
 
 

 

A Robust Feature Extraction for Automatic 
Speech Recognition in Noisy Environments 

 

Carlos Lima, Luís B. Almeida* and João L. Monteiro  
 

Department of Industrial Electronics of University of Minho, Portugal 
{carlos.lima, joao.monteiro}@dei.uminho.pt 

 
*Department of Electrical and Computers Engineering, IST, Technical Univ. of Lisbon, Portugal 

lba@speech.inesc.pt

 

Abstract 
 
This paper presents a method for extraction of speech 

robust features when the external noise is additive and has 
white noise characteristics. The process consists of a short 
time power normalisation which goal is to preserve as much 
as possible, the speech features against noise. The proposed 
normalisation will be optimal if the corrupted process has, as 
the noise process white noise characteristics. With optimal 
normalisation we can mean that the corrupting noise does not 
change at all the means of the observed vectors of the 
corrupted process. As most of the speech energy is contained 
in a relatively small frequency band being most of the band 
composed by noise or noise-like power, this normalisation 
process can still capture most of the noise distortions. 

For Signal to Noise Ratio greater than 5 dB the results 
show that for stationary white noise, the normalisation 
process where the noise characteristics are ignored at the test 
phase, outperforms the conventional Markov models 
composition where the noise is known. If the noise is known, a 
reasonable approximation of the inverted system can be 
easily obtained performing noise compensation still 
increasing the recogniser performance.  

 

1. Introduction 
 
Noise robustness can be accomplished either at the feature 

representation level using robust parameterisation or at the model 
compensation level. Generally, in the feature analysis process, 
only a lightly knowledge about the noise characteristics is 
needed. Some approaches maintain that the corrupting noise is by 
nature unknown, thus it is meaningless trying to compensate for 
it. Therefore, the search for a robust speech representation that 
diminishes the distortions caused by the environment seems to be 
the most promising solution to deal with noise conditions. 

Noise pre-filtering [1] [2], projection based distortion 
measures [3], vector space mapping [4] [5], all pole modelling of 
the autocorrelation sequence [6] [7] [8] [9] and [10], speech 
representation motivated by the human auditory system 
knowledge (Perceptually Linear Prediction analysis (PLP)) [11] 
[12], and more recently, complementing the PLP technique with 
a band-pass filter (RASTA-PLP) [13], have been the techniques 
more successful used for the robust representation of the speech. 

However, in spite of the effort dedicated for these last years in 
the field of the robust parameterisation, conceiving systems with 
acceptable performance in environments for which they were not 
trained has been far too difficult. Techniques based on the noise 
modelling (compensation) seem more promising than those based 
on the robust parameterisation, once it seems extremely difficult 
to conceive a system of signal processing whose outputs stay 
unchangeable from the clean to the noisy speech processing. 
Those techniques assume that even being the corrupting noise by 
nature unknown it can be compensated.  Even assuming this as a 
reasonable approach those techniques frequently present two 
main limitations: 
1) Modelling conveniently the noise increases the computation, 
slowing down the recognition process.  
2) Usually does not exist isolated noise samples at least in 
sufficient amounts to train the noise model. Therefore, the 
accuracy of this model can commit the effectiveness of the 
speech recogniser even in relatively quiet environments. In 
environments characterised by a strong non-stationary nature 
noise compensation becomes a much more difficult task.   

Among others, these limitations encourage the search for a 
robust speech representation, given that this approach becomes 
potentially more promising than the techniques that try to 
compensate the unknown and frequently non-stationary 
corrupting process.  

The Mel Frequency Cepstral coefficients (MFCC) are more 
robust against noise than some other classical features, while the 
PMC technique [15] compensates the noise in the MFCC 
domain. However, the suggested spectral normalisation is more 
robust against noise than the MFC coefficients if the noise is 

additive, has white noise characteristics and normal distribution. 
 

2. Spectral Normalisation 
 
This spectral normalisation is motivated by the fact that the 

additive noise is not a narrow band noise, thus its spectrum is 
reasonably dispersed in frequency and the goal is preserving as 
much as possible the speech features against noise. The process 
consists in a division of the frequency band in sub-bands given 
that usually a very fine detail in frequency is not required for 
speech recognition applications. The method is based on the 
power spectral density components and consists in dividing the 
speech power inside each sub-band by the total short-time 
speech power. The power in each sub-band is obtained summing 
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the components of the power spectral components inside the sub-
band. All the sub-bands have the same number of spectral 
components and any spectral component is shared by different 
sub-bands thus, avoiding increases of statistical dependence 
between sub-bands (feature components). The background noise 
contributes to increase simultaneously the sub-band and total 
power, which contributes for stabilising the feature values. 

