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Abstract

Biological wastewater treatment has been applied for more than a century to ameliorate anthropogenic damage to
the environment. But only during the last decade the use of molecular tools allowed to accurately determine the
composition, and dynamics of activated sludge and biofilm microbial communities. Novel, in many cases yet not
cultured bacteria were identified to be responsible for filamentous bulking and foaming as well as phosphorus and
nitrogen removal in these systems. Now, methods are developed to infer the in situ physiology of these bacteria.
Here we provide an overview of what is currently known about the identity and physiology of some of the microbial
key players in activated sludge and biofilm systems.

Abbreviations: EBPR —enhanced biological phosphorus removal; FISH — fluorescence in situ hybridization; GAO —
glycogen-accumulating organism; PAO — polyphosphate-accumulating organism; PHA — polyhydroxyalkanoates;

WwWwtp — wastewater treatment plant

Introduction

Wastewater treatment is one of the most important
biotechnological processes which is used worldwide
to treat municipal and industrial sewage. This review
focuses on the microbiology of the activated sludge
process. In addition, we also cover activated sludge
and biofilm nutrient removal plants in which anaer-
obic and aerobic treatments are combined to allow
for complete nitrogen and/or biologically enhanced
phosphorus removal. In all plant types, prokaryotic
microorganisms dominate and are responsible for the
observed conversions. On the other hand, certain mi-
croorganisms cause the most frequently encountered
problems in wastewater treatment like activated sludge
bulking and foaming. Consequently, the efficiency and
robustness of a wwtp mainly depend on the composi-
tion and activity of its microbial community. Although
biological wastewater treatment has been used for
more than a century, research on the microbiology

of this process suffered from severe methodological
limitations (Wagner 1993) until a decade ago. Only
after the introduction of a set of different molecular
techniques in wastewater microbiology (for example
Wagner 1993, 1994; Bond 1995; Schramm 1996;
Snaidr 1997; Juretschko 1998; Lee 1999; Purkhold
2000), it has become possible to determine the com-
position and dynamics of microbial communities in
these systems and to identify the microbial key play-
ers for the different process types. It is the aim of
this review to summarize these new insights and to
provide some outlook on how this knowledge could be
used to improve the performance of wwtps. It should
be noted that the bacterial nomenclature proposed in
the taxonomic outline (released 1, April 2001) of
the second edition of Bergey’s manual of systematic
bacteriology (http://www.cme.msu.edu/bergeys/) was
used throughout this review. Furthermore, anaerobic
ammonium oxidizing bacteria, which were recently
detected in wwtps (Schmid 2000, 2001), are not in-
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cluded in this review because a separate manuscript
dealing with these bacteria is included in the ISME 9
special volume of Antonie van Leeuwenhoek (Strous
2002).

Microbial diversity of wastewater treatment plants

The species richness of the microbial communities
of five laboratory-scale reactors and three wwtps has
been analyzed by 16S rRNA gene phylogenetic in-
ventories established by using bacterial or universal
primers (Bond 1995; Snaidr 1997; Christensson 1998;
Dabert 2001; Daims 2001; Liu 2001; Juretschko
2002). Results of these surveys are summarized in
Table 1. It is obvious that the number of plants ana-
lyzed by the 16S rRNA approach is too low to infer
ultimate conclusions. However, already in the avail-
able studies members of 13 bacterial divisions, of the
36 divisions currently identified for the bacterial do-
main (Hugenholtz 1998), were detected, indicating
considerable microbial diversity in wwtps. Consist-
ent with previous quantitative FISH experiments using
group-specific rRNA-targeted oligonucleotide probes
(Wagner 1993, 1994; Manz 1994; Kiampfer 1996;
Manz 1996; Neef 1996; Bond 1999; Liu 2001), Pro-
teobacteria are abundant in each library and represent
more than 50% of the clones in five of the eight
surveys. With one exception (Christensson 1998),
Betaproteobacteria are the most frequently retrieved
members of this division. Apart from the Proteobac-
teria, molecular isolates affiliated to the Bacteroidetes,
the Chloroflexi and the Planctomycetes were retrieved
in significant numbers in several of the libraries. One
library of a reactor designed for enhanced biological
phosphorus removal in a continuous flow system is
dominated by high-G+C Gram positive bacteria (Ac-
tinobacteria), consistent with the proposed import-
ance of these bacteria for phosphorus removal (see
below) (Wagner 1994).

