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Abstract

The optimization of an optical system benefits greatly from a study of its aberrations and an identification of each of
its elements’ contribution to the overall aberration figures. The matrix formalism developed by the author was the
object of a previous paper and allows the expression of image-space coordinates as high-order polynomials of object-
space coordinates. In this paper we approach the question of aberrations, both through the evaluation of the wavefront
evolution along the system and its departure from the ideal spherical shape and the use of ray density plots. Using
seventh-order matrix modelling, we can calculate the optical path between any two points of a ray as it travels along
the optical system and we define the wavefront as the locus of the points with common optical path length; the results
are presented on the form of traces of the wavefront on the tangential plane, although the formalism would also permit
sagittal plane plots. Ray density plots are obtained by actual derivation of the seventh-order polynomials.
r 2005 Elsevier GmbH. All rights reserved.
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1. Introduction

In previous papers [1,2] it was shown that it is possible
to determine coefficients for matrix modelling of optical
systems up to any desired order, computing power being
the only limiting factor. The same paper lists the
calculated seventh-order coefficients for systems com-
prising only spherical surfaces.

The optical path length (henceforth designated opl) of
any ray is the sum of the path length multiplied by the
medium refractive index, for all the media that compose
the optical system. The matrix modelling of the optical
system is based on translations between reference planes
and orientation changes at the surfaces separating two
different media. In the following paragraphs, we will
show that it is possible to evaluate the opl for all the
e front matter r 2005 Elsevier GmbH. All rights reserved.
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translations incurred by any ray and add them up to get
an overall opl between any two points on any ray path.

If a known wavefront is used as origin for the
evaluation of all opls, then all subsequent wavefronts
are loci of points equidistant from the first wavefront in
opl terms. It is then a question of preference the choice
of method to display the wavefront shape. The traces on
the tangential and sagittal planes lead to simplified
calculations and we will show examples of the former.
Every departure from a spherical wavefront is a
manifestation of aberrations. The common choice for
reference sphere is one that is centred on the
paraxial image point and contains the centre of the exit
pupil [3].

Ray-density plots are also useful diagnosis tools
because they are similar to the actual images that the
system will produce. We will use the analytical
expressions of image-space coordinates to produce those
plots.
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2. Optical system model

If complex coordinates are used, an axis symmetric
optical system is modelled in the seventh-order by a
product of 40� 40 square matrices with real elements,
each describing a particular ray transformation. The
elementary transformations can be classified into four
different classes:
�
 Translation: A straight ray path.

�
 Surface refraction: Change in ray orientation gov-
erned by Snell’s law.
�
 Forward offset: Ray path between the surface vertex
plane and the surface.
�
 Reverse offset: Ray path from the surface back to the
vertex plane, along the refracted ray direction.

The ray itself is described by a 40-element vector
comprising the monomials of the complex position and
orientation coordinates that have non-zero coefficients.
The product of all the elementary transformation
matrices yields the system matrix which must be right-
multiplied by the incident ray vector to result in the exit
ray vector.

The construction of elementary transformation ma-
trices is facilitated by the method described previously
[2,4]. It can then be assumed that for any system
comprising only spherical surfaces all the necessary
coefficients are known and the system is perfectly
described up to the seventh order. All the equations
presented in the following paragraphs, relating complex
ray coordinates in the form of polynomials, were
evaluated by matrix multiplication using the software
Mathematica. The size of the matrices and the complex-
ity of the expressions imposes some care on the choice of
elements to display; we will usually show just the matrix
element or the expression relevant for the explanation
under way.

In an aberration-free optical system the wavefronts
should have a spherical shape throughout, or could
eventually be flat in a limiting case [3,5,6]. The departure
from a spherical wavefront shape is the manifestation of
aberrations. In well-designed systems a wavefront may
have become aspherical to be partially corrected further
along the system. The study of the distortions intro-
duced on the wavefront by each of the elementary ray
transformations can greatly elucidate about the perfor-
mance of a particular system and provide clues for an
optimization procedure. Walther [7–9] has performed
such optimizations using eikonals and computer alge-
bra; in this paper we use matrix formulation for the
determination of wavefront shape at any point along a
complex system.

