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Abstract: This paper is concerned to the noisy speech 
HMM modelling when the noise is additive, speech 
independent and the spectral analysis is based on sub-
bands. The internal distributions of the noisy speech 
HMM’s were derived when Gaussian mixture density 
distributions for clean speech HMM modelling are 
used, and the noise is normally distributed and 
additive in the time domain. In these circumstances it 
is showed that the HMM noisy speech distributions are 
not Gaussians, however, fitting these distributions as a 
Gaussian mixture, only a little bit of loss in 
performance was obtained at very low signal to noise 
ratios, when compared with the case where the real 
distributions were computed using Monte Carlo 
methods. 

 
I. INTRODUCTION 

 
In the western languages the intonation does not make 

part of the linguistic message, so a very fine detail in 
frequency is not necessary concerning to speech 
recognition applications, becoming the signal envelope of 
the most importance. Therefore some spectral components 
are frequently grouped, for example by sum and each 
group is known as sub-band.  

Recently the importance given to the field of 
environmental/speaker adaptation has been increased in 
part to the difficulties in the obtaining of a feature 
extraction method sufficiently robust against these types 
of speech variability. The contemporary adaptation 
algorithms are mostly based on the MLLR algorithm [1], 
which can’t be able to separate speaker mismatch from 
environmental (additive and convolutional) mismatch. 
Alternative approaches can deal separately with an 
additive noise model and a convolutional noise model in 
both stationary [2] and non-stationary [3] noise conditions 
in order to separate these two types of distortions. 
However these algorithms are essentially based on 
cepstrum based features, which contributes to increase 
significantly the computational load once that a mapping 
between the cepstral and linear domains is required. In [4] 
[5] it is suggested that a proper spectral normalisation can 
be more useful than the cepstrum derived features in the 
noisy speech modelling, while [6] proposes an incremental 
adaptation algorithm based on spectral derived features. 
The next step is to investigate the drawbacks of using a 
gaussian mixture to model the internal distributions of the 
noisy speech HMM’s when using power spectral density 

based features jointly with additive noise in the linear (not 
cepstral) domain. This is the purpose of this paper.      

 
II. NOISE AND NOISY SPEECH STATISTICS 

 
The use of continuous observation density in HMMs is 

not restricted to the use of Gaussian mixtures. Although 
some restrictions must be placed on the form of the model 
probability density function (pdf) to ensure that the 
parameters of the pdf can be re-estimated in a constant 
way, any log-concave or elliptically symmetric density [7] 
can be used.  

Typically the clean speech features are modelled as a 
Gaussian mixture and generally the existing speech 
recognisers perform well in clean speech conditions. In 
noisy conditions the performance degrades in part due to 
inaccuracies in noise modelling, given that in some 
situations the noise is artificially generated thus, known. 
Using power spectral density features and Gaussian 
distributed additive noise strong evidences exist that the 
noisy speech distribution can’t be Gaussian. In fact if the 
noise is Gaussian distributed in the time domain it is well 
known from the statistics theory that it becomes 
exponentially (chi-square with two degrees of freedom) 
distributed in the power spectral density domain, which is 
the feature domain where the distribution of the noisy 
speech must be computed. Additionally, as usual, some 
power spectrum density components have to be grouped 
anyway (in our case by sum) in order to reduce the feature 
vector dimensionality, which will also be taken into 
consideration in the obtaining of the noisy speech 
statistics.  

An exponential distribution of parameter λ is defined by 
the following probability density function 
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where U(x) is the unit step function. The exponential 

distribution is characterised by the fact that its mean is 
equal to its standard deviation, which is equal to λ. So, the 
periodogram distribution of a white noise Gaussian 
stochastic process with zero mean is a white noise 
exponential stochastic process with zero mean and λ=Nσ2, 
where σ2 is the signal variance and N the signal length. 
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Supposing HMMs with Gaussian sources then the clean 
speech y has a Gaussian mixture distribution where the 
distribution of each component of the mixture is given by 
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Let y=(y[0], …,y[N-1])T, x=(x[0], …,x[N-1])T and 

z=(z[0], …,z[N-1])T be, respectively, vectors of clean, 
noise and noisy signals. If the noise is additive, y[n] is 
given by 
 

[ ] [ ] [ ]nxnynz += , n=0, …, N-1. 
 