However, the relatively low coverage values (Gio-
vannoni 1995; Singleton 2001, Juretschko 2002) of
some of these libraries demonstrate that the number
of clones analyzed were too low in these studies to ad-
equately represent the diversity in the established lib-
raries (Table 1). Furthermore, the 16S rRNA approach
suffers from numerous biases introduced in the DNA
extraction, PCR amplification, and cloning proced-
ures (Meyerhans 1990; Suzuki & Giovannoni 1996;
Juretschko 1998; Suzuki 1998). Therefore quantitat-
ive data on the microbial community composition can

only be obtained if the 16S rRNA approach is com-
bined with quantitative dot blot or in sifu hybridization
techniques.

So far, the microbial community structures of ac-
tivated sludges from only two wwtps have been in-
vestigated using the full-cycle rRNA approach which
includes the establishment of a 16S rRNA gene clone
library, the design of a set of clone-specific oligo-
nucleotide probes for FISH, and the determination of
the abundance of the respective bacterial populations
by quantitative FISH. Snaidr et al. analyzed a high-
load aeration basin of a large municipal wwtp (Amann
1996; Snaidr 1997) while Juretschko et al. studied
an intermittently aerated industrial wwtp containing
a nitrifiying and denitrifying microbial community
(Juretschko 1998; Juretschko 2002). The results from
the respective 16S rRNA gene clone libraries are
shown in Table 1. Snaidr and colleagues designed
probes for a few selected clones and found a high
microdiversity of bacteria of the betal group of Beta-
proteobacteria in the municipal activated sludge. Fur-
thermore, 3 and 4% of all microbial cells in this system
could be assigned to Sphingomonas- and Arcobacter-
related populations, respectively.

The composition of the microbial community in
the industrial plant was investigated in more detail
using semi-automatic quantitative FISH (Juretschko
2002). Hybridization with group-specific probes
demonstrated that the Betaproteobacteria made up al-
most half of the total biovolume of those bacteria
detectable with the bacterial probe set. Other in situ
important groups were the Alphaproteobacteria, the
Nitrospira-phylum, the Planctomycetes, and the Chlo-
roflexi. The composition of the Betaproteobacteria
within this system was further analyzed using clone-
specific probes for quantitative FISH. Bacteria related
to Zoogloea ramigera and Azoarcus sensu lato were
the most abundant members of this class in situ,
and accounted for 36 and 34% of the biovolume of
the Betaproteobacteria. In addition, significant num-
bers of the ammonia-oxidizer Nitrosococcus mobilis
(which was not present in the clone library), Alcali-
genes latus-, and Brachymonas denitrificans-related
microorganisms were recorded. In total only 2% of
the Betaproteobacteria detectable in situ could not be
assigned to a specific genus.
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The filamentous bacteria

The efficiency of the activated sludge process is
strongly influenced by the settleability of the sludge
flocs in the succeeding sedimentation tanks in which
the biomass is separated from the treated sewage.
Filamentous bacteria can dramatically decrease the
settleability of activated sludge flocs (sludge bulking)
or cause floating and foam formation of the biomass
(sludge foaming). Despite the inclusion of selectors in
the plant design, which helps in some cases to control
the overgrowth of filamentous bacteria, sludge bulking
and sludge foaming are still a major problem in many
primarily industrial wwtps. Therefore, there is consid-
erable interest to identify the filamentous bacteria in
wwtps and to characterize their physiological proper-
ties in order to develop specific control strategies to
suppress their growth.

Traditionally, filamentous bacteria were analyzed
in activated sludge by using standard light microscopy.
For provisional identification of these microorgan-
isms, keys were developed using: (i) the reaction of the
filaments to Gram- and Neisser-staining, and (ii) the
morphological characteristics of the filaments (Eikel-
boom 1975; Jenkins 1993) and type numbers were as-
signed to the different filaments (e.g. Eikelboom Type
021N). Since then a considerable number of filament
types were enriched (mainly by micromanipulation)
and their 16S rRNA gene sequences were determined
(for example Blackall 1996; Bradford 1996; Seviour
1997; Howarth 1999; Kanagawa 2000; Snaidr 2001).
The phylogenetic tree shown in Figure 1 presents an
overview on the phylogenetic affiliation of those fila-
ments. Several filament types, for example Eikelboom
type 1863 or ‘Nostocoida limicola’, harbor phylo-
genetically unrelated species. Today, many of the
filaments can specifically and rapidly be detected in
activated sludge using rRNA-targeted oligonucleotide
probes (Wagner 1994; Erhart 1997; de los Reyes
1998; Kanagawa 2000). In situ probing demonstrated
polymorphism of several filaments within activated
sludge (Wagner 1994), a fact which further complic-
ates morphology-based identification. Furthermore,
application of the full-cycle rRNA approach revealed
that especially industrial wwtps harbor a variety of
filamentous bacteria which can not be found in the
traditional identification keys (e.g. Juretschko 2002).

