
A Scheduling Framework for Heterogeneous Multiprocessor Architectures Based 
on Industrial Processors (DSPs and Microcontrollers) 

 
Adriano Tavares Carlos Couto 

Department of Industrial Electronics Department of Industrial Electronics 
University of Minho  University of Minho 

4800 Guimarães 4800 Guimarães 
PORTUGAL PORTUGAL 

atavares@deiuminho.pt ccouto@dei.uminho.pt 
 
 
Abstract – Current VLSI and networking technology, the 
increase in computational power, and the rapid decrease in 
computational cost, enable the interconnection of VLSI 
processors, which can be arranged on a functional 
decomposition of the computational task to exploit the 
potential of multiprocessing. The use of multiprocessor 
systems in such way, provides a novel and cost effective 
solution in solving many practical problems in signal 
processing, control systems, instrumentation systems and 
robotics. In this article we present a framework that 
addresses the specificities of industrial processors, such as 
DSPs and microcontrollers and can easily be used to 
implement a huge range of scheduling algorithms. 
 

I. INTRODUCTION 
 

Many computational problems in control, signal 
processing, robotics and instrumentation frequently make a 
huge requirements of interfaces and processing power that 
can not be satisfied by a single processor system, making a 
good case for multiprocessor architectures. However, the 
potential advantages of multiprocessor systems can be 
exploited only if the problem to be solved can be 
partitioned into small tasks and these tasks scheduled onto 
the processors of a multiprocessor systems in a way that 
minimizes the completion time. This problem becomes 
harder since with those systems mentioned above, skills 
are necessary to deal with additional degree of complexity 
that emerges from different contributions of the different 
processors that compose a heterogeneous multiprocessor 
architecture. 

We consider a heterogeneous multiprocessor system to 
be the one that makes use of several different types of 
processors, and/or connectivity topologies to optimise 
performance and/or cost-effectiveness of the system. For 
instance, different processor types could include DSPs, 
microcontrollers, PICs, and others special purpose 
processors. Similarly, different connectivity paradigms 
could include bus, point-to-point, ring, or a mixture of 
these. Examples of heterogeneous systems can be found in: 

1) Embedded Systems: Application specific systems 
containing hardware and/or software tailored for a 
particular task. General-purpose processors, programmable 
digital signal processors, and ASICs are among the many 
components of these systems. In this kind of systems, 
heterogeneous processors are tightly coupled with low IPC 
(InterProcessor Communication) overhead but with heavy 
resource constraints. 

2) Distributed Systems: Consisting of various 
workstation, main computers, and even super computers, 
with significant overhead resulting from the IPC. 

3) SHHiPE (Scalable Heterogeneous High Performance 

Embedded): An embedded system developed by 
integrating COTS (Commercial Off The Shelf) processors 
and interconnect components in a ‘plug-and-play’ fashion. 
These systems offer advantages of low-cost, scalability, 
easy programmability, software portability, and ability to 
incorporate evolving hardware technology [1, 2]. 
 

II. MULTIPROCESSOR SCHEDULING PROBLEM 
 

The objective of scheduling is the minimization of the 
total execution time and its output is a Gantt chart, which 
contains information about the distribution of the tasks 
included in a given program graph onto the various target 
machine’s processors. This problem is NP-hard, i.e., the 
computational requirements for an optimal solution 
increase exponentially with the number of tasks and 
number of processors, which makes the finding of the 
optimal schedule, even for moderately sized problems, not 
practicable. Therefore, nearly all practical scheduling 
algorithms incorporate heuristics. Since scheduling is 
expressed as an optimisation problem, we try out some 
approaches based on: 

1) Enumerate methods: Search every point related to an 
objective function’s domain space, one point at a time. 
They are very simple to implement but may require 
significant computation. The domain space of many 
applications is too large to search using these techniques. 

2) Calculus Based Techniques: Use a set of necessary 
and sufficient conditions to be satisfied by the solutions of 
an optimisation problem. It can be divided into two groups, 
direct and indirect methods. Direct methods are 
computationally feasible, but can be use only on a 
restricted set of “well-behaved” problems. Indirect 
methods look for local extrema by solving a nonlinear set 
of  equations,  resulting from zeroing the gradient, and so, 
is computationally heavy. 

3) Heuristic Methods: Solve the NP-hard problems 
within reasonable time, but never guarantee an optimal 
solution since they only search part of the entire solution 
space and suffer from the so called horizon effect1. 

