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Abstract: An optimal experimental design for yield coefficients estimation in an 
unstructured growth model of fed-batch fermentation of E. coli is presented. The feed 
profile is designed by optimisation of a scalar function based on the Fischer Information 
Matrix. A genetic algorithm is proposed as the optimisation method due to its efficiency 
and independence on the initial values. Copyright 2004 IFAC 
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1. INTRODUCTION 
 
The simulation of bioprocesses has always been of 
major academic and industrial interest, being an 
effective tool for the design and development of 
robust (model based) algorithms for optimisation, 
monitoring, control, and characterization of many 
industrial processes. The development of 
mathematical models that are able to describe these 
processes has become an essential task since it is 
usually much faster and less expensive to model a 
system and to simulate its operation than to perform 
laboratory experiments (Versyck and Van Impe, 
1999). 
 
The development of a model is usually an iterative 
two-steps process: designing the model structure and 
evaluating the model parameters for the proposed 
structure from simulated and experimental data. The 
description of bioprocesses usually requires the use 
of differential and algebraic equations involving 
frequently highly non-linear and stiff models (Banga 
et al., 2002). 

In the experiment design, a set of experimental 
conditions, namely the measurement ports, the 
sampling times, the filters used before sampling, and 
the input signal, must be selected in order to 
maximize the information regarding the properties of 
the system that are pertinent to a particular 
application. In fact, each of those conditions has a 
bearing on the information obtained from the 
experiment (Goodwin, 1987). 
 
Therefore, the use of model-based experimental 
design may give suitable suggestions for efficient and 
informative experiments. Hence, it is necessary to 
establish a mathematical function that allows the 
calculation of the efficiency of an experiment with 
regard to the experimental aim. Throughout the 
optimisation procedure, several experimental 
conditions are evaluated and the experimental set-up 
leading to the maximum (or minimum) value of the 
selected objective function represents the optimal 
experimental design. 
 
Among the objective functions used in literature, 
several functions based on the Fisher Information 
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Matrix (FIM) have been proposed to evaluate the 
parameter estimation accuracy. In fact, FIM contains 
information concerning parameter sensitivities and 
measurement errors and, thus, allows the 
quantification of the parameter estimation quality. 
 
In this work, a fed-batch fermentation process of 
Escherichia coli will be studied from a modelling 
point of view. E. coli is usually grown under that 
mode of operation due to the well-known negative 
effect of acetate, which is produced when the 
substrate, glucose, is present above certain 
concentration (Versyck and Van Impe, 1999; Rocha 
and Ferreira, 2002a,b). 
 
So, the aim of the present study is to calculate an 
optimal feeding rate that maximizes the determinant 
of FIM (D-criterion) and conducts to the optimal 
experimental design for the identification of yield 
coefficients of a fed-batch fermentation of E. coli. 
Results of various optimisation runs using genetic 
algorithms are presented and discussed. 
 
 

2. PROCESS MODELLING 
 
Process simulation was conducted with a developed 
model derived from the general state space 
dynamical model described by Bastin and Dochain 
(1990). Accordingly, the dynamics of a reaction 
network in a stirred tank bioreactor can be described 
by the following mass balance equations written in 
matrix form as: 
 

( ) QFDtKr
dt
d

−+−= ξξξ ,  (1) 
 

in which ξ is a vector representing the n state 
components concentrations (ξ ∈ ℜ

n
), r is the growth 

rate vector corresponding to m reactions (r ∈ ℜ
m
), K 

is the matrix of yield coefficients (K ∈ ℜ
n×m

), F is the 
vector of feed rates and Q is the vector of gaseous 
outflow rates (F, Q ∈ ℜ

n
), D is the dilution rate 

(being D-1 the residence time).  
 
The E. coli fermentation process is accepted as 
occurring in two possible metabolic regimens (Rocha 
and Ferreira, 2002a): (i) a respirative-fermentative 
regime (RF), corresponding to an acetate production 
state, (ii) a respirative regime (R), corresponding to a 
simultaneously acetate and glucose consumption 
pathway. 
 
