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Introduction 
 
Due the intensive use of power converters and other non-linear loads in industry and by consumers in general, it 

can be observed an increasing deterioration of the power systems voltage and current waveforms. 
The presence of harmonics in the power lines results in greater power losses in distribution, interference 

problems in communication systems and, sometimes, in operation failures of electronic equipments, which are more 
and more sensitive since they include microelectronic control systems, which work with very low energy levels. 
Because of these problems, the issue of the power quality delivered to the end consumers is, more than ever, an object 
of great concern.  

International standards concerning electrical power quality (IEEE-519, IEC 61000, EN 50160, among others) 
impose that electrical equipments and facilities should not produce harmonic contents greater than specified values, and 
also specify distortion limits to the supply voltage. Meanwhile, it is mandatory to solve the harmonic problems caused 
by those equipments already installed. 

Passive filters have been used as a solution to solve harmonic current problems, but they present several 
disadvantages, namely: they only filter the frequencies they were previously tuned for; their operation cannot be limited 
to a certain load; resonances can occur because of the interaction between the passive filters and other loads, with 
unpredictable results. To cope with these disadvantages, recent efforts have been concentrated in the development of 
active filters. 
 
 
Active Filters 

 
There are basically two types of active filters: the shunt type and the series type. It is possible to find active 

filters combined with passive filters as well as active filters of both types acting together. 
Fig. 1 presents the electrical scheme of a shunt active filter for a three-phase power system with neutral wire, 

which is able to compensate for both current harmonics and power factor. Furthermore, it allows load balancing, 
eliminating the current in the neutral wire. The power stage is, basically, a voltage-source inverter with only a single 
capacitor in the DC side (the active filter does not require any internal power supply), controlled in a way that it acts 
like a current-source. From the measured values of the phase voltages (va, vb, vc) and load currents (ia, ib, ic), the 
controller calculates the reference currents (ica*, icb*, icc*, icn*) used by the inverter to produce the compensation 
currents (ica, icb, icc, icn). This solution requires 6 current sensors and 4 voltage sensors, and the inverter has 4 legs 
(8 power semiconductor switches). For balanced loads without 3rd order current harmonics (three-phase motors, three-
phase adjustable speed drives, three-phase controlled or non-controlled rectifiers, etc) there is no need to compensate 
for the current in neutral wire. These allow the use of a simpler inverter (with only three legs) and only 4 current 
sensors. It also eases the controller calculations. 

Fig. 2 shows the scheme of a series active filter for a three-phase power system. It is the dual of the shunt active 
filter, and is able to compensate for distortion in the power line voltages, making the voltages applied to the load 
sinusoidal (compensating for voltage harmonics). The filter consists of a voltage-source inverter (behaving as a 
controlled voltage source) and requires 3 single-phase transformers to interface with the power system. The series active 
filter does not compensate for load current harmonics but it acts as high-impedance to the current harmonics coming 
from the power source side. Therefore, it guarantees that passive filters eventually placed at the load input will not drain 
harmonic currents from the rest of the power system. Another solution to solve the load current harmonics is to use a 
shunt active filter together with the series active filter (Fig. 3), so that both load voltages and the supplied currents are 
guaranteed to have sinusoidal waveforms. 

Shunt active filters are already commercially available, while the series and series-shunt types are yet at 
prototype level. 
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Fig. 1 - Shunt active filter in a three-phase power system. 
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Fig. 2 - Series active filter in a three-phase power system. 
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Fig. 3 – Series-shunt active filter in a three-phase power system. 
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The p-q theory 
 
In 1983, Akagi et al. [1, 2] have proposed the "The Generalized Theory of the Instantaneous Reactive Power in 

