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Abstract: Independent Component Analysis (ICA) is a 
statistical based method, which goal is to find a linear 
transformation to apply to an observed 
multidimensional random vector such that its 
components become as statistically independent from 
each other as possible. 
Usually the Electroencephalographic (EEG) signal is 
hard to interpret and analyse since it is corrupted by 
some artifacts which originates the rejection of 
contaminated segments and perhaps in an 
unacceptable loss of data. The ICA filters trained on 
data collected during EEG sessions can identify 
statistically independent source channels which could 
then be further processed by using event-related 
potential (ERP), event-related spectral perturbation 
(ERSP) or other signal processing techniques. This 
paper describes, as a preliminary work, the application 
of ICA to EEG recordings of the human brain activity, 
showing its applicability.  

 
I. INTRODUCTION 

 
An important application of multichannel EEG is to try 

to find the location of a epileptic focus (a small spot in the 
brain where the abnormal activity originates and then 
spreads to other parts of the brain) or of a tumor, even 
when they are not visible in a x-ray or CT scan of the 
head. 

Blind Source Separation (BSS) concerned to signal 
processing applications is an application area which main 
goal is the recovering of independent source signals, after 
they are linearly mixed by an unknown medium. This 
source separation is achieved by using recordings of 
several sensors. A classical example of blind source 
separation is the cocktail party problem, where several 
people are speaking simultaneously in the same room. The 
problem is to separate the voices of the different speakers, 
by using recordings of several microphones in the room.  

Some acceptable solutions for the blind source 
separation problem have been found in the neural network 
and statistical signal processing fields. The classical 
application of the ICA model is blind source separation. In 
contrast with decorrelation techniques such as Principal 
Component Analysis (PCA), which ensures that output 
pairs are uncorrelated, the ICA maximizes the degree of 
statistical independence among outputs using contrast 
functions approximated by the Edgeworth expansion of 
the Kullback-Leibler divergence [1]. Therefore when 

compared with the PCA, ICA imposes the much stronger 
criterion that the multivariate probability density function 
of output variables factorizes. Finding such a factorization 
requires that the mutual information between all variable 
pairs go to zero. While decorrelation only takes account of 
second-order statistics, the mutual information depends on 
all higher-order statistics of the output variables. Although 
ICA can be seen as an extension of the PCA and factor 
analysis it is really a more powerful technique, capable of 
finding the underlying sources when these classical 
methods fail completely.  

As the problem of determining brain electrical source 
from patterns recorded on the scalp surface is 
mathematically undetermined the joint problem of EEG 
source identification, segregation, localization and 
removing artifacts becomes very difficult. Recent efforts 
to identify EEG sources have focused mostly on 
performing spatial segregation and localization of source 
activity. The problem of both source localization and 
source identification have been investigated by using the 
ICA algorithm. Independent sources can be derived from 
highly correlated EEG signals and without regarding to 
the physical location or configuration of the source 
generators, by using the ICA algorithm, however, 
canceling these noise sources is a central, and as yet 
unsolved problem in EEG signal processing.  

One of the most successful method is mainly based on 
ICA of an artificial neural network by using an adaptive 
algorithm. In the adaptive case, the algorithms are 
obtained by stochastic gradient methods. When all the 
independent components are estimated simultaneously, the 
most popular algorithm in this category is natural gradient 
ascent of likelihood, or related contrast functions like 
“Infomax”. The experiments described in this paper were 
obtained by using a kind of extended “Infomax” algorithm 
for the EEG analysis.    
 

II. RELEVANT ICA THEORY 
 

The ICA algorithm allows to separate N independent 
sources from N sensors under the constraints that the 
propagation delays of the unknown “mixing medium” are 
negligible, and the sources are non-log and have 
probability density functions (pdf’s) not too unlike the 
gradient of a logistic sigmoid. Therefore the EEG signal 
must be recorded by N scalp electrodes and the correlated 
signals are used to separate N unknown “independent 
brain sources” that generated these mixtures.  
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Before proceeding we have to make a clear distinction 
between ICA, which is a theoretical method with different 
applications, and blind source separation, which is an 
application that can be solved using various theoretical 
approaches, including but not limited to ICA. One of these 
approaches is the PCA, which is a decorrelation technique, 
so ensuring that output pairs are uncorrelated <yi, yj=0>, 
for all i and j. Decorrelation only takes account of second-
order statistics. In contrast the ICA is based on the much 
stronger criterion of statistical independence which 
requires all higher-order correlations of yi to be zero. The 
relation between Principal Component Analysis and ICA 
is evident. Both methods formulate a general objective 
function that define the 'interestingness' of a linear 
representation, and then maximize that function. A second 
relation between PCA and ICA is that both are related to 
factor analysis, though under the contradictory 
assumptions of Gaussianity and non-Gaussianity, 
respectively. The affinity between PCA and ICA may be, 
however, less important than the affinity between ICA and 
other methods. This is because PCA and ICA define their 
objective functions in quite different ways. PCA uses only 
second-order statistics, while ICA is impossible using only 
second-order statistics. PCA emphasizes dimension 
reduction, while ICA may reduce the dimension, increase 
it or leave it unchanged. However, the relation between 
ICA and nonlinear versions of the PCA criteria is quite 
strong. 