The associated dynamical model can be represented 
as follows, where S, O, X, C, and Ac represent sugar 
(glucose), dissolved oxygen, biomass, dissolved 
carbon dioxide, and acetate concentrations, 
respectively; µ1, µ2, and µ3 are the specific growth 
rates; ki are the yield (stoichiometric) coefficients; Fin 
and Sin are the substrate feed rate and the influent 

glucose concentration, respectively; W is the culture 
medium weight. CTR is the carbon dioxide transfer 
rate from liquid to gas phase, and OTR is the oxygen 
transfer rate from gas to liquid phase. 
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An additional equation is used to calculate the 
variation of the culture medium weight with the time: 
 

F
dt

dW
=  (3) 

 
 

3. OPTIMAL EXPERIMENTAL DESIGN 
 

The successful application of optimal experimental 
design in fed-batch bioreactors has been reported by 
several authors (Munack, 1989; Ejiofor et al., 1994; 
Versyck and Van Impe, 1999). 
 
Parameter estimation can be formulated as the 
minimization of the following identification function 
by optimal selection of the parameter vector k: 
 

( ) ( )( ) ( )( )∫ −−≡
ft

m
T

mI dtykyPykykJ
0

 (4) 

 

in which ym is the vector of measured outputs, y(k) is 
the vector of model predictions by using the 
parameter vector k, P is a user-supplied square 
weighting matrix and tf is the final experimental time. 
In order to analyse the information content of the 
state trajectories obtained in a certain experiment, 
FIM can be used (Munack, 1989; Versyck and Van 
Impe, 1999): 
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where N is the experimental number of data used. 
Weighting matrix P is usually chosen as the inverse 
of the measurement error covariance matrix, 
implying that the more a measurement is corrupted 
by noise, the less it will count in the information 
criterion. The FIM is the inverse of the error 
covariance matrix of the Best Linear Unbiased 
Estimator (BLUE). It contains information about the 
measurement errors and parameter sensitivities and, 
thus, allows the quantification of the quality of the 
parameter estimation. Depending on the requirements 
imposed by the application, a specific scalar of this 
FIM is used as the performance index for optimal 
experimental design to increase the parameter 
identifiability. Several optimal design criteria are 



discussed in literature (Walter and Pronzato, 1990, 
Versyck and Van Impe, 1999). In this work the so-
called D-criterion for optimal experimental design 
was adopted: 
 

( ) ( )FIMtJ fII det=  (6) 
 

where det(FIM) is the determinant of the Fisher 
Information Matrix. In order to optimize the global 
accuracy, the determinant of the FIM must be 
maximized. This is equivalent to minimizing the 
geometric mean of estimation error and the volume 
of the uncertainty ellipsoids. 
 
For chemical and biological systems, it is known that 
model identification is not an easy task. There are 
two major difficulties: (i) the estimation of the yield 
coefficients values of matrix K; and (ii) the 
determination of a suitable structure for the reaction 
rate model r(ξ) and the estimation of the respective 
kinetic coefficients (Chen, 1992). 
 
In this work, the approach proposed by Chen (1992) 
is chosen. This approach is based on the fact that the 
identification of the yield coefficients can be 
decoupled from that of the reaction kinetics. In fact, 
it is possible to identify the yield coefficients in a 
first step without modelling the reaction rates, 
followed by the modelling of the reaction rates and 
the identification of the related kinetic coefficients in 
a second step, using known yield coefficients. It is 
interesting to notice that these two sets of parameters 
are involved in the model in different ways: the 
model is linearly parameterized by the yield 
coefficients while it is in general nonlinearly 
parameterized by the kinetic coefficients. The 
method of Chen (1992) makes use of the state 
transformations based on the general structure of the 
model and it has already been used by Rocha and 
Ferreira (1996) to identify yield coefficients in the 
production of baker’s yeast. 
 
The methodology proposed by Chen (1992) uses the 
same model structure represented by eq. (1) modified 
by introducing a U vector that corresponds to the F-Q 
term: 
 

( ) UDtKr
dt
d

+−= ξξξ ,  (7) 
 

Defining a non-singular partition: 
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where L is a square matrix (L ∈ ℜ
n
) and Ka has full 

rank. Being p the rank of the yield coefficient matrix 
K, then Ka ∈ ℜ

p×n
, Kb ∈ ℜ

(n-p)×m
. The induced 
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with ξa, Ua ∈ ℜ
p 
and ξb, Ub ∈ ℜ

n-p
. 

