
An Automatic Programming Tool for Heterogeneous
Multiprocessor Systems

Adriano Tavares
Department of Industrial Electronics

University of Minho
4800 Guimarães, Portugal

Carlos Couto
Department of Industrial Electronics

University of Minho
4800 Guimarães, Portugal

Abstract - Recent advances in network technology and the
higher levels of circuit integration due to VLSI have led to
widespread interest in the use of multiprocessor systems in
solving many practical problems. As the hardware continues
to diminish in size and cost, new possibilities are being
created for systems that are heterogeneous by design.
Parallel multiprocessor architectures are now feasible and
provide a valid solution to the throughput rates demands of
the increasing sophistication of control and/or
instrumentation systems. Increasing the number of
processors and the complexity of the problems to be solved
makes programming multiprocessor systems more difficult
and error-prone. This paper describes some parts already
implemented (mainly the scheduler) of a software
development tool for heterogeneous multiprocessor system
that will perform automatically: code generation, execution
time estimation, scheduling and handles the communication
primitive insertion.

I. INTRODUCTION

Control and/or instrumentation application frequently
requires very high peaks of processing power demands
that can not be satisfied by a single processor system, and
often the solution is found in a multiprocessor
architectures. Developing software for such kind of
architecture is very hard and usually realized at each
individual processor’s level with the compatibility among
processors carried out by the programmer. The lack of a
software development tool, independent of the
multiprocessor hardware platform is the main reason
against the use of integration potentialities in the
development of the On-chip multiprocessor architectures.

The Commercial manufactures usually make
integration of a processor and diverse kinds of peripherals
but never multiprocessor integration. The few existing
multiprocessor architectures emerge from discrete
processors that after a completely independent
development (one for each processor) are later integrated
in one chip - ASIC.

This problem becomes harder since with
instrumentation and/or control system, skills are necessary
to deal with additional degree of complexity that emerges
from different contributions of the different processors.

Parallel processing enhancement can be divided into
two broad categories: On-chip versus off-chip parallelism.
The Texas Instruments C80 (contains four DSPs and one
RISC processor) is an example of the newest approach in
on-chip parallelism that consist to put more than one

CPUs onto one IC. Off-chip parallelism employs several
processors, working together on a task.

We consider a heterogeneous multiprocessor system to
be a system which makes use of several different types of
processors, and/or connectivity topologies to optimize
performance and/or cost-effectiveness of the system. For
example, different processor types could include vector
processing, SIMD1 processors, MIMD2 processors, special
purpose processors, and data flow processors. Similarly,
different connectivity paradigms could include bus,
point-to-point, ring, or a mixture of these. Examples of
heterogeneous systems can be found in:

1) Embedded systems which are application specific
systems containing hardware and/or software tailored for a
particular task. General purpose processors, programmable
digital signal processors, and ASICs are among the many
components of these system. In this kind of systems,
heterogeneous processors are tightly coupled with low
IPC3 overhead but with heavy resource constraints.

2) Distributed systems, which consist of various
workstation, main computers, and even super computers,
with significant overhead of interprocessor
communication.

3) SHHiPE4 which is an embedded system developed by
integrating COTS5 processors and interconnect
components in a ‘plug-and-play’ fashion. These systems
offer advantages of low-cost, scalability, easy
programmability, software portability, and ability to
incorporate evolving hardware technology [1, 2].

Examples of application tasks where heterogeneous
multiprocessor systems are desirable can be found in any
domains, including instrumentation and/or control,
robotics and digital signal processing.

Even if the hardware is built, the application program
must be written, debugged, and maintained. When
programming this kind of system new problems arise
compared to programming a single processor system.
Some of these are: program scheduling (good scheduling
algorithms are essential to exploit the full parallelism of
the hardware), load balancing, processors synchronization
and communication routing. These tasks are often tedious
and therefore programming facility is needed to simplify
the development task while maximizing performance.
Programmers must be able to specify algorithms at a
sufficiently abstract level so that they are not overwhelmed
with trivialities while still having access to those details

1 Single Instruction Multiple Data
2 Multiple Instructions Multiple Data
3 IPC = Interprocessor Communication
4 Scalable Heterogeneous High Performance Embedded
5 COTS = Commercial Off The Shelf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55603535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that are needed by system software (compiler, linker, and
run-time support) to efficiently execute the code.
Furthermore, as applications become more sophisticated,
debugging becomes more complex.

