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Abstract  - Recent advances in network technology and the 
higher levels of circuit integration due to VLSI have led to 
widespread interest in the use of multiprocessor systems in 
solving many practical problems. As the hardware continues 
to diminish in size and cost, new possibilities are being 
created for systems that are heterogeneous by design. 
Parallel multiprocessor architectures are now feasible and 
provide a valid solution to the throughput rates demands of  
the increasing sophistication of control and/or 
instrumentation systems. Increasing the number of 
processors and the complexity of the problems to be solved 
makes programming multiprocessor systems more difficult 
and error-prone. This paper describes  some parts already 
implemented (mainly the scheduler) of a software 
development tool for heterogeneous multiprocessor system 
that will perform automatically: code generation, execution 
time estimation, scheduling and handles the communication 
primitive insertion. 
 

I. INTRODUCTION 
 

Control and/or instrumentation  application frequently 
requires very high peaks  of processing power demands 
that can not be  satisfied by a single processor system, and 
often the solution is found in a multiprocessor 
architectures. Developing software for such kind of 
architecture is very hard and usually realized at each 
individual processor’s level with the compatibility among  
processors carried out by the programmer. The lack of a 
software development tool, independent of the 
multiprocessor hardware platform is the main reason 
against the use of integration potentialities in the 
development of the On-chip multiprocessor architectures.  

The Commercial manufactures usually make 
integration of a processor and diverse kinds of peripherals 
but never multiprocessor integration. The few existing 
multiprocessor architectures emerge from discrete 
processors that after a completely independent 
development (one for each processor) are later integrated 
in one chip -  ASIC.  

This problem becomes harder since with 
instrumentation and/or control system, skills are necessary 
to deal with additional degree of complexity that emerges 
from different contributions of the different processors. 

Parallel processing enhancement can be divided into 
two broad categories: On-chip versus off-chip parallelism. 
The Texas Instruments C80 (contains four DSPs and one 
RISC processor) is an example of the newest approach in 
on-chip parallelism that consist  to put more than one 

CPUs onto one IC. Off-chip parallelism employs several 
processors, working together on a task. 

We consider a heterogeneous  multiprocessor system to 
be a system which makes use of several different types of 
processors, and/or connectivity topologies to optimize 
performance and/or cost-effectiveness of the system. For 
example, different processor types could include vector 
processing, SIMD1 processors, MIMD2 processors, special 
purpose processors, and data flow processors. Similarly, 
different connectivity paradigms could include bus, 
point-to-point, ring, or a mixture of these. Examples of 
heterogeneous systems can be found in: 

1) Embedded systems which are application specific 
systems containing hardware and/or software tailored for a 
particular task. General purpose processors, programmable 
digital signal processors, and ASICs are among the many 
components of these system. In this kind of systems, 
heterogeneous processors are tightly coupled with low 
IPC3 overhead but with heavy resource constraints. 

2) Distributed systems, which consist of various 
workstation, main computers, and even super computers, 
with significant overhead of interprocessor 
communication. 

3) SHHiPE4 which is an embedded system developed by 
integrating COTS5 processors and interconnect 
components in a ‘plug-and-play’ fashion. These systems 
offer advantages of low-cost, scalability, easy 
programmability, software portability, and ability to 
incorporate evolving hardware technology [1, 2]. 

Examples of application tasks where heterogeneous 
multiprocessor systems are desirable can be found in any 
domains, including instrumentation and/or control, 
robotics and digital signal processing. 

Even if the hardware is built, the application program 
must be written, debugged, and maintained. When 
programming this kind of system new problems arise 
compared to programming a single processor system. 
Some of these are: program scheduling (good scheduling 
algorithms are essential to exploit the full parallelism of 
the hardware), load balancing, processors synchronization 
and communication routing. These tasks are often tedious 
and therefore programming facility is needed to simplify 
the development task while maximizing performance. 
Programmers must be able to specify algorithms at a 
sufficiently abstract level so that they are not overwhelmed 
with trivialities while still having access to those details 

                                                           
1 Single Instruction Multiple Data 
2 Multiple Instructions Multiple Data 
3 IPC = Interprocessor Communication 
4 Scalable Heterogeneous High Performance Embedded 
5 COTS = Commercial Off The Shelf 
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that are needed by system software (compiler, linker, and 
run-time support) to efficiently execute the code. 
Furthermore, as applications become more sophisticated, 
debugging becomes more complex. 