 
The following state transformation is introduced:  
 

baAZ ξξ +≡  (10) 
 

where the (n-p)×p matrix A is the unique solution of 
the following equation: 
 

0=+ ba KAK  (11) 
 

i.e. +−= ab KKA  (12) 
 

where +
aK  represents a generalised or pseudo-

inverse of aK . Using eqs. (10) to (12), the eq. (7) 
yields the following: 
 

( ) aaaaa
a UDAZrK

dt
d

+−−= ξξξ
ξ

,  (13) 
 

ba UAUDZ
dt
dZ

++−=  (14) 
 

As it can be seen, eq. (14) does not involve the 
reaction rate r explicitly, and so, it can be used to 
estimate the yield coefficients via the identification 
of the matrix A, independently of the structure of the 
reaction rates, as suggested by Chen (1992). 
However, in eq. (14) there is a dependence of Z with 
respect to matrix A (and therefore depending on the 
yield coefficients). If Ua is a zero vector, the 
integration of the above-mentioned equation may be 
used for the estimation of the yield coefficients. 
Alternatively Z can be decomposed as follows: 
 

ba ZAZZ +≡  (15) 
 

where the new variables Za ∈ ℜ
p
 and Zb ∈ ℜ

n-p
 are 

governed by the following dynamics, named by 
Chen (1992) as the auxiliary model: 
 

aa
a UDZ

dt
dZ

+−=  (16) 
 

bb
b UDZ

dt
dZ

+−=  (17) 
 

)( aabb ZAZ −−= ξξ  (18) 
 

The equation for ξb, which may be understood as an 
output vector, is obtained substituting eq. (10) in eq. 
(15). Defining the output vector y and the regressor 
vector φ as follows: 
 

bbZy ξ−≡  (19) 
 

aa Z−= ξφ  (20) 
eq. (18) takes the following standard linear 
regression form: 
 



( ) ( )tAty φ=  (21) 
 

with t ∈ [0, tf], where tf is the total time of the 
experiment. This auxiliary model, containing only 
the transport dynamics of the system, can be 
considered as a linear time varying model with state 
Z, input Ua, Ub and ξa, and output ξb. The model is 
nonlinear relatively to the yield coefficients but 
linear in order to the elements of matrix A. 
Furthermore, the unknown parameters are only 
involved in the output eq. (18). The regression 
equation (eq. 21) is the basis for the estimation of the 
yield coefficients. 
 
Difficulties related to the identifiability of the yield 
coefficients were extensively studied by Chen 
(1992). This author established that the properties of 
identifiability of the yield coefficients, for a given 
system characterised by matrix K, are independent of 
the partition chosen and demonstrated the necessary 
condition for the identification of those coefficients 
for a given reaction (elements of a column of K) 
right through matrix A: the yield coefficients of 
reaction j are identifiable through A only if nj-1 ≤ n-
p being nj the number of components involved in 
reaction j, p the rank of matrix K, n the number of 
state variables. So, n-p coefficients can be identified 
for each reaction without any knowledge concerning 
the reaction rate r(ξ, t). 
 
With the methodology proposed by Chen (1992), the 
accuracy of the yield coefficients estimation is 
obtained using the regressor analysis, resulting in 
following equivalent FIM: 
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Taking into account the above-mentioned 
formulation it is necessary to determine the regressor 
trajectories, φ(t, θ, ξ, U), which are functions of the 
parameter vector to be estimated for the calculation 
of the yield coefficients. 
 
In this work, for each regimen the following state 
partition was chosen: [ ]OST

a =ξ  and 

[ ]CAcXT
b =ξ . In this case, the induced partitions 

for Ua and Ub are the same for both regimens: 

     =     
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      [ ]CTRU T
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For Ka and Kb the partitions are given in Table 1. 
 
 

Table 1 Induced partitions for K 
 

Regimen Ka Kb 
RF 









−−
−−

65

21

kk
kk

 

















98

30
11

kk
k  

R 








−−

−

75

1 0
kk

k
 
















−

108

40
11

kk
k  

 
 

4. OPTIMISATION USING GENETIC 
ALGORITHMS 

 
Genetic algorithms (GAs) are stochastic algorithms 
that can be an alternative to traditional optimisation 
methods, being suitable for complex non-linear 
models where finding the global optimum is a 
difficult task. They are based on the mechanisms of 
natural selection and genetics followed by biological 
evolving species. First, an initial population, 
containing a predefined number of individuals (or 
solutions), is created randomly. The potential 
solution is coded as a vector called chromosome 
representing a possible solution in the 
multidimensional search space. Goodness of each 
solution in the population is evaluated by using a 
predefined fitness criterion. Upon fitness assessment 
of all chromosomes in the population, a new 
generation of individuals is created from the actual 
population, by using three genetic operators: 
reproduction, crossover and mutation (Roubos et al., 
1999). 
 