Our main purpose in this project will be the
development of a visual and automatic programming
environment for heterogeneous multiprocessor system
based on microcontrollers and DSPs for instrumentation
and/or control applications, that take advantage of
available system resources and make the programming as
easily as possible. After some studies and reflections, we
decide that this programming environment will be
composed of four tools: a graphical editor for representing
the program and the target machine graph, a scheduler for
partitioning and mapping the parallel program onto the
processors, the code generator for each processor types, a
predictor for the worst-case execution time of each task
presents in the program graph, and finally a program
performance visualizer.

At this moment, we have concluded the implementation
of the graphical editor and of several scheduling
algorithms for homogeneous and heterogeneous systems.

II. GRAPHICAL EDITOR

The graphical editor’s main purpose is the

representation of the program graph and target machine
graph and has two very important features:

1- browsing large graphs through incremental layout.
2- visualization of dynamic graphs to be used later by

the performance tool.

Fig.1 Some Graphical Editor Objects

A parallel program is composed by N separate

cooperating and communicating tasks and its behavior is
represented by a directed acyclic graph (DAG) named
program graph or task graph (fig.2). A DAG is defined by
a tuple G = (V, E, C, T) where V is the set of task nodes
and v = |V| is the number of nodes, E is the set of
communication edges and e = |E| is the number of edges, C
is the set of edge communication costs and T is the set of
node computation costs. The values ci,j ∈ C is the
communication cost incurred along the edge ei,j = (ni,nj)
∈E, which is zero if both nodes are mapped in the same
processor. The value tij ∈ T is the execution time of node
Ni ∈ V onto processor pj.

The multiprocessor system, onto which the tasks are
scheduled is represented as a weighted undirected graph
(fig.3) Gp = (Vp, Ep), where Vp = {vq : q = 1,2, …,m} is the
set of processors with associated service rates uq and

Ep={(p,q): p, q = 1, 2,…,m, p≠q} is the set of links with
associated link capacities cpq. Fig. 1 shows some drawing
objects used to represent the task and system graphs. The
graph system in fig.3 represents an architecture compose
by three processors communicating through a shared
memory connected to a shared bus and a dedicated
point-to-point link between processors P0 and P2 (fig.4).

Fig.2 Task graph representation

Fig.3 System graph representation

Fig. 4 Architecture represented by the system graph of fig.3

III. THE SCHEDULER

The objective of scheduling is minimization of the total

execution time and its output is a Gantt chart, which
contains information about the distribution of the tasks

included in a given program graph onto the various target
machine’s processors. This problem is NP-hard, i.e., the
computational requirements for an optimal solution
increase exponentially with the number of tasks and
number of processors, which makes the finding of the
optimal schedule, even for moderately sized problems, not
practicable. Therefore, nearly all practical scheduling
algorithms incorporate heuristics. Since scheduling is
expressed as an optimization problem, some approaches
that can be taken are [3, 4]:

1) Enumerate methods search every point related to an
objective function’s domain space, one point at a time.
They are very simple to implement but may require
significant computation. The domain space of many
applications is too large to search using these techniques.

2) Calculus based techniques use a set of necessary and
sufficient conditions to be satisfied by the solutions of an
optimization problem. It can be divided into two groups,
direct and indirect methods. Direct methods is
computationally feasible, but can be use only on a
restricted set of “well-behaved” problems. Indirect
methods look for local extrema by solving a nonlinear set
of equations resulting from zeroing the gradient, and so is
computationally heavy.

3) Heuristic methods, solve the NP-hard problems
within reasonable time, but never garantee an optimal
solution since it only search part of the entire solution
space and suffer from the so called horizon effect6.

4) Guided random search techniques including both
simulated annealing and genetic algorithms are based on
enumerative techniques but use additional information to
guide the search.

Scheduling can be dynamic or static. The static
scheduling approach can be applied to only a subset of
problems whose run-time behavior is predictable, i.e., the
precedence-constrained task graph must be known
beforehand. Therefore, constructs such as branches and
loops must be excluded to provide deterministic program
behavior. The disadvantage of dynamic scheduling is its
inadequacy in finding global optimums and its additional
execution overhead resulting from the fact that the
schedule must be determined while the program executes.
All schedulers we have been implemented are statics and
make explicit consideration about interprocessor
communications, because excluding IPC from the
scheduling is unrealistic.

The scheduling algorithms we will present are modified
versions of Lee’s dynamic-level [3] and Pattipati’s [4]
scheduling that incorporate memory constraints and the
possibility of utilizing the schedule-holes in processors
and channels.