4) Guided Random Search Techniques: Including both 
simulated annealing and genetic algorithms are based on 
enumerative techniques but use additional information to 
guide the search. 

Scheduling can be dynamic or static. The static 
scheduling approach can be applied to only a subset of 
                                                            
1 This property asserts that no matter how far one looks ahead before 
making a local decision, there may exist something “just over the 
horizon” which can render the decision detrimental to the objective, i.e., 
heuristic methods tend to take optimal local decisions that may have a 
non-optimal global effect. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55603533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

problems whose run-time behaviour is predictable, i.e., the 
precedence-constrained task graph must be known 
beforehand. Therefore, constructs such as branches and 
loops must be excluded to provide deterministic program 
behaviour. The disadvantage of dynamic scheduling is its 
inadequacy in finding global optimums and its additional 
execution overhead resulting from the fact that the 
schedule must be determined while the program executes.  

All schedulers we have been implement, are statics 
and due to the nature of the processors in use 
(microcontrollers and DSPs), they make explicit 
consideration about interprocessor communications, 
memory and I/O resources. Therefore, some modelling 
technique must be used to express IPC, memory, and I/O 
resources. 

 
A. Memory Constraints 
 

As said before, an edge between two tasks allocated to 
different processors represents an interprocessor 
communication, and so, demands memory storage at the 
destination processor. Using the memory usage 
information associated with the schedule state ∑(t) at 
instant t, every solution with memory requirement that 
violate the memory availability must be discarded. Note 
that ∑(t) describes the state of the processing, memory, I/O 
and communication resource at instant t. To schedule a 
given task Ni on processor Pj at instant t, the memory 
requirement evaluation is carried out, following the next 
steps: 

1) Deallocation Stage: The schedule state ∑(t) is 
analysed and input memory requirement is deallocated for 
all tasks that end execution before or at the instant t, 

2) Transfer Stage: For all predecessors of Ni scheduled 
before on processors Pk, and for all k ≠ j, the associated 
output memory requirement to Ni must be transferred to Pj, 

3) Output Allocation Stage: For all Ni’s successors 
tasks, memory storage must be allocated on processor P j, 

4) Node Acceptance: The schedule of Ni onto Pj at 
instant t is accepted only if Pj has enough memory to 
satisfy the demands at the transfer and output allocation 
stages. 

However, special care must be taken, since some 
implemented schedulers perform schedule-hole 
exploitation. Depend on the instant t and the time the last 
node assigned to the jth processor finishes execution, 
TF(Ni,Pj,∑), one of the two cases have to be handled: 

1) If t ≥ TF(Ni,Pj,∑): Then the memory usage is 
evaluated only for Ni, 

2) Otherwise: The evaluation must be repeated for all 
tasks scheduled so far in a way of increase starting time 
order. 

Note that not only the data communication must be take 
part of the memory usage evaluation, but also the memory 
for global and static variables, and the program memory. 
The memory program of each processor is updated 
accumulatively after each task allocation, and so, before 
the schedule of a given Task Ni on processor Pj at instant t, 
the schedule state  ∑(t) must be used to verify that Pj has 
enough program memory for the storage of Ni’s code.  
 
 

B. Interprocessor Communication Modeling 
 

The IPC modelling requires an estimator for the time it 
takes to communicate a number of data units between two 
processors, and a model of the interconnection topology. If 
the communication time is not the same for all 
interconnections, then an estimator has to be included for 
each communication channel. The communication model 
reflects the way the processors communicate, which again 
depends on the interconnection topology. Different 
communication times and ways the processor can 
communicate arise from different topologies and 
topologies combinations. Topologies such as shared 
memory (single and multiple bus), point-to-point 
connections, mesh, and a mixed of shared memory and 
point-to-point connection are handled by our schedulers. 
Note that, the availability of some kind of processor I/O is 
very important, in a way that it makes a processor able to 
calculate and communicate simultaneously. 

In order to provide a unified vision of the 
interconnection topology to the scheduler, the following 
considerations are introduced: 

1) Shared Memory Modelling: A shared memory is 
modelled as a “dead processor”, i.e., a processor without 
execution capability, and processor I/O, but with storage 
capacity 

2) Shared Memory Connection: A connection between 
two processors through a shared memory can be 
represented as two point-to-point connections, 

3) Shared Memory Access: The number of simultaneous 
accesses to the shared memory depend on the number of 
ports and the addresses to be accessed.  