The autocorrelation function of the noisy speech can be 
obtained from the autocorrelation functions of the clean 
speech, the noise the respective cross correlation as 
follows 
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As the noise is speech independent, the two processes 
are non-correlated, so the cross-correlations in the above 
equation are null. Consequently the autocorrelation 
function of the noisy speech is simply the sum of the 
autocorrelation functions of the clean speech and noise.  

Let Y=(Y(0), …,Y(K-1))T, X=(X(0), …,X(K-1))T and 
Z=(Z(0), …,Z(K-1))T denote, respectively, vectors of 
spectral components of clean, noise and noisy signals. As 
the Fourier transform is a linear operation and the power 
spectral density is the Fourier transform of the 
autorrelation sequence, then for additive noise, and 
considering the analysis window too large the next 
expression holds 
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Accounting to the nature of the speech signal 
2)(kY  

in the above equation does not represent the true 
autocorrelation sequence of the speech once that the 
autocorrelation sequence of an autoregressive process is 
theoretically infinite. The segment analysis truncates the 
autocorrelation sequence. However, as this occurs in both 
the test and training and the autocorrelation of the noise is 
finite the above equation stays approximately valid. 

Therefore each component of the clean speech 
distribution generates jointly with the Gaussian noise a 
noisy speech distribution component (z) given by  
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In reference [8] it is proved that the solution for the 

above integral is 
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where erf stands for error function which is defined by 
the integral 
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For high SNRs equation (4) roughly fits the Gaussian 

distribution given that the noise distribution approaches 
the impulse function.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 shows the difference between equation (4) and 
the Gaussian function for λ=2, 10, 50; mean of the 
Gaussian equals to 10 and variance equals to 100, 
therefore simulating a SNR=0 dB when λ=10.  

For high noises the noisy speech distribution is clearly 
non-Gaussian and so, the noisy speech distributions have 
to be changed from Gaussians as usually used, to the 
function defined by equation (4).  

By analysing in the sub-bands context the HMMs for 
clean speech model the sum of  n power spectral 
contiguous components, instead of only one power 
spectral component. Therefore, the solution for the noisy 

Figure 1. Distribution of the clean and noisy 
speech for λ=2, 10 (SNR=0dB), 50. 



 
 

 

speech sub-band distribution can be obtained from 
equation (4) taking into account that the means and 
variances in each model must be divided by n, once that 
they model the sum of n random variables with Gaussian 
distribution and all with the same parameters. Therefore 
equation (4) holds for the noisy speech distribution, and it 
would still be necessary develop the distribution of the 
sum of n random variables each one with the distribution 
given by equation (4).  

An easier and equivalent solution is to develop the 
probability density function of the sum of n exponential 
distributed random variables as shown in equation (1) and 
perform the convolution of this function with a Gaussian 
function which models the sum of n power spectral 
components of the clean speech. 

Reference [8] shows that the distribution of the sum of n 
random independents and identicaly distributed (according 
equation (1) variables is 
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Equations (2) and (6) allow to derive the probability 

density function as usual by convolving the two 
probability density functions  
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The above integral is difficult to calculate due to the 
term xn-1 where n is of the order of more than ten, once 
that the recognition systems nowadays use observation 
vectors dimensionality from tipically ten to forty (with 
dinamical characteristics) thus, much smaller than the 
normally used as FFT length.  