As we said above the processor types composing our
target machine are DSPs and microcontroller, and so
would be unrealistic if we do not incorporate memory
constraints in the schedulers. Therefore some modeling
technique must be used to express memory requirements
and we adopt the nonlinear memory constraints model

6 This property asserts that no matter how far one looks ahead before
making a local decision, there may exist something “just over the
horizont” which can render the decision detrimental to the objective, i.e.,
heuristic methods tend to take optimal local decisions that may have a
non-optimal global effect.

suggested by Kaneshiro [5], since the linear model is
unpraticable. The memory requirements are evaluated and
test against the current available memory resource every
time a task is analyzed for allocation. The dynamic level of
task to be schedule on a given processor is a very large
negative number if the given processor cannot satisfy its
memory requirement at any point of time.

Ram Murthy suggested in [6] the exploitation of
schedule-holes to improve the Lee’s dynamic level
scheduling for homogeneous system. We made a soft
change in the Lee’s dynamic level calculation for
heterogeneous system in order to incorporate the Ram
Murthy´s suggestion and memory constraint. The new
dynamic level is given by

newDL1(Ni,Pj, ∑(t))=SL*(Ni) - FAH(Ni,Pi, ∑(t))

+ ∆(Ni,Pj) (1)

oldDL1(Ni,Pj, ∑(t)) = SL*(Ni) - max[DA(Ni,Pi,∑(t)),
TF(Ni,Pj, ∑(t))] + ∆(Ni,Pj) (2)

∆(Ni,Pj) = E*(Ni) - E(Ni,Pj), (3)

where ∑(t), DA(Ni,Pi,∑), FAH(Ni,Pj,∑), SL*(Ni),
TF(Ni,Pj,∑), E(Ni,Pj), E*(Ni), stand for: the state of the
processing, memory and communication resource at
instant t, the earliest time all data required by node Ni is
available at Processor Pi with memory requirement
satisfied, the first available schedule hole after
DA(Ni,Pj,∑), static level of node Ni, the time the last node
assigned to the jth processor finishes execution, execution
time of node Ni over processor Pj, and the adjusted median
execution time of node Ni over all processors, respectively.
The static level of a node Ni, SL*(Ni), represents the
largest sum of execution times along any directed path
from Ni to an endnode of the task graph, over all endnodes
of the task graph. All others Lee’s scheduler parameters,
such as descendent consideration and Resource scarcity
are kept unchanged.

TABLE I
EXECUTION TIMES OF THE TASKS IN FIG.2

We also modify Pattipati’s algorithm in the same way in

order to carried out schedule hole exploitation. Pattipati
use the same argument as Lee: a node Ni cannot begin
execution on processor Pj until the data from all
predecessors of Ni are available at Pj, and also until
processor Pj completes its execution of the last task in the
ordered set TPj. TPj contains the task assigned to Pj
sequencing in the execution order. In this algorithm, we
also use E*(Ni) in the calculation of the order of task
allocation instead of the ratio service demand/service rate.

Task

Proc
0 1 2 3 4 5 6 7 8 9 10

0 5 5 2 4 5 2 4 5 4 3 4

1 ∞ 3 ∞ 2 ∞ ∞ 3 ∞ 5 3 ∞

2 3 6 4 4 3 3 ∞ 6 ∞ 3 6

TABLE II
SOME PROCESSOR CAPABILITIES USED

BY THE SCHEDULER

Fig.5 presents two Gantt charts, one for the scheduling

of communication channels and another one for processors
that ilustrates the results of running our first scheduler
incorporated with decendent consideration and resource
scarcity and using as inputs the task graph of fig.1, the
system graph of fig.2, and the information presents in table
I and II. All data in these tables are available when a
particular task graph or system file are opened in editor
mode. By double-clicking a particular drawing object a
dialog box is showed with the specific information that
depends on the mode used. The point-to-point link in fig.3
is full duplex.

Fig.5 Gantt chart for our Lee modified Scheduler

A. Memory Constraints

As said before, an edge between two tasks allocated to
different processors represents an interprocessor
communication, and so, demands memory storage at the
destination processor. Using the memory usage
information associated with the schedule state ∑(t) at
instant t, every solutions with memory requirement that
violate the memory availability can be discarded. For
schedule a given task Ni on processor Pj at instant t, the
memory requirement evaluation is carried out, following
the next steps:

1) Deallocation Stage - the schedule state ∑(t) is analyzed
and input memory requirement is deallocated for all tasks
that end execution before or at the instant t.

2) Transfer Stage - for all predecessors of Ni scheduled
before on processors Pk, for all k ≠ j, the associated output
memory requirement to Ni must be transferred to Pj.

3) Output Allocation Stage - for all Ni’s successors tasks
memory storage must be allocated on processor P j.

4) The schedule of Ni onto Pj at instant t is accept only if Pj
has enough memory to satisfy the demands at the transfer
and output allocation stages.

