes in Computer Science, pages 328–345. Springer-Verlag, Berlin, 1993.

[117] F. Pfenning. Refinement types for logical frameworks. In H. Geuvers, editor, Informal
Proceedings of TYPES’93, pages 285–299, 1993.

[118] F. Pfenning and C. Paulin-Mohring. Inductively defined types in the calculus of construc-
tions. In M. Main, A. Melton, M. Mislove, and D. Schmidt, editors, Proceedings 5th Int.
Conf. on Math. Foundations of Programming Semantics, MFPS’89, New Orleans, LA, USA,
29 Mar – 1 Apr 1989, volume 442 of Lecture Notes in Computer Science, pages 209–228.
Springer-Verlag, Berlin, 1990.

[119] B. Pierce and D. Turner. Local type inference. In Proceedings of POPL’98, pages 252–265.
ACM Press, 1998.

BIBLIOGRAPHY 187

[120] B. Pierce, S. Dietzen, and S. Michaylov. Programming in higher-order typed lambda-calculi.
Technical Report CMU-CS-89-111, School of Computer Science, Carnegie-Mellon Univ.,
Pittsburgh, PA, 1989.

[121] E. Poll. Subtyping and Inheritance for Inductive Types. In Proceedings of TYPES’97
Workshop on Subtyping, inheritance and modular development of proofs, Durham, UK, 1997.

[122] R. Pollack. Dependently typed records in type theory. Formal Aspects of Computing, 13:386–
402, 2002.

[123] F. Pottier. Synthèse de types en présence de sous-typage: de la théorie la pratique. PhD
thesis, Université Paris VII, 1998.

[124] F. Pottier. Simplifying subtyping constraints. In Proceedings of the 1996 ACM SIGPLAN
International Conference on Functional Programming, pages 122–133, Philadelphia, Penn-
sylvania, 24–26 May 1996.

[125] The Coq Development Team LogiCal Project. The Coq Proof Assistant Reference Manual.
Version 7.4, 1999-2003.

[126] J. Rehof. Minimal typings in atomic subtyping. In Conference Record of POPL’97:
The 24TH ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 278–291. ACM SIGACT and SIGPLAN, ACM Press, 1997.

[127] D. Rémy. Typechecking records and variants in a natural extension of ML. In Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming Languages,
pages 77–88, Austin, Texas, January 1989.

[128] D. Rémy and J. Vouillon. Objective ML: An effective object-oriented extension of ML.
Theory and Practice of Object Systems, 4(1):27–52, 1998.

[129] J. Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12(1):23–41, January 1965.

[130] N. Shankar, S. Owre, and J. Rushby. The PVS Proof Checker: A Reference Manual. Com-
puter Science Laboratory, SRI International, February 1993. Supplemented with the PVS2
Quick Reference Manual, 1997.

[131] Z. Sp lawski and P. Urzyczyn. Type fixpoints: Iteration vs. recursion. In Proceedings 4th
ACM SIGPLAN Int. Conf. on Functional Programming, ICFP’99, Paris, France, 27–29
Sept 1999, pages 102–113. ACM Press, New York, 1999.

[132] A. Telford and D. Turner. Ensuring Streams Flow. In M. Johnson, editor, Algebraic Method-
ology and Software Technology 1997, pages 509–523. Springer-Verlag, 1997.

[133] T. Uustalu. Natural Deduction for Intuitionistic Least and Greatest Fixedpoint Logics, with
an Application to Program Construction. PhD thesis (Dissertation TRITA-IT AVH 98:03),
Dept. of Teleinformatics, Royal Inst. of Technology, Stockholm, May 1998.

[134] T. Uustalu and V. Vene. A cube of proof systems for the intuitionistic predicate µ, ν-
logic. In Magne Haveraaen and Olaf Owe, editors, Selected Papers 8th Nordic Workshop on
Programming Theory, NPWT’96, Oslo, Norway, 4–6 Dec 1996, Research Report 248, Dept.
of Informatics, Univ. of Oslo, pages 237–246. May 1997.

188 BIBLIOGRAPHY

[135] T. Uustalu and V. Vene. Least and greatest fixedpoints in intuitionistic natural deduction.
Theoretical Computer Science, 272(1-2):315–339, 2002.

[136] M. Wand. Complete type inference for simple objects. In Proceedings, Symposium on Logic
in Computer Science, pages 37–44, Ithaca, New York, 22–25 June 1987. The Computer
Society of the IEEE.

[137] M. Wand. Corrigendum: Complete type inference for simple objects. In Proceedings, Third
Annual Symposium on Logic in Computer Science, page 132, Edinburgh, Scotland, 5–8 July
1988. IEEE Computer Society.

[138] M. Wand. Type inference for record concatenation and multiple inheritance. Information
and Computation, 93(1):1–15, July 1991.

[139] A. Whitehead and B. Russell. Principia mathematica. Cambridge University Press, Cam-
bridge, 1910.

[140] J. Garrigue, D. Rémy, X. Leroy, D. Doligez, and J. Vouillon. The Objective Caml system
release 3.06 - Documentation and user’s manual, 2002.

[141] H. Xi and F. Pfenning. Eliminating array bound checking through dependent types. In
Proceedings of PLDI’98, pages 249–257. ACM Press, 1998. SIGPLAN Notices 33(5), May
1998.

[142] H. Xi and F. Pfenning. Dependent types in practical programming. In Proceedings of
POPL’99, pages 214–227. ACM Press, 1999.

[143] H. Xi. Dependent types for program termination verification. In 16th Annual IEEE Sym-
posium on Logic in Computer Science (LICS ’01), pages 231–246, Washington - Brussels -
Tokyo, June 2001. IEEE.

[144] J. Zwanenburg. Pure type systems with subtyping. In J.-Y. Girard, editor, Proceedings
of TLCA’99, volume 1581 of Lecture Notes in Computer Science, pages 381–396. Springer-
Verlag, 1999.

