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Abstract. In Multi-Robot systems like the RoboCup football challenge, there are a small 
number of key issues which are of extreme relevance for the successfulness of the final 
application. In MSL RoboCup these main issues are three: a) The vision system, which has to 
be as reliable and fast as possible in order to perceive the necessary entities to carry out the 
game actions; b) Correct kinematics of the robot, that makes the robots move towards the 
desired goal in the fastest, shortest and optimized away; c) Game strategy, which needs 
collaboration and communication between all the agents in the field. Other issues are also 
important but these three consist of the fundamental ones towards the next step in this challenge 
which is ball pass between the robots in a controlled way. A team of robots will only be able to 
pass the ball to another robot only when these three issues are sorted out. This paper describes 
how these three issues were tackled by the MINHO team and shows their next directions. 

1. Introduction 

Although many teams prefer to buy a standard off the shelf robotic platform and 
implement some changes in hardware/software, Minho team which participates on 
RoboCup since 1999, builds its own platforms from scratch. Being part of an 
Industrial Electronics department they build the mechanics, hardware and software, 
bearing in mind a very low budget. This continuous participation in RoboCup led to 
some new developments in many fields. 
The next step of this team is to pass the ball between robots. In order to achieve this, 
three key issues need to be sorted out: the vision system, correct kinematics of the 
robot and game strategy which implies collaboration and communication between the 
agents in the field. These issues are described in the following sections of this paper. 

2. MINHO Team Robots Description 

A short and very brief description of the MINHO team robots is made in this section. 
Since the robots were completely developed within our labs, they were planned and 
drawn in a CAD system in order to check its assemblability (see Fig. 1) and only then 
they were built. Some mistakes could be prevented by drawing them first. 
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Fig. 1. CAD drawing and final robot 

The locomotion of these robots is achieved by three omni wheels, coupled to D.C. 
geared motors with brushes, 5Nm and 33 Watts from Crouzet. Encoders are coupled 
to the motor veins in order to count the number of turns. 
The robots have a ball handler made with a DC motor coupled to a rubber wheel 
which when in contact with the ball it starts up and pulls the ball towards the robot. 
In order to kick the ball a magnetic kicker was developed and is used. It proved to be 
very strong and it consists of a magnetic coil with a movable iron core which is 
pushed towards the coil centre when electric current passes through the coil. 
The Computer used is a low consumption motherboard VIA EPIA M + C3 running at 
933 MHz, with 256 Mbytes of P266 memory and a 2.5” IDE Flash Drive with 256 
Mbytes. This motherboard has a VGA board embedded, supports USB 2.0, it has 1 
parallel port (from where the outputs are sent to the motor controllers), 1 serial port 
and a PCI slot. A two PCI raiser is used in order to connect the two boards (wireless 
Network board and the frame grabber). The operating system used is Linux Mandrake 
and the whole software is written is C language. 
The vision head is placed on the highest position to increase the field of view. It 
consists of a colour camera facing upwards onto a spherical mirror facing downwards. 
The image is distorted but the software reshapes it to a planar image. 
The hardware to control the motors, kicker and ball handler was completely 
developed in our lab. 

3. Three Wheels Drive 

There exists a great variety of ways to move across a solid surface by mobile robots. 
The most important are wheels, tracks and legs [1]. Wheels are the most used since 
they offer simpler mechanics and construction easiness. 
Most teams use two wheels drives with some caster wheels and control them with a 
differential drive technique. Many teams including Minho used the two wheels drive 
[2][3]. The CMU team [4] used a two-wheeled drive unit with a passive trailer. Other 
teams prefer to use steering on some wheels like the Sharif team [5]. Philips team [6] 



 

uses a four wheels drive and four wheels steering. The Matto team [7] used four pairs 
of omni wheels, each pair being driven by a unique DC-motor. The Artisti Veneti 
team also used an holonomic platform as described in [8]. 
This three Omni directional wheels solution adopted since last year by this team 
significantly reduces the robot’s reaction time due to the rich manoeuvrability, it 
simplifies the game strategy and the motor control algorithm is simple. This type of 
wheel has small rollers to allow the wheels to move freely on any direction. They 
move along the primary diameter, just as any other wheel. Though, the smaller rollers 
along the outside of this diameter allow free rotation along an orthogonal direction to 
the powered rotation. The mechanical construction is shown in Fig. 2. 
 

 
Fig. 2. Three-Wheel drive mechanical construction (design and physical) 

On the left image, the grey circle represents the robotic platform, and the three motors 
coupled to the omni wheels are mounted with 120 degree between them, aligned like 
in an equilateral triangle so that their axis intersect at the robot centre. In the centre it 
can be seen the specially built encoders coupled to each motor axis. 

