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Abstract 
 

The automatic assessment of barrage water quality is very restricted due to the 
distances, the number of biochemical parameters to be considered and the 
financial resources spent to obtain their values. To this scenario it should be 
added the latency times between the sampling moment and the outcome of the 
laboratory analyses.  

Although the idea of considering sensors for remote acquisition of data is not 
new, there are some constraints to be addressed, like: the existence of sensors to 
measure the pertinent parameters and their efficiency, the costs involved and the 
possibility of remote sensing.  

The application of this alternative is highly dependent on the relevance of the 
candidate parameters. At this point, the Data Mining (DM) approach assumes an 
important role, in the sense it can reveal the relative importance of the 
parameters, as well the prediction models to determine the water quality and 
finally the associated accuracies.  

This paper introduces a decision framework to support the selection of 
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biochemical parameters to be considered in remote sensing of water contained in 
barrages. The framework enables the comparison of the efficiency of two kinds 
of models, using decision trees. The first one uses all the water quality 
indicators, including the time and cost consuming variables, while the second 
model is based only on remotely real-time acquired parameters. When 
comparing both strategies under several criteria (e.g., cost, time and confidence), 
the latter method showed to be best alternative. 
 

Keywords: Data Mining, Knowledge Discovery from Databases, Decision 
Support, Water Quality, Decision Trees. 
 

 

1 Introduction 
 
 
The interest on ecological mining has been growing in last decades. 
Relationships between living communities and their abiotic environment can be 
highly nonlinear and ecological models have to reflect this to be realistic [1]. 
Indeed, several machine learning algorithms have been used to find patterns in 
river water quality databases, such as Artificial Neural Networks and Decision 
Trees [2][3][4]. While ANNs have been used extensively in ecological modelling 
[5] [6], Decision Trees have the advantage of expressing regularities explicitly 
and thus being easy to inspect for ecological validity. 
Currently, the assessment of dam water quality is done through analytical 
methods, which is very restricted approach due to the distances, the number of 
parameters to be considered and the financial resources spent to obtain their 
values. Moreover, to this context, it should be added the latency times between 
the sampling moment and the outcome of the laboratory analyses. Due to these 
constraints, the development of Data Mining (DM) based models [7] in 
conjunction with the development of a Decision Support System [8], is a better 
alternative for the quality management of water resources. 
In this paper, it is exploited an approach to make the assessment of water quality 
easier, cheaper and faster by DM models, taking in account the parameters that 
could be measured in real time by automatic mechanisms (e.g., sensors) and 
accessed through a communications infrastructure. This simplified model is 
compared with a more complex one, which uses a high number of parameters. 
The paper is organized as follows: first, the ecological data is presented and 
described; then, the decision trees are introduced; next, the experiments 
performed are described, being the results analysed in terms of several criteria; 
finally, closing conclusions are drawn. 
 
 



2 Materials and Methods 
 
 
2.1 Ecological Data 
 
The data used in this study was collected from 1982 to 2003, in three Large 
Portuguese Dams [9] (Table 1), located in the High Alentejo region of Portugal, 
containing a total of 998 records with 170 chemical, physical, and 
microbiological parameters. These are considered the main attributes that may 
reflect the water quality at a particular point in time.  Table 2 shows a synopsis 
of some relevant water quality input features. 

 

 
Table 1: The three Portuguese Dams considered in this study  

 Dam 
Characteristics Divôr Monte Novo Vigia 
Location  Évora Évora Évora 
River Divor Degebe Vale do Vasco 
Bassin Tagus Guadiana Guadiana 
Purpose Irrigation 

Water Supply 
Irrigation 
Water Supply 

Irrigation 
Water Supply 

Volume (m3) 255 000 31 000 284 000 

 
 
 
The classification of the quality of superficial water mass can be done by two 
evaluation criteria [10]: the first one classifies waters in terms of treatment for 
human consuming; the second classifies water masses taking in account 
characteristics for multiple uses. Since the later criterion allows a wider use and 
it is also adopted by INAG, the Portuguese water management service, it will be 
adopted in this work (Table 6, Appendix A). Therefore, water will be classified 
in the non linear scale A, B, C, D, or E [11][12], where A denotes no pollution 
and E denotes extreme pollution, which represents serious risks in terms of 
public and environmental health (Figure 1).  The original dataset presented 
biased distributions: in 57.8% of the observations the water quality of the dam is 
very polluted (D); 34.5% is polluted water (C); 6.1% is weak polluted (B); 1.7% 
is extremely polluted (E); and no non polluted (A) cases are found. 
 
Before attempting the DM modelling, the data was pre-processed. The original 
dataset contained attributes with missing values. In particular, the parameter 
chlorophyll presented a high number of blank values (202). Since it was not 
possible to obtain the correct values the blank registers were discarded [13], 



remaining a total of 722 examples. In addition, in order to enhance the Decision 
Tree learning, the chlorophyll indicator was levelled from the continuous interval 
[0.0,…,100.0] to the discrete domain {1,2,3,4,5} [13].  
 