Using such considerations, the scheduler has a unified 
vision of  the interconnection topologies as based on 
point-to-point connections. Therefore, the communication 
cost between two processors Pi and Pj (including the ‘dead 
processor’) can be modelled as 

CommCosti,j = SetupTime + NUnits*WCTime, (1) 

where NUnits and WCTime, specify the number of data 
units to be sent and the communication time for one data 
unit, respectively. In cases where one of the 
communicating processor is a “dead processor”, the 
SetupTime is the overhead incurred in setting the 
connection from a processor to the shared memory, i.e., the 
overhead associated with taking the shared memory from a 
processor and giving it to another one, and WCTime is 
equal to the number of wait states plus one. 
 
C. I/O Resource Modelling 
 

The allocation of the I/O channel to the task’s variables 
must be efficiently realized, to avoid a premature 
emptiness of resources. For instance, a properly resource 
allocation must guarantee that at the end, only those 
channels with worst read/write time will be available, 
while a premature emptiness occurs when there is no free 
channel that satisfy a given variable profile, due to an early 
bad allocation. Premature emptiness is closely related to 
channels that present hybrid profile such as, bidirectional 
and those that can be used as digital or analog. To 
guarantee a properly I/O resource allocation, the following 
scheme is used: 



 

1) Allocation Rule: A priority allocation rule for the 
processor I/O channels is defined, 

 
a) the allocation must start with analog external 

variables. A variable that updates an output data 
channel or is updated by reading an input data 
channel is defined as external, 

 
b) among all I/O channels available for a specific 

allocation, chooses the one that presents the best 
read/write time. 

 
c) after the analog allocation, it will realize the 

digital one, starting with integer or float variable 
and then with bit variable. For each variable, first 
is selected a bidirectional channel if any is free, 
otherwise, an unidirectional channel. At this stage, 
the selection of the channel owner of the 
communication line (for instance, the serial TXD 
and RXD) must be delayed as much as possible.  

 
2) Premature Emptiness Occurrence: If during the I/O 

allocation process occurs a premature emptiness, then 
verify and modify if possible the allocations of the hybrid 
channels. However, if the premature emptiness outlasts 
after all possible modification, then it can be concluded 
that the processor state, ∑(t), has not enough resources for 
that task. 
 
D. Scheduling Algorithms 
 

Several completely new schedulers were implemented, 
based on genetic algorithm [3], simulated annealing [4], 
threshold accepting [5], great deluge [6], and some are 
improved and modified to incorporate the management of 
memory, I/O, and communication resources. Now we will 
present the improvement made to Lee’s dynamic-level 
scheduler [7], as among all implemented schedulers, it is 
the one with best scheduling result/execution time tradeoff. 

Ram Murthy suggested in [8] the exploitation of 
schedule-holes to improve the Lee’s dynamic level 
scheduling for homogeneous system.  We made a soft 
change in the Lee’s dynamic level calculation for 
heterogeneous system in order to incorporate the Ram 
Murthy’s suggestion and resource management purposed. 
The new dynamic level is given by 

 

newDL1(Ni,Pj,∑(t))=SL*( Ni) - FAH(Ni,Pi, ∑(t)) + ∆(Ni,Pj)
 (2) 

oldDL1(Ni,Pj, ∑(t)) = SL*(Ni) - max[ DA(Ni,Pi,∑(t)), 
TF(Ni,Pj, ∑(t)) ] + ∆(Ni,Pj), (3) 

∆(Ni,Pj) = E*(Ni) - E(Ni,Pj), (4) 

where DA(Ni,Pi,∑), FAH(Ni,Pj,∑), SL*(Ni), E(Ni,Pj), 
E*(Ni), stand for: the earliest time all data required by 
node Ni are available at Processor Pi with memory and I/O 
requirement satisfied, the first available schedule hole after 
DA(Ni,Pj,∑), static level of node Ni, execution time of 
node Ni over processor Pj, and the adjusted median 
execution time of node Ni over all processors, respectively. 
The static level of a node Ni, SL*(Ni), represents the 

largest sum of execution times along any directed path 
from Ni to an end node of the task graph, over all end 
nodes of the task graph. All others Lee’s scheduler 
parameters, such as descendent consideration and resource 
scarcity are kept unchanged. 
 