The method consists on evaluating the opl of the rays
as they are subjected to the successive transformations
and adding them up until any desired position along the
system is reached; the result is the characteristic function
V ðX ;S; z; z0Þ; X ¼ x þ iy being the complex position
coordinate, S ¼ s þ it the complex orientation coordi-
nate and z and z0 the positions of reference planes on
object and image space, respectively [6,10]; s and t are
the direction cosines relative to axes x and y; respec-
tively.

Point objects are defined by a set of fixed coordinates
ðx; y; zÞ and so the total opl for rays originating on a
point object depends only on the ray orientation and
image plane position, V ðS; z0Þ: The locus of points with
any given value of the opl, expressed by the equation
V ðS; z0Þ ¼ constant; constitutes a wavefront [6] whose
shape can be plotted or compared to a reference sphere.
Before we start considering each of the elementary
transformations in turn we have to establish that in
cases where the incident beam is parallel we will evaluate
the opl from an incident plane wavefront and find the
locus of points with constant opl difference.

We will start by defining a generalized ray of complex
coordinates ðX ;SÞ; this ray is described by the 40-
element monomials vector X&; built according to the
rules explained by Kondo [4] and Almeida [2]. If the ray
is subjected to a transformation described by matrix M ;
then the output ray has coordinates ðX 0;S0Þ and is
represented by the monomials vector X 0&; such that

X 0& ¼ MX&. (1)

In the case of a translation the orientation coordinate
does not change and the opl for that transformation is
obviously given by

l ¼
nd

ð1� SS	Þ
1=2

¼
nd

ð1� S0S0	Þ
1=2

(2)

with n being the refractive index of the optical medium,
d the distance travelled along the optical axis and the
asterisk is used to represent conjugate. The product of
one complex number by its conjugate is obviously one
means of finding the square of its modulus.

A surface refraction introduces an orientation change
but no path length is involved and so it offers no
contribution to the total opl. One optical surface
contributes to the opl through both the forward and
reverse offsets, which are not conceptually different
from the translation; both are translations between the
vertex plane and the surface, respectively in the forward
and the reverse directions, as represented in Fig. 1. It is
legitimate to use Eq. (2) to evaluate the path length
contributions of these transformations, as long as d is
not given a fixed value but is evaluated for each
incidence position; note, though, that there is a
refractive index change from the forward to the reverse
offset, besides the change in the ray orientation. In the
following section we will detail this procedure.

Plane waves with oblique orientation must be dealt
with separately. As the ray coordinates are referenced to
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Fig. 1. The ray intersects the surface at a point X 1 which is

different both from the point of intersection of the incident ray

with the plane of the vertex, X ; and the point of intersection of

the refracted ray with the same plane, X 2: The surface is

responsible for three successive transformations: 1 – an offset

from X to X 1; 2 – the refraction and 3 – the offset from X 1 to

X 2:

J.B. Almeida / Optik 116 (2005) 195–200 197
planes normal to the optical axis and there are phase
differences between the plane wave rays that intercept
the reference plane at various points, those phase
differences must be accounted for by an opl given by

l0 ¼ nðXX 	SS	Þ
1=2

¼ njX jjSj. (3)

There is an implied assumption that the opl is zero for
the ray that crosses the reference plane on the optical
axis.
3. Single refractive surface

We first consider the case of a single surface with
parallel incidence. According to the previous argument,
the first opl that has to be considered is l0 given by Eq.
(3), which accounts for the phase differences of the
incident beam when it crosses the surface vertex plane;
this will obviously vanish if the rays are parallel to the
optical axis, which can always be verified by a single
surface, if the axis is chosen appropriately.

For the position coordinate of the ray after the
forward offset we refer to Fig. 1 and use the coefficients
given by Almeida [2]

X 1 ¼ X þ
S 8þ 4SS	 þ 3S2S	2
� �

XX 	

16r

þ
Sð2þ SS	ÞX 2X 	2

16r3
þ

SX 3X 	3

16r5

¼ X þ
S

16
ð8þ 4jSj2 þ 3jSj4Þ

jX j2

r

�

þð2þ jSj2Þ
jX j4

r3
þ

jX j6

r5

�
, ð4Þ

where r represents the surface curvature radius.
In order to use Eq. (2) we must first find d in terms of
the incidence point X 1; this is done by the following
equation:

d1 ¼ r � r2 � X 1X 	
1

� �1=2
¼ r � r2 � jX 1j

2
� �1=2

. (5)