Suppose y1, y2, …, yN random variables with joint pdf 
given by f(y1, y2, …, yN). If the random variables yi are 
statistically (mutually) independents then the joint pdf can 
be factorized since 
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denotes the marginal density of  yi. If the 

random variables yi are statistically independents, then for 
any functions g1 and g2 one has 
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which is clearly a stricter condition than the condition of 
uncorrelatedness given by 
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However for the special case of joint Gaussian 
distribution, independence and uncorrelatedness are 
equivalent [2] and ICA becomes in these cases not 
interesting or impossible.  

A simple neural network algorithm based on 
information maximization (Informax) was derived by Bell 
and Sejnowski [3] and is able to separate super-Gaussian 
(sparse) independent components. A source si can be 
distinguished from mixtures xi by considering the activity 

of each source statistically independent of the other 
sources. This means that their joint probability density 
function, measured across the input time ensemble 
factorizes. Therefore the mutual information between any 
two sources, si and sj is zero: 
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where E{.} denotes mathematical expectation. The 

sources si are assumed to be temporarily independent, 
while the observed mixtures of sources, xi are statistically 
dependent on each other, therefore the mutual information 
between pairs of mixtures, I(xi,xj) is in general positive. 
The problem of blind source separation consists in finding 
a matrix W such that the linear transformation  
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re-establishes the condition I(yi,yj)=0, for all i≠j. 

Consider the joint entropy of two non-linearly 
transformed components of u: 
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where ui=g(yi) and g(.) is an invertible, bounded 
nonlinearity. The nonlinear function provides, through its 
taylor series expansion, higher order statistics which are 
necessary to establish independence. 

The maximization of the joint entropy is obtained by 
maximizing the individual entropies, H(u1) and H(u2) and 
minimizing the mutual information I(u1,u2). In general the 
maximization of H(u) minimizes I(u) and when the mutual 
information reaches the value zero the two variables 
become statistically independents. The algorithm attempts 
to maximize the entropy by iteratively adjusting the 
elements of the square matrix W, by using small batches 
of data vectors drawn randomly from {x}. Without 
substitution, one has 
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The term (WTW) is the natural gradient and avoids 

matrix inversions speeding up the convergence. The form 
of the nonlinearity g(u) is crucial in the performance of the 
algorithm and its ideal form is the cumulative density 
function (cdf) of the distributions of the independent 
sources. 



 
 

 

Assuming that the complexity of the EEG dynamics 
can be modelled as a relatively small number of 
independent brain processes, the EEG source analysis 
problem satisfies ICA assumption. The foremost problem 
in interpreting the output of ICA is determining the 
number of input channels, and the physiological and/or 
psychophysiological significance of the derived source 
channels.  

 
III. EXPERIMENTAL RESULTS 

 
The extended ICA algorithm was tested in both 

simulated data, as shown in figure 1, and in real data as 
shown in figure 2. Figure 1a) shows four independents 
generated signals that are then linearly mixed resulting the 
signals shown in figure 1b). Figure 1c) shows the result of 
the extended ICA decomposition algorithm applied to the 
signals shown in figure 1b), which obviously does not take 
into consideration the linear transform from which the 
signals obtained in figure 1b) were obtained from the ones 
shown in figure 1a). 

By comparing figures 1a) and 1c) we can conclude that 
the result of the decomposition is satisfactory since the 
order, polarity and amplitude of the output only have a 
simple changing. 
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The extended ICA algorithm was also applied to the 

analysis of 10 EEG recordings of the human brain activity. 
To ensure signal stationarity the time index was permuted, 
and the 10-dimensional time vectors were presented to a 
10->10 ICA network one at a time. First and second order 
statistics were removed in order to speed up the 
convergence, so the data were first pre-whitened. The 
learning rate was annealed from 0.03 to 0.0001 during 
convergence. After each pass through the whole training 
set, the value of correlation between the ICA output 
channels and the value of change in the weight matrix 
were checked, and the training was stopped when the 
mean correlation among all channel pairs was bellow 0.06 
and the ICA weights had stopped changing appreciably.  

EEG recordings of the human brain generally include 
either super-Gaussians signals (ERPs for example), or 
sub-Gaussian signals (for example working frequency 
disturb and EOG). So ICA appears suited for this kind of 
applications as shown in figure 2 where the 
experimentation was done in real EEG data.   

 
 

 
 
 
 
 

 

Figure 1a). Four signals generated independently  

Figure 1b). The Signals shown in figure 1a) after 
passed through a random mixed matrix. 

Figure 1c). Signals after ICA decompose 

Figure 2. EEG real data separated by ICA 



 
 

 

The first row on the left of figure 2 shows a normal 
EEG data, the second row is a close and open eye’s EEG 
data and finally the third row is a working frequency 
disturbing. These original signals were mixed as in the last 
case of synthetic data and the ICA algorithm realized the 
blind source separation. The results are very promising 
taking into consideration that the target signals include 
both super-Gaussian and sub-Gaussian sources. 
 

IV. DISCUSSION 
 

This paper has focused on the application of ICA to 
the analysis of  EEG, which proved a reasonable 
efficiency.  

Apart from the brain signals, signals from other 
organs, as for example from the heart system have similar 
problems with artifacts and could also benefit from ICA 
techniques. In general biomedical signals are a rich source 
of information about physiological processes, but they are 
often contaminated with artefacts or noise and are 
typically mixtures of unknown sources summing 
differently at each sensor. Besides other interesting 
questions such as to understand the nature of the sources, 
ICA seems to hold a great promise, for blindly separating 
artifacts and decomposing the mixed signals into 
subcomponents that may reflect the functionality of 

distinct generators of physiological processes, which must 
also be interpreted in the near future.  
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