4. Kinematics of Minho Robotic Platform 

The inverse kinematics model is simple. It was considered that the representative 
coordinates of the robot were located in its centre. Each wheel is placed in such 
orientation that its axis of rotation points towards the centre of the robot and there is 
an angle of 120º between the wheels. The velocity vector generated by each wheel is 
represented on Fig. 3-b by an arrow and their direction relative to the Yr coordinate 
(or robot front direction) are 150º, 30º and 270º respectively. 

4.1 Linear Movement 

Total platform displacement is achieved by summing the three vectors contributions: 
→→→→

++= CBAT FFFF  (1) 

A software simulator was built and is depicted in Fig. 3. The user inputs three 
variables (linear speed, linear direction and angular speed) and the program outputs 
each motor contribution. For now, only linear speed is described. 



 

First of all, some definitions need to be considered. Fig. 3-a) represents the diagram 
of the mobile robot platform with the three wheels. The robot front side is in the Yr 
direction and represents 0 degrees (positive side to its left). The three wheels coupled 
to the motors are mounted at angle position +60, -60 and +180 degrees respectively. It 
is important to remember that the wheel driving direction is perpendicular to the 
motor axis (therefore 90 degrees more). The line of movement for each wheel (when 
driven by the motor and ignoring sliding forces) is represented in Fig. 3-b) by the 
segments A, B and C. The arrow indicates positive direction contribution. 
The total platform displacement is the sum of three vector components (one per 
motor) and is represented as a vector in the platform body centre. In Fig. 3-c) it is 
depicted a vector representing the desired movement; the angle α represents the 
direction and the vector length represents the velocity. In order to find out the three 
independent motor contributions, this vector is projected on A, B and C axis 
representing the line of movement of each wheel. Fig. 3-d) shows the projections that 
represent the three vector components of the contributions. The vectors can have a 
positive or negative direction which represents the direction in which the motor has to 
move (forward or backwards respectively). 
 

 
Fig. 3. Graphical representation of motor contribution; a) platform motors/wheels distribution; 
b) wheels driving axis; c) desired movement; d) motor contributions 

Since the robot forward direction is represented by Yr, each motor contribution 
consists of the cosine of the angle α (DesiredDirection) projected on each wheel drive 
direction, multiplied by the velocity, given by: 

( )ectionDesiredDirDirectionWheelDrivevelocityF nn −⋅= cos  (2) 

Considering that the three wheels driving directions of this robot are 150, 30 and 270 
degrees respectively, the contribution for each motor for linear velocity is given by: 



 

( )ectionDesiredDirvelocityFA −⋅= 150cos  (3) 

( )ectionDesiredDirvelocityFB −⋅= 30cos  (4) 

( )ectionDesiredDirvelocityFC −⋅= 270cos  (5) 

Where: F - is the motor vector contribution 
 A, B, C – represents the motors 

 Velocity - is the linear velocity the robot should move 
 DesiredDirection - is the angle α of the desired movement 

4.2 Angular Movement 

Considering now angular movements, and assuming accurate wheels alignment, pure 
rotation over its centre can be achieved by driving all wheels in the same direction at 
the same speed. The angular velocity is the linear peripheral speed of the wheels 
divided by the radius of the robot. Fig. 4 still applies for angular velocity. Once again, 
the positive values make the robot rotate to its left and negative values to its right. 
 

 
Fig. 4. Graphical representation of motor contributions for a positive angular velocity 

4.3 Mixed Linear and Angular Movement 

Should the robot need to rotate its body while moving towards the ball, linear and 
angular velocity can be combined by calculating the sum of both contributions. In 
Fig. 5 a linear and angular movement is described. Added to a typical linear velocity 
(as described in Fig. 3) an angular velocity contribution is computed by adding the 
two vectors. On the left side the two contributions are separated and on the right side 
only the final value is represented. 
It is important to point out that this movement is always relative to the robot centre. 
By adding both linear and angular contributions, speeds over the motor maximum can 
happen, but this saturation is avoided by limiting the maximum sum between linear 
and angular velocity, in which case, priority is given to angular over linear velocity. 



 

 
Fig. 5. Combined linear and angular velocity 

Tests on the motors were carried out with no load. A maximum speed achieved was 
170 rpm. With 100mm diameter wheels the maximum linear speed is about 0,9 m/s. 