III. EXPERIMENTAL RESULT 
 

Now we will exemplify the use of the described 
scheduling framework through the “Fig.1” to “Fig.4” that 
were produced using µVisualProg. The upper side of 
“Fig.1” presents the Gantt chart with the information about 
tasks distribution onto target machine (given by lower left 
quadrant of “Fig.2”). The program graph is represented by 
the upper quadrants of “Fig.2”, “Fig.3” and “Fig.4”.  In the 
lower side of  “Fig.1" is presented the task graph that was 
automatically generated by the scheduler. “Fig.5” to 
“Fig.7” show more schedule results obtained using the 
suggested framework. The Gantt charts are obtained by 
scheduling the task graph (lower right quadant) onto the 
machine graph (left side). 

 
IV. CONCLUSIONS 

 
A scheduling framework that explores several 

heterogeneity’s levels was described. This scheduling 
framework is part of an automatic programming tool for 
heterogeneous multiprocessor systems named µVisualProg 
developed at the Department of Industrial Electronics, 
University of Minho. Representing the problem as a 
distributed Grafcet and a multiprocessor system as a graph 
machine, µVisualProg starts to generate a precedence- 
constrained task graph that represents the parallel program 
and for each task determines the execution time onto each 
processor node of the graph machine. After the evaluation 
of these data, they are used to initialize the scheduler 
framework with informations about the multiprocessor 
architecture and task graph, and a scheduler algorithm is 
selected. A Gantt chart will be generated and used as the 
input of a code generation process. 

Several scheduling algorithms were implemented and 
tested, and Lee’s dynamic-level scheduler revealed as the 
one with best scheduling result/execution time tradeoff. 
However, for some very specific problems (with a specific 
task graph pattern) the schedule produced by this method 
were not good enough, and so, we recommend the use of 
other schedulers, such as, those ones based on tabu or 
simulated annealing. Note that, these last schedulers are 
very slow, and so, we will focus now on strategies for 
accelerating their convergence. 
 

V. REFERENCES 
 

[l] Wenheng Liu, "Communication Issues in 
Heterogeneous Embedded System," in 
http://www.usc.edu/dept/ceng/Prasanna/projects/emb
ed.html. 

 
[2] Prashanth Bhat, "Issues in Using Heterogeneous HPC 

Systems for Embedded Real Time Signal processing 
Applications," in 
http://www.usc.edu/dept/ceng/Prasanna/projects/emb
ed.html. 



 

 
[3] J. Ribeiro Filho, and C. Alippi, "Genetic-Algorithm 

Programming Environments," IEEE computer 
Magazine, June. 1994, pp. 28-43. 

 
[4] R. W. Eglese, "Simulated Annealing: A Tool for 

Operational Research," European Journal of 
Operational Research, 46, 1990, pp. 271-281. 

 
[5] G. Dueck e T. Scheuer, "Threshold Accepting: A 

General Purpose Optimisation Algorithm Appearing 
Superior to Simulated Annealing," Journal of 
Computational Physics, 90, 1990, pp. 161-175. 

 
[6] Gunter Dueck, "New Optimisation Heuristics: The 

Great Deluge Algorithm and the Record-to-Record 

Travel," Journal of Computational Physics, 104, 
1993, pp. 86-92. 

 
[7] G. Sih, and E. A. Lee, "A Compile-Time Scheduling 

Heuristic for InterConnection Constrained 
Heterogeneous Processor Architectures," IEEE 
Transaction on Parallel and Distributed Systems, vol. 
4, no. 2, Feb. 1993, pp. 175-187. 

 
[8] S. Selvakumar and C. Siva Ram Murthy, "Scheduling 

Precedence Constrained Task Graph with 
Non-Negligible Intertask Communication onto 
Multiprocessors," IEEE Transaction on Parallel and 
Distributed Systems, vol. 5, no. 3, March. 1994. 

 

 

 

Fig.1 Gant chart and the task graph for the application modelled in Fig.2 to Fig. 4

Fig.2 Application modelling: architecture graph and partial grafcet of level 0 



 

 

 

Fig.3 Application modelling: first partial grafcet of level 1 

Fig.4 Application modelling: second partial grafcet of level 1 



 

 

 

Fig.5 Upper right quadrant shows the Gantt chart obtained by scheduling the task graph onto the machine graph  

 

Fig.6 Upper right quadrant shows the Gantt chart obtained by scheduling the task graph onto the machine graph  

Fig.7 Schedule result onto a machine graph with a dead processor (M2). P0 and P1 communicate via a shared memory 