Now we can substitute Eq. (5) in Eq. (2) to obtain the
forward offset path length l1:

After refraction the ray’s orientation coordinate is
changed according to Snell’s law; in the seventh-order
approximation the new coordinate is given by

S1 ¼ nS þ
ð�1þ nÞX

r
þ

ð�nþ n2ÞXSS	

2r
þ

ð�nþ n2ÞX 2S	

2r2

þ
ð�nþ n4ÞXS2S	2

8r
þ

ð�n2 þ n4ÞX 2SS	2

4r2

þ
ð�n2 þ n4ÞX 3S	2

8r3

þ
nð�1þ n5ÞXS3S	3

16r
þ

n2ð�1� 2n2 þ 3n4ÞX 2S2S	3

16r2

þ
3n4ð�1þ n2ÞX 3SS	3

16r3
þ

ð�n4 þ n6ÞX 4S	3

16r4

þ
Sð�nþ n2ÞXX 	

2r2

þ
ð�nþ n2ÞX 2X 	

2r3
þ

ð�n2 þ n4ÞXX 	S2S	

4r2

þ
nð1� 3nþ 2n3ÞX 2X 	SS	

4r3
þ

ð�n2 þ n4ÞX 3X 	S	

4r4

þ
n2ð�1� 2n2 þ 3n4ÞXX 	S3S	2

16r2

þ
nð1� 10n3 þ 9n5ÞX 2X 	S2S	2

16r3

þ
n2ð2� 11n2 þ 9n4ÞX 3X 	SS	2

16r4

þ
3n4ð�1þ n2ÞX 4X 	S	2

16r5

þ
ð�n2 þ n4ÞXX 	2S2

8r3

þ
ð�n2 þ n4ÞX 2X 	2S

4r4
þ

ð�nþ n4ÞX 3X 	2

8r5

þ
3n4ð�1þ n2ÞXX 	2S3S	

16r3

þ
n2ð2� 11n2 þ 9n4ÞX 2X 	2S2S	

16r4

þ
nð1� 10n3 þ 9n5ÞX 3X 	2SS	

16r5

þ
n2ð�1� 2n2 þ 3n4ÞX 4X 	2S	

16r6

þ
n4ð�1þ n2ÞXX 	3S3

16r4
þ

3n4ð�1þ n2ÞX 2X 	3S2

16r5
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Fig. 2. The figure represents a ray crossing a reference plane

normal to the optical axis; the plane of the figure is not

necessarily a meridional plane but it is rather the plane

containing the ray, which is normal to the reference plane.
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þ
n2ð�1� 2n2 þ 3n4ÞX 3X 	3S

16r6

þ
ð�nþ n6ÞX 4X 	3

16r7
, ð6Þ

where n represents the refractive index ratio from the
first medium to the second.

The ray could now be traced back to the vertex plane
along the S1 direction and the respective opl calculated.
We prefer not to do this but rather to use an equivalent
procedure which consists on evaluating the next
translation opl from the point X 1 on the surface instead
of from the vertex plane. The rays will now follow a
straight path to the image plane at some distance z0 from
the surface; we calculate the corresponding opl (l2) by
means of Eq. (2) with d replaced by d2 ¼ z0 � d1 and S

replaced by S1 taken from Eq. (6).
We are now able to evaluate the total path length, lt;

in any position in the second medium, just by adding the
three contributions lt ¼ l0 þ l1 þ l2:
4. Wavefront plots

In the previous paragraph, we established the method
to evaluate the path length for any ray as it intercepts
any given reference plane along the optical axis. In fact,
we defined a function of ltðX ; z0Þ which is no other than
the characteristic function linking points on a wavefront
in object space to points on a reference plane in image
space. In order to define the wavefront surface we must
specify a reference value for the characteristic function
and find the locus of the points where that reference
value holds; for convenience we take the value for the
ray that intercepts the reference plane on the optical axis
and call this lr:

Fig. 2 represents a ray crossing a reference plane
normal to the optical axis; the plane of the figure is not
necessarily a meridional plane but it is rather the plane
defined by the ray and the normal to the reference plane
on the point of intersection. The ray coordinates on the
point of intersection are ðX 0;S0Þ and the medium
refractive index is n0; the optical path difference is given
by the difference D ¼ lr � lt: If we were to follow along
the ray the distance D=n0 we would find a point with the
same opl as the reference; this point is necessarily on the
same wavefront as the reference point.