The availability of FISH probes for many of
the filaments now allows to investigate their in sifu
physiology within activated sludge systems (Nielsen
1998). Mircothrix parvicella was shown to be a spe-

cialized lipid consumer being able to take up long
chain fatty acids (but no short chain fatty acids or gluc-
ose) under anaerobic conditions and subsequently use
the storage material for growth when nitrate or oxygen
is available as electron acceptor (Andreasen & Nielsen
1997; Nielsen 2001). However, M. parvicella could
not take up phosphorus under aerobic conditions ex-
cluding its importance for enhanced biological phos-
phorus removal (see below). In addition, Thiothrix
sp. filaments in industrial wwtps were shown to be
physiologically very versatile since they incorporated
radioactively labeled acetate and/or bicarbonate under
heterotrophic, mixotrophic and chemolithoautotrophic
conditions. The Thiothrix filaments were active un-
der anaerobic conditions (with or without nitrate) in
which intracellular sulphur globules were formed from
thiosulphate and acetate was taken up (Nielsen 2000).

Microorganisms responsible for enhanced
biological phosphorus removal and nitrogen
removal

The identification and characterization of those bac-
teria responsible for phosphorus and nitrogen re-
moval in wwtps is complicated by the fact that 16S
rRNA sequence-based identification of a microorgan-
ism does generally not allow to infer its functional
properties. Phylogenetically closely related microor-
ganisms may possess different metabolic potentials
while on the other hand several physiological traits
like the ability to denitrify are found dispersed in many
different phylogenetic lineages. Therefore, the full-
cycle rRNA-approach has to be supplemented with
other techniques which allow a functional assignment
of the detected bacteria to identify the members of
the most important physiological groups in wwtps. In
detail, the use of: (i) lab-scale reactors, inoculated
with activated sludge, which select for the respective
functional microbial group (Burrell 1998; Hesselmann
1999; Strous 1999; Crocetti 2000), (ii) functional
genes coding for key enzymes of certain metabolic
pathways as phylogenetic and physiological markers
for the respective guild (Juretschko 1998; Purkhold
2000), (iii) the combination of FISH and micro-
electrodes (Schramm 1996; Okabe 1999; Schramm
1999, 2000), (iv) the recently developed combina-
tion of FISH and microautoradiography (Lee 1999;
Daims 2001b) allowed to identify the bacteria cata-
lyzing important transformations of biological nutrient
removal.
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Thiothrix et al.
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Figure 1. 16S rRNA-based tree showing the phylogenetic affiliation of filamentous bacteria occurring in activated sludge (labeled in bold).
It should be noted that the Thiothrix et al. group contains also at least three phylogenetically distinct lineages including filaments of the
Eikelboom Type 021N (Kanagawa 2000). The tree was calculated using the neighbor-joining method with a 50% bacterial conservation filter.
Multifurcations connect branches for which a relative order could not be unambiguously determined by applying different treeing methods. The

bar corresponds to 10% estimated sequence divergence.
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Alphaproteobacteria

Gram-negative cocci in tetrads

Betaproteobacteria

Putative GAOs*®

baumanni  \uio cholerse

Gammaproteobacteria

XUS Macauensis

Actinobacteria

Figure 2. 16S rRNA-based tree showing the phylogenetic affiliation of putative polyphosphate accumulating organisms (PAOs), glycogen
accumulating organisms (GAOs) and G-bacteria. The tree was calculated using the maximum-likelihood method with a 50% bacterial con-
servation filter. The bar corresponds to 10% estimated sequence divergence. # 16S rRNA gene clones: AF109792, AF109793, AF124650,
AF124655 (Liu 2000). ® 16S rRNA gene clones: AJ225335, AJ225341, AJ225342, AT225348, AJ225351, AJ225353, AJ225355, AJ225356,
AJ225360, AJ225364, AJ225370, AJ225376-AJ225379, Y15796, AF255628, AF255629 (Christensson 1998; Liu 2001).© 16S rRNA gene
clones: AF093777, AF093778, AF093780, AF093781, AF314424, AF124652, AF124656 (Nielsen 1999; Liu 2000; Dabert 2001). 9 16S rRNA
gene clones: AJ224947, AF255631, AF255641, AF204244, AF204245, AF204247, AF204248, AF314417, AJ225350, AJ225358, X84620
(Bond 1995; Christensson 1998; Hesselmann 1999; Crocetti 2000; Dabert 2001; Liu 2001).