However, special care must be taken, since our

schedulers perform schedule-hole exploitation. Depend on
the instant t and TF(Ni,Pj,∑) one of the two cases have to
be handled:

1) if t ≥ TF(Ni,Pj,∑), then the memory usage is evaluated

only for Ni.

2) otherwise, the evaluation must be repeated for all tasks
schedule so far in a way of increase starting time order

To simplify the implementation of the memory

requirement test, the transfer stage can be removed if we
consider not only the testing of execution tasks but also the
testing of receiver tasks with the deallocation stage carried
out when the related sender onto the same processor is
executed.

Note that not only the data communication must be take
part of the memory usage evaluation, but also the memory
for global and static variables, and the program memory.
The memory program of each processor is update
accumulatively after each task allocation and so, before the
schedule of a given Task Ni on processor Pj at instant t, the
schedule state ∑(t) must be used to verify that Pj has
enough memory program for the storage of Ni’s code.
Table III partially shows the memory usage information
associated to the final schedule state for the schedule in
fig.5.

B. Modeling Interprocessor Communication

Modeling the IPC requires an estimator for the time it

takes to communicate a number of data units between to
processors, and a model of the interconnection topology. If
the communication time is not the same for all
interconnections, then the estimator has to be included for
each communication channel. The communication model
reflects the way the processors communicate, which again
depends on the interconnection topology. Different
communication times and ways the processor can
communicate arise from different topologies and
topologies combinations. Topologies such as shared
memory (single and multiple bus), point-to-point
connections, mesh, and a mixed of shared memory and
point-to-point connection are handled by our schedulers.

Proc
Startup Memory Processor

I / O

0 1 20 yes

1 0 20 No

2 2 20 Yes

SM 3 20

TABLE III
MEMORY USAGE INFORMATION OF SCHEDULE IN FIG.5

TABLE III (cont.)

Task

Proc
0 1 2 3 4 5 6 7 8 9 10

 Task 2

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

SM 0 0 0 0 0 0 0 0 0 0 0

 Task 0

0 0 0 0 0 0 2 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

SM 0 0 0 0 0 0 0 0 0 0 0

 Task 1

0 0 0 0 0 0 2 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 3 3 0 0 0 0 0 0

SM 0 0 0 0 0 0 0 0 0 0 0

 Task 4

0 0 0 0 0 0 2 0 7 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 3 3 0 0 0 0 0 0

SM 0 0 0 0 0 0 0 0 0 0 0

 Receiver

4-7 [6]

0 0 0 0 0 0 2 0 7 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 3 0 0 2 2 0 0 0

SM 0 0 0 0 0 0 0 0 0 0 0

 Task 3

0 0 0 0 0 0 2 0 9 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 3 0 0 2 2 0 0 0

SM 0 0 0 0 0 0 0 0 0 0 0

Task

Proc
0 1 2 3 4 5 6 7 8 9 10

 Receiver

4-6 [6]

0 0 0 0 0 0 2 0 9 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 3 0 0 4 2 0 0 0

SM 0 0 0 0 0 0 0 0 0 0 0

 Task 5

0 0 0 0 0 0 2 0 9 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 3 0 0 4 2 0 0 0

SM 0 0 0 0 0 0 2 0 0 0 0

 Task 8

0 0 0 0 0 0 0 0 9 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 3 0 0 4 2 0 0 0

SM 0 0 0 0 0 0 2 0 0 0 0

 Receiver

4-6 [11]

0 0 0 0 0 0 0 0 9 1 0 2

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 2 2 0 0 0

SM 0 0 0 0 0 0 2 0 0 0 0

 Receiver

3-6 [16]

0 0 0 0 0 0 0 0 9 0 0 2

1 0 0 0 0 0 0 2 0 0 0 0

2 0 0 0 0 0 0 0 2 0 0 0

SM 0 0 0 0 0 0 0 0 0 0 0

 Task 7

0 0 0 0 0 0 0 0 9 0 0 2

1 0 0 0 0 0 0 2 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

SM 0 0 0 0 0 0 0 0 0 0 0

.

.

.

 .

.

.

 .

.

.

 .

.

.

 .

.

.

 .

.

.

Receiver

3-6 [21]

The availability of some kind of processor I/O is very
important in a way that it makes a processor able to
calculate and communicate simultaneously.

In order to give a unified vision of the interconnection
topology to the scheduler, the following considerations are
introduced:

1) a shared memory is modeled as a “dead processor”,

i.e., a processor without execution capability, and
processor I/O, only with storage capacity.

2) a connection between two processors through a
shared memory can be represented as two
point-to-point connection.