5. Motor Control 

PID control is by far the widest type of automatic control used, probably because it is 
very simple and easily implemented. Our approach used the ideal PID algorithm [9]: 


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The transfer function of our system was unknown, so a trial and error approach was 
carried out to determine the best type of control and the optimal parameters. Several 
experiments were carried out to optimise rotational movement. First, only proportional 
gain was implemented, and then added the integral gain, and finally the differential 
gain. The robot started from 70º position and rotated to a reference value of 180º. 
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Fig. 6. Rotational movement with different Kp, Ki and Kd parameters 



 

As shown in Fig. 6, integral gain (2) decreases the rise time and eliminate the s-s 
error, but increases the overshoot and the setting time. To overcome this, a derivative 
component (3) was added, and the desired effect was attained: no overshoot, no s-s 
error, fast rise time and settling time. 
A very fast and accurate response was obtained with PID control. The time spent to 
rotate from 70º to 180º is 900ms. 

6. Vision System 

In literature different mirror geometries have been proposed. Conic, Parabolic, 
Spherical and Hyperbolic are only some examples. Some descriptions of omni 
directional vision sensors can be read in [10] and [11], and some RoboCup teams 
usage can be read in [12] and many others. Marchese and Sorrenti even suggest a 
multi-part mirror on [13]. Many teams on RoboCup use omni directional vision 
systems and Minho team is no exception. This year a new mixed shape 
hyperbolic/conic mirror is used. It makes the image slightly smaller but with more 
area captured. The conic part of the mirror avoids having the farther objects to look so 
small. For strategy purposes, this increases the amount of perception, simplifying the 
programming task and giving much more reliable and practical behaviours to the 
robots. 
 

 
Fig. 7 Circular image seen by MINHO robots 

Fig. 7 shows the image acquired by Minho vision system. The mirror still has some 
defects since the technique used to make it is not very accurate but the final effect can 
be seen (new mirrors will be built). The image is rounded and centred on the robot 
itself, making part of the image upside down. The calculi to get some perception out 
of the image need to use some trigonometry, which is normally relatively slow. 
In order to simplify the strategy algorithm it was decided to transform the image onto 
a planar one as if the robot sees from inside a cut cylinder and all around it. The final 
image after transformation is shown in Fig. 8, where image is easily perceptible. The 
X coordinate corresponds to angle direction and Y coordinate corresponds to distance 



 

(although not directly proportional, but simply calculated knowing the mirror shape). 
Egocentric spatial representation is achieved. 
 

 
Fig. 8 Resulting image after shape transformation 

6.1 Mathematical Transformation 

The mathematical transformation is simple and consists of converting polar 
coordinates into Cartesian coordinates as Fig. 9 shows. 

 
Fig. 9 Mathematical transformation from round to rectangular image 

The mathematical formulae are described by: 
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where Xi, Yi - initial coordinates on the round image 
 Xi0, Yi0 - coordinates of the image centre 
 α  - angle of the pixel 
 radius - distance of the pixel to the image centre 
 Xf, Yf - final Cartesian coordinates  
 
The reason for the 180 sum up to α, is to make the front of the robot appear in the 
centre of the image. The reason to mirror the image viewed (with the minus sign) is to 
remove the mirror effect of the image so that the left side of the image corresponds to 
the left side of the field as seen from above the robot. 
But these calculi use some trigonometry and it can take some time to do it, since they 
need to be used for each pixel. If maximum number of frames is to be achieved and 
maintained, the software code needs to be much optimized. 



 

6.2 Software Optimization 

This image transformation and game entities perception has to be carried out in real 
time and the number of frames is very critical for a quality game. Therefore, 
optimization was tackled very carefully and to the maximum extent. In order to 
transform the image with these formulae, some tests were carried out to check the 
time it would take. 
The rounded image area really used consists of a radius of 105 pixels and ignores a 9 
pixels radius in the centre of the image where the robot sees itself (see Fig. 7). The 
perimeter is to be spread over 630 pixels (length of the final rectangle). Therefore, the 
final resulting shape is a rectangle of 630 pixels width by 96 pixels height, making a 
total number of 60480 pixels. With the microprocessor VIA mini-itx running at 
933MHz, it takes around about 350ms to calculate the coordinates of the 60480 
pixels, making it impracticable for a real time vision system, just to show the image 
on the computer screen with the right shape. This time is approximate since the 
operating system in use (Linux Mandrake) is not real time. 
Therefore, when programming the image grabbing software, a structure was created 
containing the memory address where the frame grabber places the pixel and the 
memory address on the screen where the pixel should be after the shape 
transformation. The structure is very simple and given by: 
 
typedef struct 
{ 
  int *video_addr, *screen_addr; 
} IMG_PLANA; 
IMG_PLANA img[IMG_MAX_PIX]; 
 