Microorganisms of importance for enhanced
biological phosphorus removal

Phosphorus removal from wastewater is important to
prevent eutrophication and is therefore an integral part
of modern municipal and industrial nutrient removal
wwtps. Phosphorus can be precipitated by the ad-
dition of iron or aluminum salts and subsequently
be removed with the excess sludge. Chemical pre-
cipitation is a very reliable method for phosphorus
removal but increases significantly the sludge produc-
tion and thus creates additional costs. Furthermore,
the use of chemical precipitants may introduce heavy
metal contamination into the sewage and increases the
salt concentration of the effluent. Alternatively, phos-
phorus removal can be achieved by microbiological
mechanisms in a process called EBPR, for reviews see
(Jenkins & Tandoi 1991; van Loosdrecht 1997; Mino
1998, 2000). This process is characterized by cycling
the activated sludge through alternating anaerobic and
aerobic conditions. In the anaerobic stage the bacteria
responsible for EBPR are supposed to gain energy
from polyphosphate hydrolysis accompanied by sub-

sequent P; release for uptake of short-chain fatty acids
and their storage in form of PHA. Two different mod-
els were postulated for the production of the reducing
equivalents for this anaerobic metabolism (Comeau
1986; Mino 1987) In the subsequent aerobic stage, the
PAOs possess a selective advantage compared to other
microorganisms which were not able to take up fatty
acids under the preceding anaerobic conditions by util-
izing the stored PHA in an otherwise carbon-poor
environment. In parallel, PAOs restore their polyphos-
phate pools by aerobic uptake of available phosphate
from the wastewater. After sedimentation in the sec-
ondary clarifier, a part of the biomass is recycled to
the anerobic stage and mixed with new wastewater
while the excess sludge containing the intracellular
polyphosphates is removed from the system.

In contrast to chemical precipitation, EBPR plants
have been frequently reported to fail. This raised in-
terest in the microbiology of the process. Traditionally,
based on cultivation experiments Gammaproteobac-
teria of the genus Acinetobacter were believed to be
the only PAOs (Fuhs & Chen 1975; Lotter & Murphy
1985; Bayly 1989). However, today it has become



apparent that Acinetobacter can accumulate polyphos-
phate but does not possess the above described PAO
metabolism (e.g. van Loosdrecht 1997). Furthermore,
cultivation-independent methods like fluorescent an-
tibody staining (Cloete & Steyn 1987), respiratory
quinone profiles (Hiraishi 1989), and FISH with a
genus-specific probe (Wagner 1994; Kampfer 1996)
demonstrated that the relative abundance of Acineto-
bacter in EBPR systems was dramatically overestim-
ated due to cultivation biases further confirming that
Acinetobacter is not of importance for EBPR.

Several other bacteria isolated from EBPR reactors
have been suggested as PAO candidates. Microlunatus
phosphovorus, a high-G+C Gram-positive bacterium
accumulates aerobically polyphosphate and consumes
it under anaerobic conditions but fails to take up acet-
ate or accumulate PHA under anaerobic conditions
(Nakamura 1991, 1995). FISH with a probe spe-
cific for Microlunatus phosphovorus demonstrated the
presence of this organism in an EBPR plant (2.7% of
the total bacteria) (Kawaharasaki 1998) but no direct
indications for the importance of this bacterium for
EBPR are available Furthermore, Lampropedia spp.
were shown to possess the basic metabolic features of
a PAO but their acetate-uptake-phosphate-release ratio
was much lower that EBPR models predict, and no
additional data regarding the abundance or activity of
these morphologically conspicuous bacteria in EBPR
systems have been published.