 

Table 2: The main quality indicators of water 
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Figure 1:  The water quality classes vs. the pollution factor  

Monthly acquired Bi-monthly acquired Yearly acquired 

pH value Dissolved Iron Fluoride 

Colour Manganese Boron 

Total Suspended Solids Cooper Arsenic 

Temperature Zinc Cadmium 
Conductivity Sulphate Total Chromium 

Odour Surfactants Lead 

Nitrate Phenols Selenium 

Chloride Azote Mercury 

Total Reactive Phosphorus Kjeldahl Nitrogen Barium 

Chemical Oxygen demands Faecal Streptococcus Cyanide 
Dissolved Oxygen - Dissolved Hydrocarbons 

5-Day Biochemical Oxygen 
Demands 

- Polynuclear Aromatic 
Hydrocarbons 

Ammonia Nitrogen - Total Pesticides 



Finally, the non monthly parameters of Table 2 were transformed into monthly 
ones, by replicating the last known value. For instance, if the last value of a bi-
monthly variable was acquired in May, then the same value will be used in June.   
 
 
 
2.2 Decision Trees 
 
The prediction of river water quality, according to the criteria followed by 
INAG, was defined as a classification problem. The Decision Tree is one of the 
most efficient and popular DM classification algorithms. It adopts a branching 
structure of nodes and leaves, where the knowledge is hierarchically organized. 
Each node tests the value of some feature, while each leave assigns a class label.   
In this study, the C5.0 algorithm [14] was used to induce the decision trees, 
under the SPSS Clementine System [15]. The use of decision trees enables the 
automatic extraction of production rules that can be incorporated in a Decision 
Support System, using for example, Structured Query Language (SQL) 
commands or using the Predictive Markup Language (PMML) specification 
[16]. 
 
 
 
3 Results 
 
 
3.1 Framework 
 
Attending that the water quality analysis is very difficult and time consuming, it 
was decided to develop the experimentation with two different strategies. The 
first approach (Model 1) is based in a Decision Tree built using all the water 
quality indicators, while the second (Model 2) uses only the parameters that can 
be measured by sensors in real-time. These two approaches will be compared in 
a framework, under the following criteria: time to get the results; cost of the 
analysis; acquisition in site of the dam; real-time acquisition; predictive 
accuracy; and real time diagnosis of water quality.  
 
 
3.2 Tests 
 
The classification models for water quality were developed using the C5.0 
algorithm. To insure statistical significance of the attained results, 10 runs were 
applied in all tests, being the accuracy estimates achieved using the Holdout 
method [17]. In each simulation, the available data is randomly divided into two 
mutually exclusive partitions: the training set, with 2/3 of the available data and 



used during the modelling phase; and the test set, with the remaining 1/3 
examples, being used after training, in order to compute the accuracy values.  
A common tool for classification analysis is the confusion matrix [18], a matrix 
of size L x L, where L denotes the number of possible classes. This matrix is 
created by matching the predicted (test result) and actual (water quality real 
condition) values. Since no A and E cases are in the dataset (the E cases were 
removed due to the presence of missing values), L was set to 3 (classes B, C and 
D). 
In preliminary experiments, several input feature selections were tested for 
Model 2. This task was guided by an expert in the field of environment science. 
After this procedure, a total of 7 real-time acquired variables were selected:  
oxygen, pH value, transparency, chloride, wind speed, precipitation and 
temperature.   
Table 3 shows examples of the decision rules obtained for each strategy, while 
Figure 2 displays the specification of Model 1, according to the PMML v.2.1 
standard. 
 
 
 

 
 

Figure 2: An extract of PMML specification for Model 1 
 

 

 

 



Table 3: A snapshot of the Decision Rules for each model 

 
Model 1 Model 2 

… 

If oxygen > 61,8 

and chemical oxygen demands > 19,8 

and transparency> 0,3 

and ammonia > 0,002 

and ammonia ≤ 0,009 

Then → C 

(n=21, confidence=1,0) 

… 

… 
 
If oxygen ≤ 61,8 

and pH value > 7,17 

and transparency ≤ 1,3 

and chloride ≤ 45 

Then → D 

(n=29, confidence= 0,895) 

… 

 
 
 
3.3 Discussion 
 
Table 4 presents the confusion matrixes for each approach, where the values 
denote the average of the 10 runs.  The results reveal that the second model is 
more accurate in predicting much polluted cases (D), with an accuracy of 96.8%. 
Yet, the first model outperforms the latter when predicting other classes. Model 
1 presents an accuracy of 77%, while Model 2 denotes a 74% classification rate. 
Although this comparison considers all 3 the classes, the test sets only contain a 
very limited number of weak polluted (B) examples. Thus, it makes sense to 
perform an analysis considering only D and C classes, where the other values are 
transformed into the nearest class.  Under this setting, the scenario changes, with 
the second model outperforming the former one (83.1% vs. 78.5%).  
 