3) the number of simultaneous accesses to the shared
memory depend on the number of ports and the
addresses to be accessed.

Using such considerations, the scheduler has an unified

vision of the interconnection topologies as based on point-
to-point connection. Therefore, the communication cost
between two processors Pi and Pj (including the ‘dead
processor’) can be modeled as

CommCosti,j = SetupTime + NUnits*WCTime,

where NUnits and WCTime, specify the number of data
units to be sent and the communication time for one data
unit, respectively. In cases where one of the
communicating processor is a “dead processor”, the
SetupTime is the overhead incurred in setting the
connection from a processor to the shared memory, i.e., the
overhead associated with taking the shared memory from a
processor and handing it to another one, and WCTime is
equal to the number of wait states plus one.

IV. WCET7 PREDICTOR

Since we are concerned with static scheduling, we need
to know the execution time of each task onto each
processor beforehand, and consequently, for each task
code must be generated for each processor. The simpler
approach to estimate the execution time of a task graph
node is: for each arithmetic instruction counting the
number of times it appears on the code, express the
contribution of this instruction in terms of clock cycles,
and update de total clock cycles with this contribution.
Nevertheless, this approach is unrealistic since it ignores,
cache and pipeline effects (these are features of some
DSPs that can be used in our hardware architecture) and
mainly the system interferences. Other two basic
approaches are:

1- Isolate the operation to be measured and make time
measurements before and after performing it, which is
valid only when the resolution of an individual
measurement will be considerably less than the time of the
operation to be analyzed.

2- Execution of the operation a large number of time
and at the end of the loop operation execution the desired
time will be found by averaging. Even with this approach,

7 Worst-Case execution Time

if you want an accurate measurement, a number of
complications such as, compiler optimizations, OS
distortions, must be solved.

We plan to study the timing schema proposed by Alan
Shaw et al [7, 8] and extend it in order to take account of
the cache and pipeline effects [9- 11]. Others approach for
time measurement can be found in [12].

V. REFERENCES

[1] Wenheng Liu et al., “Communication Issues in

Heterogeneous Embedded Systems”
http://www.usc.edu/dept/ceng/prasanna/projects/embed.html

[2] Prashanth Bhat, “Issues in using Heterogeneous HPC
Systems for Embedded Real Time Signal Processing
Applications,”
http://www.usc.edu/dept/ceng/prasanna/projects/embed.html

[3] Gilbert Sih, A. Lee, “A Compile-Time Scheduling
Heuristic for Interconnection-Constrained
Heterogeneous Processor Architectures,” IEEE-PDS,
4, 2 February 1993.

[4] K. Pattipati et al., “On Mapping a Tracking Algorithm
Onto Parallel Processors,” IEEE-AES, 26, 5,
September,1990.

[5] Ronald Kaneshiro et al., “Task Allocation and
Scheduling Models for Multiprocessor Digital Signal
Processing,” IEEE - ASSP, vol.38, 12, December
1990.

[6] S. Selvakumar and C. Siva Ram Murthy, “Scheduling
Precedence Constrained Task graphs with
Non-Negligible Intertask communication onto
Multiprocessors,” IEEE-PDS 5,3, March 1994

[7] Alan Shaw, “Reasoning About Time In Higher-level
Languages Software,” IEEE Trans.-SE 15, 7 July
1989.

[8] Chang Yun Park and Alan Shaw, “Experiments with a
Program Timing Tool Based on Source-Level Timing
Schema,” IEEE Computer Magazine, May 1991, pp.
48-57.

[9] Sung-Soo Lim et al., “An Accurate Worst Case
Timing Analysis for RISC Processors,” IEEE
Trans.-SE, 21,7, July 1995.

[10] Frank Mueller et al., “Predicting Instruction Cache
Behavior,” in ACM SIGPLAN Workshop on
Language, Compiler and Tool Support for Real-Time
Systems, June, 1994.

[11] Kelvin Nilsen and Bernt Rygg, “Worst-Case
Execution Time Analysis on Modern Processors,”
ACM SIGPLAN Notices, Vol. 30, No.11 November
1995.

[12] Russel Clapp et al., “Toward Real-Time Performance
Benchmarks for ADA”, Communication of ACM,
vol. 29, No. 8, August 1986.

[13] Jing-Jang Hwang, et al., “Scheduling Precedence
Graphs in Systems with Interprocessor
Communication Times,” Siam J. Computing, vol.18,
No. 2, pp. 244-257, April 1989.

[14] Hyunok Oh and Soonhoi Ha., “A Static Scheduling
Heuristic for Heterogeneous Processor,”
http://www.ce2.snu.ac.kr.