Compared to these cultivation-based attempts, the
hunt for PAOs was more successful using molecu-
lar tools for analyses of EBPR systems. Betaproteo-
bacteria and high-G+C Gram-positive bacteria (Ac-
tinobacteria) increased in number after addition of
acetate to the raw sewage of a EBPR-full-scale wwtp
suggesting that these groups benefit from the enhanced
availability of short chain fatty acids in the anaerobic
basin and thus represent candidates for PAO (Wagner
1994). Additional support for the importance of both
groups for EBPR stems from FISH experiments in an
efficient EBPR laboratory-scale sequencing batch re-
actor (Bond 1999) and respiratory quinone profiling in
a laboratory-scale EBPR system (Liu 2000). Recently,
Actinobacteria related to the suborder Micrococcineae
were reported to be abundant in EBPR systems and
thus might be important for EBPR (Christensson
1998; Crocetti 2000; Liu 2001) (Figure 2). While
the function of Actinobacteria as PAOs still has to
be proven, evidence is available that Betaproteobac-
teria of the family ‘Rhodocyclaceae’ (Figure 2) are
important PAOs in the so far investigated EBPR sys-
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tems. These bacteria, for which the name Candidatus
‘Accumulibacter phosphatis’ was suggested (Hessel-
mann 1999) were present in significant numbers in
EBPR systems (Bond 1995; Hesselmann 1999; Cro-
cetti 2000; Dabert 2001; Lee 2001). Furthermore,
phosphorus accumulation by these bacteria in the aer-
obic phase was demonstrated by sequential FISH and
polyphosphate staining (Crocetti 2000; Liu 2001). In
addition, acetate uptake in the anaerobic phase and
phosphorus uptake under aerobic conditions could be
demonstrated for Candidatus ‘Accumulibacter phos-
phatis’ using FISH and microautoradiography (Lee
2001).

A potential reason for the failure of EBBR plants
is the presence of bacteria which use previously stored
compounds such as glycogen (also referred to as
GAOs) to compete with the PAOs for substrate up-
take under anaerobic conditions (Satoh 1992; Cech &
Hartman 1993; Liu 1997). Cech and Hartmann (Cech
& Hartman 1993) described Gram-negative cocci in
clumps and packages of tetrads in activated sludge
and called these morphotypes G-bacteria, since their
numbers increased after glucose addition. Mino et al.
(1998) suggested that bacteria with a similar mor-
phology are GAOs. However, recent molecular and
physiological analyses of various G-bacteria isolated
from wwtps revealed a high phylogenetic diversity of
this morphotype and provided no support for their role
as GAOs (Seviour 2000) (Figure 2). These results sug-
gest that GAOs should be defined by their phenotype
and not by their cell morphology. Recently, molecu-
lar community analyses of deteriorated EBPR reactors
revealed the predominance of a novel bacterial group
within the Gammaproteobacteria (Figure 2; Nielsen
1999), which are good GAO candidates since they
probably accumulate PHA, and store little or no poly-
phosphates (Nielsen 1999; Liu 2001; Crocetti 2001).

Nitrifying bacteria

The nitrifiers encompass two groups of microorgan-
isms, the ammonia- and the nitrite-oxidizing bacteria,
which catalyze the oxidation of ammonia to nitrite and
of nitrite to nitrate, respectively. Since most of the
nitrogen in the influent of a wwtp is present either
in form of urea (which is hydrolyzed to ammonia)
or ammonium/ammonia, the nitrifying bacteria play a
central role in nitrogen removal in wwtps. It is import-
ant to lower the ammonia concentrations in the effluent
of wwtps since this compound is toxic to aquatic
life and promotes eutrophication in the receiving wa-
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No. of isolates ~ No.of
- Number of in which
/described Isolates obtained from 1 respective clones
________________________________ species s were detected |
N. europaea/ N. eutropha lineage 4 Wwtp, soil 61 10
t ot
36 clones 25 clones
Nc.mobilis lineage 4 Wwip, seawater 32 5
20 environmental lineage 1
. (eatedtoNe.mobiis) [ O : A %
N. halophila lineage % Seawater, alkaline lake 0 0
N. communis lineage 1 Soil 5 3
2 Nitrosomonas sp. Nm 33 lineage 1 Soil 1 1
N. nitrosa lineage 1 Wwtp 8 1
""""""" environmental lineage2 | 0 : 7 1
environmental lineage 3 0 - 3 1
environmental lineage 4 0 - 7 4
Nitrosomonas sp. Nm 41 1 Soil 0 0
Sandstone,
N. marina cluster 3 seawater, brackish 39 6
water
N. oligotropha lineage 1 Soil 9 4
N. ureae lineage 1 Soil 1 1
cryotol 1 Arctic seawater 0 0
Nitrosospira cluster 8 Soil 6 )
> 28 199

Figure 3. Diversity of amoA clones retrieved from different nitrifying wwtps. A schematic AmoA-based phylogenetic classification of the beta-
proteobacterial ammonia oxidizing bacteria is shown. Multifurcations connect branches for which a relative order could not be unambiguously
determined by applying different treeing methods. The cluster designations were adopted from those of Purkhold et al. (2000). The height of
each tetragon indicates the number of sequences in the cluster. Gammaproteobacterial ammonia-oxidizers are not included since they currently
have not been detected by FISH nor by amoA-analyses in nitrifying wwtps (adapted from A. Loy, 2002).