 
III. APROXIMATED DISTRIBUTION OF THE NOISE AND 

NOISY SPEECH 
 
By using the Central Limit theorem equation (6) can be 

approximated by 
 

( )
2

2

16
16

24
1)( λ

λ

λπ

−
−

=
x

x exf  (8) 

 

The nature of the Central Limit theorem approximation 
and the required number of variables for a specified error 
bound, depend on the form of the densities of the summed 
random variables. For most applications a number of 30 
random variables is adequate, however, for smooth 
distributions a number as low as 5 can be used. In our case 
we have 16 random variables and no smooth distributions 
thus, a considerable difference between the real and 
approximated function can be expected. This difference is 
shown in figure 2 for λ=10. However, in real situations λ 
is greater, (order of 107 at 10dB), the variance is in order 
of the square of λ and the function defined by equation (8) 
fits best to the function defined by equation (6), what is 
expected by the inspection of figure 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Under this approximation the noisy speech distribution 

(equation (6)) becomes 
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given that the convolution between two Gaussian 

functions is still a Gaussian function which mean and 
variance are equal to the sum of the initial means and 
variances, respectively. 

 
IV. EXPERIMENTAL RESULTS 

 
The loss in performance due to the using of equation (9) 

instead of equation (7), which was computed by numerical 
integration (exact method), was tested in an Isolated Word 
Recognition system using Continuous Density Hidden 
Markov models. The database of isolated words used for 
training and testing is from AT&T Bell. The used speech 
was acquired under controlled environmental conditions 
band-pass filtered from 100 to 3200 Hz, sampled at a 6.67 
kHz and analysed in segments of 45 ms duration at a 
frame rate of 66.67 windows/sec. Only the decimal digits 
were used. The noise has white noise characteristics, is 
speech independent and computationally generated at 
various SNR as shown in table 1. The goal is to compare 

Figure 2. Approximation of the sum of 16 
random i. i. d. variables with λ=10, by a 
Gaussian.



 
 

 

the performance of the proposed approximation, exact 
solution and contemporary speech robust features. Some 
of these robust features are the OSALPC (One-Sided 
Autocorrelation Linear Predictive Coding), the 
conventional cepstrum with liftering (CEPS + liftering) 
and the well known MFCC (Mel-Frequency Cepstral 
Coefficients). In table 1, MMC stands for conventional 
Markov model composition in the power spectrum density 
domain by using the suggested approximation while NI 
stands for the numerical integration. Table 1 shows that 
the suggested approximation is as effective against 
additive white noise as the exact solution except for very 
low signal to noise ratios (-5db), where the loss in 
performance is even so very low. In both cases the noise 
parameters were learned from the periodogram method in 
a data segment of 100ms without speech. On the first six 
entries of the table 1, all the features are 8 static, energy 
and dynamic features excepting * (12 static + energy + 
dynamics) and ** (13 static + energy + dynamics). 

 

Table 1 – Performance of the proposed approximation 
SNR (dB) 15 10 5 0 -5 
LP 56.5 39.5 30 16.25  
OSALPC 98.25 92 65.75 32.25  
CEPS * 97.5 95 72 34.5  
+liftering 98.25 95 75.25 39  
MFCC ** 97.75 94.75 72.25 37.5  
OSALPC* 98.5 96.25 74.25 32.5  
MMC 98 96.75 92.5 91 78.5 
NI 98 96.75 92.5 91 80.25 
 

 
V. DISCUSSION 

 
The main advantage of using spectral based features 

instead of cepstral based features is the decreasing of 
computational load given that the mapping between the 
linear and cepstral domains becomes not necessary. In 
fact, as the noise is considered additive in the linear 
domain and the features adaptation is performed in the 
cepstral domain, a mapping from cepstral to linear domain 
and then an inverse mapping from linear to cepstral 
domain are needed (Parallel Model Combination). This 
decreasing in computational load is particularly important 
on environmental/speaker incremental adaptation where 
recently some effort has been made in order, for example, 
to separate speaker mismatch from environmental 
mismatch or adapting to non-stationary additive noise 

situations where the channel distortion is stationary. This 
situation requires training, of the combined HMM’s of the 
clean speech and noise, on the recognising speech 
(incremental adaptation) which becomes more easy if the 
internal distributions remain Gaussians. Additionally a 
proper spectral normalisation [4][5] can be more effective 
concerned to speech modelling than the cepstral based 
features, at least for some types of noise.  However, the 
main drawback associated with cepstral based features is 
related with the difficulty in the modelling of speech 
dynamics. In fact the adaptation of the dynamic 
coefficients is not possible, although some approximate 
solutions have been suggested. 
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