From the figure we see that the projection of the
distance D=n0 on the reference plane is given by:

r ¼
D
n0
cos a. (7)

The factor cos a can be decomposed on the direction
cosines relative to axes x and y; leading to two
components rx and ry; which must be added to the
position coordinates of the intersection point in order to
obtain the coordinates of the wavefront point; in
complex notation it is

X 00 ¼ X 0 þ
D
n0

S0. (8)

The position of the wavefront point relative to the
reference plane is given by z00; according to the equation

z00 ¼
D
n0
sin a, (9)

again in complex notation this can be rewritten

z00 ¼
D
n0

1� S0S0	
� �1=2

¼
D
n0

1� jS0j2
� �1=2

. (10)

The two Eqs. (8) and (10) define a surface whose
points have all the same optical path and so, by
definition, they are the wavefront equations.
5. Numerical example

For this example we chose a convex spherical surface
of 1m radius, which marks the boundary between air
and a 1.5 refractive index optical medium, upon which
impinges a bundle of parallel rays; the optical axis is
chosen to be the line containing the centre of curvature
which is parallel to the impinging rays. This simple
optical system has a paraxial focal distance of 3m and
the paraxial focus is the centre of all the aberration-free
wavefronts considered after refraction.

We want to depict the wavefront shape through its
trace on the meridional plane; this allows an important
simplification, as the rays’ position coordinate has null
imaginary component and is thus represented by the real
component x; furthermore, the orientation coordinate is
zero because all the impinging rays are parallel to the
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Fig. 3. Meridional wavefront trace for a single refracting

surface, superimposed on the traces of meridional rays. Notice

that the ends of the wavefront are folded and show a convex

curvature, indicating spherical aberration.
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Fig. 4. Meridional wavefront trace for a single lens, super-

imposed on the traces of meridional rays. The sharper bend of

the upper end is an indication of coma.
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optical axis. As a result we have x1 ¼ x and from Eq. (5)

l1 ¼ d1 ¼ r � ðr2 � x2
1Þ

1=2. (11)

The orientation coordinate after refraction, S1; is real
for all rays on the meridional plane and so it is
represented in lower case: S1 ¼ s1: This was evaluated
by matrix multiplication but we could just as well have
used Eq. (6) with suitable substitutions. We applied Eq.
(2) to evaluate the optical path contribution of the
translation from the surface vertex plane to a reference
plane located 2.8m after the surface; the refractive index
was set to n ¼ 1:5 and the distance was set to d2 ¼

2:8� d1: Eqs. (8) and (10), with real position coordi-
nates, were used to evaluate the curve of the wavefront
trace which was then plotted as shown in Fig. 3
superimposed on the traces of meridional rays; these
are naturally normal to the wavefront in every point. We
notice that the ends of the wavefront are folded and
show a convex curvature, indicating spherical aberra-
tion. The points on the curve with zero curvature radius
are points on a caustic arising from the crossing of rays
with different directions.
6. Single lens

We turn our attention now to a thin lens with oblique
incidence. The lens is convex on the first surface and flat
on the second surface, the convex surface has a
curvature radius of 31.123mm and the centre thickness
is 5.8mm; the glass is BK7, defined as having a
refractive index of 1.5168. This lens has a nominal focal
distance of 60mm. The rays incident upon the lens form
a parallel bundle with a direction cosine s ¼ 0:1:

The only added complication to the situation of the
single surface results from the consideration of the
second surface, which marks the transition from glass to
air with no associated curvature. The optical axis is now
clearly identified by the line normal to the flat surface
and containing the first surface’s centre of curvature and
cannot be aligned with the direction of incidence.
Oblique incidence promotes the emergence of the
various aberration terms but does not imply any new
equations.