ters. Nitrifying bacteria are extremely slow-growing
microorganisms and are recalcitrant to cultivation at-
tempts. Due to the sensitivity of nitrifying bacteria to
disturbances like pH- and temperature shifts, break-
down of the nitrification process is frequently reported
from municipal and especially industrial wwtps.
According to textbooks the model ammonia-
oxidizer is Nitrosomonas europaea. However, FISH
analyses in nitrifying activated sludge and biofilms
showed that other ammonia-oxidizers are more im-
portant. In an industrial nitrifying/denitrifying plant
the dominant ammonia-oxidizer was Nitrosococcus
mobilis, a bacterium which was previously considered
to occur in brackish water only (Juretschko 1998).
Subsequently, N. mobilis was also detected in signific-
ant numbers in a nitrifying sequencing batch biofilm

reactor (Daims 2001a). In contrast, Nitrosospira-
related ammonia-oxidizers were found to be dominant
in situ in a laboratory scale fluidized bed reactor
(Schramm 1998). Although Nitrosospira was also re-
ported in a PCR-based study as important ammonia-
oxidizer genus in wwtps (Hiorns 1995), this finding
could not be confirmed by FISH analyses of vari-
ous wwtps and by a large amoA-based ammonia-
oxidizer diversity survey in wwtps (Purkhold 2000).
Today it is generally accepted that nitrosomonads (in-
cluding Nitrosococcus mobilis) and not nitrosospiras
(encompassing the genera Nitrosospira, Nitrosolobus
and Nitrosovibrio) are important for ammonia oxid-
ation in wwtps. This perception is also reflected in
Figure 3 which shows the affiliation of 199 amoA
clones retrieved from various nitrifying wwtps. Only
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Figure 4. Phylogenetic tree of the genus Nitrospira based on comparative analysis of 16S rRNA sequences. The basic tree topology was
determined by maximum likelihood analysis of all sequences longer than 1300 nucleotides. Shorter sequences were successively added without
changing the overall tree topology. Branches leading to sequences shorter than 1000 nucleotides are dotted to point out that the exact affiliation
of these sequences cannot be determined. Black spots on tree nodes symbolize high parsimony bootstrap support above 90% based on 100
iterations. The scale bar indicates 0.1 estimated changes per nucleotide. Clones from wwtps and reactors as well as sequences that belong to
isolated strains are depicted in bold. The four sublineages of the genus Nitrospira are boxed and marked by the numbers I to IV.

6 amoA clones from these systems cluster with the
nitrosospiras while the remaining 193 clones are af-
filiated with the nitrosomonads. Figure 3 also shows
that almost all recognized lineages of betaproteobac-
terial ammonia-oxidizers can be found in wwtps. Nu-
merically, the Nitrosomonas europaea/Nitrosomonas
eutropha-lineage, the Nitrosococcus mobilis-lineage,
and the Nitrosomonas marina cluster are most fre-
quently detected.

In conclusion, wwtps harbor a diversity of
ammonia-oxidizers of the Betaproteobacteria, which
was enormously underestimated previously. Most of

these ammonia-oxidizers are, based on comparative
amoA sequence analyses, relatively close relatives
of described ammonia-oxidizer species. Interestingly,
quantitative FISH results indicate that some nitrifying
wwtps are dominated by a single ammonia-oxidizer
species (Juretschko 1998) while other plants harbor
at least five different co-existing ammonia-oxidizer
populations which are present in significant numbers
(Daims 2001a).

Traditionally, Nitrobacter was considered as the
most important nitrite-oxidizer in wwtps (Henze
1997). Therefore, the finding that Nitrobacter could
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Figure 5. Analyses of the in situ physiology of Nitrospira-like bacteria. Uptake of radioactive bicarbonate by Nitrospira-like bacteria in a
biofilm from a sequencing batch reactor under aerobic incubation conditions. (a) shows Nitrospira cells stained by a specific probe (b) shows
only the radiographic film to visualize the microautoradiographic signal at the position of the Nitrospira cells (indicated by white lines). Other
microautoradiographic signals were caused by CO,-fixing bacteria, which were not detected by the Nitrospira-specific probe. (¢, d) No uptake
of acetate by Nitrospira-like bacteria in the same biofilm under aerobic incubation conditions. (c) shows Nitrospira cells stained with the specific
probe. (d) shows the micrograph of the radiographic film at the same position. The localization of the Nitrospira microcolonies is indicated by

white borderlines.