Three-Phase Circuits", also known as instantaneous power theory , or p-q theory. It is based on instantaneous values in 
three-phase power systems with or without neutral wire, and is valid for steady-state or transitory operations, as well as 
for generic voltage and current waveforms. The p-q theory consists of an algebraic transformation (Clarke 
transformation) of the three-phase voltages and currents in the a-b-c coordinates to the α-β-0 coordinates, followed by 
the calculation of the p-q theory instantaneous power components: 
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000 ivp ⋅=  instantaneous zero-sequence power (2) 

ββαα ivivp ⋅+⋅=  instantaneous real power (3) 

αββα ivivq ⋅−⋅≡  instantaneous imaginary power (by definition) (4) 
 
The power components p and q are related to the same α-β voltages and currents, and can be written together: 
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These quantities are illustrated in Fig. 4 for an electrical system represented in a-b-c coordinates and have the 

following physical meaning: 
 

0p  = mean value of the instantaneous zero-sequence power – corresponds to the energy per time unity which is 
transferred from the power supply to the load through the zero-sequence components of voltage and current. 
 

0p~  = alternated value of the instantaneous zero-sequence power – it means the energy per time unity that is exchanged 
between the power supply and the load through the zero-sequence components. The zero-sequence power only exists in 
three-phase systems with neutral wire. Furthermore, the systems must have unbalanced voltages and currents and/or 3rd 
harmonics in both voltage and current of at least one phase. 
 
p  = mean value of the instantaneous real power – corresponds to the energy per time unity which is transferred from 

the power supply to the load, through the a-b-c coordinates, in a balanced way (it is the desired power component). 
 
p~  = alternated value of the instantaneous real power – It is the energy per time unity that is exchanged between the 

power supply and the load, through the a-b-c coordinates. 
 
q  = instantaneous imaginary power – corresponds to the power that is exchanged between the phases of the load. This 
component does not imply any transference or exchange of energy between the power supply and the load, but is 
responsible for the existence of undesirable currents, which circulate between the system phases. In the case of a 
balanced sinusoidal voltage supply and a balanced load, with or without harmonics, q  (the mean value of the 
instantaneous imaginary power) is equal to the conventional reactive power ( 113 φsinIVq ⋅⋅⋅= ). 
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Fig. 4 – Power components of the p-q theory in a-b-c coordinates. 
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The p-q theory applied to shunt active filters 
 
The p-q theory is one of several methods that can be used in the control active filters [3-11]. It presents some 

interesting features, namely: 
- It is inherently a three-phase system theory; 
- It can be applied to any three-phase system (balanced or unbalanced, with or without harmonics in both 

voltages and currents); 
- It is based in instantaneous values, allowing excellent dynamic response; 
- Its calculations are relatively simple (it only includes algebraic expressions that can be implemented using 

standard processors); 
- It allows two control strategies: constant instantaneous supply power and sinusoidal supply current. 

 
As seen before, p  is usually the only desirable p-q theory power component. The other quantities can be 

compensated using a shunt active filter (Fig. 5). As shown by Watanabe et al. [12, 13], 0p  can be compensated without 
the need of any power supply in the shunt active filter. This quantity is delivered from the power supply to the load, 
through the active filter (see Fig. 5). This means that the energy previously transferred from the source to the load 
through the zero-sequence components of voltage and current, is now delivered in a balanced way from the source 
phases. 

It is also possible to conclude from Fig. 5 that the active filter capacitor is only necessary to compensate p~  and 

0p~ , since these quantities must be stored in this component at one moment to be later delivered to the load. The 
instantaneous imaginary power ( q ), which includes the conventional reactive power, is compensated without the 
contribution of the capacitor. This means that, the size of the capacitor does not depend on the amount of reactive power 
to be compensated. 

 
 

 C p~ 

 q

LOAD 
POWER 
SOURCE 

SHUNT 
ACTIVE
FILTER

 p~ 

 p 0
~ 

 p 0
~ 

 p–  p–  p 0
− 

 p 0
− 

 p 0
− 

+ −

a 

c 

N 

b 

a b c N

 p 0
− 

 
Fig. 5 - Compensation of power components p~ , q, 0p~  and 0p in a-b-c coordinates. 

