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Abstract 
A genetic algorithm was used to estimate both yield and kinetic coefficients of an 
unstructured model representing a high-cell density fermentation of E. coli. The model 
is composed of mass balance equations with 3 states: Biomass, Glucose, and Acetate. 
Kinetic equations are based on the 3 main metabolic pathways of the microorganism: 
glucose oxidation, fermentation of glucose and acetate oxidation.  
Genetic Algorithms were used to minimize the normalized quadratic differences 
between simulated and real values of the state variables, by manipulating both yield and 
kinetic coefficients. Data from real fed-batch fermentation runs were analyzed with this 
optimization routine, the new parameter set obtained allowing a much better description 
of the process behaviour when compared to simulations conducted with non-optimized 
parameters obtained from literature. 
After parameter estimation, a sensitivity function analysis was applied to evaluate the 
influence of the various parameters on the state variables biomass, acetate, and glucose. 
Thus, essential parameters were selected and the model was re-written in a more 
simplified form that could also describe accurately experimental data. 
 
Keywords: Genetic Algorithms, E. coli; fed-batch fermentation; sensitivity function; 
model reduction. 
 
1. Introduction 
Bioprocess modelling has been considered as a useful and even essential technique for 
optimization and control of bioprocesses. However, every model contains several 
kinetic and yield parameters that are characteristic of the particular process. In order to 
use the model for the prediction of system behaviour, those parameter values have either 
to be known or estimated.  
For fed-batch fermentations, the most common approaches for the estimation of 
parameters are based on chemostat or batch data, while others are obtained from 
stoichiometric relations or from the literature. However, as both yield and kinetic 
coefficients are extremely dependent on the particular strain under study, and also on 
the cultivation medium and mode of operation, those approaches are not likely to 
generate a good approximation between simulated and real values of the state variables. 
Thus, a more systematic approach to parameter estimation is needed if a proper 
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simulation is to be conducted. One of these approaches consists in formulating the 
parameter estimation problem as an optimization problem. The general goal of 
parameter estimation can thus be achieved by comparing measurement data with 
simulation results according to a given performance criterion, usually the sum of 
squared errors between measured and simulated data, given the same model input (the 
feeding profile). 
However, when trying to estimate both yield and kinetic coefficients simultaneously, 
deterministic optimization methods have limited applications, due to the non-linearities 
found in the dynamical model and to the need of good initial estimates in order to avoid 
the convergence to local optima. Therefore, other optimization methods have to be 
employed. 
New optimization methods based on the principles of biological evolution represent a 
promising approach for bioprocesses applications. For example, Genetic Algorithms 
(GAs) are stochastic direct (i.e. derivative free) optimization techniques that apply basic 
elements of biological evolution to optimize technical systems. There can be found 
several applications of GAs to bioprocesses in the literature, in the derivation of the 
optimal feeding (Roubos et al., 1999; Nguang et al., 2001) or temperature profiles 
(Moriyama and Shimizu, 1996) in fed-batch fermentations.  
When parameter estimation is conducted, the sensitivity of the simulation results to 
model parameters has to be investigated, in order to check for the influence of those 
parameters� accuracy on the process prediction. Sensitivity functions give a time profile 
of the model sensitivity and can be defined as the model output sensitivities with respect 
to parameter variations, evaluated along the nominal output trajectories (Munack, 
1991). These functions generate valuable information not only concerning which 
parameters and manipulated variables are most important, but also the time periods over 
which they matter most.  
Calculation of the sensitivity functions can be found in Pertev et al. (1997) and Smets et 
al. (2002) applied to the different microorganisms. In both cases, after sensitivity 
analysis, a model reduction was conducted by eliminating from the model the least 
significant parameters or by setting their values to literature data. However, it was not 
found in the literature an example of an application of this approach to fed-batch 
fermentation of E. coli.  
The aim of this paper is to use the Genetic Algorithm optimization tool for estimating 
both yield and kinetic coefficients of an unstructured model representing a high-cell 
density fermentation of E. coli. Sensitivity functions are then used to evaluate the 
influence of the various parameters on the model output in order to re-write the model 
in a more simplified form. 
 
2. Mathematical Model 
The developed mathematical model for describing the fed-batch fermentation of 
recombinant Escherichia coli, was based on the General Dynamical Model of 
Bioreactors framework described by Bastin and Dochain (1990).  
During the aerobic growth of E. coli with glucose as the only added substrate, the 
microorganism can follow three different metabolic pathways: oxidative growth on 
glucose, fermentative growth on glucose, and oxidative growth on acetate.  



The associated dynamical model excluding oxygen and carbon dioxide dynamics can be 
described by the following equations: 
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where S, X, and A represent glucose, biomass, and acetate concentrations, respectively; 
µ1, µ2, and µ3, are the specific growth rates; ki are the yield (stoichiometric) coefficients. 
Fin,S is the flow rate associated with glucose feeding, and Sin is the influent glucose 
concentration. The variable dilution rate D can be defined as the quotient between the 
total mass flow feed rate (Fin,tot) and the weight (W) of liquid inside the reactor. 
An additional equation that accounts for volume variations was added to the model in 
order to account for weight variations. In small-scale and high-cell density reactors, the 
amount of culture removed or added during sampling, base and acid additions, 
evaporation and mass taken from the reactor due to gas exchanges can not be considered 
negligible (Galvanauskas et al., 1998). Thus, the more complete equation for calculating 
weight variations was formulated: 
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where Fb and Fa are the liquid mass flow of base and acid solution added to the 
bioreactor, and Fevp, Fgas, and Fsmp are liquid mass flows evaporated from the bioreactor, 
and taken due to gas exchanges and to sampling, respectively. 
For the kinetic model, the specific uptake rate of glucose (qS) was found to be described 
by a Mond-type equation with non-competitive inhibition by acetate: 
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where qS,max is the maximum specific uptake rate, KS is the Monod constant and Ki,S 
represents the inhibition constant for acetate on glucose uptake. 
The oxidative bottleneck exhibited by this microorganisms is accounted by calculating 
an oxygen uptake rate, qOS=qS×kOS, where kOS is the oxygen yield on glucose. The 
oxidative pathway for glucose is then the sole metabolic pathway while: 
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where qO,max is the maximum oxygen uptake rate, and Ki,O represents the inhibition 
constant for acetate on oxygen uptake. 