Our main purpose in this project will be the 
development of a visual and automatic programming 
environment for heterogeneous multiprocessor system 
based on microcontrollers and DSPs for instrumentation 
and/or control applications, that take advantage of 
available system resources and make the programming as 
easily as possible.  After some studies and reflections, we 
decide that this programming environment will be 
composed of four tools: a graphical editor for representing 
the program and the target machine graph, a scheduler for 
partitioning and mapping the parallel program onto the 
processors, the code generator for each processor types, a 
predictor for the worst-case execution time of each task 
presents in the program graph, and finally a program 
performance visualizer. 

At this moment, we have concluded the implementation 
of the graphical editor and of several scheduling 
algorithms for homogeneous and heterogeneous systems.  

 
II. GRAPHICAL EDITOR 

 
The graphical editor’s main purpose is the 

representation of the program graph and target machine 
graph and has two very important features: 

1-  browsing large graphs through incremental layout. 
2-  visualization of dynamic graphs to be used later by 

the performance tool. 
 

 
Fig.1 Some Graphical  Editor Objects 

 
A parallel program is composed by N separate 

cooperating and communicating tasks and its behavior is 
represented by a directed acyclic graph (DAG) named 
program graph or task graph (fig.2). A DAG is defined by 
a tuple G = (V, E, C, T) where V is the set of task nodes 
and v = |V| is the number of nodes, E is the set of 
communication edges and e = |E| is the number of edges, C 
is the set of edge communication costs and T is the set of 
node computation costs. The values ci,j ∈ C is the 
communication cost incurred along the edge ei,j = (ni,nj) 
∈E, which is zero if both nodes are mapped in the same 
processor. The value tij ∈ T is the execution time of node 
Ni  ∈ V onto processor pj.  

The multiprocessor system, onto which the tasks are 
scheduled  is represented as a weighted undirected graph 
(fig.3) Gp =  (Vp, Ep), where Vp = {vq : q = 1,2, …,m} is the 
set of processors with associated service rates uq and 

Ep={(p,q): p, q = 1, 2,…,m, p≠q} is the set of links with 
associated link capacities cpq.  Fig. 1 shows some drawing 
objects used to represent the task and system graphs. The 
graph system in fig.3 represents an architecture compose 
by three processors communicating through a shared 
memory connected to a shared bus and a dedicated 
point-to-point link between processors P0 and P2 (fig.4). 

 

 
Fig.2 Task graph representation 

 

 
Fig.3 System graph representation 

 

 
Fig. 4 Architecture represented by the system graph of fig.3 

 
III.  THE SCHEDULER 

 
The objective of scheduling is minimization of the total 

execution time and its output is a Gantt chart, which 
contains information about the distribution of the tasks 



included in a given program graph onto the various target 
machine’s processors. This problem is NP-hard, i.e., the 
computational requirements for an optimal solution 
increase exponentially with the number of tasks and 
number of processors, which makes the finding of the 
optimal schedule, even for moderately sized problems, not 
practicable. Therefore, nearly all practical scheduling 
algorithms incorporate heuristics. Since scheduling is 
expressed as an optimization problem, some approaches 
that can be taken are [3, 4]: 

1) Enumerate methods search every point related to an 
objective function’s domain space, one point at a time. 
They are very simple to implement but may require 
significant computation. The domain space of many 
applications is too large to search using these techniques. 

2) Calculus based techniques use a set of necessary and 
sufficient conditions to be satisfied by the solutions of an 
optimization problem. It can be divided into two groups, 
direct and indirect methods. Direct methods is 
computationally feasible, but can be use only on a 
restricted set of “well-behaved” problems. Indirect 
methods look for local extrema by solving a nonlinear set 
of  equations resulting from zeroing the gradient, and so is 
computationally heavy. 

3) Heuristic methods, solve the NP-hard problems 
within reasonable time, but never garantee an optimal 
solution since it only search part of the entire solution 
space and suffer from the so called horizon effect6. 

4) Guided random search techniques including both 
simulated annealing and genetic algorithms are based on 
enumerative techniques but use additional information to 
guide the search. 

Scheduling can be dynamic or static. The static 
scheduling approach can be applied to only a subset of 
problems whose run-time behavior is predictable, i.e., the 
precedence-constrained task graph must be known 
beforehand. Therefore, constructs such as branches and 
loops must be excluded to provide deterministic program 
behavior. The disadvantage of dynamic scheduling is its 
inadequacy in finding global optimums and its additional 
execution overhead resulting from the fact that the 
schedule must be determined while the program executes.  
All schedulers we have been implemented  are statics and 
make explicit consideration about interprocessor 
communications, because excluding IPC from the 
scheduling is unrealistic.  