The wavefront is studied at a distance of 52mm and
its meridional trace is plotted on Fig. 4. Again we notice
that the rays are normal to the wavefront and that the
ends of this are folded backwards. The sharper bend of
the upper end is an indication of coma. The other
aberration terms are not clearly noticeable on the figure
because in the case of astigmatism we would have to
compare with the sagittal plot and in the cases of field
curvature and distortion the wavefront is still spherical
but its centre is shifted from the paraxial position.
7. Ray-density plots

In order to study the ray-density plots we use the lens
of the previous example with the image plane moved to
a position just past the tangential focus, i.e. 56mm,
because this is a natural position and also because all
the rays are divergent from this position onwards.
This avoids the complication of having to deal with
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Fig. 5. Ray density plot on a plane near the tangential focus.
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overlapping wavefront folds, each of them contributing
independently to the overall ray-density.

The overall system matrix for the lens above followed
by a straight path to the image plane was evaluated with
the help of Mathematica and then right-multiplied by
the input ray vector X& composed with the variable
complex position coordinate, X ; and fixed orientation
coordinate, s ¼ 0:1: The result is a 40-element vector,
the first of which is a seventh-order polynomial on X ;
representing the dependence of the point of intersection
on the image plane on the input variable; we call this X 0:

If it is established that the input beam has a uniform
ray-density, then the image-plane ray-density is given by

i ¼ 1
dX 0

dX

����
����

�
. (12)

Now, X being a complex coordinate we can express it
in the exponential form as X ¼ weiy and plug this into
Eq. (12) to get

i ¼ 1
dX 0

dw
�

i

w
dX 0

dy

����
����

�
. (13)

The value of the ray-density given by Eq. (13) was
evaluated and plotted as shades of gray on a logarithmic
scale on the positions corresponding to the image
coordinate X 0; as shown on Fig. 5. The image is just
as one would expect from a lens focusing an oblique
beam of light.
8. Conclusion

Previous results had shown that optical systems could
be modelled with matrices up to any desired order of
approximation and the necessary coefficients for axis-
symmetrical systems built with spherical surfaces had
already bean reported. Those results have now been
used to evaluate aberrations in non-standard ways.

An implementation of the seventh-order matrix
algorithm in Mathematica allows the construction of
algebraic models for very complex systems, which can be
used in various ways to judge their performance and
quality.

The possibility of plotting wavefront shapes at any
point along a complex optical system was demonstrated
with two simple examples but the same procedure could
be used in more complex situations. Ray-density plots
were also demonstrated, these providing a visualization
of the actual image of point objects. It is expected that
ray-density plots can be integrated for extended objects,
thus yielding the expected aberrated images given by
real optical systems.
References

[1] J.B. Almeida, The use of matrices for third order

modeling of optical systems, In: K.P. Thompson, L.R.

Gardner (Eds.), International Optical Design Conference,

Proc. SPIE 3482 (1998) 917–925.

[2] J.B. Almeida, General method for the determination of

matrix coefficients for high order optical system model-

ing, J. Opt. Soc. Am. A 16 (1999) 596–601.

[3] W.T. Welford, Aberrations of Optical Systems, Adam

Hilger, Bristol, 1991.

[4] M. Kondo, Y. Takeuchi, Matrix method for nonlinear

transformation and its application to an optical lens

system, J. Opt. Soc. Am. A 13 (1996) 71–89.

[5] G.G. Slyusarev, Aberration and Optical Design Theory,

Adam Hilger Ltd., Bristol, 1984.

[6] M. Born, E. Wolf, Principles of Optics, sixth ed.,

Cambridge University Press, Cambridge, UK, 1997.

[7] A. Walther, Eikonal theory and computer algebra, J. Opt.

Soc. Am. A 13 (1996) 523–531.

[8] A. Walther, Eikonal theory and computer algebra II,

J. Opt. Soc. Am. A 13 (1996) 1763–1765.

[9] A. Walther, Zoom lenses and computer algebra, J. Opt.

Soc. Am. A 16 (1999) 198–204.

[10] D.S. Goodman, Geometrical optics, In: M. Bass (Ed.),

Handbook of Optics, vol. 1, McGraw-Hill, New York,

CD-ROM ed., 1995 (Chapter 1).


	Wavefront and ray-density plots using seventh-order matrices
	Introduction
	Optical system model
	Single refractive surface
	Wavefront plots
	Numerical example
	Single lens
	Ray-density plots
	Conclusion
	References