 
To calculate the reference compensation currents in the α-β coordinates, the expression (5) is inverted, and the 

powers to be compensated ( 0pp~ − and q ) are used: 
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Since the zero-sequence current must be compensated, the reference compensation current in the 0 coordinate is 

0i  itself: 
 

00 i*ic =  (7) 
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In order to obtain the reference compensation currents in the a-b-c coordinates the inverse of the transformation 
given in expression (1) is applied: 
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The calculations presented so far are synthesized in Fig. 6 and correspond to a shunt active filter control strategy 

for constant instantaneous supply power. This approach, when applied to a three-phase system with balanced sinusoidal 
voltages, produces de following results (Fig. 8): 

- the phase supply currents become sinusoidal, balanced, and in phase with the voltages. (in other words, the 
power supply “sees” the load as a purely resistive symmetrical load); 

- the neutral current is made equal to zero (even 3rd order current harmonics are compensated); 
- the total instantaneous power supplied, 

sccsbbsaas iviviv)t(p ⋅+⋅+⋅=3  (8) 
 is made constant. 

 
In the case of a non-sinusoidal or unbalanced supply voltage, the only difference is that the supply current will 

include harmonics (Fig 9), but in practical cases the distortion is negligible. 
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Fig. 6 – Calculations for the constant instantaneous supply power control strategy. 

 
The sinusoidal supply current control strategy must be used when the voltages are distorted or unbalanced and 

sinusoidal currents are desired. The block diagram of Fig. 7 presents the calculations required in this case. When this 
approach is used the results, illustrated in Fig. 10, are: 

- the phase supply currents become sinusoidal, balanced, and in phase with the fundamental voltages; 
- the neutral current is made equal to zero (even 3rd order current harmonics are compensated); 
- the total instantaneous power supplied ( Sp3 ) is not made constant, but it presents only a small ripple (much 

smaller than before compensation). 
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Fig. 7 – Calculations for the sinusoidal supply current control strategy. 

 
The practical implementation of the shunt active filter demands the regulation of the voltage at the inverter DC 

side ( dcV - the capacitor voltage) as suggested in Fig. 6 and Fig. 7, where refV is the reference value required for proper 
operation of the active filter inverter. 

 
Figures 8, 9 and 10, present simulation results using Matlab/Simulink [14, 15] for a three-phase power system 

with a shunt active filter. They include the following waveforms, corresponding to two-cycles of steady-state operation: 
total instantaneous power at load and source, phase voltages, load and source currents (phase and neutral currents). In 
the cases with distorted voltages the voltage total harmonic distortion (THD) is equal to 10%, which is a higher value 
than what is regulated by any power quality standard. 
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Fig. 8 – Simulation results for the constant instantaneous supply power strategy with sinusoidal voltages. 
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Load Instantaneous Power: ccbbaa iviviv)t(p ⋅+⋅+⋅=3
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Fig. 9 - Simulation results for the constant instantaneous supply power strategy with distorted voltages. 
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Fig. 10 - Simulation results for the sinusoidal supply current strategy with distorted voltages. 
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Conclusions 
 
Active filters are an up-to-date solution to power quality problems. Shunt active filters allow the compensation 

of current harmonics and unbalance, together with power factor correction, and can be a much better solution than the 
conventional approach (capacitors for power factor correction and passive filters to compensate for current harmonics). 

This paper presents the p-q theory as a suitable tool to the analysis of non-linear three-phase systems and for the 
control of active filters. 

Based on this theory, two control strategies for shunt active filters were described, one leading to constant 
instantaneous supply power and the other to sinusoidal supply current. 

The implementation of active filters based on the p-q theory are cost-effective solutions, allowing the use of a 
large number of low-power active filters in the same facility, close to each problematic load (or group of loads), 
avoiding the circulation of current harmonics, reactive currents and neutral currents through the facility power lines.  
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