The scheduling algorithms we will present are modified 
versions of Lee’s dynamic-level [3] and Pattipati’s [4] 
scheduling that incorporate memory constraints and the 
possibility of  utilizing the schedule-holes in processors 
and channels.  

As we said above the processor types composing our 
target machine are DSPs and microcontroller, and so 
would be unrealistic if we do not incorporate memory 
constraints in the schedulers. Therefore some modeling 
technique must be used to express memory requirements 
and we adopt the nonlinear memory constraints model 
                                                           
6 This property asserts that no matter how far one looks ahead before 
making a local decision, there may exist something “just over the 
horizont” which can render the decision detrimental to the objective, i.e., 
heuristic methods tend to take optimal local decisions that may have a 
non-optimal global effect. 

suggested by Kaneshiro [5], since the linear model is 
unpraticable. The memory requirements are evaluated and 
test against the current available memory resource every 
time a task is analyzed for allocation. The dynamic level of 
task to be schedule on a given processor is a very large 
negative number if the given processor cannot satisfy its 
memory requirement at any point of time. 

Ram Murthy suggested in [6] the exploitation of 
schedule-holes to improve the Lee’s dynamic level 
scheduling for homogeneous system.  We made a soft 
change in the Lee’s dynamic level calculation for 
heterogeneous system in order to incorporate the Ram 
Murthy´s suggestion and memory constraint. The new 
dynamic level is given by 

 
newDL1(Ni,Pj, ∑(t))=SL*( Ni) - FAH(Ni,Pi, ∑(t))  

+ ∆(Ni,Pj) (1) 
 

oldDL1(Ni,Pj, ∑(t)) = SL*( Ni) - max[ DA(Ni,Pi,∑(t)),  
TF(Ni,Pj, ∑(t))] + ∆(Ni,Pj) (2) 

 
∆(Ni,Pj) = E*(Ni) - E(Ni,Pj), (3) 
 
where ∑(t), DA(Ni,Pi,∑), FAH(Ni,Pj,∑), SL*(Ni), 
TF(Ni,Pj,∑), E(Ni,Pj), E*(Ni), stand for: the state of the 
processing, memory and communication resource at 
instant t, the earliest time all data required by node Ni is 
available at Processor Pi with memory requirement 
satisfied, the first available schedule hole after 
DA(Ni,Pj,∑), static level of node Ni, the time the last node 
assigned to the jth processor finishes execution, execution 
time of node Ni over processor Pj, and the adjusted median 
execution time of node Ni over all processors, respectively. 
The static level of a node Ni, SL*(Ni), represents the 
largest sum of execution times along any directed path 
from Ni to an endnode of the task graph, over all endnodes 
of the task graph. All others Lee’s scheduler parameters, 
such as descendent consideration and Resource scarcity 
are kept unchanged. 
 

TABLE I 
EXECUTION TIMES OF  THE TASKS IN FIG.2 

 
We also modify Pattipati’s algorithm in the same way in 

order to carried out schedule hole exploitation. Pattipati 
use the same argument as Lee: a node Ni cannot begin 
execution on processor Pj until the data from all 
predecessors of Ni are available at Pj, and also until 
processor Pj completes its execution of the last task in the 
ordered set TPj. TPj contains the task assigned to Pj 
sequencing in the execution order. In this algorithm, we 
also use E*(Ni) in the calculation of the order of task 
allocation instead of the ratio service demand/service rate.  

 

Task 

Proc 
0 1 2 3 4 5 6 7 8 9 10 

0 5 5 2 4 5 2 4 5 4 3 4 

1 ∞ 3 ∞ 2 ∞ ∞ 3 ∞ 5 3 ∞ 

2 3 6 4 4 3 3 ∞ 6 ∞ 3 6 



TABLE II 
SOME PROCESSOR CAPABILITIES USED  

BY THE SCHEDULER 

 
Fig.5 presents two Gantt charts, one for the scheduling 

of communication channels and another one for processors 
that ilustrates the results of running our first scheduler 
incorporated with decendent consideration and resource 
scarcity and using as inputs the task graph of fig.1, the 
system graph of fig.2, and the information presents in table 
I and II. All data in these tables are available when a 
particular task graph or system file are opened in editor 
mode. By double-clicking a particular drawing object a 
dialog box is showed with the specific information that 
depends on the mode used. The point-to-point link in fig.3 
is  full duplex.   
 