After that threshold is reached, the microorganism also follows the fermentative 
pathway. However, when the oxidative bottleneck is not fulfilled, and if acetate is 
present in the medium, it can be consumed, and the specific uptake rate of acetate (qAC) 
under those circumstances can be described in a similar way as glucose uptake. 
A full description of the mathematical model used for the fed-batch growth of E. coli 
can be found in Rocha (2003). 
 
3. Materials and Methods 
Fed-batch fermentations were conducted according to Rocha and Ferreira (2002). 
For parameters estimation, a MATLAB routine was developed that integrates process 
simulation with real data analysis. In a first stage, this program loads the fermentation 
data file and identifies the feeding profile as an input for both real and simulated data. 
Afterwards, the initial values of the variables for the simulation are taken from real data 
at t=0. Then, simulation begins by integrating the differential equations using a 4th order 
Runge-Kutta integration method and by calling a kinetics function that calculates the 
specific growth rates as a function of the state variables. Afterwards, a normalized 
difference between the real and the simulated data is calculated in order to check for the 
simulation accuracy. That difference takes the following generic formula: 
 

exp,ij

exp,ij

ξ

ξ ξ
ξ=

=

 −
  
 =

∑
∑

2

,

'
1

1 i

p
sim ij

n
j

i

dif
RSD

 (5) 
 
This equation calculates the sum of the quadratic differences between real or 
experimental � ξexp,ij � and simulated � ξsim,ij data for every point (p) of a given state 
variable within the simulation. For each point, the difference is normalized by dividing 

it by an average value (ξexp,ij ) of that state variable, in order to attribute the same 

importance to all state variable, regardless their magnitude. The global difference 
obtained for each state variable is then divided by the corresponding relative standard 
deviation (RSDξi) in order to confer more significance to the variables that have less 
errors associated. Finally, the individual global differences obtained for each variable 
are added, being n� the number of state variables included in the optimization goal. This 
difference was subjected to a minimization using the Genetic Algorithms (GAs) toolbox 
for Matlab version 1.7 developed by H. Pohlheim at the University of Sheffield.  
 
4. Results 
4.1. Model Identification 
Parameter estimation was conducted in several steps to different fermentation runs 
(Rocha, 2003). The approximation of simulated data to real data obtained with literature 
parameter values (Galvanauskas et al., 1998 and Xu et al., 1999) and after parameter 
estimation is shown in Figure 1 for a given fermentation run. It is clear that, before the 
optimization procedure, the simulated results could not describe the experimental data. 



A much better approximation was obtained with the identified parameters (shown in 
table 1). 
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Figure 1. Approximation between real and simulated results before (dotted lines) and 
after (full lines) parameter estimation. 

 
Table 1. Initial (literature) values and identified values for model parameters 

Parameter Initial value Identified value 
k1 2.00 3.164 
k2 20.0 25.22 
k3 14.00 10.90 
k4 4.00 6.382 

qS,max 1.70 1.832 
KS 0.100 0.1428 
Ki,S 4.31 8.001 
kOS 1.00 2.020 

qO,max 0.500 0.7218 
Ki,O 4.00 6.952 

qac,max 0.0500 0.09670 
KA 1.00 0.5236 
kOA 1.00 1.996 
Ki,a 4.00 5.850 

 
 
4. 2 Sensitivity Analysis 
Sensitivity functions were computed, for the present case, as the sensitivity of the state 
variables ξi to small variations in the model parameters, expressed generically as pj 
given the feeding profile input: 
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where dξi/dt are the differential equations given in equation 1. 
The analysis of the time profile of the sensitivity functions revealed that the more 
relevant parameters are the yield coefficients k1, k2 and k3, and the maximum specific 
uptake rates for glucose and acetate. The least significant parameters are k4 and the 
inhibition constants of acetate on glucose and acetate uptakes, and the Monod constant 
for acetate. Thus, the specific uptake rates of glucose and acetate were re-written in a 
more simplified form, by eliminating the inhibition terms in both cases and the 
saturation term in the case of acetate consumption rate, and similar approximation of 
simulated to experimental data were obtained with this simplified kinetic model (results 
not shown). Also, the value of the yield coefficient k4 does not need to be determined 
accurately, and a literature value for this parameter is expected to give the same results 
for simulation purposes. 
 
5. Conclusions 
Using the proposed parameter estimation methodology, it is possible to estimate with 
great accuracy several model parameters, without needing extensive mathematical 
manipulations of the model. Also, with model reduction based on sensitivity function 
evaluation, it is possible to re-write the model structure in a simpler way, decreasing 
simulation time and facilitating model manipulations. 
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