 

Table 4: The confusion matrix for each model 

 
Model 1 Model 2 

Training Set Test  

Set 
Class 

D C B D C B 

D 66 3 0 25 6 0 

C 2 58 0 8 25 1 

B 0 0 10 0 0 3 

Training Set Test 

 Set 
Class 

D C B D C B 

D 68 1 0 30 1 0 

C 11 47 2 10 21 3 

B 1 3 6 2 1 0 



Besides a good predictive accuracy, there are other important factors for model 
selection (Table 3), such as the necessity to get the results faster. When 
considering the other criteria, Model 2 is clearly the best choice.  
 
 

Table 5: The framework for the model assessment 

 
Evaluation Criteria Model 1 Model 2 

Time to obtain analytical results Time-consuming Fast 

Cost of the analysis Expensive Reasonable 

Acquisition of the value of the parameters in site No Yes 

Acquisition of the value of the parameters 
remotely 

No Yes 

Real time acquisition of the value of the 
parameters remotely 

No Yes 

Predictive Accuracy 76.8%/78.5% 73.9%/83.1% 

Water Quality in real time No Yes 

 
 
4. Conclusion and Further Work 
 
 
The use of DM techniques can solve complex problems in environmental 
applications, as the real-time diagnosis of water quality in dam lagoons. In this 
work, two classification models were tested, using decision trees. The first 
adopted 177 input variables while the latter only considered real-time acquired 
data. The experiments were conducted in order to test several input feature 
selection configurations, leading to a simpler decision tree based on only 7 
variables (Model 2). The results so far obtained give an overall accuracy of 
77/79% for Model 1 depending if 3 or 2 classes are predicted. On the other hand, 
Model 2 presented a classification rate of 74% (for 3 classes) and 83% (for 2 
classes). When the analysis is performed under additional criteria (e.g., time and 
costs), the latter approach clearly excels the former. The obtained decision trees, 
which are easy to interpret, were validated by experts. The proposed approach 
opens room for the development of automatic tools for environmental decision 
support, which are expected to enhance the ecological response.  Indeed, in 
future work, it is intended to apply these techniques in real environments, in a 
on-line learning, where dam sensors feed directly data into a decision support 
system. 
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Appendix A 
 
 
Table 6: Ranges proposed by INAG to classify the quality of superficial water 

 
Categories/Classe Parameter 

A B C D E 
pH value (Sorensen) 6,5 - 

8,5 
 6,0 - 9,0  5,5 - 

9,5 
Temperature / ºC ≤ 20 > 20  

≤ 25 
> 25  
≤ 28 

> 28  
≤ 30 

> 30 

Condutivity / µS cm-2 ≤ 750 > 750  
≤ 1000 

> 1000 
≤ 1500 

> 1500  
≤  3000 

> 3000 

Total Suspended Solids / 
mg dm-3 

≤ 25,0 > 25,0 
≤ 30,0 

> 30,0 
≤ 40,0 

> 40,0  
≤  80,0 

> 80,0 

Dissolved Oxygen (% sat) ≥ 90 < 90 
≥ 70 

< 70 
≥ 50 

< 50 
≥ 30 

< 30 

Oxidability / 3
O dmmg
2

−  ≤ 3,0 > 3,0 
≤ 5,0 

> 5,0 
≤ 10,0 

> 10,0  
≤  25,0 

> 25,0 

5-day BOD (20ºC) / 
3

O dmmg
2

−  
≤ 3,0 > 3,0 

≤ 5,0 
> 5,0 
≤ 8,0 

> 8,0  
≤  20,0 

> 20,0 

COD / 3
O dmmg
2

−  ≤ 10,0 > 10,0 
≤ 20,0 

> 20,0 
≤ 40,0 

> 40,0  
≤  80,0 

> 80,0 

Ammonia nitrogen / 
3

NH dmmg
4

−
+  

≤ 0,10 > 0,10 
≤ 1,00 

> 1,00 
≤ 2,00 

> 2,00  
≤  5,00 

> 5,00 

Nitrate / 3
NO

dmmg -
3

−  ≤ 5,0 > 5,0 
≤ 25,0 

> 25,0 
≤ 50,0 

> 50,0  
≤  80,0 

> 80,0 

kjeldahl nitrogen / 
3

Ndmmg −  

≤ 0,50 > 0,50 
≤ 1,00 

> 1,00 
≤ 2,00 

> 2,00  
≤  3,00 

> 3,00 

Total reactive phosphorus 
/ / 3

OP dmmg
52

−  
≤ 0,54  > 0,54 

≤ 0,94 
 > 0,94 

Total coliforms / nº / 100 
cm3 

≤ 50 > 50 
≤ 5000 

> 5000 
≤ 50000 

> 50000  

Fecal coliforms / nº / 100 
cm3 

≤ 20 > 20 
≤ 2000 

> 2000 
≤ 20000 

> 20000  

 