not be detected by FISH with specific 16S rRNA-
targeted probes in various nitrifying wwtps came
as a surprise (Wagner 1996). Using the full cycle
rRNA approach the occurrence of novel, yet uncul-
tured Nitrospira-like nitrite-oxidizing bacteria in nitri-
fying wwtps could be demonstrated (Juretschko 1998;
Okabe 1999; Daims 2000, 2001b; Gieseke 2001).
The importance of these microorganisms for nitrite-
oxidation in wwtps was also confirmed by reactor
enrichment studies (Burrell 1998). Today, four dif-

ferent phylogenetic lineages, two of them containing
16S rRNA gene clones of wwtps, within the genus
Nitrospira have been recognized (Figure 4; Daims
2001b) and phylum- as well as genus-specific probes
suitable for FISH are available (Daims 2001b). Com-
bination of FISH and microautoradiography showed
that the Nitrospira-like nitrite-oxidizers in activated
sludge fix CO; and can also grow mixotrophically us-
ing pyruvate but not acetate, butyrate, and propionate
(Figure 5; Daims 2001b).



It has been postulated that the predominance
of Nitrospira-like bacteria over Nitrobacter in most
wwtps is a reflection of their different survival
strategies. While Nitrospira-like nitrite-oxidizers are,
according to data extracted from microelectrode-FISH
analyses, K-strategists and thus may possess a low
Umax but are well-adapted to low nitrite and oxy-
gen concentrations, Nitrobacter is postulated to be a
relatively fast-growing r-strategist with low affinities
to nitrite and oxygen (Schramm 1999). Since nitrite-
concentrations in most reactors from wwtps are low,
Nitrospiras will outcompete Nitrobacter in these sys-
tems. In plants with temporally or spatially elevated
nitrite concentrations, for example in nitrifying se-
quencing batch reactors, both nitrite-oxidizers should
be able to co-exist. Consistent with this hypothesis co-
occurrence of Nitrobacter and Nitrospira-like bacteria
has been observed by FISH in a nitrifying sequencing
batch biofilm reactor (Daims 2001a). We recently star-
ted to investigate the competition between Nitrospira
and Nitrobacter in controlled chemostat experiments.
Two chemostats were inoculated with the same nitrify-
ing biofilm containing Nitrospira-like nitrite-oxidizers
and operated under identical conditions (oxygen, tem-
perature, pH, and liquid retention time). After addition
of Nitrobacter sp. to the chemostats, the nitrite con-
centration in the influent of one of the reactors was
increased such that nitrite peaks (up to 80 mg 1=!) in
the effluent of this reactor were detectable. Consistent
with the above mentioned K/r-hypothesis, this perturb-
ation stimulated the growth of Nitrobacter while in
the undisturbed control reactor Nitrospira dominated
(Figure 6; R. Nogueira, unpubl.). Interestingly, the
dominance of Nitrobacter over Nitrospira caused by
the elevated nitrite concentrations could not be rever-
ted by lowering the available nitrite concentration to
the original level. One possible explanation for this
result is that Nitrobacter if present at a certain cell
density is able to inhibit the growth of Nitrospira-like
nitrite oxidizers.

Denitrifying bacteria

Denitrification is used in wastewater treatment to
convert the product(s) of nitrification into gaseous
nitrogen compounds (mainly dinitrogen) and thus
to remove them from the sewage. Most attempts
to identify and enumerate denitrifiers in activated
sludge are based on cultivation-dependent approaches.
Members of the genera Alcaligenes, Pseudomonas,
Methylobacterium, Bacillus, Paracoccus and Hypho-
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microbium were isolated as part of the denitrifying
microbial flora from wwtps (Sperl & Hoare 1971; At-
twood & Harder 1972; Knowles 1982; Schmider &
Ottow 1986; Vedenina & Govorukhina 1988). The
latter genus was also detected microscopically by
its typical cell morphology in denitrifying activated
sludge (Timmermans & van Haute 1983; Nyberg
1992). However, little is known about whether the
above listed bacterial genera are representative for the
in situ active denitrifiers in wwtps. Neef et al. using
specific FISH probes detected significant numbers of
Paracoccus spp. and Hyphomicrobium spp. in a de-
nitrifying sand filter supplemented with methanol as
reduced carbon compound for nitrate reduction. But
both genera were present in numbers below 0.1% of
the total cell counts in a non-denitrifying sand filter
run in parallel without addition of methanol, indir-
ectly suggesting an active participation of both genera
in the denitrification process (Neef 1996). Molecular
studies of the community composition of denitrifying
bacteria are difficult to perform since the denitrify-
ing phenotype can not be inferred from the phylogeny
of a microorganism. However, the combination of
FISH and microautoradiography (Lee 1999) allows
identification of denitrifiers in situ by performing two
types of experiments in parallel. In the first experi-
ment the wwtp sample is incubated under anaerobic
condition in absence of nitrate or nitrite with radio-
actively labeled substrates which are typically used
as electron donors for denitrification. In the second
experiment the sample is incubated with the same
labeled substrates under anaerobic conditions but in
the presence of nitrate or nitrite. Bacterial species,
identified by FISH, which take up substrate under
anaerobic conditions exclusively in the presence of
nitrate or nitrite are most likely denitrifiers. The use
of this technique in combination with the full-cycle
rRNA approach revealed that novel, still uncultured
Azoarcus-related bacteria are important denitrifiers in
an industrial nitrifying/denitrifying wwtp (Juretschko
2000).