In recent years, GAs have been applied to fed-batch 
fermentation optimisations (Roubos et al., 1999; 
Nguang et al., 2001; Na et al., 2002; Rocha and 
Ferreira, 2002b). In the present case, GAs were 
applied to maximize the global accuracy of the 
parameter estimation considering two different 
optimisation objectives: (i) estimate the optimal 
substrate feed rate trajectory (Fin); and (ii) optimise 
Fin and the influent glucose concentration (Sin). 
Therefore, the following objective function was used: 
 

( ) ( ) ( )RRFf FIMFIMtJ detdet ×=  (24) 
 

Eq. (24) considers the two regimens that may occur 
during the E. coli fed-batch fermentation, allowing 
maximizing the informative richness for each of the 
regimens and so, to determine with a higher accuracy 
the yield coefficients related to each regimen. For 
this purpose, the Genetic and Evolutionary Algorithm 
Toolbox (GEAtbx 3.3) for MATLAB developed by 
Pohleim (2003) was used. It works with several 
genetic operators and supports binary, integer and 
real-valued representations, being the last one chosen 
in this work due to the well-known advantages 
(Roubos et al., 1999). A main function is called from 



the user interface. This function calls all necessary 
evolutionary operators and the objective function. 
Additionally, the main function performs nearly all 
the data management and result collection (Pohleim, 
2003). In this case, the number of individuals 
evaluated in each iteration was 100 corresponding to 
one population. The objective function was evaluated 
in a script ‘.m’ file, a routine that calculated the value 
of eq. (24) in an iterative way using the MATLAB 
version 6.5 subroutine ODE23s to solve the 
differential equations of the model represented in eq. 
(2). A penalty function was used to implement the 
maximal culture medium weight constraint (if W(t) > 
5 kg, J(tf) = 0). Regarding the feed rate profile, a 
purely numerical approach was used, being the feed 
rate divided in 11 nodes corresponding to 10 
piecewise linear polynomials with constant time 
intervals. Moreover, the feed rate is limited by the 
pump capacity being 0,4 kg/h the maximum feed 
rate. Initial values for S, X, Ac, C and W were 0 g/kg, 
5 g/kg, 0 g/kg, 0.3 g/kg and 3 kg, respectively. 
 
Two optimisation strategies were studied: SGA1 
searches the optimal substrate feed rate (Fin) and 
SGA2 searches the optimal Fin and the optimal 
influent glucose concentration (Sin). Table 2 presents 
the constraints taken into account in each case. 
 

Table 2 Constraints used in the optimisation 
 

 tf  (h) Sin (g/kg) 
SGA1 25 250 
SGA2 25 [200, 300] 

 
Figure 1 shows the convergence of the objective 
function towards the optimal solution with the 
number of iterations performed for each strategy 
studied.  
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Fig. 1. Evaluation of the objective function with the 

number of iterations performed. 
 
The results obtained show that the information 
content increases with the optimisation of Sin. 
Therefore, it seems that the optimisation of other 
conditions, namely the final experimental time and 

the initial biomass content, may allow the 
improvement of the information content. The optimal 
feed rates profiles obtained are shown in Figure 2. It 
should be remarked that for SGA2 the optimal 
influent glucose concentration obtained was 204 
g/kg. 
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Fig. 2. Optimised feed rate profiles. 
 
The optimised values obtained for each strategy were 
used to validate the estimation of the yield 
coefficients. The validation is accomplished by 
comparing the X, Ac and C estimated values 
calculated using eq. (21) with the values obtained 
from the simulation using eq. (2). The results 
obtained for SGA2 (Fig. 3) show that both regimens 
occur with similar duration time periods allowing a 
satisfactory calculation of the regressors as illustrated 
by the good accordance between simulated and 
estimated values. Similar results were obtained for 
SGA1. 
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Fig. 3. Validation of the yield coefficients estimation 

for SGA2. Symbols represent simulated values 
and lines correspond to the estimated values. 

 
 

5. CONCLUSIONS 
 
The optimal experimental design of yield coefficient 
of an E. coli fed-batch fermentation was 
accomplished by the quantification of the richness 
given by the Fisher Information Matrix. The results 

RF R 
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Ac 
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obtained show that the identification problem is 
overcome by introducing a model transformation that 
allows a linear formulation without knowing the 
kinetic parameters (Chen, 1992). Moreover, the 
genetic algorithms showed to be an efficient tool for 
the optimisation of highly non-linear models. The 
advantage of the identification technique presented is 
the possibility of obtaining the feed rates profiles 
before making any experimental work. The 
experimental validation of this work is under 
investigation. 
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