To best understand this reasoning, consider Si denoting the 
speech power in sub-band i and S denoting the short time speech 
power of the considered segment. Similarly, let Ni, N denote the 
power of the noise in sub-band i and the short time noise power, 
respectively. So, the ith component of the observation vector for 
clean and noisy speech are given respectively by 
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Figure 1 shows the clean speech and noisy speech spectral 

power normalisation features for 240 ms of the word “zero” 
where each sub-band has 16 power spectral components. The 
SNR is 0 dB.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
If the noise has white noise characteristics the environment 

will shift the clean speech vector by a noise dependent vector 
Ci(N), which can be calculated by subtracting equations (1) 
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 If the noise is stationary then its short time power equals its 

long time power. For the speech this is not true due to its non-
stationary property, but as an approximation we will consider 
that the short time speech signal power equals the long time 
speech signal power. Under this constraint S and N can be 
related by the signal to noise ratio (SNR). Therefore the next 
expression holds 
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Let l, the number of components in each sub-band and L the 

FFT length. Then N and Ni, considering flat noise spectrum, are 

related by the quotient l/L. Using these considerations the 
calculation of the shift vector imposed by the environment is 
accomplished by subtracting equations (1) and becomes [14] 
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Equation (4) shows that if the speech has a flat power 

spectrum density, the means of Ci(N) become null given that 
Si/S equals l/L. Thus, this normalisation process becomes 
optimal in the sense that the environment does not affect the 
means of the speech features. This means that this normalisation 
procedure provides some noise robustness to unvoiced speech 
segments, where neither the speech nor the noise are spectrally 
well defined. 

Figure 2 shows the relative deviation caused by the 
environment (additive white noise at 0 dB) in the suggested 
power spectrum normalisation domain and in the power 
spectrum density domain. The relative deviation was computed 
as  
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where Zi is the ith component of the observation vector for noisy 
speech and Xi has the same meaning but for clean speech. It is 
evident by comparing figure 1 and figure 2 that the “peaked” 
spectral regions of the clean speech are more robust against 
additive white noise than the rest of the band. Additionally the 
proposed normalisation shows more robustness (less deviation 
in the features) for all the frequency sub-bands. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

3. Markov models composition in the 
spectral normalisation domain 

 
The basic idea of the HMM composition is to recognise 

concurrent signals simultaneously. Parallel HMMs are used to 
model the concurrent signals and the composite signal is 
modelled as a function of their combined outputs. To perform 
Markov models composition one has to know the composite 

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 1. White noise effect in the power spectrum 
density normalization domainin the beginning of
digit “zero”. Dashed line represents noisy speech 
features. 

Figure 2. Relative deviation caused by additive white
noise at 0 dB at the beginning of digit “zero” when
working in the power spectral density domain (normal
line) and in the power spectral density normalisation
domain (dashed line).  
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signal distribution and the statistical model of the corrupting 
environment. 

1) Distribution of the composite signal (noisy speech): Usually 
the corrupting Gaussian additive white noise process is 
considered in the time domain. As the Fourier Transform is a 
linear operation then the distribution is maintained from time to  
frequency domain.  It is well known from the statistics theory 
that if a random variable has a Gaussian distribution then the 
square of its modulus (power spectral density) has a chi-square 
distribution with two degrees of freedom, also known by 
exponential distribution. As the speech and noise are considered 
additive in the time domain, the additivity is maintained in the 
power spectrum density (PSD) domain. The clean speech is 
modelled as Gaussian in the PSD domain and the distribution of 
the noisy speech becomes the convolution between a Gaussian 
and an exponential function. Reference [14] shows that the noisy 
speech distribution is as follows 
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where the y vector refers to the clean speech signal, λ is the 
parameter of the exponential distribution and erf stands for the 
well known error function. However, to reduce the observed 
vector dimensionality when working in the spectral density 
space it is commun grouping by sum some contiguous 
components. The number of components considered must be a 
compromise between the training database size and the 
frequency resolution required. In our case we used 16 
components in each sub-band. Therefore equation (5) holds for 
the noisy speech distribution, and it would be still necessary to 
develop the distribution of the sum of 16 random variables each 
one with the distribution given by this equation. As equation (5) 
is complex to handle by convolution, an easier solution is to 
develop the probability density function of the sum of 16 
exponential distributed random variables (noise in sub-bands) 
and perform the convolution of this function with a Gaussian 
function which models the sum of 16 spectral components of the 
clean speech. By mathematical induction it is easy to prove [14] 
that the distribution of the sum of 16 random independents and 
identically distributed variables is 
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The integral of convolution between the above equation and a 

Gaussian function becomes very difficult to calculate due to the 
w15 term. Using the Central Limit Theorem equation (6) can be 
approximated by a Gaussian function with mean equal to 16λ 
and variance equal to 16λ2. 