Conclusions and future perspectives

During the last decade, the application of molecular
tools in wastewater microbiology has revolutionized
our view on the microbial ecology of these systems.
Different groups of still not culturable bacteria are
identified and shown to be responsible for sludge bulk-
ing, enhanced biological phosphorus removal, nitrite
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Figure 6. Competition between Nitrospira and Nitrobacter in chemostats. Two parallel chemostats were inoculated with nitrifying activated
sludge containing Nitrospira-like bacteria. Subsequently, Nitrobacter was added (arrows). In one chemostat nitrite peaks in the effluent (up to
80 mg 171 were induced by temporarily elevating the nitrite concentrations in the influent (B; upper panel). The other chemostat served as
control reactor which always had nitrite effluent concentrations of below 5 mg 171(A, upper panel). The relative biovolume of Nitrospira and
Nitrobacter (to the biovolume of all cells detectable by FISH) was determined by quantitative FISH in the chemostats for a period of 98 days
(A, B; lower panels).



oxidation, and denitrification. Surprisingly, the model
organisms described in text books for these processes
and for ammonia oxidation are shown to be gener-
ally not of importance for wastewater treatment. It
is important to note that significant diversity exists
in each of these functional groups of bacteria. In
the next research phase in wastewater microbiology,
more detailed knowledge on the biology of the above
mentioned non-cultured bacteria needs to be gained.
Therefore, an increased effort on the development
of suitable cultivation strategies for these bacteria is
needed. In parallel, the use of techniques referred to as
‘environmental genomics’ should allow to investigate
the genome composition of these bacteria without the
need of cultivation (Schleper 1998).

Regarding application, the most obvious benefit of
the progress described is that it provides a basis for
a more knowledge-driven treatment of wwtp failures.
One strategy to improve a particular aspect of process
performance in a wwtp, for example during start-up
or after its breakdown, is the addition of special-
ized microorganisms or activated sludge from another
wwtp (Rittmann & Whiteman 1994). This operational
tool which is called bioaugmentation does however
frequently fail (e.g. Bouchez 2000 and references
therein). Such failure is typically caused by addition of
the ‘wrong’ microorganisms, for example the model
organisms for nitrification, which can not compete
successfully with the autochthonous bacteria in the
plant and are thus eliminated or washed-out. There-
fore, it was (and still is) important to identify those mi-
croorganisms responsible for nitrogen or phosphorus
removal in a functioning wwtp. If problems arise these
results can be used as guidance to select the appropri-
ate bacterial additive (for culturable microorganisms)
or a well-suited activated sludge from a neighboring
wwtp containing a comparable microbial flora. Once
the appropriate bacteria have been selected they need
to be protected for example by polymer embedding
from grazing by protozoa (Bouchez 2000).

Compared to curing failure of a certain process in
a wwtp by bioaugmentation, protecting the plant from
process deterioration is a more sustainable strategy.
For this purpose we need to understand the links
between the diversity of a functionally important bac-
terial group and the stability of the catalyzed process.
Preliminary observations indicate that plants with low
functional redundancy due to the presence of a low
diversity of bacteria of a certain functional group are
more sensitive to failure of the respective process than
plants harboring a high diversity of the same bacterial
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group. If increase in diversity can indeed be proven
to cause process stabilization then it will be import-
ant to learn how plant design and process parameter
control can be optimized to increase the diversity of
functionally important bacterial groups. To answer
these ecologically and economically important ques-
tions it will be necessary to determine the microbial
community composition of a large number of different
samples obtained from tightly controlled reactor stud-
ies as well as full scale wwtps. Due to the tediousness
of many of the established molecular methods this
kind of research will greatly benefit from the imple-
mentation of modern high throughput techniques like
DNA microarrays for measuring microbial community
composition in complex samples (Guschin 1997).
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