The IMG_MAX_PIX variable consists of the total number of pixels of the rectangle 
(630x96) which is in this case 60480 pixels. Then, a routine to fill in this array is 
called only once at the beginning of the computer program and applying the 
mathematical formulas described above. After the array is fill in, each time an image 
is grabbed, the array is scanned to copy the values grabbed to the right screen 
coordinate. 
For the value of IMG_MAX_PIX equal as 60480 this routine takes 6,25 ms to be 
performed. Once a frame is to be grabbed, an ioctl instruction is called and the 
microprocessor is immediately released so that other instructions can be carried out. 
This means that while one frame is being grabbed another frame can be processed. 
The time to grab one frame is 20ms and therefore the 6,25ms time to copy one frame 
to the screen is much less than the 20ms. This means that the time needed to change 
the image from a rounded shape to a rectangular shape can be neglected, since it is 
carried out during the following grab. In fact, two frames (even and odd) are grabbed 
(one at a time). The number of frames achieved (without any image processing 
routines) is 50 frames per second after transformation. 
The memory space used by this array is 60480 pixels times 2 memory pointers times 
4 bytes (32 bits each pixel) which makes it 483840 bytes. It is a value perfectly 
acceptable nowadays since the computer has 256Mb Memory. 
As previously said, the X coordinate of the new image corresponds to the object angle 
related to the robot front, and the Y coordinate corresponds to object distance. Fig. 10 



 

shows an example of an image grabbed where both goals and ball are visible. It is 
easily calculated the angle between the robot and the ball (or any other entity), as well 
as the distance between the robot and the ball (or any other entity). 
 

 
Fig. 10 Entities coordinates extraction 

7. Game Strategy 

Time has come for the robot players start passing the ball, make nicely planned plays 
and not just play individually. The facility the robots have to communicate between 
them through a wireless network board makes it easy to broadcast a structure of 
information to their team mates, which includes their location. Knowing their location 
they can start passing the ball. 
This team defined four different Player Positions in the field (or types of behaviour): 
Goal Keeper, Defender, Forward and Second Forward. Although the first three types 
are easily understandable the last one is new. The Second Forward does not behave as 
a forward otherwise two players would go towards the ball. It consists of a player 
which positions itself in a clear line between the opponent goal and the Forward 
player. If the Forward has no clear line to kick to the goal, it will pass the ball to this 
Second Forward which will do that. This new type of player will not run after the ball 
but it will position itself in an easy location to score. Fig. 11 shows a scenario where 
opponent players A and B tend to move towards the ball and the red lines on the field 
represent the clear space for ball pass between two player of the same team. It is 
important to say that the kick strength is controllable. It kicks 31 different levels of 
strength, varying from 1 (ball does not move) to 31 (ball travels about 40 meters). 
 



 

 
Fig. 11. Second Forward player position and lines clear of obstacles 

Sometimes robots have to be taken out of the field either for faults/cards or for break 
down. This team uses the number of players on the field to influence their behaviour 
on the field, like in a real human football game. For example, if only one robot player 
is on the field, it becomes a goalkeeper. With two players on the field, one will be 
Goal Keeper and the other forward. With three players, the third will become 
Defender and with four, the fourth will become a Second Forward. The order of 
behaviour is then: 1) Goal Keeper, 2) Forward, 3) Defender and 4) Second Forward. 

8. Conclusions 

In RoboCup football games, the time a robot takes to reach the ball is of extreme 
importance. The faster it gets the ball the more chances it has to score. With the 3 
wheel drive configuration described in this paper a robot can move in a straight line. 
The control software is simple and efficient. According to the direction angle and 
desired speed only three values are calculated. The PWM to control the motors is 
generated by a PIC, leaving the computer processor free for other more complex tasks 
like the image processing and the game strategy. Most time the motors do not drive at 
their maximum speed leaving a tolerance for when linear and angular speeds are 
required at the same time. 
This configuration allows linear and angular speeds at the same time and this is of 
extreme importance for this team since each robot carries a fixed position kicker. If 
the kicker is not in the robot moving direction an angular speed needs to be used 
together with the linear speed while the robot moves towards the ball, in order to 
point the kicker to the right direction. 
The Minho Team vision system is described. The image seen by the hyperbolic/conic 
mirror is transformed onto a planar shape and only then game entities are percepted 
and sent to the strategy software. The grabbing system mathematical transformation is 

Forward

Second
Forward

A B



 

described as well as the optimization needed to make it in real time. Optimization 
allows the transformed image being displayed on the screen in less time than the 
actual grabbing, allowing a total of 50 frames per second before running any image 
processing routines. Having the image in a planar form makes it easy to implement 
game strategy since only Cartesian coordinates are used. The X coordinate 
corresponds to the object angle related to the robot front, and the Y coordinate 
corresponds to object distance. 
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