 
Fig.5 Gantt chart for our Lee modified Scheduler 

 
A. Memory Constraints 
 

As said before, an edge between two tasks allocated to 
different processors represents an interprocessor 
communication, and so, demands memory storage at the 
destination processor. Using the memory usage 
information associated with the schedule state ∑(t) at 
instant t, every solutions with memory requirement that 
violate the memory availability can be discarded. For 
schedule a given task Ni on processor Pj at instant t, the 
memory requirement evaluation is carried out, following 
the next steps: 
 
1) Deallocation Stage - the schedule state ∑(t) is analyzed 
and input memory requirement is deallocated for all tasks 
that end execution before or at the instant t. 
 

2) Transfer Stage -  for all predecessors of Ni scheduled 
before on processors Pk, for all k ≠ j, the associated output 
memory requirement to Ni must be transferred to Pj.  
 
3) Output Allocation Stage - for all Ni’s successors tasks 
memory storage must be allocated on processor P j. 
 
4) The schedule of Ni onto Pj at instant t is accept only if Pj 
has enough memory to satisfy the demands at the transfer 
and output allocation stages. 

 
However, special care must be taken, since our 

schedulers perform schedule-hole exploitation. Depend on 
the instant t and TF(Ni,Pj,∑) one of the two cases have to 
be handled: 

 
1) if t ≥ TF(Ni,Pj,∑), then the memory usage is evaluated 

only for Ni. 

2) otherwise, the evaluation must be repeated for all tasks 
schedule so far in a way of increase starting time order 

 
To simplify the implementation of the memory 

requirement test, the transfer stage can be removed if we 
consider not only the testing of execution tasks but also the 
testing of receiver tasks with the deallocation stage carried 
out when the related sender onto the same processor is 
executed. 

Note that not only the data communication must be take 
part of the memory usage evaluation, but also the memory 
for global and static variables, and the program memory. 
The memory program of each processor is update 
accumulatively after each task allocation and so, before the 
schedule of a given Task Ni on processor Pj at instant t, the 
schedule state  ∑(t) must be used to verify that Pj has 
enough memory program for the storage of Ni’s code. 
Table III partially shows the memory usage information 
associated to the final schedule state for the schedule in 
fig.5.  
 
B. Modeling Interprocessor Communication  

 
Modeling the IPC requires an estimator for the time it 

takes to communicate a number of data units between to 
processors, and a model of the interconnection topology. If 
the communication time is not the same for all 
interconnections, then the estimator has to be included for 
each communication channel. The communication model 
reflects the way the processors communicate, which again 
depends on the interconnection topology. Different 
communication times and ways the processor can 
communicate arise from different topologies and 
topologies combinations. Topologies such as shared 
memory (single and multiple bus), point-to-point 
connections, mesh, and a mixed of shared memory and 
point-to-point connection are handled by our schedulers.  

 
 
 
 
 
 
 
 

 

Proc 
Startup Memory Processor 

I / O 

0 1 20 yes 

1 0 20 No 

2 2 20 Yes 

SM 3 20  



TABLE III 
MEMORY USAGE INFORMATION OF SCHEDULE IN FIG.5 

 
TABLE III (cont.) 

 

Task 

Proc 
0 1 2 3 4 5 6 7 8 9 10  

            Task  2 

0 0 0 0 0 0 0 0 0 0 0 0  

1 0 0 0 0 0 0 0 0 0 0 0  

2 0 0 0 0 0 0 0 0 0 0 0  

SM 0 0 0 0 0 0 0 0 0 0 0  

            Task  0 

0 0 0 0 0 0 2 0 0 0 0 0  

1 0 0 0 0 0 0 0 0 0 0 0  

2 0 0 0 0 0 0 0 0 0 0 0  

SM 0 0 0 0 0 0 0 0 0 0 0  

            Task  1 

0 0 0 0 0 0 2 0 0 0 0 0  

1 0 0 0 0 0 0 0 0 0 0 0  

2 0 0 0 3 3 0 0 0 0 0 0  

SM 0 0 0 0 0 0 0 0 0 0 0  

            Task  4 

0 0 0 0 0 0 2 0 7 0 0 0  

1 0 0 0 0 0 0 0 0 0 0 0  

2 0 0 0 3 3 0 0 0 0 0 0  

SM 0 0 0 0 0 0 0 0 0 0 0  

            Receiver

4-7 [ 6 ] 

0 0 0 0 0 0 2 0 7 0 0 0  

1 0 0 0 0 0 0 0 0 0 0 0  

2 0 0 0 3 0 0 2 2 0 0 0  

SM 0 0 0 0 0 0 0 0 0 0 0  

            Task  3 

0 0 0 0 0 0 2 0 9 0 0 0  

1 0 0 0 0 0 0 0 0 0 0 0  

2 0 0 0 3 0 0 2 2 0 0 0  

SM 0 0 0 0 0 0 0 0 0 0 0  

Task 

Proc 
0 1 2 3 4 5 6 7 8 9 10  

            Receiver 

4-6 [ 6 ] 