The nature of the Central Limit theorem approximation and the 
required number of variables for a specified error bound, depend 
on the form of the densities of the summed random variables. 
For most applications a number of 30 random variables is 

adequate, however, for smooth distributions a number as low as 
5 can be used. In our case we have 16 random variables and no 
smooth distributions, so a considerable difference between the 
real and approximated function can be expected. This difference 
is shown in figure 4 for λ=10. However, in real situations λ is 
greater, (order of 107 at 10dB), the variance is in order of the 
square of λ and the Gaussian function fits best to the function 
defined by equation (6), what is expected by the inspection of 
figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Under this approximation the noisy speech distribution 
becomes 
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2) Noisy speech distribution in the spectral normalisation space: 
As shown above the noise can be approximately Gaussian 
modelled in the sub-band PSD domain and so, the noisy speech 
has also a Gaussian distribution. Similarly, we can consider that 
if the clean speech spectral normalisation can be Gaussian 
modelled then the noisy speech spectral normalisation follows 
also a Gaussian distribution. So Ci(N) has a Gaussian 
distribution given the distribution of the speech features is 
Gaussian and all the other terms involved in the equation (2) are 
considered constants for white noise. The knowledge of the 
Ci(N) statistics  is then reduced to the knowledge of its mean and 
variance. Using equation (4) the next expression holds for the 
mean  
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where k is given in equation (4). 
The variance of the corrupted process can be similarly 

calculated, considering white noise and that each sub-band is 
composed by summing 16 power spectral density components   
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Figure 4. Approximation of the sum of 16 random i. i.
d. variables with λ=10, by a Gaussian function. 



 

Updating the clean speech HMM distributions according to 
equations (8) and (9), that is, performing Markov model 
composition for stationary white noise in the spectral 
normalisation domain, the recognition accuracy was increased as 
it can be seen in table 1. 

 

4. Experimental Results 
 
The proposed algorithm was tested in an Isolated Word 

Recognition system using Continuous Density Hidden Markov 
models. The database of isolated words used for training and 
testing is from AT&T Bell. The used speech was acquired under 
controlled environmental conditions band-pass filtered from 100 
to 3200 Hz, sampled at a 6.67 kHz and analysed in segments of 
45 ms duration at a frame rate of 66.67 windows/sec. Only the 
decimal digits were used. The noise has white noise 
characteristics, is speech independent and computationally 
generated at various SNR as shown in table 1. The goal is to 
compare the performance of the proposed and contemporary 
speech robust features. Some of these robust features are the 
OSALPC (One-Sided Autocorrelation Linear Predictive 
Coding), the conventional cepstrum with liftering (CEPS + 
liftering) and the well known MFCC (Mel-Frequency Cepstral 
Coefficients. In table 1 MMC stands for conventional Markov 
model composition in the power spectrum density domain, 
Norm. stands for the proposed normalisation procedure and N. + 
MMC stands for Markov model composition in the proposed 
power normalisation domain. Table 1 shows that the suggested 
spectral normalisation features are more effective against 
additive white noise than some robust features used nowadays.  
For SNR greater than or equal to 5 dB the spectral normalisation 
outperforms the conventional Markov model composition 
(MMC) when the noise parameters are learned from the 
periodogram method in a data segment of 100ms without speech. 
As in the Parallel Model Combination, the distortion can be 
integrated (compensated) in the composite model increasing thus 
the recogniser performance. On the first six entries of the table 1 
all the features are 8 static, energy and dynamic features 
excepting * (12 static + energy + dynamics) and ** (13 static + 
energy + dynamics). 

 
Table 1 – Performance of the spectral normalisation 

SNR (dB) 15 10 5 0 -5 
LPC 56.5 39.5 30 16.2  
OSALPC 98.25 92 65.75 32.2  
CEPS * 97.5 95 72 34.5  
+liftering 98.25 95 75.25 39  
MFCC ** 97.75 94.7 72.25 37.5  
OSALPC* 98.5 96.2 74.25 32.5  
MMC 98 96.7 92.5 91 78.5 
Norm. 98.5 97.7 93.75 88 42.5 
N.+ MMC 99.5 98.7 97.25 92.2 84.75 

 

5. Discussion 
 
The main advantage of this normalisation process is the 

recognition performance obtained when no knowledge of the 
noise statistics exists. The proposed normalisation will be 
optimal if the corrupted and the noise process have both white 
noise characteristics. This can mean that also unvoiced speech 

segments (speech segments without voiced regions) are more 
preserved against additive noise. This makes some sense; since 
the spectral regions with less energy are more corrupted thus, 
need more robustness. For high Signal to Noise Ratios the 
spectral normalisation, where the distortion is ignored at the test 
phase, outperforms the Markov model composition where the 
distortion is learned from a small amount of isolated noise 
samples and incorporated into the system. If isolated noise 
samples exist, the noise can be estimated and this knowledge can 
be incorporated into the system increasing the recogniser 
performance.  
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