0 0 0 0 0 0 2 0 9 0 0 0  

1 0 0 0 0 0 0 0 0 0 0 0  

2 0 0 0 3 0 0 4 2 0 0 0  

SM 0 0 0 0 0 0 0 0 0 0 0  

            Task  5 

0 0 0 0 0 0 2 0 9 0 0 0  

1 0 0 0 0 0 0 0 0 0 0 0  

2 0 0 0 3 0 0 4 2 0 0 0  

SM 0 0 0 0 0 0 2 0 0 0 0  

            Task  8 

0 0 0 0 0 0 0 0 9 1 0 0  

1 0 0 0 0 0 0 0 0 0 0 0  

2 0 0 0 3 0 0 4 2 0 0 0  

SM 0 0 0 0 0 0 2 0 0 0 0  

            Receiver 

4-6 [ 11 ] 

0 0 0 0 0 0 0 0 9 1 0 2  

1 0 0 0 0 0 0 0 0 0 0 0  

2 0 0 0 0 0 0 2 2 0 0 0  

SM 0 0 0 0 0 0 2 0 0 0 0  

            Receiver 

3-6 [ 16 ] 

0 0 0 0 0 0 0 0 9 0 0 2  

1 0 0 0 0 0 0 2 0 0 0 0  

2 0 0 0 0 0 0 0 2 0 0 0  

SM 0 0 0 0 0 0 0 0 0 0 0  

            Task  7 

0 0 0 0 0 0 0 0 9 0 0 2  

1 0 0 0 0 0 0 2 0 0 0 0  

2 0 0 0 0 0 0 0 0 0 0 0  

SM 0 0 0 0 0 0 0 0 0 0 0  

. 

. 

. 

 . 

. 

. 

 . 

. 

. 

  . 

. 

. 

 . 

. 

. 

 . 

. 

. 

Receiver 

3-6 [ 21 ] 

 



The availability of  some kind of processor I/O is very 
important in a way that it makes a processor able to 
calculate and communicate simultaneously. 

In order to give a unified vision of the interconnection 
topology to the scheduler, the following considerations are 
introduced: 

 
1)  a shared memory is modeled as a “dead processor”, 

i.e., a processor without execution capability, and 
processor I/O, only with storage capacity. 

2)  a connection between two processors through a 
shared memory can be represented as two 
point-to-point connection. 

3)  the number of simultaneous accesses to the shared 
memory depend on the number of ports and the 
addresses to be accessed.  

 
Using such considerations, the scheduler has an unified 

vision of  the interconnection topologies as based on point-
to-point connection. Therefore, the communication cost 
between two processors Pi and Pj (including the ‘dead 
processor’) can be modeled as 

 
CommCosti,j = SetupTime + NUnits*WCTime, 
 

where NUnits  and WCTime, specify the number of data 
units to be sent and the communication time for one data 
unit, respectively. In cases where one of the 
communicating processor is a “dead processor”, the 
SetupTime is the overhead incurred in setting the 
connection from a processor to the shared memory, i.e., the 
overhead associated with taking the shared memory from a 
processor and handing it to another one, and WCTime is 
equal to the number of wait states plus one. 
 

IV. WCET7 PREDICTOR  
 

Since we are concerned with static scheduling, we need 
to know the execution time of each task onto each 
processor beforehand, and consequently, for each task 
code must be generated for each processor.  The simpler 
approach to estimate the execution time of a task graph 
node is: for each arithmetic instruction counting the 
number of times it appears on the code, express the 
contribution of this instruction in terms of clock cycles, 
and update de total clock cycles with this contribution. 
Nevertheless, this approach is unrealistic since it ignores, 
cache and pipeline effects (these are features of some 
DSPs that can be used in our hardware architecture) and 
mainly the system interferences. Other two basic 
approaches are: 

1-  Isolate the operation to be measured and make time 
measurements before and after performing it, which is 
valid only when the resolution of an individual 
measurement will be considerably less than the time of the 
operation to be analyzed. 

2-  Execution of the operation a large number of time 
and at the end of the loop operation execution the desired 
time will be found by averaging. Even with this approach, 

                                                           
7 Worst-Case execution Time 

if you want an accurate measurement, a number of 
complications such as, compiler optimizations, OS 
distortions, must be solved. 

We plan to study the timing schema proposed by Alan 
Shaw et al [7, 8] and extend it in order to take account of 
the cache and pipeline effects [9- 11]. Others approach for 
time measurement can be found in [12]. 
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